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A Note on Harris’ Ergodic Theorem,
Controllability and Perturbations
of Harmonic Networks

Renaud Raquépas

Abstract. We show that elements of control theory, together with an ap-
plication of Harris’ ergodic theorem, provide an alternate method for
showing exponential convergence to a unique stationary measure for cer-
tain classes of networks of quasi-harmonic classical oscillators coupled to
heat baths. With the system of oscillators expressed in the form

dXt = AXt dt + F (Xt) dt + B dWt

in Rd, where A encodes the harmonic part of the force and −F cor-
responds to the gradient of the anharmonic part of the potential, the
hypotheses under which we obtain exponential mixing are the following:
A is dissipative, the pair (A,B) satisfies the Kalman condition, F grows
sufficiently slowly at infinity (depending on the dimension d), and the vec-
tor fields in the equation of motion satisfy the weak Hörmander condition
in at least one point of the phase space.

1. Introduction

Thermally driven networks of oscillators play an important role in the in-
vestigation of various aspects of nonequilibrium statistical mechanics. On a
mathematical level, a driven network of classical harmonic oscillators can be
modelled as a d-dimensional process (Xt)t≥0 described by a linear stochastic
differential equation (sde) of the form
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dXt = AXt dt + B dZt,

where the linear operators A and B satisfy certain structural conditions and
where (Zt)t≥0 is a given n-dimensional stochastic process describing the noise
due to thermal fluctuations. The integer n ≤ d is the number of degrees of
freedom of the network that are coupled to heat baths. The noise is often taken
to be a Wiener process, but other types of noise are physically interesting.
A particularly important question regarding such systems and perturbations
thereof is that of invariant measures.

In this work, we consider A and B satisfying the Kalman condition, a
smooth globally Lipschitz perturbing vector field x �→ F (x) that grows slower
than |x|1/2d at infinity1 and (Wt)t≥0 a Wiener process, and show with argu-
ments from control theory and an application of Hairer and Mattingly’s version
of Harris’ ergodic theorem that the process described by the sde

dXt = AXt dt + F (Xt) dt + B dWt

admits a unique stationary measure when A is dissipitaive and a weak
Hörmander condition on the vector fields in the sde holds in at least one
point x0 of the phase space. Moreover, the convergence to this stationary mea-
sure then happens exponentially fast. The abstract mathematical setup and
the result are made more precise in Sect. 2. The proof is provided in Sect. 3.

In Sect. 4, we introduce the mathematical description of perturbed net-
works of harmonic oscillators in this framework, both in the Langevin regime
and in the so-called semi-Markovian regime, and for geometries that go beyond
the one-dimensional chain. In this context, the matrix A encodes the friction,
kinetic and harmonic terms (both the pinning and the interaction) while the
perturbation F corresponds to minus the gradient of the anharmonic part of
the potential.

In the case of a one-dimensional chain of oscillators connected to heat
baths at both ends, results of this type have been established for a very general
class of quasi-homogeneous potentials [4,7–9,15]. The recent paper [6] extends
these results to more complicated networks. Roughly speaking, these results
require that the pinning potential grows as |q|k1 at infinity, that the interaction
potential grows as |q|k2 with k2 ≥ k1 ≥ 2, and that the interaction part
of the potential has no flat piece or infinitely degenerate points. While our
growth condition is considerably more restrictive than the ones found in these
works, the form of local nondegeneracy that we require is weaker: we only
need a weak Hörmander condition to hold at a single point. Moreover, our
setup accommodates a wide variety of geometries and bounded many-body
interaction terms (beyond pinning and two-body interactions).

Such results typically involve carefully studying smoothing properties of
the associated Markov semigroup. The strategy here is different and instead
relies on recent developments on the use of solid controllability in the study of

1 The power 1
2d

is generically not optimal. As we will see, d can be replaced by an integer

d∗ appearing in the formulation of the Kalman rank condition. In all cases d∗ ≤ d.
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mixing properties of random dynamical systems [1,2,16,17]. The simplicity of
the argument can in itself justify the presentation of such an application.

Another advantage is that our general strategy is not based on the Gauss-
ian structure of Brownian motion and can thus be more easily adapted to
different types of noise that are physically relevant. Similar arguments can be
used to discuss the analogous problem with compound Poisson processes; this
type of problem will be analysed in a subsequent work.

The proof can be summarized as follows. For a discrete-time Markov pro-
cess, Harris’ theorem states that the existence and uniqueness of an invariant
measure, with exponentially fast convergence in the total variation metric, can
be obtained from the existence of a suitable Lyapunov function and a minoriza-
tion for the transition probabilities starting from any point in the interior of
a suitable level set of that Lyapunov function. The precise statement we use
is the one formulated in [11]; also see [12,14]. We then pass from discrete to
continuous time.

The function V (x) :=
∫ ∞
0

|esAx|2 ds is shown to be a suitable Lyapunov
function using dissipativity of A, the behaviour of F at infinity, and basic Itô
calculus. The details are given in Sect. 3.1.

In order to prove the lower bound on transitions, we use the Kalman
condition on the pair (A,B) and again the estimate on the behaviour of F at
infinity. These hypotheses yield that the point x0 in which the weak Hörmander
condition holds can be approached from {V ≤ R} with a uniform lower bound
on the probability. On the other hand, the weak Hörmander condition in x0

implies solid controllability from x0 and we can combine solid controllability
and approachability to obtain the desired lower bound. The details are given
in Sect. 3.2.

Different sufficient conditions for the hypotheses of the main theorem to
hold are given in more concrete terms throughout Sects. 4 and 5. In the former,
we give criteria for the dissipativity, Kalman and growth conditions in terms
of more physical quantities for networks of oscillators based on [13]. In the
latter, we give a perturbative condition for the weak Hörmander condition to
hold.

2. Setup, Assumptions and Main Result

Notation. Throughout the paper, we use: ‖ · ‖ to denote the operator norm of
linear maps; {ei}n

i=1 for the standard orthonormal basis of Rn; | · | to denote the
euclidean norm on Rd (arising from the standard inner product 〈 · , · 〉); B(x, r)
for the open ball of radius r > 0 centred at the point x in Rd; Ck

0 ([0, T ];Rn) to
denote the space of k times continuously differentiable functions η : [0, T ] →
Rn with η(0) = 0; Prob(Rd) for the space of Borel probability measures on Rd;
LG for the Lie derivative with respect to the vector field G; 1S to denote
the indicator function of the set S. The natural numbers N start at 1. The
underlying probability space is (Ω,F ,P) and we use the letter ω to denote
elementary events there.
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Let d and n be natural numbers with n ≤ d and let ω �→ (Wt(ω))t≥0

be a Wiener process in Rn. We are interested in the d-dimensional diffusion
process ω �→ (Xt(xin, ω))t≥0 governed by the equation

Xt(xin, ω) = xin +
∫ t

0

AXs(xin, ω) + F (Xs(xin, ω)) ds + BWt(ω) (1)

where B : Rn → Rd is a linear map, A : Rd → Rd is a linear map, F is a
smooth globally Lipschitz vector field on Rd, and xin ∈ Rd is an initial con-
dition. We often omit writing explicitly the dependence on xin or ω and write
the equation in differential notation. We assume the following dissipativity and
controllability conditions on the linear maps A and B.
(D) the eigenvalues of the linear map A (considered over Cd) each have

strictly negative real part.
(K) the pair (A,B) satisfies the Kalman condition, meaning that the columns

of B, AB, A2B, A3B and so forth span Rd.
Then, by the Cayley–Hamilton theorem, there exists d∗ ≤ d such that

span{Bei, ABei, A
2Bei, . . . , A

d∗−1Bei : i = 1, . . . , n} = Rd.

The Kalman condition is commonly used in the basic theory of control-
lability for linear systems (i.e. when F ≡ 0); it is then equivalent to several
notions of controllability [5, §§1.2–1.3].

We further assume that the perturbing vector field F satisfies the follow-
ing growth condition.
(G) there exists a constant a ∈ [0, 1

2d∗
) such that

sup
x∈Rd

|F (x)|
(1 + |x|)a

< ∞. (2)

Finally, we suppose the existence of a point x0 where the weak Hörmander
condition on the vector fields appearing in the stochastic equation (1) is sat-
isfied.
(H) there exists a point x0 ∈ Rd in which the family

{V0,LV2V1,LV3LV2V1, . . . : V0 ∈ B and V1, V2, V3, . . . ∈ B ∪ {A + F}}
of vector fields spans Tx0R

d ∼= Rd, where B = {Be1, · · · , Ben}.

Remark 2.1. In the linear case (i.e. when F ≡ 0), a straightforward com-
putation shows that the Kalman condition (K) implies the weak Hörmander
condition (H). This suggests that the latter can be obtained from a perturba-
tive argument in a point x0 far from the origin if F can be neglected at infinity
in a suitable sense; see Sect. 5.

It is convenient to study the properties of such a diffusion process through
the corresponding controlled equation

{
ẋ(t) = Ax(t) + F (x(t)) + Bη̇(t),
x(0) = xin,

(3)



Vol. 20 (2019) Perturbations of Harmonic Networks 609

understood as

x(t) = xin +
∫ t

0

Ax(s) + F (x(s)) ds + B(η(t) − η(0))

when η is a merely continuous function. We define, for 0 ≤ t ≤ T ,

SF
t : Rd × C0([0, T ];Rn) → Rd

(xin, η) �→ x(t)

giving the solution at time t of this problem. We refer to the second argument
as the control. The function SF

t is uniformly continuous in each argument. It
is also Fréchet differentiable. We will make use of these regularity properties
in Sect. 3.2.

Remark 2.2. The law for η ∈ C0([0, T ];Rn) corresponding to the Wiener
process Wt(ω) restricted to the interval [0, T ] in (1), which we denote by �, is
decomposable in the following sense.

There exist a sequence (FN )N∈N of nested finite-dimensional subspaces
and a sequence (F ′

N )N∈N of closed subspaces of the Banach space C0([0, T ];Rn)
such that

(i) the union
⋃

N∈N FN is dense in C0([0, T ];Rn);
(ii) the space C0([0, T ];Rn) decomposes as the direct sum FN ⊕ F ′

N for each
N ∈ N, with corresponding (bounded) projections ΠN and Π′

N , and the
measure � decomposes as the product �N ⊗ �′

N of its projected measures;
(iii) the projected measure �N possesses a smooth positive density ρN with

respect to the Lebesgue measure on the finite-dimensional space FN .
The requirement of [17] that ΠNζ → ζ in norm does not hold for all con-
trols ζ ∈ C0([0, T ];Rn). However, the convergence will hold true on nice
enough subsets — which suffices for our endeavour. These decomposability
properties play a central role in the arguments of [16,17] and are discussed
here in “Appendix A”.

We use PF
t (xin, · ) to denote the distribution of the random variable ω �→

Xt(xin, ω) defined by (1). Then, PF
t satisfies the Chapman–Kolmogorov equa-

tion:

PF
T (x,Γ) =

∫

Rd

PF
T−t(y,Γ)PF

t (x,dy)

for all times 0 ≤ t ≤ T , all x ∈ Rd and all Borel sets Γ ⊆ Rd. We are interested
in the large-time behaviour of PF

t . Our main result is the following.

Theorem 2.3. Suppose that the sde

dXt = AXt dt + F (Xt) dt + B dWt

satisfies the conditions (D), (K), (G) and (H). Then, it admits a unique in-
variant measure μinv ∈ Prob(Rd). Moreover, the function V : Rd → [0,∞)
defined by

x �→
∫ ∞

0

〈esAx, esAx〉 ds
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is integrable with respect to μinv and there exist constants c, C > 0 such that
∣
∣
∣

∫

Rd

f(y)PF
t (xin,dy) −

∫

Rd

f(y)μinv(dy)
∣
∣
∣ ≤ C(1 + V (xin))e−ct (4)

for all xin ∈ Rd, all t ≥ 0 and all measurable functions f with |f | ≤ 1 + V .

The proof of this theorem is developed throughout Sect. 3. The last key
step there is an application of Hairer and Mattingly’s version of Harris’ ergodic
theorem [11]. It requires two hypotheses: the existence of constants γ ∈ (0, 1)
and K > 0 such that

∣
∣
∣

∫

Rd

V (y)PF
t (x,dy)

∣
∣
∣ ≤ γtV (x) + K (5)

for all x ∈ Rd and all t ≥ 0, and the existence of a positive measure bounding
from below the probability of reaching a set when starting from the interior of
a suitable level set of V :

PF
T (x, · ) ≥ νT (6)

for all x ∈ Rd such that V (x) ≤ 1 + 2K(1 − γ)−1. The first one is dealt with
in Sect. 3.1; the second one, in Sect. 3.2.

3. Proof of Theorem 2.3

3.1. Dissipativity and Lyapunov Stability

Condition (D) ensures that the integral defining V : x �→ ∫ ∞
0

|esAx|2 ds con-
verges. To this function V is naturally associated a positive definite matrix M
such that V (x) = 〈x,Mx〉. We wish to show that, under the conditions (D)
and (G), this function satisfies the inequality (5) for some constants γ ∈ (0, 1)
and K > 0 that do not depend on x.

Lemma 3.1. Under the conditions (D) and (G), there exist constants K > 0
and γ ∈ (0, 1) such that the function V satisfies

∣
∣
∣

∫

Rd

V (y)PF
t (x,dy)

∣
∣
∣ ≤ γtV (x) + K

for all x ∈ Rd and all t ≥ 0.

Proof. Fix an initial condition X0 ∈ Rd. First note that we have

〈DxV (x), Ax〉 = 2 〈x,MAx〉 =
∫ ∞

0

d
ds

〈esAx, esAx〉 ds = −|x|2.

On the other hand, by assumption (G), there exists c1 > 0 such that |F (x)| ≤
1

8‖M‖ |x|+c1 and thus there exists a constant c2 > 0 depending on c1 and ‖M‖
such that

〈DxV (x), Ax + F (x)〉 ≤ −1
2 |x2| + c2.

for all x ∈ Rd.
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By Itô’s lemma applied to the smooth function V (with no explicit t-
dependence),

dV (Xt) = 〈DV (Xt), AXt + F (Xt)〉 dt + 2 〈MXt, B dWt〉 + tr(MBB∗) dt

and thus

EV (Xt) ≤ V (X0) +
∫ t

0

(− 1
2E|Xs|2 + c2

)
ds + tr(MBB∗)t.

Since esA is nonsingular for any s ∈ [0, 1] by assumption (D), there exists
c3 > 0 depending on the eigenvalues of A such that

V (x) ≥
∫ 1

0

|esAx|2 ≥ c3|x|2

for all x ∈ Rd. Hence,

EV (Xt) ≤ V (X0) −
∫ t

0

1
2c3

EV (Xs) ds + (c2 + tr(MBB∗))t

By Grönwall’s inequality, we conclude that there exists a constant K > 0
(independent of X0) such that

EV (Xt) ≤ e− t
2c3 V (X0) + K. �

3.2. Approachability and Solid Controllability

The goal of this section is to show the existence of a time T > 0 and a nontrivial
measure νT on Rd such that the bound

PF
T (x, · ) ≥ νT

holds for all x ∈ Rd such that V (x) ≤ 1 + 2K(1 − γ)−1, where γ and K are
as in Lemma 3.1. This is done in two steps: we first control the probability of
reaching neighbourhoods of x0 where (H) holds, and then the probability of
reaching an arbitrary set when starting from x′ close enough to x0.

Throughout this section, the controlled nonlinear system (3) is to be
thought of as a perturbation of the controlled linear system

{
ż(t) = Az(t) + Bη̇(t),
z(0) = xin.

(7)

For η ∈ C0([0, T ];Rn) and 0 ≤ t ≤ T , ST (xin, η) is defined as the solution at
time t of the problem (7).

We set R := 1 + 2K(1 − γ)−1. We make extensive use of the compact
set {x ∈ Rd : V (x) ≤ R}, which we often write as {V ≤ R} for short. We
start by showing that the point x0 in which the weak Hörmander condition
(H) holds can be approximately reached with suitable control when starting
from {V ≤ R}.2 To do this, we need a technical lemma on a matrix often
referred to as the controllability Gramian, which is used to construct relevant
controls; see e.g. [5, §§1.2–1.3].

2 This part of the argument actually holds for any x0 ∈ Rd, regardless of the Hörmander
condition.
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Lemma 3.2. If A and B are such that the Kalman condition (K) is satisfied
with d∗, then the symmetric positive definite matrix

QT =
∫ T

0

etABB∗etA∗
dt

has full rank and ‖Q−1
T ‖ = O(T 1−2d∗) as T → 0.

Proof. Because QT is symmetric and by real-analyticity of the maps (0, 1) �
T �→ 〈x,QT x〉 ∈ R+, it suffices to show that for each x ∈ Rd with |x| = 1,
there exists k ≤ 2d∗ − 1 such that

∂k
T 〈x,QT x〉 |T=0 �= 0.

Suppose for contradiction that there exists such x with |x| = 1 and 0 =
∂k

T 〈x,QT x〉 for each k ≤ 2d∗ − 1. From the first derivative, we have

B∗x = 0.

From the third derivative, we have

〈x,BB∗(A∗)2x〉 + 2 〈x,ABB∗A∗x〉 + 〈x,A2BB∗x〉 = 0,

but then, using again the consequence of the vanishing first derivative, we
have

B∗A∗x = 0.

Inductively, from the (2j + 1)th derivative, we have

B∗(A∗)jx = 0,

for j = 0, 1, . . . d∗ − 1. We conclude that

x ∈
d∗−1⋂

j=0

ker(B∗(A∗)j) =
d∗−1⋂

j=0

(ran(AjB))⊥,

contradicting the Kalman condition. �

Proposition 3.3. Fix x0 ∈ Rd. If the growth condition (G) and the Kalman
condition (K) hold, then for any x ∈ Rd, δ > 0 and T > 0 there exists a
control ηx,δ,T ∈ C1

0 ([0, T ];Rn) such that SF
T (x, ηx,δ,T ) ∈ B(x0,

1
2δ).

Proof. Let x ∈ Rd and δ > 0 be arbitrary. Because the Kalman condition (K)
holds, for any T ∈ (0, 1], the control

ζx,T (t) :=
∫ t

0

B∗e(T−s)A∗
Q−1

T (x0 − e−TAx) ds

is such that ST (x, ζx,T ) = x0; see e.g. [5, §1.2]. We immediately have the
bound

|ζ̇x,T (t)| ≤ ‖B‖eT‖A‖‖Q−1
T ‖(|x0| + eT‖A‖|x|)

and the hypotheses yield through Lemma 3.2 the existence of a constant C > 0
depending on A and B such that

|ζ̇x,T (t)| ≤ C(|x| + |x0|)T−m
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for all T ∈ (0, 1], where m := 2d∗ − 1.
With zT (t) := St(x, ζx,T ), xT (t) := SF

t (x, ζx,T ) and yT (t) := xT (t) −
zT (t), we have

ẏT (t) = AyT (t) + F (xT (t)),

yT (0) = 0.

Then, for t ∈ [0, T ],

yT (t) =
∫ t

0

e(t−s)AF (xT (s)) ds =
∫ t

0

e(t−s)AF (yT (s) + zT (s)) ds.

By (G), there exists C ′ > 0 depending on A and F only such that

|yT (t)| ≤ C ′
∫ t

0

1 + |yT (s)|a + |zT (s)|a ds.

On the other hand,

|zT (t)| ≤ |etAx| +
∫ t

0

|e(t−s)ABζ̇x,T (s)|ds

≤ C ′|x| + tCeT‖A‖‖B‖(|x| + |x0|)T−m.

Combining these two inequalities, there exists a constant C ′′ > 0 such that

|yT (t)| ≤ C ′′
∫ t

0

|yT (s)|ds + tC ′′(1 + |x| + |x0|)(1 + T a(1−m))

Recall that 0 ≤ a < 1
2d∗

and m = 2d∗ + 1. Hence,

a(1 − m) + 1 > 0

and, by Grönwall’s inequality, there exists Tx,δ ∈ (0, 1] small enough, depend-
ing continuously on x and δ, such that |SF

T (x, ζx,T ) − x0| = |yT (T )| < 1
4δ for

all 0 < T ≤ Tx,δ.
If T ≤ Tx,δ, pick ηx,δ,T = ζx,T . If T > Tx,δ, let

rT := sup
0≤t≤T

|St(x, 0)| and sT = min
{

1
2T, inf

|y|≤rx,T

Ty,δ

}

.

Then, |ST−sT
(x, 0)| < rT and by the above ζST −sT

(x,0),sT
is such that

SsT
(ST−sT

(x, 0), ζST −sT
(x,0),sT

) ∈ B(x0,
1
4δ).

This corresponds to the control

η̃x,δ,T (t) := 1[T−sT ,T ](t)ζST −sT
(x,0),sT

(t − (T − sT ))

defined on [0, T ]. A C1
0 ([0, T ];Rn) regularization ηx,δ,T of η̃x,δ,T will then satisfy

ST (x, ηx,δ,T ) ∈ B(x0,
1
2δ). �

Proposition 3.4. Fix x0 ∈ Rd and δ > 0 and suppose that the conditions (G)
and (K) hold. Then, the function

(x, T ) �→ PF
T (x,B(x0, δ))

is positive and jointly lower semicontinuous.
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Proof. For any x ∈ Rd and T > 0, there exists ηx,δ,T ∈ C1
0 ([0, T ];Rn) such

that SF
T (x, ηx,δ,T ) ∈ B(x0,

1
2δ). By the Stroock–Varadhan support theorem,3

the support of the distribution of paths [0, T ] � t �→ Xt(x, ω) contains the
closure of {[0, T ] � t �→ SF

t (x, η) : η ∈ C1
0 ([0, T ];Rn)} with respect to the

supremum norm on C0([0, T ];Rd). In particular, PF
T (x,B(x0, δ)) > 0.

For P-almost every ω ∈ Ω, the path t �→ Wt(ω) is continuous. Since Xt

satisfies the integral equation

Xt(x, ω) = x +
∫ t

0

AXs(x, ω) + F (Xs(x, ω)) ds + BWt(ω)

with y �→ Ay + F (y) globally Lipschitz and t �→ BWt(ω) continuous, a stan-
dard argument shows that the map (x, T ) �→ XT (x, ω) is jointly continuous.
Therefore, the function

(x, T ) �→ 1{ω′∈Ω : XT (x,ω′)∈B(x0,δ)}(ω)

is jointly lower semicontinuous for P-almost all ω ∈ Ω. Then, so is the map

(x, T ) �→
∫

Ω

1{ω′∈Ω : XT (x,ω′)∈B(x0,δ)}(ω) dP(ω)

by Fatou’s lemma. �

Now that we have established that, starting from {V ≤ R}, any neigh-
bourhood of x0 can be suitably reached, we seek a minorization for transitions
from points close to x0 to arbitrary points of the space. In [17]’s study of sdes
on compact manifolds, the notions of decomposability and solid controllability
are used to show that the weak Hörmander condition (H) in x0 is sufficient to
provide appropriate control of the transition probabilities from points x′ close
enough to x0.

(sC) a system S : Rd × E → Rd, where E is a Banach space, is said to be
solidly controllable from x0, with compact Q � E, if there is a ball G
in Rd and a number ε > 0 such that if a continuous map Φ : Q → Rd

satisfies

sup
ζ∈Q

|Φ(ζ) − S(x0, ζ)| ≤ ε,

then Φ(Q) ⊇ G.
Most of the ideas for the next three results are present in different parts of
[17]; also see [16]. We retrieve the key steps and repiece them in a way that is
suitable for our endeavour.

Lemma 3.5. If there exists a closed ball D � Rd and a continuous function
f : D → E such that S(x0, f(x)) = x for all x ∈ D, then S satisfies the solid
controllability condition (sC) from x0, with Q = f(D).

3 In the case of an additive noise, the Stroock–Varadhan support theorem can be given a
direct proof by continuity arguments even if the vector field is unbounded, as long as the
solutions are defined globally in time.
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Proof. Take ε < 1
4 diam(D) and set G := {x ∈ D : d(x, ∂D) ≥ ε}. Let Φ be a

continuous map on f(D) such that

sup
ζ∈f(D)

|Φ(ζ) − S(x0, ζ)| ≤ ε.

Then, for any x′ ∈ G, the continuous function Ψx′ defined on D by

Ψx′(x) = x′ − Φ(f(x)) + x

maps D to itself. Indeed,

|x′ − Ψx′(x)| = |x′ − (x′ − Φ(f(x)) + x)|
= |Φ(f(x)) − S(x0, f(x))| ≤ sup

ζ∈f(D)

|Φ(ζ) − S(x0, ζ)| ≤ ε.

Hence, by the Brouwer fixed point theorem, there exists x ∈ D such that
x = Ψx′(x), i.e. such that x′ = Φ(f(x)). We conclude G ⊆ Φ(f(D)). �

We will use this for SF
1 defined in Sect. 2. In this case, the Banach space E

of controls is C0([0, 1];Rn) equipped with the supremum norm.

Proposition 3.6. If the weak Hörmander condition (H) is satisfied in x0, then
SF

1 is solidly controllable from x0, with a set Q consisting of functions that are
all Lipschitz with a common Lipschitz constant κ.

Proof. By the previous lemma, to show solid controllability, it suffices to pro-
vide a ball D � Rd and a continuous function f : D → C0([0, 1];Rn) such
that SF

1 (x0, f(x∗)) = x∗ for all x∗ ∈ D.
As part of Theorem 2.1 in [17, §2.2], it is shown in a similar setting

that the Hörmander condition implies the existence of a ball D � Rd and a
continuous function f̃ : D → L2([0, 1];Rn) such that the solution of

{
ẋ = Ax + F (x) + B f̃(x∗)
x(0) = x0

satisfies x(1) = x∗. Moreover, κ := supx∗∈D ‖f̃(x∗)‖C0 < ∞. The construction
of D and f̃ uses local arguments and can be directly translated to our setup.

The idea behind the proof is the following. Consider the following ex-
tended problem for y(t) = (x(t), s(t)) in Rd × R:

{
ẏ = (Ax + F (x), 1) + (Bξ, 0)
y(0) = (x0, 0)

, (8)

where the control ξ is taken in L2([0, 1];Rn). The Hörmander condi-
tion implies that the Lie algebra generated by the family {Ṽη(x, s) =
(Ax + F (x), 1) + (Bη, 0) : η ∈ Rn} of vector fields has full rank at the
point (x0, 0). Hence, one can show using ideas from the proof of Krener’s
theorem that there exists a choice of small intervals (al, bl) ⊂ [0, 1] and
vectors ηl ∈ Rn for l = 0, 1, . . . , d such that the parallelepiped

Π̃ = {α = (α0, α1, . . . , αd) ∈ Rd+1 : αl ∈ (al, bl)}
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embeds into Rd × R via the map

φ : Π̃ → Rd × R

α �→ (
eαdṼηd ◦ · · · ◦ eα0Ṽη0

)
(x0, 0).

In other words, φ takes α to the solution y at time Tα := α0+α1+· · ·+αd

of the extended problem (8) with the control

ξα(t) = 1[0,α0)(t)η0 +
d∑

l=1

1[α0+···+αl−1,α0+···+αl−1+αl)(t)ηl. (9)

Fixing an α̂ ∈ Π̃ with corresponding Tα̂ ∈ (0, 1], one finds that the
solutions at time Tα̂ of the problem

{
ẋ = Ax + F (x) + Bξα

x(0) = x0

provide a diffeomorphism between a neighbourhood of α̂ in {α ∈ Π̃ :
Tα = Tα̂} and an open set O ⊂ Rd. Inverting this diffeomorphism, one
finds a function that associates with each point x∗ ∈ O a control ξα(x∗) ∈
L2([0, Tα̂];Rn) of the form (9). By construction,

SF
Tα̂

(
x0,

∫ ·

0

ξα(x∗)(s) ds
)

= x∗

for all x∗ ∈ O. A standard argument then allows to find a closed ball D �
Rd and a continuous function f̃ : D → L2([0, 1];Rn) such that

SF
1

(
x0,

∫ ·

0

(f̃(x∗))(s) ds
)

= x∗

for all x∗ ∈ D. The supremum κ is bounded by the sum of the |ηl| used
in the construction of the embedding φ.

Let f : D → C0([0, 1];Rn) be defined by f(x∗) :=
∫ ·
0
(f̃(x∗))(s) ds. Then,

‖f(x∗) − f(x∗∗)‖C0 = sup
t∈[0,1]

∣
∣
∣

∫ t

0

(f̃(x∗))(s) ds −
∫ t

0

(f̃(x∗∗))(s) ds
∣
∣
∣

≤ ‖f̃(x∗) − f̃(x∗∗)‖L2

so that f is continuous. We conclude that SF
1 is solidly controllable from x0,

with Q = f(D). The constant κ is a common Lipschitz constant for all func-
tions in Q. �

Proposition 3.7. If the weak Hörmander condition (H) is satisfied in x0, then
there exist δ0 > 0 and a nonzero Borel measure ν̃ on Rd such that

PF
1 (x′, · ) ≥ ν̃

for all x′ ∈ B(x0, δ0).
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Proof. By the previous proposition, we have solid controllability of the sys-
tem SF

1 from the point x0, with a set Q consisting of Lipschitz functions.
Then, the strategy of [17, §1.2] (also see [16, §2.1]) yields the desired measure.
We outline the argument for completeness and to emphasize that we do not
need the full strength of the decomposability assumption made there.

Let ΠN be as in Remark 2.2 and Appendix A. Because all controls in Q
have a common Lipschitz constant κ, we have

lim
N→∞

sup
ζ∈Q

‖ζ − ΠNζ‖C0 = 0

by Lemma A.1. Then, because SF
1 (x0, · ) : C0([0, 1];Rn) → Rd is uniformly

continuous, there exists N ∈ N large enough that

sup
ζ∈Q

|SF
1 (x0,ΠNζ) − SF

1 (x0, ζ)| < ε,

for the ε in (sC). Taking Φ = SF
1 (x0,ΠN · ) there, Φ(Q) contains a ball (which

has positive measure).
By Sard’s theorem, there exists a point ζ0 ∈ Q in which DΦ has full

rank. Because Φ ◦ ΠN = Φ, this property still holds true if we restrict Φ
to FN = ran ΠN . There then exists a d-dimensional subspace F 1

N ⊆ FN such
that DΦ|ζ0(F 1

N ) = Rd. Let F 2
N be such that F 1

N ⊕ F 2
N = FN . We will write

ζ ∈ FN as (ζ1, ζ2) according to this decomposition. More generally, we will
write a generic element of C0 as (ζ1, ζ2, ζ ′) with ζ ′ ∈ F ′

N . The Jacobian of
the map SF

1 (x0, ( · , ζ2
0 , 0)) : F 1

N → Rd at the point ζ1
0 is a linear isomorphism

between F 1
N and Rd.

By the implicit function theorem, there exist neighbourhoods V 1 of ζ1
0 , V 2

of ζ2
0 , V ′ of 0, W of x0, U of SF

1 (x0, (ζ1
0 , ζ2

0 , 0)); and a continuously differentiable
function g : W × U × V 2 × V ′ → V 1 such that, for points in the appropriate
open sets, SF

1 (x′, (ζ1, ζ2, ζ ′)) = x∗ is equivalent to ζ1 = g(x′, x∗, ζ2, ζ ′).
Recall that � equals the product measure �N × �′

N with �N possessing
a continuous and positive density ρN on FN . Let χ : Rd × C0 → [0, 1] be
continuous, supported in W × V 1 × V 2 × V ′, and equal to 1 at (x0, ζ

1
0 , ζ2

0 , 0).
Then, for any Borel set Γ ⊆ Rd,

PF
1 (x′,Γ)

≥
∫∫∫

SF
1 (x′,· )−1(Γ)

χ(x′, ζ1, ζ2, ζ ′)ρN (ζ1, ζ2) dζ1 dζ2�′
N (dζ ′)

=
∫∫

V 2×V ′

∫

Γ

χ(x′, g(x′, x∗, ζ2, ζ ′), ζ2, ζ ′)ρN (g(x′, x∗, ζ2, ζ ′), ζ2)
det[DSF

1 (x′, ( · , ζ2, ζ ′))|g(x′,x∗,ζ2,ζ′)]
dx∗

dζ2�′
N (dζ ′)

for all x′ ∈ W .
By continuity, there exist numbers δ0 > 0 and α > 0 such that

PF
1 (x′,Γ) ≥ α vol(Γ ∩ B(SF

1 (x0, ζ0), δ0))

for all x′ ∈ B(x0, δ0) and all Borel sets Γ ⊆ Rd. �
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Then, by the Chapman–Kolmogorov equation,

PF
T+1(x,Γ) ≥

∫

x′∈B(x0,δ0)

PF
T (x,dx′)PF

1 (x′,Γ)

≥
∫

x′∈B(x0,δ0)

PF
T (x,dx′)ν̃(Γ) = PF

T (x,B(x0, δ0))ν̃(Γ)

for any Borel set Γ ⊆ Rd and any T > 0. We conclude that for any T > 1 the
nontrivial measure

νT :=
(

inf
x∈{V ≤R}

PF
T−1(x,B(x0, δ0))

)
ν̃

is such that
PF

T (x, · ) ≥ νT

for all x ∈ Rd such that V (x) ≤ R. The infimum in the definition of νT is
positive by Proposition 3.4.

3.3. Application of Harris’ Ergodic Theorem

Recall that, by Lemma 3.1, the conditions (D) and (G) ensure the existence
of constants K > 0 and γ ∈ (0, 1) such that the function V satisfies

∣
∣
∣

∫

Rd

V (y)PF
t (x,dy)

∣
∣
∣ ≤ γtV (x) + K (10)

for all x ∈ Rd and all t > 0. Using the conditions (G) and (K), we also showed
in Proposition 3.4 that, for any δ > 0, (x, T ) �→ PF

T (x,B(x0, δ)) is positive and
jointly lower semicontinuous. Then, we concluded from this, hypothesis (H)
and the arguments of [17] that, for any T > 1, there is a nontrivial measure νT

such that
PF

T (x, · ) ≥ νT (11)

for all x ∈ Rd such that V (x) ≤ R.
The existence of a function V satisfying the condition (10) and a

nontrivial measure νT satisfying (11) are precisely the hypotheses we need
to apply Harris’ theorem.

Indeed, considering the T -skeleton of our diffusion process4 for T = 2,
Theorem 1.2 in [11] yields constants c, C > 0 and a stationary measure μinv ∈
Prob(Rd) against which V is integrable and such that

sup
|f |≤1+V

∣
∣
∣

∫

Rd

f(y)[PF
2m(x,dy) − μinv(dy)]

∣
∣
∣ ≤ Ce−c(2m+2)

(
1 + V (x)

)
(12)

for all x ∈ Rd and all m ∈ N ∪ {0}.
The measure μinv is the unique stationary probability measure for the 2-

skeleton, but it could a priori depend on our choice of T -skeleton. However, we
can show that this measure is actually stationary, not only for the 2-skeleton,
but also for the continuous-time process.

4 By T -skeleton of a (continuous time) stochastic process, we mean the restriction to times
in the countable set TN.
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Note that with f = 1Γ the characteristic function of any Borel set Γ ⊆
Rd, integrating (12) in the variable x yields that

∣
∣
∣

∫

Rd

PF
2m(x,Γ)λ(dx) − μinv(Γ)

∣
∣
∣ ≤ Ce−c(2m+2)

(
1 +

∫

Rd

V (x)λ(dx)
)

(13)

for any measure λ ∈ Prob(Rd).
Putting λ defined by λ(Γ) =

∫
PF

s (x,Γ)μinv(dx) in (13) for some s ≥ 0,
we have by the Chapman–Kolmogrov equation that

∣
∣
∣

∫

Rd

PF
2m+s(x,Γ)μinv(dx) − μinv(Γ)

∣
∣
∣

≤ Ce−c(2m+2)
(
1 +

∫

Rd

∫

Rd

V (y)PF
s (x,dy)μinv(dx)

)
.

Using (10),
∣
∣
∣

∫

Rd

PF
2m+s(x,Γ)μinv(dx) − μinv(Γ)

∣
∣
∣

≤ Ce−c(2m+2)
(
1 + K +

∫

Rd

V (x)μinv(dx)
)
.

But the left-hand side does not depend on m ∈ N because μinv is invariant for
the 2-skeleton. We therefore have

∫
PF

s (x, · )μinv(dx) = μinv for all s ≥ 0, i.e.
that μinv is stationary for the original continuous-time process.

Now, for any |f | ≤ 1 + V , s ∈ [0, 2) and m ∈ N ∪ {0},
∣
∣
∣

∫

Rd

f(y)[PF
2m+s(x,dy) − μinv(dy)]

∣
∣
∣

=
∣
∣
∣

∫

Rd

∫

Rd

f(y)PF
2m(x,dz)PF

s (z,dy) − f(y)PF
s (z,dy)μinv(dz)

∣
∣
∣

=
∣
∣
∣

∫

Rd

( ∫

Rd

f(y)PF
s (z,dy)

)
[PF

2m(x,dz) − μinv(dz)]
∣
∣
∣.

Since |f | ≤ 1 + V , we have by (10) that
∣
∣
∣

∫

Rd

f(y)PF
s (z,dy)

∣
∣
∣ ≤

∫

Rd

(1 + V (y))PF
s (z,dy) ≤ (K + 1)

(
1 + V (z)

)
.

Therefore, we may apply (12) with f replaced by 1
K+1

∫
f(y)PF

s (· ,dy) to get
∣
∣
∣

∫

Rd

f(y)[PF
2m+s(x,dy) − μinv(dy)]

∣
∣
∣ ≤ (K + 1)Ce−c(2m+2)

(
1 + V (x)

)
.

Because any time t > 0 can be written as 2m + s with s ∈ [0, 2), this is — up
to a relabelling of the constants — the assertion of Theorem 2.3.

4. Networks of Oscillators

We introduce the mathematical description of important physical systems that
our main result covers, from the simplest to the most intricate. Based on [13],
we also discuss the assumptions (K), (D) and (G) of our main result in this
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Figure 1. Depiction of the linear harmonic chain where the
1st and Lth oscillator are connected to heat baths at temper-
atures θ1 and θL, respectively

context. Discussion of the weak Hörmander condition (H) is postponed to the
next section.

4.1. The Linear Chain Coupled to Langevin Thermostats

Consider L unit masses, each labelled by an index in {1, 2, . . . , L − 1, L} and
whose position is restricted to a line. For i = 1, 2, . . . , L − 1, the ith mass is
attached to the (i+1)th mass by a spring of spring constant k ≥ 0. Each mass is
also pinned by a spring of spring constant κ > 0. The position coordinate qi of
the ith mass is measured relative to a rest position qeq

i ; see Fig. 1. Perturbations
of this system are described by Hamiltonians of the form

h : RL ⊕ RL → R

(p, q) �→ 1
2

L∑

i=1

p2
i +

1
2

L∑

i=1

κq2
i +

1
2

L−1∑

i=1

k(qi+1 − qi)2 + U(q)

where U ∈ C∞(RL;R) is a perturbing potential.
Coupling the 1st and Lth oscillator to Langevin heat baths at positive

temperatures θ1 and θL with positive coupling constants γ1 and γL yields the
equations of motion

dqi = pi dt, 1 ≤ i ≤ L,

dpi = −[κqi + k(qi − qi−1) − k(qi+1 − qi) + ∂iU(q)] dt, 1 < i < L,

dp1 = −[κq1 − k(q2 − q1) + ∂1U(q)] dt − γ1p1 dt +
√

2γ1θ1 dW1,t,

dpL = −[κqL + k(qL − qL−1) + ∂LU(q)] dt − γLpL dt +
√

2γLθL dWL,t,

where (W1,t)t≥0 and (WL,t)t≥0 are independent one-dimensional Wiener pro-
cesses.

This system can be put into the form (1) with d = 2L and n = 2 by
setting
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X =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

p

q

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−γ1 0
0 0
0 0

. . .
0 0
0 0
0 −γL

−k−κ k
k −2k−κ
0 k

. . .
k 0

−2k−κ k
k −k−κ

1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

√
2γ1θ1 0
0 0
...

...
0 0
0

√
2γLθL

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and F (X) = F (p, q) = −∇qU(q).
The Kalman condition (K) is met for the pair (A,B) (with d∗ ≤ L) as

soon as k > 0 and the eigenvalues of A then have strictly negative real part
(condition (D) holds) [13].

The growth condition (G) on the vector field F in the general setting is
to be imposed on the gradient ∇qU of the perturbing potential U for the chain
of oscillators: we require that it is Lipschitz and that there exists a ∈ [0, 1

2d∗
)

such that |∇qU(q)| = O(1+|q|)a as |q| → ∞. This potential is not restricted to
one-body (pinning) or two-body interaction terms; it can for example include
a sum of bounded three-body interaction terms.

4.2. More General Geometries in the Langevin Regime

Let I be a finite set and distinguish a nonempty subset J ⊂ I of the sites, where
the thermal noise will act. Fix a temperature θj > 0 for the bath associated
with each site j ∈ J . We can then generalize the above model to different
geometries and different spring constants by considering

X =
(

p
ωq

)

, A =
(− 1

2 ιι∗ −ω∗

ω 0

)

, B =
(

ι
0

)

ϑ1/2, (14)

and F (p, ωq) = −∇qU(q), where

ω : RI → RI ,

is a nonsingular linear map5 and where ϑ and ι are of the form

ϑ : RJ → RJ

(uj)j∈J �→ (θjuj)j∈J ,

5 We use the symbol ω for the linear map encoding the frequencies of the system in order to
ease the comparison with other works to which we refer. Unfortunately, ω is also standard
notation for elements of the underlying probability space. We trust that the meaning of the
symbol is clear from the context.
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and

ι : RJ → RI

(uj)j∈J �→ (
√

2γjuj)j∈J ⊕ 0I\J .

Again, γj is the coupling constant for the jth oscillator of the boundary. More
explicitly, the equations of motion then take the familiar form

dq = p dt,

dp = −ω∗ωq dt − ∇qU(q) dt − 1
2 ιι∗p dt + ιϑ1/2 dWt.

Lemma 4.1 in [13] states that if the pair (ω∗ω, ι) satisfies the Kalman
condition (K), then the pair (A,B) defined by (14) also satisfies the Kalman
condition. By Theorem 5.1(2) there, it then immediately implies the dissipa-
tivity condition (D). In Sect. 4.1 there, the case of the triangular network is
treated and explicit sufficient conditions for the Kalman condition are given
in terms of the spring constants. Again, the growth condition (G) is to be
imposed on the gradient ∇qU of the perturbing potential U .

As mentioned in the introduction, the recent work of Cuneo, Eckmann,
Hairer and Rey-Bellet [6] provides a result of existence, uniqueness and ex-
ponentially fast convergence in a similar setup. Their conditions C3–C5 on
the behaviour of the potential at infinity are significantly less restrictive than
our conditions (D) and (G), allowing for strong anharmonicity. However, their
nondegeneracy condition C2 is needed in all points of the phase space while
our Hörmander condition (H) is only needed in one point. Their controllability
condition C1 on the topology of the graph plays a role similar to that of our
Kalman condition (K).

4.3. Coupling Through Additional Degrees of Freedom

As pointed out e.g. in [13], models where the noise acts through auxiliary de-
grees of freedom enjoy the same structural properties, and are thus also suitable
for our framework. We refer the reader to [9,10,18] for discussions of the phys-
ical interpretation and derivation of such models. Because of these auxiliary
degrees of freedom, the model is sometimes said to be semi-Markovian.

Let I and J be finite sets as above and consider X = (r, p, ωq) ∈ RJ ⊕
RI ⊕ RI for some nonsingular linear map ω : RI → RI . In addition, let
Λ : RJ → RI be a linear injection and let ι : RJ → RJ and ϑ : RJ → RJ be
linear bijections. We set

A =

⎛

⎝
− 1

2 ιι∗ −Λ∗ 0
Λ 0 −ω∗

0 ω 0

⎞

⎠ and B =

⎛

⎝
ι
0
0

⎞

⎠ ϑ1/2; (15)

the important structural constraints are

ϑ > 0, B∗B > 0, (16)
ker(A − A∗) ∩ ker B∗ = {0}, A + A∗ = −Bϑ−1B∗. (17)

The perturbation F is taken to be of the form

F : X = (r, p, ωq) �→ −∇qU(q)
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for some smooth potential U : RI → R encoding the anharmonic part of both
the interaction and the pinning potential. More explicitly, the equations of
motion then read

dq = p dt,

dp = −ω∗ωq dt − ∇qU(q) dt + Λr(t) dt,

dr = − 1
2 ι∗ιr dt − Λ∗p dt − ιϑ1/2 dWt.

Proposition 4.1. If the pair (ω∗ω,Λ) satisfies the Kalman condition, then the
pair (A,B) also satisfies the Kalman condition (K).

Proof. Let (r̂, p̂, ωq̂) be a target for the system in time T > 0. If (ω∗ω,Λ)
satisfies the Kalman condition, then there exists η1 ∈ C1

0 ([0, T ];Rn) such that
the solution (p1(t), q1(t)) of

ṗ1 = −ω∗ωq1 + Λη̇1, p1(0) = 0,

q̇1 = p1, q1(0) = 0,

satisfies (p1(T ), q1(T )) = (p̂, q̂). Note that ( t
T r̂, p1(t), q1(t)) is then a solution

of the system

ṙ2 = − 1
2 ιι∗(r2 + η̇2) − Λ∗p2 + ιϑ1/2ζ̇2, r2(0) = 0,

ṗ2 = −ω∗ωq2 + Λ(r2 + η̇2), p2(0) = 0,

q̇2 = p2 q2(0) = 0,

for the choices of control

η2(t) = η1(t) −
∫ t

0

s
T r̂ ds,

ζ2(t) = (ιϑ1/2)−1

∫ t

0

1
T r̂ + 1

2 ιι∗η̇1(s) + Λ∗p1(s) ds,

hitting the prescribed target at time t = T .
Finally, note that with η̃ a smooth approximation of η̇2 that is 0 at times

t = 0 and t = T , (r2(t) + η̃(t), p2(t), q2(t)) is an approximate solution of

ṙ = − 1
2 ιι∗r − Λ∗p + ιϑ1/2ζ̇, r(0) = 0,

ṗ = −ω∗ωq + Λr, p(0) = 0,

q̇ = p, q(0) = 0,

for the choice of control

ζ(t) = ζ2(t) + (ιϑ1/2)−1η̃(t).

Therefore, the original system is approximately controllable from 0. Because
the system is linear, we conclude that the pair (A,B) satisfies the Kalman
condition. �

Then, Theorem 5.1(2) of [13] states that, in this setup, the Kalman con-
dition (K) implies that all the eigenvalues of A have strictly negative real part,
i.e. condition (D).
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In particular, for A and B arising from a pair (ω∗ω,Λ) satisfying the
Kalman condition (K), as long as |∇qU(q)| = O(1 + |q|)a as |q| → ∞, and as
long as there exists a point where the weak Hörmander condition holds, the
field q �→ ω∗ωq+∇qU(q) is allowed to be degenerate in nonnegligible regions of
the position space. This is to be compared the nondegeneracy hypothesis H2)
in [4,9,15] and C2 in [6] that are needed everywhere.

5. The Weak Hörmander Condition

As a starting point, we note that under the assumption (K), the condition (H)
is automatically satisfied for any F with compact support or any F whose
derivatives up to order d − 1 vanish at a point. Also note that a standard per-
turbative argument shows that if the conditions (D), (K) and (G) are satisfied,
then there exists λ0 > 0 such that the system

dXt = AXt dt + λF (Xt) dt + B dWt

admits a unique invariant measure satisfying (4) as soon as 0 < λ < λ0.
A more subtle perturbative argument is presented in Proposition 5.1.

We then give an example of a physically motivated potential to which this
proposition applies in the context of networks of oscillators.

In view of the definition of the weak Hörmander condition, we are in-
terested in the part of the tangent space spanned by Lie derivatives. The Lie
derivatives, LGb, L2

Gb, . . . , Ld∗−1
G b with G : x �→ Ax + F (x) and b a constant

vector field will play a particularly important role. A direct computation shows

LGb = −DG[b],

L2
Gb = +DG2[b] − D2G[b,G],

L3
Gb = −DG3[b] + 2DG[D2G[b,G]]

+ D2G[DG[b], G] − D3G[b,G,G] − D2G[b,DG[G]],

and so forth. Here, the point of the space at which the vectors fields are taken
is implicit and we use

DjG[· , · , . . . , · ] : Rd × Rd × · · · × Rd

︸ ︷︷ ︸
j times

→ Rd

for the jth Fréchet derivative of the map G : Rd → Rd at this point. The
above pattern generalizes in the following way.

Claim. The difference between Lk
Gb and (−1)kDGk[b] is a linear combination

over Z of compositions of Fréchet derivatives of G with b. In each term, b
appears once, G appears N0 times, DG appears N1 times, . . . , DkG appears Nk

times, with N1 �= k and
k∑

j=0

Nj =
k∑

j=0

jNj = k. (18)
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Proof. We proceed by induction on k. For k = 1 we have

LGb = −DG[b],

which satisfies the claim. Assume now that the result holds for some k ∈ N so
that Lk

Gb − (−1)kDGk[b] is a sum of terms satisfying (18). Since

Lk+1
G b = −DG[Lk

Gb] + D(Lk
Gb)[G],

the first term yields −(−1)kDG[DGk[b]] and terms with the same form as those
of Lk

Gb, but with the changes k �→ k + 1 (adding Nk+1 = 0) and N1 �→ N1 + 1.
It indeed satisfies the right condition on the N ’s if Lk

Gb does. As for the second
term, by the product rule, each term in Lk

Gb yields a sum of terms undergoing
N0 �→ N0 + 1 and Nj �→ Nj − 1 and Nj+1 �→ Nj+1 + 1 for one and only
one j ∈ {1, . . . , k}. �

Proposition 5.1. Suppose that the pair (A,B) satisfies the Kalman condi-
tion (K) and that there exists a sequence (y(n))n∈N in Rd that is bounded
away from 0 and such that

lim
n→∞ |y(n)|k−1‖DkF (y(n))‖ = 0

for each k = 1, 2, . . . , d∗ − 1. Then, there exists a point x0 ∈ Rd where the
weak Hörmander condition (H) is satisfied.

Proof. Let G denote y �→ Ay +F (y) and let b stand for a column of B. By our
previous claim, we have the bound

|(Lk
Gb)(y) − (−1)k(DG(y))k[b]|
≤

∑

N∈A
|CN ||b||G(y)|N0‖DG(y)‖N1‖D2G(y)‖N2 · · · ‖DkG(y)‖Nk

≤
∑

N∈A
|CN ||b|(‖A‖|y| + 1

8‖M‖−1|y| + c1)N0

‖DG(y)‖N1‖D2G(y)‖N2 · · · ‖DkG(y)‖Nk

where A := {N = (N0, N1, . . . , Nk) ∈ (N ∪ {0})k satisfying (18) and N1 �= k}
and CN is a combinatorial factor in Z.

By condition (18),

|y|N0‖DG(y)‖N1‖D2G(y)‖N2 · · · ‖DkG(y)‖Nk

= |y|
∑k

j′=2(j
′−1)Nj′

k∏

j=1

‖DjG(y)‖Nj

= ‖DG(y)‖N1

k∏

j=2

|y|(j−1)Nj ‖DjG(y)‖Nj .

Along the subsequence (y(n))n∈N in the hypothesis, for each j ≥ 2,

lim
n→∞ |y(n)|j−1‖DjG(y(n))‖ = lim

n→∞ |y(n)|j−1‖DjF (y(n))‖ = 0.
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In the case j = 1, we have

lim sup
n→∞

‖DG(y(n))‖ ≤ ‖A‖ + lim sup
n→∞

‖DF (y(n))‖ = ‖A‖.

Therefore,

lim
n→∞ |(Lk

Gb)(y(n)) − (−1)k(DG(y(n)))k[b]| = 0

for k = 1, 2, . . . , d∗ − 1, and for n large enough,

span{b,LGb, . . . ,Ld∗−1
G b}y=y(n) = span{b,DG(y)b, . . . , (DG(y))d∗−1b}y=y(n) .

Finally note that

lim
n→∞ ‖(DG(y(n)))kb − Akb‖ ≤ lim sup

n→∞

k∑

j=1

(
k

j

)

‖A‖k−j‖DF (y(n))‖j = 0.

We conclude from the Kalman condition that for N ∈ N large enough

span{b,DG(y)b, . . . , (DG(y))d∗−1b : b ∈ ran B}y=y(N)

coincides with

ran{B,AB, . . . , Ad∗−1B} = Rd.

The results holds with x0 = y(N). �

Example 5.2. Consider that the masses in the models of Sect. 4, although
restricted to a single spatial degree of freedom, live in three-dimensional space
and each hold an electric charge of Gaussian density

ρi( · ) =
Q

(2π)3/2σ3
exp

(

−| · − (qi + qeq
i )|2

2σ2

)

where σ is a parameter with dimension of length and Q is the electric charge
of each mass. In view of Poisson’s equation in R3, this gives rise to the term

U(q) =
∑

i∈I

∑

i′∈I
i′ �=i

Q2

4πε0|(qi + qeq
i ) − (qi′ + qeq

i′ )|
2√
π

∫ |(qi+q
eq
i )−(q

i′+q
eq
i′ )|

√
2σ

0

e−s2
ds

in the Hamiltonian. This potential satisfies the condition of the previous propo-
sition: take for example a sequence with q

(n)
i = inσ.

For the sake of matching exactly the setup of [4,9,15], consider that
I = {1, . . . , L} and J = {1, L} and that only nearest neighbours interact
through the Coulomb force. Let us use the shorthand q̃i := qi + qeq

i . Then, the
corresponding perturbing potential

Un.n.(q) =
L−1∑

i=1

Q2

4πε0|q̃i − q̃i+1|
2√
π

∫ |q̃i−q̃i+1|√
2σ

0

e−s2
ds

also satisfies the hypotheses of our previous proposition. However, note that
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∂q2∂q3U
n.n.(q)

=
Q2

4π
3
2 ε0σ3

(

− 4
∫ |q̃2−q̃3|√

2σ

0 e−s2
ds

|q̃2 − q̃3|3/σ3
+

2
√

2e− |q̃2−q̃3|2
2σ2

|q̃2 − q̃3|2/σ2
+

√
2e− |q̃2−q̃3|2

2σ2

)

does not have a definite sign. Hence, for large values of Q2σ−3 (very con-
centrated charge distribution), the uniform condition H2) in [4,8,9,15] is not
satisfied.

Appendix A. Decomposability properties

We devote this appendix to the decomposability properties of � in Remark 2.2.
We consider the case T = 1 and n = 1 but the argument can be easily adapted
to the general case. Although we use results from the theory of Gaussian
measures to show the decomposability properties, these properties are not
specific to Gaussian processes and can be proved for other types of noises.

The Wiener process restricted to the interval [0, 1] is a nondegenerate
Gaussian measure on the Banach space C0([0, 1];R). It has as its Cameron–
Martin space the space W 1,2

0 ([0, 1];R) equipped with the inner product

〈η, ζ〉W 1,2
0

=
∫ 1

0

η̇(s)ζ̇(s) ds.

This Hilbert space has orthonormal basis {ψm}m∈N where

ψm(t) =
∫ t

0

φm(s) ds

and where {φm}m∈N is a Fourier basis for L2([0, 1];R). It is dense as a subspace
of C0([0, 1];R) equipped with the supremum norm.

Let FN := span{ψm : m ≤ N} and let F ′
N be the closure in C0([0, 1];R)

of the linear span of {ψm : m > N}. These sequences of subspaces satisfy (i)
and provide a decomposition FN ⊕F ′

N : any η ∈ C0([0, 1];R) can be written in
a unique way as ηN + η′

N with ηN ∈ FN and η′
N ∈ F ′

N . To this decomposition
are associated the projectors ΠN and Π′

N .
By the general theory of Gaussian measures (see e.g. [3, §3.5]), Brownian

motion can be represented as the almost surely convergent sum

Wt(ω) =
∑

m≤N

Ξm(ω)ψm(t) +
∑

m>N

Ξm(ω)ψm(t),

where (Ξm)m∈N is a sequence of independent scalar standard normal random
variables. The two sums are independent and provide the decomposition (ii)
of � as the product of the projected laws. Property (iii) clearly holds.

These abstract results from the theory of Gaussian measures do not
provide strong convergence of ΠN to the identity operator on the Banach
space C0([0, 1];R) as N → ∞ (or boundedness of the set of norms {‖ΠN‖ :
N ∈ N}, which is used in [17]). However, we have the following weaker con-
vergence result for regular enough sets of functions.
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Lemma A.1. If Q is a subset of C0([0, 1];R) that is bounded in the norm
induced by the inner product 〈 · , · 〉W 1,2

0
, then

lim
N→∞

sup
η∈Q

‖η − ΠNη‖C0 = 0.

Proof. First note that by construction of the basis,
∑

m∈N

‖ψm‖2
C0

< ∞.

For η ∈ W 1,2
0 ([0, 1];R), the decomposition into the two subspaces can be made

explicit:

η(t) =
∑

m≤N

ψm(t)
∫ 1

0

φm(s)η̇(s) ds +
∑

m>N

ψm(t)
∫ 1

0

φm(s)η̇(s) ds

and by the Cauchy–Schwarz inequality

‖η − ΠNη‖C0 ≤
(

∑

m>N

‖ψm‖2
C0

) 1
2

(
∑

m>N

∣
∣
∣

∫ 1

0

φm(s)η̇(s) ds
∣
∣
∣
2
) 1

2

≤
(

∑

m>N

‖ψm‖2
C0

) 1
2

‖η‖W 1,2
0

.

The convergence thus follows from the hypothesis supη∈Q ‖η‖W 1,2
0

< ∞. �
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