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Necessary Criterion for Approximate
Recoverability

David Sutter and Renato Renner

Abstract. A tripartite state ρABC forms a Markov chain if there exists
a recovery map RB→BC acting only on the B-part that perfectly recon-
structs ρABC from ρAB . To achieve an approximate reconstruction, it
suffices that the conditional mutual information I(A : C|B)ρ is small, as
shown recently. Here we ask what conditions are necessary for approx-
imate state reconstruction. This is answered by a lower bound on the
relative entropy between ρABC and the recovered state RB→BC(ρAB).
The bound consists of the conditional mutual information and an en-
tropic correction term that quantifies the disturbance of the B-part by
the recovery map.

1. Introduction

A recovery map is a trace-preserving completely positive map that reconstructs
parts of a composite system. More precisely, for a tripartite state ρABC on
A ⊗ B ⊗ C, we can consider a recovery map RB→BC from B to B ⊗ C that
reconstructs the C-part from the B-part only. If such a reconstruction is per-
fectly possible, i.e., if

ρABC = RB→BC(ρAB) (1)

we call ρABC a (quantum) Markov chain in order A ↔ B ↔ C.1

The structure of Markov chains is well understood. A state ρABC is a
Markov chain if and only if there exists a decomposition of the B system as

1We usually omit the identity map and the identity operator in our notation when its
use is clear from the context. For example, we write RB→BC(ρAB) instead of (IA ⊗
RB→BC)(ρAB) and ρBρABρB instead of (idA ⊗ ρB) ρAB (idA ⊗ ρB). We will drop the
order of the Markov chain if it is A ↔ B ↔ C.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00023-018-0715-1&domain=pdf


3008 D. Sutter, R. Renner Ann. Henri Poincaré

B = ⊕j(bL
j ⊗ bR

j ) such that

ρABC =
⊕

j

P (j) ρAbL
j

⊗ ρbR
j C , (2)

with states ρAbL
j

on A ⊗ bL
j , ρbR

j C on bR
j ⊗ C, and a probability distribution

P [19]. A measure that is useful to describe Markov chains is the conditional
mutual information that is given by

I(A : C|B) = tr ρABC

(
log ρABC + log ρB − log ρAB − log ρBC

)
, (3)

whenever the trace is defined, i.e., whenever the operator ρABC(log ρABC +
log ρB − log ρAB − log ρBC) is trace class. One often restricts to the case where
the conditional von Neumann entropy H(A|B) = −D(ρAB‖idA ⊗ ρB) is finite,
where D(ρ‖σ) := trρ(log ρ− log σ) denotes the relative entropy between ρ and
σ. Indeed, in this case, the data processing inequality [24,40] implies that
H(A|BC) = −D(ρABC‖idA ⊗ ρBC) is also finite, and hence, the operators
ρABC(log ρAB − log ρB) and ρABC(log ρABC − log ρBC) are both trace class,
implying that their difference is trace class, too. We further note that for
finite-dimensional Hilbert spaces the conditional mutual information may be
written as I(A : C|B)ρ := H(AB)ρ + H(BC)ρ − H(B)ρ − H(ABC)ρ where
H(A)ρ := −tr ρA log ρA is the von Neumann entropy of the marginal state on
A.

It has been shown that a state ρABC is a Markov chain if and only if
its conditional mutual information I(A : C|B)ρ vanishes [30,31]. Furthermore,
the Petz recovery map (also known as transpose map)

TB→BC : XB �→ ρ
1
2
BC

(
ρ

− 1
2

B XBρ
− 1

2
B ⊗ idC

)
ρ

1
2
BC (4)

recovers such states perfectly, i.e., (1) holds with RB→BC = TB→BC .
Tripartite states ρABC that have a small conditional mutual information

are called approximate Markov chains. The justification for this terminology
is a recent result [16] proving that for any state ρABC there exists a recovery
map RB→BC such that

I(A : C|B)ρ ≥ − log F
(
ρABC ,RB→BC(ρAB)

)
, (5)

where F (τ, ω) := ‖√
τ
√

ω‖2
1 denotes the fidelity between τ and ω.2 Inequal-

ity (5) shows that the Markov property (1) approximately holds whenever the
conditional mutual information is small. However, there exist tripartite states
with a small conditional mutual information whose distance to any Markov
chain is nevertheless large [11,20]. As a consequence, approximate quantum
Markov chains are not necessarily close to quantum Markov chains. We refer
to “Appendix A” for a more detailed explanation of this phenomenon.

Inequality (5) has been refined in a series of works [5,8,21,35–37,41].
More precisely, the initial bound from [16] has been strengthened by replacing
the right-hand side of (5) by the measured relative entropy between the original
and the recovered state (see (9) below for a definition). This result came with a

2Recall that for any two states τ and ω we have F (τ, ω) ∈ [0, 1] and that F (τ, ω) = 1 if and

only if τ = ω (see, e.g., [28]).
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novel proof based on the notion of quantum state redistribution [8]. The proof
has later been simplified by utilizing tools from semidefinite programming [5].
In [36], it was shown that there exists a universal recovery map, i.e., one that
does not depend on the A system, that satisfies (5). Another major step was
the discovery that (5), as well as generalizations thereof, can be obtained by
complex interpolation theory [41], providing further insight into the structure
of the recovery map. In [37], an intuitive proof of (5) based on the spectral
pinching method was presented. In [21], it was shown that there exists an
explicit recovery map (of the form (7)) that satisfies (5). The most recent
result [35, Theorem 4.1] shows that for any state ρABC we have

I(A : C|B)ρ ≥ DM

(
ρABC‖PB→BC(ρAB)

)
, (6)

for the explicit recovery map

PB→BC(·) : =
∫ ∞

−∞
β0(dt)P [t]

B→BC(·)

with P [t]
B→BC(·) = ρ

1+it
2

BC (ρ− 1+it
2

B XBρ
− 1−it

2
B ⊗ idC)ρ

1−it
2

BC (7)

and the probability measure

β0(dt) :=
π

2
(cosh(πt) + 1)−1 dt (8)

on R. DM denotes the measured relative entropy, which is defined as

DM(ρ‖σ) := sup
M∈M

D(M(ρ)‖M(σ)) , (9)

where M is the set of all quantum-classical channels M(ω) =
∑

x(trMxω)|x〉〈x|
with {Mx} a positive operator valued measure (POVM) and {|x〉} an orthonor-
mal basis. A simple property of the measured relative entropy ensures that
DM(τ‖ω) ≥ − log F (τ, ω) for all states τ, ω [8], which shows that (6) implies (5).
We further note that the recovery map PB→BC given in (7) is universal in
the sense that it only depends on ρBC and it satisfies PB→BC(ρB) = ρBC .
The interested reader can find additional information about the concepts and
achievements around (5) in [34].

Inequality (5) shows that there always exists a recovery map whose recov-
ery quality (measured in terms of the logarithm of the fidelity) is of the order
of the conditional mutual information. This shows that a small conditional
mutual information is a sufficient condition for a state to be approximately
recoverable. In other words, (5) gives an entropic characterization for the set
of tripartite states that can be approximately recovered.

In this work, we are interested in an opposite statement. This corresponds
to an inequality that bounds the distance between ρABC and any reconstructed
state RB→BC(ρAB) from below with an entropic functional of ρABC and the
recovery map RB→BC that involves the conditional mutual information. Such
an inequality is the converse to (5) and gives a necessary condition for approx-
imate recoverability.
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1.1. Main Result

For any trace-preserving completely positive map E on a system S we denote
by Inv(E) the set of density operators τ on S which are left invariant under
the action of E , i.e.,

Inv(E) := {τ : E(τ) = τ}. (10)

We may now quantify the deviation of any state ρ from the set Inv(E) by

Λmax(ρ‖E) := inf
τ∈Inv(E)

Dmax(ρ‖τ) , (11)

where Dmax(ω‖σ) := inf{λ ∈ R : ω ≤ 2λσ} denotes the max-relative entropy.
The Λmax-quantity has the property that it is zero if and only if E leaves ρ
invariant3, i.e.,

Λmax(ρ‖E) = 0 ⇐⇒ E(ρ) = ρ. (12)

Main Result We prove that for any state ρABC on A⊗B ⊗C and any recovery
map RB→BC from the B system to the B ⊗ C system we have

D
(
ρABC‖RB→BC(ρAB)

)
+ Λmax(ρAB‖RB→B) ≥ I(A : C|B)ρ , (13)

where D(τ‖σ) := tr τ log τ − tr τ log σ if supp(τ) ⊆ supp(σ) and +∞ otherwise
denotes the relative entropy, and RB→B := trC ◦ RB→BC is the action of
the recovery map RB→BC on B. We refer to Theorem 3.1 for a more precise
statement.
Cases where the Λmax-Term Vanishes To interpret the term Λmax in (13),
note that the recovery map RB→BC generally not only reads the content
of system B in order to generate C, but also disturbs it. Λmax quantifies
the amount of this disturbance of B, taking system A as a reference. In
particular, Λmax(ρAB‖RB→B) = 0 if RB→BC is “read only” on B, i.e., if
ρAB = RB→B(ρAB). Inequality (13) then simplifies to

D
(
ρABC‖RB→BC(ρAB)

)
≥ I(A : C|B)ρ . (14)

We further note that in case RB→BC is a recovery map that is “read only” on
B its output state σABC := RB→BC(ρAB) is a Markov chain since

H(A|B)ρ ≤ H(A|BC)σ ≤ H(A|B)σ = H(A|B)ρ , (15)

where the two inequality steps follow from the data processing inequality
[22,23] applied for RB→BC and trC , respectively and hence I(A : C|B)σ =
H(A|B)σ − H(A|BC)σ = 0.

3Note that the max-relative entropy has a definiteness property which ensures that for a
sequence (ωk)k∈N of states such that limk→∞ Dmax(τ‖ωk) = 0 we have limk→∞ ωk = τ .
This follows from the fact that − logF (τ, ω) ≤ Dmax(τ‖ω) [2,3] and the definiteness property
of the fidelity [1,39], i.e., limk→∞ F (τ, ωk) = 1 implies limk→∞ ωk = τ .
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1.2. Tightness of the Main Result

We next discuss several aspects concerning the tightness of (13). This will also
give a better understanding about the role of the Λmax-term. We first note
that by combining (6) with (13) we obtain

DM

(
ρABC‖PB→BC(ρAB)

)
≤ I(A : C|B)ρ (16)

≤ inf
RB→BC

{
D

(
ρABC‖RB→BC(ρAB)

)
+ Λmax(ρAB‖RB→B)

}
, (17)

where the recovery map PB→BC on the left-hand side is given by (7) and
the infimum is over all recovery maps RB→BC that map B to B ⊗ C. The
main difference between the lower and upper bound for the conditional mutual
information given by (16) and (17), respectively, is the Λmax-term.
Classical Case Inequalities (16) and (17) hold with equality in case ρABC is a
classical state, i.e.,

ρABC =
∑

a,b,c

PABC(a, b, c)|a〉〈a|A ⊗ |b〉〈b|B ⊗ |c〉〈c|C , (18)

for some probability distribution PABC . To see this, we first note that if ρABC

is classical (in which case ρABC and all its marginals commute pairwise) a
straightforward calculation gives

I(A : C|B)ρ = D
(
ρABC‖TB→BC(ρAB)

)
, (19)

for the Petz recovery map TB→BC defined in (4). Furthermore, if ρABC is
classical TB→BC(ρAB) = ρBCρ−1

B ρAB . We further see that trCTB→BC(ρAB) =
TB→B(ρAB) = ρAB and hence

Λmax(ρAB‖TB→B) = 0 . (20)

This shows that in the classical case (17) is an equality and that the Petz
recovery map TB→BC minimizes the right-hand side of (17).

We further note that in the classical case the measured relative entropy
coincides with the relative entropy and the rotated Petz recovery map PB→BC

that satisfies (16) simplifies to the Petz recovery map TB→BC . This together
with (19) then shows that (16) holds with equality in the classical case.

Necessity of the Λmax-Term A natural question regarding (13) is whether the
Λmax-term is necessary. Here we show that this is indeed the case by construct-
ing an example proving that a large conditional mutual information does not
imply that all recovery maps are bad and hence the Λmax-term is indispensable.

More precisely, in Sect. 4.1 we construct a generic example showing that
for any constant κ < ∞ there exists a classical state ρABC (i.e., a state of the
form (18)) such that

κ Dmax

(
ρABC‖RB→BC(ρAB)

)
< I(A : C|B)ρ , (21)

for some recovery map RB→BC that satisfies RB→BC(ρB) = ρBC . A similar
construction (also given in Sect. 4.1) shows that there exists another classical
state ρABC such that

κ Dmax

(
RB→BC(ρAB)‖ρABC

)
< I(A : C|B)ρ , (22)
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for some recovery map RB→BC that satisfies RB→BC(ρB) = ρBC .
These constructions therefore show that an additional term like

Λmax(ρAB‖RB→B), which measures the deviation from a “read only” map
on B, is necessary to obtain a lower bound on the relative entropy between
a state and its reconstructed version. The example has an even stronger im-
plication. It shows that the Λmax-term is necessary even if one tries to bound
the max-relative entropy between a state and its reconstructed version, i.e.,
Dmax(ρABC‖RB→BC(ρAB)), which cannot be smaller than
D(ρABC‖RB→BC(ρAB)), from below.4 The two strict inequalities (21) and
(22) show that the Λmax-term is also necessary if one would allow for swap-
ping the two arguments of the relative (or even max-relative) entropy. Further-
more, restricting the set of recovery maps such that they satisfy RB→BC(ρB)
= ρBC still requires the Λmax-term.

Since for classical states (19) holds, these examples also show that for the
task of minimizing the relative entropy between ρABC and its reconstructed
state RB→BC(ρAB) the Petz recovery map can be far from being optimal—
even in the classical case. The examples further show that considering recovery
maps that leave the B system invariant (i.e., they only “read” the B-part) is
a considerable restriction. We refer to Sect. 4.1 for more information about
these examples.

Optimality of the Λmax-Term Even in the case where ρABC is not classical, (13)
is still close to optimal. We present two arguments why this is the case. First,
we show that the Λmax-term cannot be replaced by a relative entropy measure
that is smaller than the max-relative entropy. More precisely, (13) is violated
if the max-relative entropy in the definition of Λmax(ρAB‖RB→B) is replaced
with any α-Rényi relative entropy for any α ∈ [12 ,∞). We refer to Sect. 4.2 for
more information.

The Λmax-term in (13) quantifies the (max-relative entropy) distance be-
tween ρAB and its closest state that is invariant under RB→B . A natural ques-
tion is if (13) remains valid if the Λmax-term is replaced by the max-relative
entropy distance between ρAB and RB→B(ρAB), i.e., Dmax(ρAB‖RB→B(ρAB)).
This however is ruled out. To see this we recall that by the example mentioned
above in (21) there exists a tripartite state ρABC and a recovery map RB→BC

such that

2Dmax

(
ρABC‖RB→BC(ρAB)

)
< I(A : C|B)ρ . (23)

The data processing inequality for the max-relative entropy [14,38] and the
fact that the max-relative entropy cannot be smaller than the relative entropy
then imply

D
(
ρABC‖RB→BC(ρAB)

)
< I(A : C|B)ρ − Dmax

(
ρAB‖RB→B(ρAB)

)
, (24)

which shows that (13) is no longer valid for the modified Λmax-term described
above.

4The max-relative entropy and its properties are discussed in more detail in Sect. 2. It is
the largest sensible relative entropy measure.
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1.3. Related Results

Using the continuity of the conditional entropy, it is possible to derive an upper
bound for the conditional mutual information of a state ρABC in terms of its
distance to any reconstructed state σABC := RB→BC(ρAB), where RB→BC

denotes an arbitrary recovery map [4,16]. This leads to a lower bound on the
relative entropy between ρABC and RB→BC(ρAB) that however depends on the
dimension of the A system. To see this, let [0, 1] � x �→ h(x) := −x log x− (1−
x) log(1−x) denote the binary entropy function and let Δ(τ, ω) := 1

2 ‖τ − ω‖1

be the trace distance between τ and ω. The data processing inequality [22,23]
implies that

I(A : C|B)ρ = H(A|B)ρ − H(A|BC)ρ ≤ H(A|BC)σ − H(A|BC)ρ . (25)

By the improved Alicki-Fannes inequality [43, Lemma 2] we find

I(A : C|B)ρ ≤ 2Δ(ρ, σ) log(dim A) +
(
1 + Δ(ρ, σ)

)
h

(
Δ(ρ, σ)

1 + Δ(ρ, σ)

)
(26)

≤ 2
√

Δ(ρ, σ)
(
log(dim A) + 1

)
, (27)

where we used that (1 + x)h( x
1+x ) ≤ 2

√
x for all x ∈ [0, 1] and Δ(ρ, σ) ∈ [0, 1].

Together with Pinsker’s inequality [13,32] this gives

D
(
ρABC‖RB→BC(ρAB)

)
≥ 2

ln 2
Δ

(
ρABC ,RB→BC(ρAB)

)2

≥
I(A : C|B)4ρ

8 ln 2
(
log(dim A) + 1

)4 . (28)

The fact that this bound explicitly depends on the dimension of the system
A is unsatisfactory. Furthermore, the example discussed above in (21) shows
that such a dependence on the dimension is unavoidable.

A different approach to derive an upper bound for the conditional mutual
information of a state ρABC in terms of its distance to a reconstructed state
RB→BC(ρAB) was taken in [15, Theorem 11 and Remark 12] (see also [35,
Proposition F.1]). It was shown that for any state ρABC

∫ ∞

−∞
β0(dt) D̄2

(
ρABC‖P [t]

B→BC(ρAB)
)

≥ I(A : C|B)ρ , (29)

where β0 and P [t]
B→BC are given in (8) and (7), respectively and D̄2(τ‖ω) :=

log tr τ2ω−1 denotes Petz’ Rényi relative entropy of order 2 [29]. The examples
discussed above imply that the left-hand side of (29) can be much larger than
the relative entropy between ρABC and RB→BC(ρAB) for the optimal recovery
map RB→BC . In other words, rotated Petz recovery maps are generally far
from optimal recovery maps.

2. One-Shot Relative Entropies

The goal of this section is to derive a triangle-like inequality for the relative
entropy (see Lemma 2.1) which will be used in the proof of our main result, i.e.,
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Theorem 3.1. To understand Lemma 2.1, we need to review a few properties
of one-shot relative entropy measures.

2.1. Preliminaries

Let S(A) and P(A) denote the set of density and nonnegative operators on
A, respectively. For any linear operator L on A, the trace norm is given by
‖L‖1 := tr|L| with |L| :=

√
L†L. For ρ, σ ∈ P(A) we write ρ � σ if the support

of ρ is contained in the support of σ. Within this document our Hilbert spaces
are assumed to be separable. We define the min-relative entropy [33] as

Dmin(ρ‖σ) := − log
∥∥√

ρ
√

σ
∥∥2

1
= − log F (ρ, σ) (30)

and the max-relative entropy [14,33] as

Dmax(ρ‖σ) := inf{λ ∈ R : ρ ≤ 2λσ} . (31)

As the names suggest, the min-relative entropy cannot be larger than the
max-relative entropy, or more precisely we have

Dmin(ρ‖σ) ≤ D(ρ‖σ) ≤ Dmax(ρ‖σ) , (32)

with strict inequalities in the generic case [27,38]. The max-relative entropy
turns out to be the largest relative entropy measure that satisfies the data
processing inequality and is additive under tensor products [38, Section 4.2.4].
We also note that it follows immediately from the definition that the max-
relative entropy cannot increase if the same positive map is applied to both
arguments (see also [26, Theorem 2] for a more general statement).

The min- and max-relative entropies can be seen as the extreme points of
a family of relative entropies called minimal quantum Rényi relative entropy
(also known as sandwiched Rényi relative entropy) [27,42]. For α ∈ [ 12 , 1) ∪
(1,∞) and ρ, σ ∈ P(A), this family is defined as

Dα(ρ‖σ) :=

{
1

α−1 log 1
trρ tr

(
σ

1−α
2α ρσ

1−α
2α

)α

if ρ � σ ∨ α < 1

∞ otherwise .
(33)

It can be shown [27] that

D 1
2
(ρ‖σ) = Dmin(ρ‖σ), lim

α→1
Dα(ρ‖σ) = D(ρ‖σ),

and lim
α→∞ Dα(ρ‖σ) = Dmax(ρ‖σ) . (34)

Furthermore the minimal quantum Rényi relative entropy is monotone in α ∈
[12 ,∞) [27, Theorem 7], i.e.,

Dα(ρ‖σ) ≤ Dα′(ρ‖σ) for α ≤ α′ . (35)

2.2. Triangle-Like Inequality for Relative Entropy

It is well known that the relative entropy does not satisfy the triangle inequal-
ity. For the three (classical) qubit states ρ = 1

2 |0〉〈0|+ 1
4 id2, σ = 1

2 |1〉〈1|+ 1
4 id2,

and ω = 1
2 id2, we have D(ρ‖σ) > D(ρ‖ω) + D(ω‖σ). The following lemma

proves a triangle-like inequality for the minimal quantum Rényi relative en-
tropy.



Vol. 19 (2018) Necessary Criterion for Approximate Recoverability 3015

Lemma 2.1. Let A be a separable Hilbert space, let ρ ∈ S(A), σ, ω ∈ P(A) and
let α ∈ [12 , 1]. Then

Dα(ρ‖σ) ≤ Dα(ρ‖ω) + Dmax(ω‖σ) . (36)

Proof. For α ∈ [12 , 1), the function t �→ t
1−α

α is operator monotone on [0,∞)
[6, Theorem V.1.9]. Furthermore, the function X �→ trXα is monotone on the
set of Hermitian operators on a separable Hilbert space, since the function
X �→ Xα is operator monotone [6]. By definition of the max-relative entropy,
we find

Dα(ρ‖σ) =
1

α − 1
log tr

(
ρ

1
2 σ

1−α
α ρ

1
2

)α

≤ Dα(ρ‖ω) + Dmax(ω‖σ) . (37)

for α < 1. The case α = 1 then follows by continuity. �

Remark 2.2. We note that if A is a finite-dimensional Hilbert space then (36)
is valid for all α ∈ [12 ,∞). This follows from the fact that t �→ t

1−α
α is operator

anti-monotone [38] for α > 1 and that the function X �→ trXα is monotone
on the set of Hermitian operators [9, Theorem 2.10].

Very recently, a similar triangle-like inequality for Rényi relative entropies
that additionally involves trace-preserving completely positive maps has been
established in [10]. The following remarks show that Lemma 2.1 is optimal
and that there is not much flexibility to prove triangle-like inequalities for the
relative entropy different than (36).

Remark 2.3. Lemma 2.1 is optimal in the sense that (36) is no longer valid
if Dmax is replaced with Dα for any α ∈ [ 12 , 1]. To see this, let p ∈ (0, 1) and
consider three classical distributions on {0, 1} × {0, 1} defined by

PXY (x, y) :=
{

p if x = y = 0
1−p
3 otherwise

,

QXY (x, y) :=
{

p if x = y = 1
1−p
3 otherwise

,

SXY (x, y) =
1
4

. (38)

A simple calculation shows that

D(P‖Q) =
4p − 1

3
log

3p

1 − p
(39)

D(P‖S) = p log 4p + (1 − p) log
4(1 − p)

3
(40)

Dα(S‖Q) =
1

α − 1
log

(
3α

4α(1 − p)α−1
+

1
4αpα−1

)
. (41)

Choosing p = 1 − 2−α reveals that

D(P‖Q) > D(P‖S) + Dα(S‖Q) for all α ∈ [12 ,∞) . (42)

In the limit α → ∞, the strict inequality (42) becomes an equality.
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Remark 2.4. The statement of Lemma 2.1 is no longer true if the max-relative
entropy and the relative entropy on the right-hand side of (36) are exchanged.
To see this consider the three classical binary probability distributions

P (x) :=
{

1 − p if x = 0
p otherwise ,

Q(x) :=
{

1 − ε if x = 0
ε otherwise ,

S(x) :=
{

1 − p
2 if x = 0

p
2 otherwise , (43)

with p, ε ∈ (0, 1). This gives

D(P‖Q) = (1 − p) log
1 − p

1 − ε
+ p log

p

ε
(44)

D(S‖Q) =
2 − p

2
log

2 − p

2 − 2ε
+

p

2
log

p

2ε
(45)

Dmax(P‖S) = max
{

log
2(1 − p)
2 − p

, log 2
}

= 1 . (46)

For p = 7
8 and ε = 1

8 we find that

D(P‖Q) > Dmax(P‖S) + D(S‖Q) . (47)

This shows that it is crucial which term in Lemma 2.1 carries a max-relative
entropy.

Remark 2.5. The relative entropy satisfies a triangle-like inequality differ-
ent from Lemma 2.1. For the log-Euclidean α-Rényi divergence D�

α(ω‖σ) :=
1

1−α log tr eα log ρ+(1−α) log σ it is known [25] that

D(ρ‖σ) ≤ α

α − 1
D(ρ‖ω) + D�

α(ω‖σ) for α ∈ (1,∞) . (48)

We also note that D�
∞(ω‖σ) ≤ Dmax(ω‖σ) which shows that in the limit

α → ∞ we obtain Lemma 2.1 for the case α = 1.

3. Main Result and Proof

Theorem 3.1. Let A, B, and C be separable Hilbert spaces, let ρABC ∈ S(A ⊗
B ⊗C), and let RB→BC be a trace-preserving completely positive map from B
to B ⊗ C. Then

D
(
ρABC‖RB→BC(ρAB)

)
+ Λmax(ρAB‖RB→B) ≥ I(A : C|B)ρ . (49)

The quantity Λmax(ρAB‖RB→B) is defined in (11) and RB→B := trC ◦
RB→BC . To prove the assertion of Theorem 3.1, we make use of a known lemma
stating that the conditional mutual information of a tripartite density operator
is bounded from above by the smallest relative entropy distance to Markov
chains. Let MC(A ⊗ B ⊗ C) denote the set of Markov chains on A ⊗ B ⊗ C,
i.e., tripartite density operators ρABC ∈ S(A ⊗ B ⊗ C) that satisfy (1).
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Lemma 3.2 ([20, Theorem 4]). Let ρABC ∈ S(A ⊗ B ⊗ C). Then

I(A : C|B)ρ ≤ inf
μ∈MC

D(ρABC‖μABC) . (50)

Proof. The proof we provide here follows the lines of a proof by Jenc̆ová (see
the short note after the acknowledgements in [20]), but extends it to general
separable spaces.

Let μABC ∈ MC and assume without loss of generality that the relative
entropy D(ρABC‖μABC) is finite. (If there is no such state then the infimum
in (50) equals infinity and the statement is trivial.) Due to the data processing
inequality [24,40] we have

0 ≤ D(ρB‖μB) ≤ D(ρAB‖μAB) ≤ D(ρABC‖μABC) (51)

and

0 ≤ D(ρB‖μB) ≤ D(ρBC‖μBC) ≤ D(ρABC‖μABC) . (52)

In particular, the relative entropies D(ρAB‖μAB), D(ρBC‖μBC), and
D(ρB‖μB) are finite. We thus have

D(ρABC‖μABC) + D(ρB‖μB) − D(ρAB‖μAB) − D(ρBC‖μBC)

= tr
(
ρABC

(
log ρABC − log μABC + log ρB − log μB − log ρAB + log μAB

− log ρBC + log μBC

))
.

Using the Markov chain property (2) for μABC , i.e.,

μABC =
⊕

j

P (j)μAbL
j

⊗ μbR
j C for B =

⊕

j

bL
j ⊗ bR

j , (53)

it is straightforward to verify that

log μABC + log μB − log μAB − log μBC = 0. (54)

The above can thus be simplified to

D(ρABC‖μABC) + D(ρB‖μB) − D(ρAB‖μAB) − D(ρBC‖μBC)

= tr
(
ρABC

(
log ρABC + log ρB − log ρAB − log ρBC

))
= I(A : C|B).

It follows from (51) and (52) that

D(ρABC‖μABC) ≥ I(A : C|B) , (55)

which concludes the proof. �

In order to prove Theorem 3.1, we need one more lemma that relates the
distance to Markov chains and the Λmax-quantity defined in (11).

Lemma 3.3. Let ρAB ∈ P(A⊗B) and RB→BC be a trace-preserving completely
positive map. Then

inf
μ∈MC

Dmax

(
RB→BC(ρAB)‖μABC

)
≤ Λmax(ρAB‖RB→B) . (56)
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Proof. For the proof, we first assume that the system A has a finite dimen-
sion, so that conditional entropies of the form H(A|B) are finite. The data
processing inequality for the max-relative entropy [14,17,38] implies that

inf
μABC

{Dmax

(
RB→BC(ρAB)‖μABC

)
: μABC ∈ MC}

≤ inf
τAB

{Dmax

(
RB→BC(ρAB)‖RB→BC(τAB)

)

: RB→BC(τAB) ∈ MC, τAB ∈ S(A ⊗ B)} (57)

≤ inf
τAB

{Dmax(ρAB‖τAB) : RB→BC(τAB) ∈ MC, τAB ∈ S(A ⊗ B)} . (58)

Furthermore, because the data processing inequality for the conditional en-
tropy [22,23] implies that H(A|BC)RB→BC(τAB) ≥ H(A|B)τAB

for any τAB ∈
S(A ⊗ B), we also have

τAB ∈ Inv(RB→B) =⇒ H(A|BC)μ ≥ H(A|B)μ for μABC = RB→BC(τAB).
(59)

Note that the inequality on the right-hand side of the implication must, again
by the data processing inequality, be an equality, which means that I(A :
C|B)μ = 0 and, hence, that μ ∈ MC. This proves the general implication

τAB ∈ Inv(RB→B) =⇒ RB→BC(τAB) ∈ MC . (60)

We now use it to obtain

Λmax(ρAB‖RB→B)

= inf
τAB

{Dmax(ρAB‖τAB) : τAB ∈ Inv(RB→B)} (61)

≥ inf
τAB

{Dmax(ρAB‖τAB) : RB→BC(τAB) ∈ MC, τAB ∈ S(A ⊗ B)} .

(62)

Combining this with (58) completes the proof for the case where the system
A is finite-dimensional.

To extend the claim to general separable Hilbert spaces, consider a se-
quence of finite-rank projectors (Πk

A)k∈N on A with Πk
A ≤ Πk+1

A for any k ∈ N

that, for k → ∞, converges to the identity in the weak, and hence also in
the strong, operator topology [18]. It follows from the monotonicity of the
max-relative entropy under positive maps and (56) for finite-dimensional A
that

inf
μ∈MC

Dmax

(
Πk

ARB→BC(ρAB)Πk
A‖Πk

AμABCΠk
A

)

≤ inf
μ∈MC

Dmax

(
Πk

ARB→BC(ρAB)Πk
A‖μABC

)
(63)

≤ Λmax(Πk
AρABΠk

A‖RB→B) . (64)
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The right-hand side can be bounded for any k ∈ N by

Λmax(Πk
AρABΠk

A‖RB→B)

= inf
τAB∈Inv(RB→B)

Dmax(Πk
AρABΠk

A‖τAB) (65)

≤ inf
τAB∈Inv(RB→B)

Dmax

(
Πk

AρABΠk
A‖ Πk

AτABΠk
A

tr Πk
AτABΠk

A

)
(66)

= inf
τAB∈Inv(RB→B)

{
Dmax(Πk

AρABΠk
A‖Πk

AτABΠk
A) + log tr Πk

AτABΠk
A

}

(67)

≤ inf
τAB∈Inv(RB→B)

Dmax(Πk
AρABΠk

A‖Πk
AτABΠk

A) , (68)

where the first inequality uses that Πk
AτABΠk

A/tr Πk
AτABΠk

A ∈ Inv(RB→B).
The final step follows because τAB is a density operator and hence tr Πk

AτAB ≤
1 for any projector Πk

A on A. Using once again the monotonicity of the max-
relative entropy under positive maps we find with the above

Λmax(Πk
AρABΠk

A‖RB→B) ≤ inf
τAB∈Inv(RB→B)

Dmax(ρAB‖τAB) (69)

= Λmax(ρAB‖RB→B). (70)

To conclude the proof, it thus suffices to establish that

inf
μ∈MC

Dmax

(
RB→BC(ρAB)‖μABC

)

≤ λ := lim sup
k→∞

inf
μ∈MC

Dmax

(
Πk

ARB→BC(ρAB)Πk
A‖Πk

AμABCΠk
A

)
. (71)

Because the max-relative entropy cannot increase if the same positive
map is applied to both arguments, the max-relative entropy is non-decreasing
for increasing k, and the lim sup may therefore be replaced by a lim. Hence,
there exists a sequence (μk)k∈N of density operators in MC such that

λ = lim
k→∞

Dmax

(
Πk

ARB→BC(ρAB)Πk
A‖Πk

Aμk
ABCΠk

A

)
, (72)

and we can assume without loss of generality that Πk
Aμk

ABCΠk
A = μk

ABC . From
here we proceed analogously to the proof of Lemma 11 in [18]. In particular, we
use that the space, T (H), of trace-class operators on H = A⊗B⊗C (equipped
with the trace norm) is isometrically isomorphic to the dual of the space K(H)
of compact operators on H (equipped with the operator norm), with the iso-
morphism τ �→ ψτ given by ψτ (κ) = tr κτ , and that, by the Banach-Alaoglu
theorem, the closed unit ball on T (H) is therefore compact with respect to the
weak∗ topology. This implies that there exists a subsequence (μk)k∈Γ⊂N that
converges in the weak∗ topology to an element μ ∈ T (H), i.e.,

lim
k→∞

tr κμk = tr κμ (k ∈ Γ) (73)
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for al κ ∈ K(H). Because, for any k ∈ N, μk is a density operator, μ is also a
density operator. The convergence (73) also implies

lim
k→∞

tr κΠk
A(2λμk

ABC − RB→BC(ρAB))Πk
A

= tr κ(2λμABC − RB→BC(ρAB)) (k ∈ Γ) (74)

for any κ ∈ K(H). By the definition of the max-relative entropy, the sequence
on the left-hand side must converge to a nonnegative real for any κ ≥ 0. This
implies (71). �

Proof of Theorem 3.1. Let μABC be a Markov chain. Combining Lemma 3.2
with Lemma 2.1 applied for α = 1, ρ = ρABC , σ = μABC and ω = RB→BC

(ρAB) gives

I(A : C|B)ρ ≤ D
(
ρABC‖RB→BC(ρAB)

)
+ inf

μ∈MC
Dmax

(RB→BC(ρAB)‖μABC

)
. (75)

Lemma 3.3 then proves the assertion of Theorem 3.1.5 �

4. On the Tightness of the Main Result

In this section, we construct examples that show two things. First, there exist
classical tripartite states with a large conditional mutual information that,
however, can be recovered well. This shows the necessity of the Λmax-term in
the main bound (49)—even if the relative entropy was replaced by the largest
possible relative entropy measure, i.e., the max-relative entropy. Furthermore,
the violation of such a bound without the Λmax-term can be made arbitrarily
large. Second, our example shows that (49) is no longer valid if the max-relative
entropy in the definition of Λmax(ρAB‖RB→B) is replaced with any α-Rényi
relative entropy for any α ∈ [12 ,∞).

Both examples will be classical, i.e., we consider tripartite states of the
form (18). Such states are special as the corresponding density operators of
the states and all its marginals are simultaneously diagonalizable. As a result,
we can use the classical notion of a distribution to describe such states.

4.1. A Large Conditional Mutual Information Does Not Imply Bad Recovery

Let X = {1, 2, . . . , 2n} for n ∈ N, p, q ∈ [0, 1] such that p + q ≤ 1, and
consider two independent random variables EZ and EY on {0, 1} and {0, 1, 2},
respectively, such that P(EZ = 0) = p+q, P(EY = 0) = p, and P(EY = 1) = q.
Let X ∼ U(X ), where U(X ) denotes the uniform distribution on X and define
two random variables by

Z :=
{

X if EZ = 0
UZ otherwise and Y :=

⎧
⎨

⎩

X if EY = 0
Z if EY = 1
UY otherwise ,

(76)

5We note that (75) is stronger than (49) and therefore may be of independent interest.
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where UY ∼ U(X ) and UZ ∼ U(X ) are independent. This defines a tripartite
distribution PXY Z . A simple calculation reveals that

H(X|Y EY EZ)

= pH(X|XEZ) + qH(X|ZEZ) + (1 − p − q)H(X|UY EZ) (77)

= q
(
(p + q)H(X|X) + (1 − p − q)H(X|UZ)

)
+ (1 − p − q)H(X) (78)

= n(1 − p − q)(1 + q) . (79)

Similarly we find

H(X|Y ZEY EZ) = q(1 − p − q)H(X|UZ) + (1 − p − q)(1 − p − q)H(X|UY )
(80)

= n(1 − p − q)(1 − p) . (81)

We thus obtain

I(X : Z|Y )P = H(X|Y ) − H(X|Y Z) (82)

≥ H(X|Y EY EZ) − H(X|Y ZEY EZ) − I(X : EY EZ |Y Z) (83)

≥ n(1 − p − q)(p + q) − log 6 . (84)

We next define a recovery map RY →Y ′Z′ that creates a tuple of random
variables (Y ′, Z ′) out of Y . Let the recovery map be such that

(Y ′, Z ′) : = (p2 + q + pq)(Y, Y ) +
1
2
(
1 − p2 − q − pq

)
(Y,U)

+
1
2
(
1 − p2 − q − pq

)
(U ′, Y ) , (85)

where U,U ′ are independent uniformly distributed on X . Let

QXY ′Z′ := RY →Y ′Z′(PXY ) (86)

denote the distribution that is generated when applying the recovery map
(described above) to PXY . In the following, we will assume that n is sufficiently
large. It can be verified easily that QY ′Z′ = PY Z . Since PXY Z and QXY ′Z′ are
classical distributions we have Dmax(PXY Z‖QXY ′Z′ ) = maxx,y,z log PXY Z(x,y,z)

QXY ′Z′ (x,y,z)
.

We note that P(X = Y ) = p + pq + q2 according to the distribution PXY and
hence

Dmax(PXY Z‖QXY ′Z′)

= max
{

log
(p + q)2

P(X = Y )(p2 + q + pq)
, log

(1 − p − q)q
P(X �= Y )(p2 + q + pq)

,

log
(p + q)(1 − p − q)

P(X = Y ) 1
2 (1 − p2 − q − pq)

,

log
(1 − p − q)p

P(X = Y ) 1
2 (1 − p2 − q − pq)

, log
(1 − p − q)2

P(X �= Y )(1 − p2 − q − pq)

}
(87)
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and

Dmax(QXY ′Z′‖PXY Z)

= max
{

log
P(X = Y )(p2 + q + pq)

(p + q)2
, log

P(X �= Y )(p2 + q + pq)
(1 − p − q)q

,

log
P(X = Y ) 1

2 (1 − p2 − q − pq)
(p + q)(1 − p − q)

,

log
P(X = Y ) 1

2 (1 − p2 − q − pq)
(1 − p − q)p

, log
P(X �= Y )(1 − p2 − q − pq)

(1 − p − q)2

}
. (88)

We are now ready to state the conclusion of this example. For κ < ∞,
p = 1

2 , q = 0, and n sufficiently large we find by combining (84) with (87)

κ Dmax

(
PXY Z‖RY →Y Z(PXY )

)
= κ <

n

4
− log 6 ≤ I(X : Z|Y )P . (89)

For κ < ∞, p = q = 1
4 , and n sufficiently large (84) and (88) imply

κ Dmax

(
RY →Y Z(PXY )‖PXY Z

)
= κ log

15
8

<
n

4
− log 6 ≤ I(X : Z|Y )P . (90)

This shows that there exist classical tripartite distributions PXY Z with a large
conditional mutual information I(X : Y |Z)P and a recovery map RY →Y Z such
that RY →Y Z(PXY ) is close to PXY Z and RY →Y Z(PY ) = PY Z . The closeness
is measured with respect to the max-relative entropy.

4.2. Tightness of the Λmax-Term

In this section, we construct a classical example showing that our main re-
sult, i.e., (49) is essentially tight in the sense that it is no longer valid if the
max-relative entropy in the definition of Λmax(ρAB‖RB→B), given in (11), is
replaced with an α-Rényi relative entropy for any α < ∞. More precisely, for
α ∈ [1,∞] we define

Λα(ρ‖E) := inf
τ∈Inv(E)

Dα(ρ‖τ). (91)

For α = ∞ we have Λ∞(ρ‖E) = Λmax(ρ‖E). In this section, we show that for
all α < ∞ there exits a (classical) tripartite state ρABC and a recovery map
RB→BC that satisfies RB→BC(ρB) = ρBC such that

D
(
ρABC‖RB→BC(ρAB)

)
< I(A : C|B)ρ − Λα(ρAB‖RB→B) . (92)

To see this, consider the following classical example (where we switch
to the classical notation). Let S = {0, . . . , 2n − 1} and consider a tripartite
distribution QXY Z defined via the random variables X ∼ U(S) and X = Y =
Z. Let Q′

XY Z be the distribution defined via the random variables X ∼ U(S),
Y ∼ U(S) where X and Y are independent and Z = (X + Y ) mod 2n. For
p ∈ [0, 1], we define a binary random variable E such that P(E = 0) = p.
Consider the distribution

PXY Z =
{

QXY Z if E = 0
Q′

XY Z if E = 1 .
(93)
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We next define two recovery maps R̃Y →Y ′Z′ and R̄Y →Y ′Z′ that create the
tuples (Y ′, Z ′) out of Y such that

(Y ′, Z ′) = (Y, Y ) and (Y ′, Z ′) =
(
U, (Y − U)mod 2n

)
, (94)

where U ∼ U(S), respectively. We then define another recovery map as

RY →Y ′Z′ := pR̃Y →Y ′Z′ + (1 − p)R̄Y →Y ′Z′ . (95)

We note that the recovery map satisfies RY →Y ′Z′(PY ) = PY Z . A simple cal-
culation shows that

H(X|Y E)P = pH(X|Y )Q + (1 − p)H(X|Y )Q′ = (1 − p)n (96)

and

H(X|Y ZE)P = pH(X|Y Z)Q + (1 − p)H(X|Y Z)Q′ = 0 . (97)

We thus find

I(X : Z|Y )P = H(X|Y ) − H(X|Y Z) (98)

≥ H(X|Y E) − H(X|Y ZE) − I(X : E|Y Z) (99)

≥ (1 − p)n − h(p) . (100)

The distribution RY →Y ′Z′(PXY ) generated by applying the recovery map to
PXY can be decomposed as

RY →Y ′Z′(PXY )

= p
(
pS̃XY Z + (1 − p)S̄XY Z

)
+ (1 − p)

(
pS̃′

XY Z + (1 − p)S̄′
XY Z

)
,(101)

where S̃XY Z = R̃Y →Y ′Z′(QXY ), S̄XY Z = R̄Y →Y ′Z′(QXY ), S̃′
XY Z =

R̃Y →Y ′Z′(Q′
XY ), and S̄′

XY Z = R̄Y →Y ′Z′(Q′
XY ). The joint convexity of the

relative entropy [12, Theorem 2.7.2] then implies

D
(
PXY Z‖RY →Y ′Z′(PXY )

)

≤ pD
(
QXY Z‖pS̃XY Z + (1 − p)S̄XY Z

)
+ (1 − p)D

(
Q′

XY Z‖pS̃′
XY Z + (1 − p)S̄′

XY Z

)

(102)

A simple calculation shows that

D
(
QXY Z‖pS̃XY Z + (1 − p)S̄XY Z

)

=
∑

x=y=z

QXY Z(x, y, z) log
QXY Z(x, y, z)

pS̃XY Z(x, y, z) + (1 − p)S̄XY Z(x, y, z)

≤ 2−n

p2−n
= log

1
p

(103)
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and

D
(
Q′

XY Z‖pS̃′
XY Z + (1 − p)S̄′

XY Z

)

=
∑

x,y,z=x+y mod 2n

Q′
XY Z(x, y, z) log

Q′
XY Z(x, y, z)

pS̃′
XY Z(x, y, z) + (1 − p)S̄′

XY Z(x, y, z)
(104)

≤ 2−2n

p2−2n
= log

1
p

. (105)

We thus have

D
(
PXY Z‖RY →Y ′Z′(PXY )

)
≤ log

1
p

. (106)

We note that the recovery map RY →Y ′ = trZ′ ◦ RY →Y ′Z′ leaves the uniform
distribution Q′

XY invariant, i.e., RY →Y ′(Q′
XY ) = Q′

XY . As a result we find

Λα(PXY ‖RY →Y ′) ≤ Dα(PXY ‖Q′
XY )

=
1

α − 1
log

(
2−n(1 − p)α(2n − 1) + 2−n(1 − p + p2n)α

)
, (107)

where the final step follows by definition of the α-Rényi relative entropy and
a straightforward calculation.

Recall that we need to prove (92), which in the classical notation reads
as

D
(
PXY Z‖RY →Y ′Z′(PXY )

)
+ Λα(PXY ‖RY →Y ′) < I(X : Z|Y )P , (108)

for all α < ∞. As mentioned in (35), the α-Rényi relative entropy is monotone
in α which shows that it suffices to prove (108) for all α ∈ (α0,∞), where
α0 ≥ 0 can be arbitrarily large.

Combining (106) and (107) shows that for any α ∈ (α0,∞) where α0 is
sufficiently large, p = α−2, and n = α

D
(
PXY Z‖RY →Y ′Z′(PXY )

)
+ Λα(PXY ‖RY →Y ′)

≤ 2 log α +
1

α − 1
log

(
1 + 2−α(1 + α−22α)α

)
, (109)

where we used that (1 − α−2)α(2α − 1) ≤ 2α for α ≥ 1. Using the simple
inequality log(1 + x) ≤ log x + 2

x for x ≥ 1 gives

D
(
PXY Z‖RY →Y ′Z′(PXY )

)
+ Λα(PXY ‖RY →Y ′)

≤ 2 log α − α

α − 1
+

α

α − 1
log

(
1 +

2α

α2

)
+

2
α − 1

2α

(
1 +

2α

α2

)−α

(110)

≤ 2 log α − α

α − 1
+

α

α − 1
log

(
1 +

2α

α2

)
+ 2−α , (111)
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where the final step is valid since α is assumed to be sufficiently large. Using
once more log(1 + x) ≤ log x + 2

x for x ≥ 1 gives

D
(
PXY Z‖RY →Y ′Z′(PXY )

)
+ Λα(PXY ‖RY →Y ′)

≤ 2 log α +
α

α − 1

(
α − 2 log α − 1 +

2α2

2α

)
+ 2−α (112)

= α − 2
α − 1

log α + 2−αpoly(α) , (113)

where poly(α) denotes an arbitrary polynomial in α. As a result, we obtain
for a sufficiently large α

D
(
PXY Z‖RY →Y ′Z′(PXY )

)
+ Λα(PXY ‖RY →Y ′) < α − 2

α
(114)

≤ α − α−1 − h(α−2) (115)

≤ I(X : Z|Y )P . (116)

The two steps (114) and (115) are both valid because α is sufficiently large.
The final step uses (100).

This example shows that (49) is no longer valid if the Λmax-term is re-
placed with a Λα-term for any α ∈ [ 12 ,∞).6 Note also that this example implies
Remark 2.3 on the tightness of the triangle-like inequality for the relative en-
tropy.

5. Open Questions

In this article, we introduced a new entropic quantity Λmax(ρAB‖RB→B) that
measures how much the map RB→B disturbs the B system, taking system A as
a reference. It would be interesting to better understand this quantity and its
properties. For example in case ρABC is a state whose marginals are all flat7, is
it possible to bound Λmax(ρAB‖RB→B) in terms of D(ρABC‖RB→BC(ρAB))
from above? This would considerably simplify our main result (49) for this
special case, which is of interest, e.g., in applications to condensed matter
physics.
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Appendix A. Approximate Markov Chains Can be far from
Markov Chains

As mentioned in the introduction, it is known [11,20] that there exist tripartite
states with a small conditional mutual information whose distance to any
Markov chain is nevertheless large. For example, consider a state ρS1,...Sd

=
|ψ〉〈ψ|S1,...Sd

on S1 ⊗ · · · ⊗ Sd with dim Sk = d > 1 for all k = 1, . . . , d, where

|ψ〉S1,...Sd
:=

√
1
d!

∑

π∈Sd

sign(π)|π(1)〉 ⊗ · · · ⊗ |π(d)〉 (117)

is the Slater determinant, Sd denotes the group of permutations of d objects,
and sign(π) := (−1)L, where L is the number of transpositions in a decompo-
sition of the permutation π. The chain rule and the trivial upper bound for
the mutual information show that we have

I(S1 : S2 . . . Sd)ρ =
d∑

k=2

I(S1 : Sk|S2 . . . Sk−1)ρ ≤ 2 log d . (118)

Because the mutual information is nonnegative, there exists k ∈ {2, . . . , d}
such that

I(S1 : Sk|S2 . . . Sk−1)ρ ≤ 2
d − 1

log d , (119)

which can be arbitrarily small (as d gets large). By definition, the reduced
state ρS1Sk

is the antisymmetric state on S1 ⊗ Sk that is far from separable
[7, p. 53]. More precisely, for any separable state σS1Sk

on S1 ⊗ Sk we have
Δ(ρS1Sk

, σS1Sk
) ≥ 1

2 , where Δ(τ, ω) := 1
2 ‖τ − ω‖1 denotes the trace distance

between τ and ω. For any state μS1...Sk
on S1 ⊗ · · · ⊗ Sk that forms a Markov

chain in order S1 ↔ S2 . . . Sk−1 ↔ Sk, it follows by (2) that its reduced state
μS1Sk

on S1 ⊗ Sk is separable. Using the monotonicity of the trace distance
under trace-preserving completely positive maps [28, Theorem 9.2] we thus
find

Δ(ρS1...Sk
, μS1...Sk

) ≥ Δ(ρS1Sk
, μS1Sk

) ≥ 1
2

, (120)

showing that the state ρS1...Sk
despite having a conditional mutual information

that is arbitrarily small (see (119)) is far from any Markov chain.
As discussed in the introduction, states with a small conditional mutual

information are called approximate Markov chains (which is justified by (5)).
The example in this appendix shows that approximate quantum Markov chains
are not necessarily close to quantum Markov chains.

http://creativecommons.org/licenses/by/4.0/
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