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Abstract. In this paper we introduce a simple field theoretic version of
the Carrozza–Tanasa–Klebanov–Tarnopolsky (CTKT) “uncolored” holo-
graphic tensor model. It gives a more familiar interpretation to the previ-
ously abstract modes of the SYK or CTKT models in terms of momenta.
We choose for the tensor propagator the usual Fermionic propagator of
condensed matter, with a spherical Fermi surface, but keep the CTKT
interactions. Hence, our field theory can also be considered as an ordinary
condensed matter model with a non-local and non-rotational invariant
interaction. Using a multi-scale analysis, we prove that this field theory is
just renormalizable to all orders of perturbation theory in the ultraviolet
regime.

1. Introduction

Holography (and in particular the AdS/CFT correspondence) provides an
effective definition of quantum gravity systems dual to certain conformal field
theories. However, until recently the lack of simple solvable examples of this
correspondence prevented to extract easily the gravitational content. A more
serious shortcoming of AdS/CFT is that a second quantized version of quan-
tum gravity should not be limited to an AdS geometry. It should give a meaning
to some kind of functional integral over space–times, presumably pondered by
an action of the Einstein–Hilbert (EH) type. This seems up to now intractable
in the continuum.

Therefore, in parallel to string theory and AdS/CFT research, and largely
independently from them, several formalisms have been developed in order to
define a background-independent discretized version of the quantum gravity
functional integral. They go under various names such as dynamical and causal
triangulations [1], spin foams [2] and group field theory [3–8], which is their
second quantized version [9,10], or random matrix and tensor models. The best
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success story in this direction is provided by random matrix models [11], for
which the critical limit of ’t Hooft topological expansion provides a universal
random geometry [12] now proven equivalent to Liouville continuum gravity
in dimension two [13].

The Feynman graphs of random matrix models are dual to two-
dimensional triangulated surfaces. Random tensor models of higher ranks were
therefore introduced to perform a similar sum but for higher-dimensional trian-
gulated geometries [14–16]. They are indeed pondered by a discretized version
of the EH action [17]. But their development was impaired by the lack of
analytic tools.

Some years ago random tensors underwent a major upheaval. The theory
was unlocked by the discovery of colored group field theory [18] and of the
associated 1/N expansion [19–21] which has lead to a new universality theorem
for random tensors [22,23]. It provided the missing hierarchy for the Feynman
graphs of tensor models. The leading order was identified as the now famous
melonic family [24]. Surprisingly this melonic family is simpler than the planar
family that leads ’t Hooft expansion at rank two. But it is essential to add
that the tensor 1/N expansion itself (in its subleading orders) is much more
complicated than the ’t Hooft expansion. At rank d it organizes the huge
geometric category of piecewise linear quasi-manifolds of dimension d. Several
detailed reviews on this modern theory of random tensors are now available
[22,23]. The corresponding revived approach to quantum gravity forms the
“tensor track” [25,26].

AdS/CFT correspondence and tensor models were until recently unre-
lated. This is no longer the case. The Sachdev-Ye-Kitaev (SYK) model [27–29]
provided two years ago a simple solvable example of an “almost” AdS2/CFT1

correspondence. It exhibits interesting properties such as maximal chaos [30]
and approximate conformal invariance, explicitly broken through a kind of
bilocal BCS mechanism. It is now clear that many details in the SYK model
are not essential (Boson or Fermions, real or complex, particular rank, etc.).
The only feature which is not optional is the presence of at least one random
tensor which ensures that the large N limit is governed by the melonic family.

The link between SYK and tensor models was made even tighter in the
Gurau–Witten (GW) [31,32] and Carrozza–Tanasa–Klebanov–Tarnopolsky
(CTKT) models [34,35]. They open the new chapter of holographic tensor
models. All this research enjoys currently tremendous activity, see [36–45] and
more references therein. However, there is one category of random tensors still
under the radar of the SYK and string community, namely tensor field theo-
ries (TFTs) [46–55]. TFTs distinguish themselves from tensor models by the
presence of a non-trivial propagator. It allows to morph the 1/N limit into
the physically more familiar picture of power counting, scales and a renor-
malization group analysis, opening the possibility to search numerically for
non-trivial fixed points [56–58]. Until now in SYK and holographic tensor
models, the modes are abstract and lack any spatial interpretation and the
N → ∞ limit is always performed at the beginning, keeping only the leading
1/N terms. Remark that subleading effects in 1/N depend on the detail of the
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model chosen [59,60]. In this way the 1/N limit cannot couple to the conformal
limit. This seems to us somewhat unphysical.

In TFTs typical interactions still belong to the tensor theory space [61]
but the propagator (i.e., the Gaussian measure covariance) is purposefully cho-
sen to slightly break the tensor symmetry. This is quite natural if we consider
the tensorial symmetry as a kind of abstract generalization of locality in field
theory [62]. Propagators, as their name indicates, should break locality.

The main consequence of this slight breaking of the tensor symmetry
is to allow for a separation of the tensor indices into (abstract, background-
independent) ultraviolet and infrared degrees of freedom. Like in ordinary
field theory most of the indices should have small covariances. They are iden-
tified with (abstract) ultraviolet degrees of freedom. They should be integrated
to compute the effective theory for the few indices which form the infrared,
effective degrees of freedom (not the other way around!). This picture seems
also related to the general AdS/CFT philosophy in which the renormalization
group, which flows between different conformal fixed points, precisely provides
the extra bulk dimension of AdS [63].

At rank 2, TFTs reduce to non-commutative quantum field theory
(NCQFT), which is an effective regime of string theory [64,65]. Mathemati-
cally it also corresponds to Kontsevich-type matrix models instead of ordinary
matrix models [66,67]. In the Grosse–Wulkenhaar version, it can be renor-
malized [68,69] and the leading planar sector displays beautiful features such
as asymptotic safety [70] and integrability [71], together with a completely
unexpected restoration of Poincaré symmetry and of Osterwalder–Schrader
positivity [72].

TFTs are the natural higher-rank generalizations of such NCQFTs. When
equipped with additional gauge projectors, such TFTs coincide with tensor
group field theory [73,74], whose divergencies and radiative corrections require
regularization, hence non-trivial propagators, as argued in [75]. An important
unexpected property of TFTs is their generic asymptotic freedom, at least for
quartic melonic interactions [76–78].

For all these reasons we introduce in this paper a first example of a tensor
field theory of the SYK-type.1 The key is to choose an interesting propagator.
Motivated by the condensed matter background of the SYK model, we choose
the usual propagator of Fermions in 4 dimensions with a spherical Fermi surface
(jellium model of non-relativistic many Fermions),2 but we keep for interaction
the two O(N)3-invariant quartic tensor interactions of the Carrozza–Tanasa
[34] model. Remark that the tensor theory space for rank three O(N) invariants
is not exactly the same as the U(N) one, which has been more often considered
in the literature. Remark that the complete graph interaction has been also
used in the context of the large D-limit of matrix models [79] and recently

1 We could also call it a holographic tensor field theory, but we prefer to wait until its
holographic properties are better analyzed.
2 Therefore, our model reminds of Horava–Lifschitz gravity or condensed matter physics, but
beware that the abstract “space” of TFTs should not be necessarily identified with ordinary
coordinates on a semi-classical effective background.
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generalized to larger ranks in [80]. Note finally that group field theory has
recently introduced tensor fields depending on a scalar field playing a role
identical of “time” with the important feature that the interaction kernel in
that theory is local in this field [81]. The introduction of such a field finds
its interest in the search of an effective cosmological dynamics in group field
theory. The model considered in [81] is, however, not the same as the one
we study here simply because of the so-called gauge invariance imposed on
the fields (that invariance is manifest with the presence of a �-product) and
the fact that the (Laplacian) propagator used in that theory is not that of a
condensed matter theory.

In this paper we study the ultraviolet regime of this model. Our main
result is to prove a “BPHZ-type” finiteness theorem at all orders through a
multi-scale analysis in the spirit of [46,47,73,82]. We shall not discuss the non-
perturbative stability here; see, however, [83–85] for the constructive tensor
field program, entirely devoted to this issue.

The most interesting regime of the renormalization group in condensed
matter physics is governed by the low temperature excitations close to the
Fermi surface. If this “Fermi surface” infrared regime is also just renormaliz-
able, this may prevent the formation of a conformal regime with anomalous
dimension of the SYK type and saturation of the maximal chaos bound [30],
as argued first in [33]. However, this requires a careful analysis in the style of
[86–88] which is left for a future study.

Remark finally that our model is quite different from other types of tensor
theories such as the Gross–Neveu tensor models studied in [89,90] in which the
tensor invariance remains unbroken by the propagator.

2. The Model

2.1. Fields

Our goal is to extend into a tensor field theory the CTKT model [34,35],
using the interactions of [34], the time dependence à la SYK of [35] and a
new propagator which mixes time with additional spatial degrees of freedom.
Since we want to use the Laplacian as our (non-relativistic) abstract spatial
kinetic energy, and since it is a symmetric operator, we have first to double
the number of fields. So we consider a pair of Majorana tensor fields which
we write as {χ(t, �x, σ)} where σ is an abstract “spin” index taking two values,
1 or 2.3 To stick for the moment as close as possible to the SYK and CTKT
models, we keep the interaction local in time. But, and this is the defining
feature of tensor field theory, our propagator is not local but has the ordinary
form of a jellium condensed matter Fermionic propagator.

The coordinates �x replace the three O(N)3-symmetric tensor indices.
They take value in a Cartesian product E3. In this paper we choose either
E = R, hence �x = (x1, x2, x3) ∈ R

3, or a compactified version E = U(1) and

3 We could use the equivalent complex notation {ψ(t, �x), ψ̄(t, �x)} but this would take us
further away from the initial SYK formalism.
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�x = (θ1, θ2, θ3) ∈ U(1)3, the three-dimensional torus. Remember, however, not
to identify this �x variable with an ordinary direct space coordinate, as the CT
interaction is neither rotation invariant nor local in terms of these variables.

The time variable is taken on the thermic circle [−β
2 , β

2 ]. Since β = 1
kT ,

this thermal circle becomes large at low temperature. We also introduce the
dual momentum variables (p0, �p). p0, often called ω in condensed matter and
SYK literature, is a Euclidean Matsubara frequency; hence, it takes values
in a Z lattice of small mesh 2π

β ; if χ is Fermionic we should take antiperiodic
conditions, which, since p0 = 2π

β (n+ 1
2 ), provide a natural infrared cutoff. This

will not important in the subsequent analysis where p0 is taken large compared
to the lattice spacing.

Similarly, the momenta dual to the �x variables will be denoted generically
as �p. They take values in R

3 or Z
3 depending upon whether we choose E = R

or E = U(1), but this is again quite irrelevant for our analysis which considers
a regime of the theory at large �p. We introduce the notations p2 = |�p |2 =
∑3

i=1 p2i , and
∫

d3p means either
∫
R3 dp1dp2dp3 in the non-compact case E = R

or
∑

(p1,p2,p3)∈Z3 in the compact case E = U(1). The difference is not essential
since in this paper we shall study the theory at large momenta only.

2.2. The Propagator

Using the Matsubara formalism [91] (up to an inessential difference of sign con-
vention), the propagator in Fourier space Ĉ of a condensed matter
Fermionic field living on space R

3 at finite temperature T is equal to:

Ĉ(p0, �p) =
1

ip0 + e(p)
, e(p) =

p2

2m
− μ, (1)

where the vector �p in (1) is three-dimensional, and the parameters m and μ
correspond to the effective mass and to the chemical potential (which fixes
the Fermi energy). To simplify we put for the moment 2m = μ = 1, so that
e(p) = p2 − 1. The corresponding direct space propagator at temperature T
and position (t, �x) (where �x is the three-dimensional spatial component) is

C(t, �x) =
T

(2π)3
∑

p0

∫

d3p e−ip0t+ip·x Ĉ(p0, �p). (2)

It is antiperiodic in the variable t with antiperiod 1
T . This means that

Ĉ(p0, �p) =
1
2

∫ 1
T

− 1
T

dt

∫

d3x e+ip0t−ip·x C(t, �x) (3)

is not zero only for discrete values (called the Matsubara frequencies):

p0 = (2n + 1)πT, n ∈ Z, (4)

where we take � = k = 1. Remark that only odd frequencies appear, because of
antiperiodicity, hence |p0| ≥ πT so that the temperature acts like an effective
infrared cutoff.
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The notation
∑

k0
in (2) means really the discrete sum over the integer

n in (4).4 To simplify notations we write:
∫

d4p ≡ T
∑

p0

∫

d3p,

∫

d4x ≡ 1
2

∫ 1/T

−1/T

dt

∫

d3x. (5)

Ĉ(p0, �p) :=
−ip0 + e(p)
p20 + e2(p)

=
∫ ∞

0

dα (−ip0 + e(p))e−α(p2
0+e2(p)). (6)

To study the ultraviolet regime of the theory, we can consider only large
values of p0 and e(p). In that regime we can write

Ĉ(p0, �p) :=
−ip0 + e(p)
p20 + e2(p)

(1 − e−(p2
0+e2(p))) =

∫ 1

0

dα (−ip0 + e(p))e−α(p2
0+e2(p)).

(7)
We then adopt then the following covariance for our free model with

abstract spin is defined by the matrix covariance rules
(
〈χσ(p0, �p)χσ′(p′

0, �p
′)〉
)

σσ′
=
(
Cσσ′(p0, �p)δ(p0 − p′

0)δ(�p, �p ′)
)

σσ′

=
[

−ip0
p20 + e2(p2)

(
1 0
0 1

)

+
e(p)

p20 + e2(p2)

(
0 −1
1 0

)]

δ(p0 − p′
0)δ(�p, �p ′), (8)

where χσ(p0, �p) = χ(p0, �p, σ), and σ, σ′ are the spin indices, and the matrices
refer to these indices. Remark that these rules are globally antisymmetric, as
they should be for Grassmann variables.

Denoting dμC(χ) the corresponding Grassmann Gaussian measure [86–
88], the free theory is defined with Jσ a Fermionic tensor source field (also
with a two-valued spin index) and J · χ =

∑
σ

∫
dp0d3p Jσ(p0, �p)χσ(p0, �p). C

is the covariance of the Gaussian measure, or free propagator and
∫

dμC is
the Gaussian integral of covariance C. We are interested in computing the
partition function Z

Z(J) =
∫

dμC(χ)e−S[χ]+J·χ, (9)

and the generating function for cumulants of the theory

Z(J) = W (J) = log Z(J). (10)

2.3. The Tensor Interaction

We equip the free model with interactions inspired by those of Carrozza–
Tanasa5 [34]. The tetraedric part of that interaction was used also in [35].

4 When T → 0, k0 becomes a continuous variable, the discrete sum becomes an integral

T
∑

k0
→ 1

2π

∫
dk0, and the corresponding propagator C0(k0, �k) becomes singular on the

Fermi surface defined by k0 = 0 and |k| = 1.
5 The first term of this interaction with coupling λ+ is also the one used by F. Ferrari for
the large D limit of matrix models [79].
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Consider the following interaction,

Sint (χ) = λ+Ib+(χ) + λm

3∑

c=1

Ibc
(χ) + V2(χ), (11)

where the coupling constants λ+ and λm (m standing for “melonic”) are the
bare coupling constants (which themselves decompose into renormalized con-
stants plus counterterms) and where Ib+ and Ibc

are the quartic interaction
terms fully expanded in (p0, �p)-space representation as

Ib+ =
∑

σ=1,2

∫ [
4∏

l=1

dp0;l

]

d3pd3p′ χσ(p0;1, p1, p2, p3)χσ(p0;2, p1, p′
2, p

′
3)

× χσ(p0;3, p′
1, p2, p

′
3)χσ(p0;4, p′

1, p
′
2, p3)δ

(
4∑

l=1

p0;l

)

,

3∑

c=1

Ibc
(χ) =

∫ [
4∏

l=1

dp0;l

]

d3pd3p′ χ1(p0;1, p1, p2, p3)χ2(p0;2, p′
1, p2, p3)

× χ1(p0;3, p′
1, p

′
2, p

′
3)χ2(p0;4, p1, p′

2, p
′
3)δ

(
4∑

l=1

p0;l

)

+ sym(1, 2, 3),

(12)

where the integrals are understood as (5), and sym(1,2,3) replaces the sum
over colors. The two types of interactions are associated with bubble diagrams
b+ and bc which represent orthogonal invariants as depicted in Fig. 1. Note
that in this figure, only the melonic bubble b1 is drawn and the other bubbles
with colors 2 and 3 can easily recovered.

Melonic interactions [22,24] belong to the family of dominant terms at
large N , and we expect that they will be dominant in the ultraviolet regime.
Remark also that the above interactions are local in the p0-space but non-local
in the �p-space. Attached to the local variables, a delta function δ(

∑4
l=1 p0;l) at

each vertex manifests the conversation of momenta entering and exiting from
the vertex. This is the usual standard of quantum field theory.

Figure 1. O(N) invariants as interactions: on the left,
tetraedric invariant associated with b+; on the right, le spheric
melonic invariant b1
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Figure 2. A Feynman graph in the theory

To be more specific, the most natural rule at this stage seems to keep
the tetraedric interaction in λ+ diagonal in spin indices, hence the sum over
σ of an interaction with four χσ’s, as if we had two independent Majorana
fields. However, for the melonic interaction, since it is bipartite we feel the
most natural interaction is to mix the spins hence to choose two spins and
two anti spins cyclically along the melonic cycle, see Fig. 1 which shows the
vertices associated with these interactions. These specific spin index choices
for the interactions could be modified if that leads to more interesting infrared
physics.

The remaining term in (11), V2, gathers the two-point function mass and
wave function counterterms:

V2(χ) = Δμ(λm, λ+)
∑

σ<σ′

∫

dp0d3p χσ(p0, �p)χσ′(−p0, �p)

+ Δp0(λm, λ+)
∑

σ

∫

dp0d3p (ip0)χσ(p0, �p)χσ(−p0, �p)

+ Δp2(λm, λ+)
∑

σ<σ′

∫

dp0d3p p2χσ(p0, �p)χσ′(−p0, �p). (13)

In this formula, as usual in perturbative renormalization, the mass counterterm
Δμ(λm, λ+) and wave function counterterms Δp0(λm, λ+) and
Δp2(λm, λ+) are themselves perturbative series in the coupling constants.

A priori the counterterms could be power series in both couplings but
we shall see below that only the melonic vertex is relevant in the ultraviolet
regime. We nevertheless also included the tetraedric vertex because we feel it
is the one which could be responsible for SYK physics in the infrared regime.
Finally, a Feynman graph in this theory is formed with the gluing of vertices
b+ and bc with propagator lines that we draw as dashed lines in order to
distinguish them from the internal structure of the vertices. See Fig. 2. As one
quickly understands, a Feynman graph in this setting is a 4-regular edge (line)
colored graph with half-lines. The propagator lines will be associated with the
color 0.

2.4. Amplitudes

Expanding the theory in Feynman graphs, the amplitudes have to be arranged
as Pfaffians of the antisymmetric matrix C [86] and have the general form
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〈
q∏

a=1

ψ(p0;a, �pa)

〉

=
∞∑

n=0

1
n!

∫

dμC(ψ)

[
q∏

a=1

ψ(p0;a, �pa)

]
[
−Sint (ψ)

]n

=
∑

G
AG .

(14)
In the above expression, ψ stands either for χ1 or for χ2. As already empha-
sized, the spin index does not matter in the ultraviolet study, but can strongly
affect the infrared regime.

Feynman amplitudes AG will be our focus. For the moment and for sim-
plicity, we neglect the presence of mass and wave function counterterms. They
will be discussed in the following sections. Therefore, we consider a connected
amputated graph G with vertex set V = V+ ∪ Vm, with cardinal V = |V|,
where V+ is the set of tetraedric vertices with pattern b+ and Vm is the set of
melonic vertices bc, and with line set L, with cardinal L = |L|. Note that L
decomposes in two sorts of lines: L1 associated with the diagonal part of the
covariance Cσσ, and L2 associated with the off-diagonal entries. We denote
Next the number of external fields also called external legs. Henceforth, the
index σ will be mostly omitted in the notations but their presence is, however,
indicated by the two sets Li, i = 1, 2.

The bare amplitude of a Feynman graph G is given by

AG = K0

[
∏

v∈V
(−λv)

]∫ [
∏

v∈V
dp0;v

∏

s

dpv,s

]

×
[
∏

�∈L
C�({p0;v(�), �pv(�),s}; {p′

0;v′(�), �p
′
v′(�),s})

]

×
[
∏

v∈V

∏

s

δ(pv,s − p′
v,s′)

][
∏

v∈V
δ

(
4∑

l=1

p0;l;v

)]

, (15)

where λv is a given coupling associated with v ∈ V; p0;� and pv(�),s are the
coordinates involved in the propagator labeled by a line index � incident to its
source and target vertices v(�) and v′(�); pv,s are the p coordinates of the vertex
v and they possess a strand index s. The constant K0 includes the Fermionic
Pfaffian signs, the graph symmetry factor and a combinatorial constant. We
will use the compact notation K0

[∏
v∈V(−λv)

]
= κ(λ).

Note that the propagator in the �p coordinates is a product of Kroneckers
δ and, similarly, the vertex kernels are also products of δ functions which
convolute the different indices of the tensors. Integrating those δ produces
conservation of the p coordinate index along a strand of the tensor graph. At
the end of integration of all δ’s in all propagators, one obtains a pf coordinate
per one-dimensional object f in the graph that we call face. Graphically a
face is an alternating sequence of propagator lines with color 0 and colored
lines c of vertices. A face is closed or internal if this sequence is a cycle in
the colored graph; it is otherwise open or external. The set of closed faces is
denoted Fint , and its cardinality Fint ; the set of open faces is denoted Fext ,
and its cardinality Fext . We write Fint ∪ Fext = F the set of all types of
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faces. Given a closed face (resp. open face) f , we denote pf (resp. pextf ) the
momentum coordinate associated with f .

A face f is made of lines; hence, we write � ∈ f . We introduce an incidence
matrix between line and faces which identifies if a line goes through a face or
not:

ε�f =
{

1, if � ∈ f
0, otherwise (16)

We expand the amplitude (15) as follows:

AG = κ(λ)

∫ [
∏

�∈L
dα�

] ∫ [
∏

v∈V
dp0;v

][
∏

f∈Fint

dpf

]

[[
∏

�∈L1

(−ip0;�)

][
∏

�∈L2

e

(
∑

f∈F
ε�fpf

)]]

× e−α�(p
2
0;�+e2(

∑
f∈F ε�f pf ))

]
[
∏

v∈V
δ

(
4∑

l=1

p0;l;v

)]

. (17)

This amplitude must be regularized by a cutoff on momenta from which we
will able to discuss the behavior of that amplitude. This is the task of the next
section.

3. Multi-scale Analysis and Power Counting

We obtain, in this section, a power counting theorem for the amplitudes (17) in
the ultraviolet regime using a multi-scale analysis of the Feynman amplitudes
in the spirit of [82], adapted to the tensor context of non-local actions.

We begin with the slice decomposition of the propagator. This is a decom-
position of the parametric integral obtained from (8) using a geometric pro-
gression with ratio M > 0. We write

Ĉσσ′(p0, �p) =
∞∑

i=1

Cσσ′; i(p0, �p),

Cσσ′; i(p0, �p) =
∫ M−2(i−1)

M−2i

dα (−ip0δσσ′ + εσσ′e(p))e−α(p2
0+e2(p)) (18)

where we introduce the antisymmetric tensor εσσ′ , such that ε12 = −1 accord-
ing to (8).

An ultraviolet cutoff is imposed in the space of indices i, such that Cρ =∑ρ
i=1 Ci is the cut-offed propagator. The ultraviolet limit is obtained by taking

ρ → ∞. We omit to write the symbol ρ on each propagator, for simplicity. We
expect our theory to be fully consistent in the ρ → ∞ limit but this issue
is postponed to a future study. In this paper we only establish perturbative
renormalization at all orders.

In this ultraviolet regime the value of the chemical potential is unimpor-
tant and we have the bound

|Cσσ′; i(p0, �p)| ≤ KM−i e−M−i(|p0|+p2), (19)
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for some inessential (M -dependent) constant K. To establish this rather trivial
bound, one can use that x = M−i(|p0| + p2) is bounded by δx2 + δ−1 for any
δ > 0; hence, e−M−i(|p0|+p2) is bigger than e−δM−2i(|p0|+p2)2 , itself bigger than
e−2δM−2i(p2

0+p4). Then one can distinguish whether p2 is smaller or greater
than 3 to bound in the first case p4 by 9 (and |e(p)| by 2) and in the second
case p4 by 3e2(p). Then choosing δ suitably small one concludes by trivial
estimates on the integral in (18). Remark the anisotropy between p0 and p
and the fact that this bound does not depend on the σ indices. We therefore
simplify our notations and omit to mention these in the remaining analysis.

The multi-scale analysis allows for an optimal amplitude bound. We con-
sider a connected amputated Feynman graph G of the theory with vertex set
V = V+ ∪ Vm, V = |V| with propagator line set L, L = |L|. We work at this
stage with amputated amplitudes, that are graphs with external vertices where
test functions or external fields can be inserted. The number of those external
fields also called external legs is Next .

Introduce the multi-index µ ∈ N
L called (index) assignment which gives

to each propagator line � of the graph a scale i� ∈ [[0, ρ]]. Slicing all propagators,
the initial amplitude becomes AG =

∑
µ AG;µ where AG;µ is called the multi-

scale representation of the amplitude AG . After renormalizing the theory, the
sum over µ or overall possible assignments will be performed. We have at fixed
index assignment µ:

AG;µ = κ(λ)
∫ [

∏

v∈V
dp0;v

∏

s

dpv,s

]

[
∏

�∈L
Ci�

({p0;v(�), �pv(�),s}; {p′
0;v′(�), �p

′
v′(�),s})

]

×
[
∏

v∈V

∏

s

δ(pv,s − p′
v,s′)

][
∏

v∈V
δ

(
∑

l

p0;l;v

)]

. (20)

Our goal is to find an optimal bound on AG;µ using, as much as possible,
the decay of the lines. To do so, we introduce the so-called quasi-local sub-
graphs Gi of G as the subgraphs made of lines of G with index higher than
i: ∀� ∈ L(Gi) ∩ L, i� ≥ i. Gi might have several connected components that
we denote at fixed i, Gi

(k). Then {Gi
(k)} is the set of all quasi-local subgraphs

of G. Consider g a subgraph of G, seeking a criterion for checking if g should
coincide with some Gi

(k), we have the following: at fixed index assignment µ,
define

ig(µ) = inf
l internal line ∈g

il and eg(µ) = sup
l external line ∈g

il, (21)

then there exists (i, k), such that g = Gi
(k) if and only if ig(µ) > eg(µ), the

so-called almost local condition. The value of i satisfies ig(µ) ≥ i > eg(µ). An
important property of the set of quasi-local graphs {Gi

(k)} is that it is partially
ordered under inclusion, and, using this partial order, one forms an abstract
tree namely the Gallavotti–Nicoló (GN) tree [93]. The rest of our program is to
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find an optimal bound for AG;µ in terms of the nodes of the GN tree, in other
words, an optimal bound which expresses uniquely in terms of the {Gi

(k)}.
At a fixed scale index i, we will need the following approximation of the

sum ∑

p∈Z

e−M−i|p|n = cM
i
n (1 + O(M− i

n )), (22)

for n > 0 and some positive constant c = n−1Γ(n−1) (see the detail of the
calculations in Appendix A of [48]).

We are ready to perform the integration over internal variables of the
{Gi

(k)} graphs. This can be organized in completely equivalent ways either in
momentum or direct space, using respectively the bound (19), the important
point being that it has to follow the GN tree structure. It means we sum induc-
tively over the internal (p0, �p) loop momenta of the {Gi

(k)} graphs, following
the GN tree structure. At fixed µ, we integrate over delta’s in the p-space and
use (19) to obtain

|AG;µ | ≤ K1

[
∏

�∈L
M−i�

]∫ [
∏

v∈V
dp0;v

][
∏

�∈L
e−M−i� |p0;�|

][
∏

v∈V

(
∑

l

p0;l;v

)]

×
∫ [

∏

f∈Fint

dpf

][
∏

f∈Fint

e−
(∑

�∈f M−i�

)
p2

f

]

, (23)

where K1 = KLκ(λ)Kext , and Kext is a bound over the product of external
face amplitudes e−(

∑
�∈f M−i� )p2

ext ;f which can be easily achieved by bounding
each factor by a constant. Note that the r.h.s bound factorizes along p0-space
and p-space. To find an optimal bound amplitude is therefore like combining
a standard local QFT procedure and a non-local one.

The goal is to make the result of that summation/integration as low
as possible. The integration over p0;l;v variables is standard in ordinary local
QFT: we choose a vertex root and perform a momentum routine over the
p0;l;v. We can integrate over the set CycleG of independent cycles (loops in
the underlying graph); along each cycle c choose the minimal index among the
i�’s: ic = min�∈c i�. In direct space, this is choosing a tree compatible with the
GN tree, as explained in [82]. Concerning the non-local part, for each internal
face f , we introduce the index if = min�∈f i� that will be important during
the integration.

We are in position to find an optimal bound for any amplitude (23) as

|AG;µ | ≤ K1K2

[
∏

�∈L
M−i�

][
∏

c∈CycleG

M ic

][
∏

f∈Fint

M
if
2

]

(24)

where K2 is a constant. This result must be re-expressed in terms of the quasi-
local subgraphs. Each of the factors have been already addressed in previous
works. We have

|AG;µ | ≤ K3

[
∏

�∈L

i�∏

i=1

M−1

][
∏

c∈CycleG

ic∏

i=1

M

][
∏

f∈Fint

if∏

i=1

M
1
2

]

(25)
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≤ K3

[
∏

�∈L

∏

(i,k)/�∈L(Gi
(k))

M−1

][
∏

c∈CycleG

∏

(i,k)/�∈L(Gi
(k))

M

][
∏

f∈Fint

∏

(i,k)/�∈L(G
if
(k))

M
1
2

]

with K3 = K1K2. The two first products are well-known (see [82]) and we
simply rewrite them as:

∏

�∈L

∏

(i,k)/�∈L(Gi
(k))

M−1 =
∏

(i,k)

M−L(Gi
(k)),

∏

c∈CycleG

∏

(i,k)/�∈L(Gic
(k))

M =
∏

(i,k)

M [L(Gi
(k))−(V (Gi

(k))−1)] (26)

The last product decomposes into the following
∏

f∈Fint

∏

(i,k)/�∈L(G
if
(k))

M
1
2 =

∏

f∈Fint

∏

(i,k)/�f ∈L(Gi
(k))

M
1
2

=
∏

(i,k)

∏

f∈Fint ∩Gi
(k)

M
1
2 =

∏

(i,k)

M
1
2Fint (Gi

(k)) (27)

Let us address now the vertices coming from the mass and wave functions
couplings. The introduction of a mass coupling does not change the overall
analysis. Adding wave function vertices changes the power counting by intro-
ducing an equal number of vertices Vp0 and Vp2 . The above analysis leading
to (26) remains the same, the exponent therein becomes

L(Gi
(k)) − (V (Gi

(k)) + Vp0(Gi
(k)) + Vp2(Gi

(k)) − 1), (28)

where V (Gi
(k)) uniquely denotes the number of quartic vertices. Then the vertex

weights (−ip0) and p2 introduce back a factor
∏

(i,k)

MVp0 (G
i
(k))+Vp2 (Gi

(k)) (29)

Collecting all contributions, the following statement holds:

Theorem 3.1 (Power counting). Let G be a connected graph of the model (12)
with Gaussian measure determined by the covariance (8). Considering AG;µ

the amplitude associated with G at index assignment µ, there exists some large
constant K such that

|AG;µ | ≤ KV (G)
∏

(i,k)∈N2

Mωdeg(Gi
(k)), (30)

where Gi
(k) are the quasi-local subgraphs and the divergence degree is given by

ωdeg(G) = −(V (G) − 1) +
1
2
Fint (G). (31)

From the above theorem, we see that the just renormalizable model of
this kind is of a different type than usual (φ4

4) scalar field theory or of tensor
field theory of the quartic type studied in [48].



3370 J. B. Geloun, V. Rivasseau Ann. Henri Poincaré

4. Analysis of the Divergence Degree

We need to count the number of internal faces in a graph G with external legs.
This requires to extend the notion of jackets into pinched jackets [46,47]. This
is usually done in a bipartite (complex) framework but in our case we have real
fields and the graphs are not bipartite so we shall use some new arguments.

Proposition 1. Consider a connected rank d = 3 graph G, with boundary graph
∂G. Let C∂ be the number of connected components of ∂G, V+ the number of
vertices of the kind b+ and Vm the number of vertices of the kind bc V =
V+ + Vm. Next is the number of external legs of G;

Fint (G) = −(ω(Gcolor) − g∂G) + 3V+ + 2Vm − Next − (C∂ − 1) + 2, (32)

where ω(Gcolor) =
∑

J̃ gJ̃ is the sum of genera of the pinched jackets of Gcolor

the colored extension of G and g∂G is the genus of the boundary graph.

Proof. Consider G a connected tensor graph and Gcolor the colored extension
of G. We denote the number of vertices, Vcolor, the number of lines, Lcolor of
Gcolor. We recall our notations, V and L are, respectively, the same quantities
for G, while Fint is the number of internal faces of G. For the boundary graph
∂G, we denote V∂ , E∂ and F∂ the cardinality of the vertex set, edge set and
face set. For a pinched jacket J̃ , we use VJ̃ for the number of vertices, EJ̃ for
the number of edges and FJ̃ for the number (necessarily closed) faces. Note
that because G is connected, so is Gcolor and any jacket within Gcolor is also
connected.

There are d!/2 = 3 jackets in Gcolor. Each bc or b+ vertex of G decomposes
in 4 vertices in Gcolor. Each of those vertices in Gcolor decomposes again in 3,
for each of the jackets. Each line of G splits in 3 to become an edge of a jacket.
Furthermore, each vertex bc or b+ in G is associated with 4 vertices in Gcolor

which gives 6 additional colored lines. This combinatorics gives:
∑

J

VJ̃ = 12(V+ + Vm),
∑

J

EJ̃ = 3L + 18(V+ + Vm). (33)

The number of faces of the pinched jacket J̃ decomposes in 3 terms:

FJ̃ = Fint ; J̃;G + Fint ; J̃;Gcolor
+ Fext ;J̃ (34)

where Fint ;J̃;G is the number faces of J̃ which belong to G as well, Fint ;J̃;Gcolor

is the number of faces of J̃ which belong to Gcolor but do not belong to G and
Fext ;J̃ are the faces of J̃ which were external and are closed after pinching.

An internal face of a jacket contributing to Fint ; J̃;G + Fint ; J̃;Gcolor
is

shared exactly by another jacket; a jacket face contributing to Fext ;J̃ must be
tracked at the level of the boundary graph ∂G. We have, by summing over
jackets: ∑

J

FJ̃ = 2Fint + 2Fcolor;int +
∑

J

Fext ;J̃ (35)

The quantity Fcolor;int is the number of additional internal faces brought by
the colored expansion at the level of each vertex of G. Each vertex of the type
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bc brings 4 of such closed faces; meanwhile, a vertex of the cross type b+

brings 3 of those. This computes explicitly as

Fcolor;int = 3V+ + 4Vm. (36)

The last piece of (35) is now treated. Consider the boundary graph ∂G which
is a 3-regular ribbon graph.

V∂ = Next , E∂ = Fext , 3V∂ = 2E∂ . (37)

The boundary graph might have several connected components; hence, writing
its Euler characteristic, we have

2C∂ − 2g∂G = V∂ − E∂ + F∂ . (38)

Each face of ∂G can be uniquely mapped to a face of a unique pinched jacket
which closes after pinching. Hence,

∑

J

Fext ;J̃ = F∂ = 2C∂ − 2g∂G − (V∂ − E∂)

= 2C∂ − 2g∂G −
(
1 − 3

2

)
Next

= 2C∂ − 2g∂G +
1
2
Next . (39)

We are then in position to find an expression of the number of internal faces
of G. Combining the relations (33), (35), (36) and (39), we get:

Fint =
1
2

[
∑

J

FJ̃ − 2Fcolor;int −
∑

J

Fext ;J̃

]

=
1
2

[
∑

J

[2 − 2gJ̃ − (VJ̃ − EJ̃)] − 2Fcolor;int −
∑

J

Fext ;J̃

]

=
1
2

[

2 · 3 − 2ω(Gcolor) + 3L + 18(V+ + Vm) − 12(V+ + Vm)

− 2
[
3V+ + 4Vm

]
−
[

2C∂ − 2g∂G +
1
2
Next

]]

= −(ω(Gcolor) − g∂G) + 3V+ + 2Vm − Next − (C∂ − 1) + 2, (40)

where we used the sum of the Euler characteristics of connected pinched jacket
2 − 2gJ̃ = VJ̃ − EJ̃ − FJ̃ , define ω(Gcolor) =

∑
J gJ̃ as the degree of the graph,

and use the relation 4(V+ + Vm) = 2L + Next . �

Proposition 2 (Divergence degree). In the above notations,

ωdeg(G) = −1
2
[ω(Gcolor) − V+ − g∂G + (C∂ − 1)] − 1

2
(Next − 4). (41)
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Proof. We insert Fint (G) of Proposition 1 in (31) of Theorem 3.1 and do some
algebra to obtain:

ωdeg(G) = −(V (G) − 1) +
1

2
[−(ω(Gcolor) − g∂G) + 3V+ + 2Vm − Next − (C∂ − 1) + 2]

= −1

2
[ω(Gcolor) − V+ − g∂G + (C∂ − 1)] − 1

2
(Next − 4).

which is (41). �

Lemma 7 in [92] with D = d = 3 states that for vacuum graphs

ω(Gcolor) ≥ 3

[
∑

bc

ω(bc) +
∑

b+

ω(b+)

]

. (42)

Using ω(bc) = 0 and ω(b+) = 1
2 we find

ω(Gcolor) ≥ 3
2
V+. (43)

The quantity

ind0(G) = ω(Gcolor) − 3
2
V+ (44)

is called the index of the colored tensor graph G [80]. For vacuum graphs it
coincides with the degree used in [34]. Deleting lines in a vacuum graph can
only decrease the genus hence even for graphs with external legs we have

ω(Gcolor) ≥ 3
2
V+ ⇒ ind0(G) ≥ 0. (45)

In terms of this index

ωdeg(G) = −1
2
[ind0(G) +

1
2
V+ − g∂G + (C∂ − 1)] − 1

2
(Next − 4). (46)

From this point the renormalizability of the model could be addressed.

5. Renormalizability

We now prove that the divergence degree is strictly negative for operators with
6 or more external legs (also called convergent or irrelevant).

Lemma 5.1 (Bound on convergent graphs with Next ≥ 6). For G any graph
with Next ≥ 6,

ωdeg(G) ≤ − 1
12

Next . (47)

Proof. Remark first that we need to prove the theorem only in the case (C∂ −
1) = 0 since considering disconnected boundaries makes ωdeg smaller. In this
case

ωdeg(G) = −1
2

[

ind0(G) +
1
2
V+ − g∂G

]

− 1
2
(Next − 4). (48)

Since ind0(G) ≥ 0 (positivity of the index) and V+ ≥ 0, we have

ωdeg(G) ≤ 1
2
[g∂G − (Next − 4)]. (49)
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It is easy to check that

g∂G ≤ Next

4
− 1

2
(50)

since a three-colored graph, like ∂G is, has at least 3 faces. The above relation
is derived using (37). Therefore,

ωdeg(G) ≤ 1
2

[
Next

4
− 1

2
− (Next − 4)

]

= −3Next

8
+

7
4
, (51)

and the latter expression can be bounded by −Next /12 whenever Next ≥ 6.
�

It remains to treat the case of graphs with Next ≤ 4.

Four-Point Subgraphs Let us set Next = 4, then by (41) the divergence degree
for these graphs is

ωdeg(G) = −1
2

[

ind0(G) +
1
2
V+ − g∂G + (C∂ − 1)

]

(52)

and we want to check that ωdeg(G) ≤ 0 so that we have at most logarithmic
divergence for four-point functions. Having four external legs, a graph can have
three types of possible boundaries:

• A disconnected boundary, hence ∂G, is made of two quadratic melons. In
that case C∂ = 2 and g∂G = 0 so that

ωdeg(G) = −1
2

[

ind0(G) +
1
2
V+ + 1

]

≤ −1
2
[ind0(G) + 1] ≤ −1

2
. (53)

This case does not require renormalization.
• A connected boundary with ∂G of the quartic melonic type bc, for some

color c. In that case C∂ = 1, g∂G = 0 so that

ωdeg(G) = −1
2

[

ind0(G) +
1
2
V+

]

≤ 0 (54)

can be zero if ind0(G) = 0 = V+. In particular, there is such a non-
trivial graph at one loop, with Vm = 2. This case certainly requires
renormalization treatment.

• A connected boundary with ∂G of the b+ type. In that case C∂ = 1 and
g∂G = 1

2 , so that

ωdeg(G) = −1
2

[

ind0(G) +
1
2
(V+ − 1)

]

. (55)

The following subcases could be discussed:
– V+ > 1, then directly ωdeg(G) < 0; hence, all this class define graphs

with convergent amplitude.
– V+ = 0, this case is impossible to occur since the boundary is non-

orientable g∂G = 1
2 , there must be some non-orientable vertices.
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– V+ = 1. This is the final and most delicate point. We obtain ωdeg(G) ≤
0, as expected. Apparently the bound could saturate, namely ωdeg(G) = 0,
when ind0(G) = ω(Gcolor)− 3

2 = 0. But a more careful analysis shows that this
is impossible. More precisely we shall prove

Lemma 5.2. If Next = 4, V+ = 1 and g∂G = 1
2 , then Fint ≤ 2Vm − 1, hence by

(40) and (41) ωdeg(G) ≤ − 1
2 .

Proof. Let us call G′ the graph made from G by cutting out V+. It has Vm

vertices, all of melonic type. The case Vm = 1 is easy, as Fint = 1 in that
case. Then we can complete the proof that Fint ≤ 2Vm −1 by induction. If the
vertex V+ is attached to 2 external lines, G′ is made of melonic vertices and
has 4 external legs; hence, its number of faces is maximal if G′ is fully melonic,
in which case it has 2(Vm − 1) internal faces (the melonic rate). Joining G′ to
V+ creates at most one new internal face and we are done.

If the vertex V+ is attached to 2 external lines, since G′ has 6 external
legs, it can have at most 2(Vm − 2) internal faces (again the maximal melonic
rate). Joining G′ to V+ creates at most three new internal faces and we are
done again.

Finally, when the vertex V+ is attached to no external lines, G′ has 8
external legs, hence at most 2(Vm − 3) internal faces (again the melonic rate).
Joining G′ to V+ can create at most six new internal faces; hence, we are not
done yet. To gain the crucial last improvement of one face, we shall prove that
in this case the boundary graph cannot be of the V+ type. Indeed if G′ has
exactly 2(Vm −3) internal faces, its boundary must be a melonic colored graph
with eight vertices. But if this graph, when joined to V+, creates 6 additional
faces, it must be that its boundary was disconnected into at least two pieces
with 4 colored vertices each (since all circuits of the four external legs of
G′ joined to V+ have to be internal). Under that condition of disconnected
boundary the maximal “melonic” number of internal faces is no longer 2(Vm −
3) but 2(Vm − 2) and we are done. �

Two-Point Subgraphs There is no longer any choice for the boundary, as g∂G =
0 and C∂ = 1 (there is only a single invariant with two vertices). The degree
of divergence takes the form:

ωdeg(G) = −1
2

[

ind0(G) +
1
2
V+

]

+ 1 = −1
2
[ω(Gcolor) − V+] + 1 (56)

and is at most 1. As usual this means that we should perform mass and wave
function subtractions. We have therefore ωdeg(G) ≥ 0 equivalent to ω(Gcolor)−
V+ ∈ {0, 1, 2}.

To summarize we have proved

Theorem 5.1. • If Next ≥ 6

ωdeg(G) ≤ −Next

12
; (57)

hence, these functions are convergent.
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• If Next = 4
ωdeg(G) ≤ 0; (58)

hence, four-point functions are at most log-divergent and renormalized by a
single subtraction.
• If Next = 2

ωdeg(G) ≤ 1; (59)
hence, two-point functions are at most quadratically divergent.

6. Renormalization

This section undertakes the renormalization of the divergent graphs of the
model. We focus on the expansion of the amplitudes around their divergent
and “local” part. The goal is to subtract the local part of quasi-local graphs
and this improves power counting of the amplitudes.

There are two types of graphs which have divergences: four- and two-point
diagrams. They will be treated separately.

We consider amplitudes with external legs. There are therefore two types
of lines in a diagram, internal lines that we denote l and external lines denoted
lext . An internal line l is associated with a high scale il of an internal momen-
tum and a parameter αl ∈ [M−2il ,M−2(il−1)]. An external line lext is associ-
ated with a lower scale jlext < il of an external momentum, and a parameter
αlext ∈ [M−2jlext ,M−2(jlext −1)].

We have two types of momenta: time momenta p0 and space momenta p.
Their treatment in the following expansion is different and urge us to introduce
more notations. For space momenta, pextf is associated with an external face f
and and pf denotes an internal momenta associated with a closed face. Exter-
nal time momenta associated with external lines are denoted p0;lext and those
associated internal lines are denoted by p0;l. Note that since there is conserva-
tion of time momenta at the vertices, the p0;l’s might be very well (linearly)
depending on p0;lext . After imposing the vertex constraints, it remains one
internal momenta per independent cycle c in the graph.

Four-Point Amplitudes Consider a four-point function which is log-divergent.
It is of the boundary type: g∂G = 0. Pick a diagram amplitude coming from
the expansion of the correlator:

〈χ1; p0;1123 χ2; p0;21′23 χ1; p0;31′2′3′ χ2; p0;412′3′〉 (60)

where the notation χσ; p0;i123 stands for χ(p0;i, p1, p2, p3, σ). Note that this
correlator has a boundary graph which is of the form of the melonic interaction
with particular color 1 (this is the bubble b1). We will perform the expansion
of an amplitude with this boundary data, to perform a similar analysis for
other melonic boundary with color c = 2, 3 will be straightforward.

We start by noting that a diagram issued from (60) has four external
propagator lines with momenta p0;a, a = 1, 2, 3, 4, that we associate with
external lines lext (depending of course on a) such that p0;a = p0;lext . An
illustration of a four-point graph with external momenta is given in Fig. 3
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Figure 3. Four-point graph with external lines lext ;a, exter-
nal momenta p0,lext ;a and external momenta pextf associated
with external faces

A graph amplitude of the model is of the form

AG;4({p0;lext }; {p
ext
f })

= κ(λ)

∫ [
∏

�∈L
dα�

] ∫ [
∏

v∈V
dp0;v

][
∏

f∈Fint

dpf

][[
∏

�∈L1

(−ip0;�]

[
∏

�∈L2

e

(
∑

f∈F
ε�f pf

)]]

× e
−
∑

�∈L α� e2(
∑

f∈F ε�f pf )
e

−
∑

�∈L α� p2
0;�

[
∏

v∈V
δ

(
4∑

l=1

p0;l;v

)]

= κ(λ)

∫ [
∏

�∈L
dα�e

α�

] ∫ [
∏

v∈V
dp0;v

][
∏

f∈Fint

dpf

][[
∏

�∈L1

(−ip0;�]

[
∏

�∈L2

e

(
∑

f∈F
ε�f pf

)]]

×
[

∏

f∈Fext

e
−(

∑
�∈f α�)[(pext

f )4−2(pext
f )2]

][
∏

f,f′∈Fext
f �=f′

e
−(

∑

�∈f,�∈f′ α�)(pext
f )2(pext

f′ )2
]

×
[

∏

f∈Fint

e
−(

∑
�∈f α�)[p

4
f −2p2

f ]

][
∏

f,f′∈Fint
f �=f′

e
−(

∑

�∈f,�∈f′ α�)(pf )2(p
f′ )2

]

×
[

∏

f∈Fext ,f′∈Fint

e
−2(

∑

�∈f,�∈f′ α�)(pext
f )2(p

f′ )2
]

× e
−
∑

�∈L α� p2
0;�

[
∏

v∈V
δ

(
4∑

l=1

p0;l;v

)]

.

(61)

Consider the decomposition of the set L of lines in internal lines Lint and
external lines Lext . The treatment of the momenta p0;� resorts from a usual
technique: first, lines must be oriented in an arbitrary way (but, at the end,
the procedure is independent of the orientation); at each vertex v, if a line l
is oriented toward v, the sign of the momentum p0;l associated with l in the
δ-function is chosen positive, and negative otherwise; second we must fix a tree
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T of internal lines and do a momentum routine along the lines of that tree.
Using the δ-functions of the vertices, and expanding the squares produces a
sign before the Schwinger parameter α, that we denote α = ±α. The following
development and the conclusion of our analysis do not actually depend on the
signs and we will keep a general notation α without a concern about these
signs. Note that for a given cycle c ∈ CycleG of the graph that corresponds to
a given high momentum p0;c, there is a subset Tc ⊂ T of lines. There is a line
lc ∈ Lint such that the set of lines {lc} ∪ Tc = Lc forms the cycle c. With each
external momenta p0;lext , there is a path Tlext ⊂ T of internal lines l such that
after the integration of the δ-functions, p0;l becomes a function of p0;lext . We
then introduce another matrix, |Lint | × (|CycleG | + |Lext |), which decomposes
in to diagonal blocks:

εlc =
{

1 if l ∈ Lc

0 otherwise εllext =
{

1 if l ∈ Tlext

0 otherwise (62)

Then, we have the following expansion:
[
∏

�∈L
e−α�p2

0;�

][
∏

v∈V
δ

(
4∑

l=1

p0;l;v

)]

=

[
∏

v∈V
δ

(
4∑

l=1

p0;l;v

)]

×
[

∏

c∈CycleG

e−(
∑

l∈Lc
αl)p

2
0;c ]

[
∏

c,c′∈CycleG
c�=c′

e
−(

∑
l∈Tc∩T

c′ αl)p0;cp0;c′

]

×
[

∏

lext ∈Lext

e
−(αlext +

∑
l∈Tlext

αl)p
2
0;lext

][
∏

lext ∈Lext
c∈CycleG

e
−2(

∑
l∈Tc∩Tlext

αl)p0;cp0;lext

]

×
[

∏

lext ,l′ext ∈Lext
lext �=l′ext

e
−(

∑
l∈Tlext

∩T
l′ext

αl)p0;lext p0;l′ext

]

, (63)

where we used the δ-functions to perform the relevant substitutions.
We perform the following expansion for each factor associated with exter-

nal momenta:

e
−(αlext +

∑
l∈Tlext

αl)p
2
0;lext = e−αlext p2

0;lext

[
1 − Q1

lext

]

Q1
lext =

(
∑

l∈Tlext

αl

)

p20;lext

∫ 1

0

ds e
−s(

∑
l∈Tlext

αl)p
2
0;lext ,

e
−2(

∑
c∈CycleG

(
∑

l∈Tc∩Tlext
αl)p0;c)p0;lext = 1 − Q2

lext

Q2
lext = 2

[
∑

c∈CycleG

(
∑

l∈Tc∩Tlext

αl

)

p0;c

]

p0;lext

×
∫ 1

0

ds e
−2s(

∑
c∈CycleG

(
∑

l∈Tc∩Tlext
αl)p0;c)p0;lext ,

e
−(

∑
l∈Tlext

∩T
l′ext

αl)p0;lext p0;l′ext = 1 − Q3
lext ,l′ext



3378 J. B. Geloun, V. Rivasseau Ann. Henri Poincaré

Q3
lext ,l′ext

=

(
∑

l∈Tlext ∩Tl′ext

αl

)

p0;lext p0;l′ext

×
∫ 1

0

ds e
−s(

∑
l∈Tlext

∩T
l′ext

αl)p0;lext p0;l′ext . (64)

Focusing on the momentum associated with space coordinates, for the momenta
pextf associated with an external face f , we use the following decomposition
and expansion:

e−(
∑

�∈f α�)[(p
ext
f )4−2(pext

f )2] = e
−(αlext +αl′ext

)[(pext
f )4−2(pext

f )2](1 − Q1
ext ;f )

Q1
ext ;f =

(
∑

l∈f

αl

)

[(pextf )4 − 2(pextf )2]
∫ 1

0

ds e−s(
∑

l∈f αl)(p
ext
f )2 ,

e−(
∑

�∈f,�∈f′ α�)(p
ext
f )2(pext

f′ )2 = e
−(αlext +αl′ext

)(pext
f )2(pext

f′ )2(1 − Q2
ext ;f )

Q2
ext ;f,f ′ =

(
∑

l∈f,l∈f ′

αl

)

(pextf )2(pextf ′ )2
∫ 1

0

ds e−s(
∑

l∈f,l∈f′ αl)(p
ext
f )2(pext

f′ )2 ,

e−(
∑

�∈f,�∈f′ α�)(p
ext
f )2(pf′ )2 = 1 − Q3

ext ;f,f ′

Q3
ext ;f,f ′ =

(
∑

l∈f,l∈f ′

αl

)

(pextf )2(pf ′)2
∫ 1

0

ds e−s(
∑

l∈f,l∈f′ αl)(p
ext
f )2(pf′ )2 , (65)

where, in the last expansion, we use the fact that there is no external lines
which could belong to f ′ ∈ Fint .

It remains the following factor to study, for l ∈ Lint ∩ L1,

(−ip0;l)

[
∏

v∈V
δ

(
4∑

l=1

p0;l;v

)]

=

[

− i
∑

c∈CycleG

εlcp0;c − i
∑

lext

εllext p0;lext

][
∏

v∈V
δ

(
4∑

l=1

p0;l;v

)]

= [−i
∑

c∈CycleG

εlcp0;c]
[
1 + Q4;1

l

]
[
∏

v∈V
δ

(
4∑

l=1

p0;l;v

)]

,

Q4;1
l =

∑
lext

εllext p0;lext∑
c∈CycleG

εlcp0;c
. (66)

Then for elements l ∈ Lint ∩ L2, we write

e

(
∑

f∈F
εlfpf

)[
∏

v∈V
δ

(
4∑

l=1

p0;l;v

)]

=

[

e

(
∑

f∈Fint

εlfpf +
∑

f∈Fext

εlfpextf

)][
∏

v∈V
δ

(
4∑

l=1

p0;l;v

)]
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= e

(
∑

f∈Fint

εlfpf

)
[
1 + Q4;2

l

]
[
∏

v∈V
δ

(
4∑

l=1

p0;l;v

)]

,

Q4;2
l =

∑
f∈Fext

εlf (pextf )2

e

(
∑

f∈Fint
εlfpf

) . (67)

We are in position to provide the local expansion of (61). Plugging (64),
(65), (66) and (67), in the four-point amplitude (61) we find:

AG;4({p0;lext }; {pextf }) = κ(λ)δ

(
∑

lext

p0;lext

)∫ [
∏

�∈L
dα�e

α�

]

×
∫ [

∏

c∈CycleG

dp0;c

][
∏

f∈Fint

dpf

]

×
[

∏

l∈Lint ∩L1

[

i
∑

c∈CycleG

εlcp0;c

]

[1 + Q4;1
l ]

]

×
[

∏

l∈Lint ∩L2

e

(
∑

f∈Fint

εlfpf

)

[1 + Q4;2
l ]

]

×
[[

∏

lext ∈Lext ∩L1

(−ip0;lext )

][
∏

lext ∈Lext ∩L2

e

(
∑

f∈Fext

εlext fpextf

)]]

×
[

∏

f∈Fext

e
−(αlext +αl′ext

)[(pext
f )4−2(pext

f )2](1 − Q1
ext ;f )

]

×
[

∏

f,f ′∈Fext
f �=f ′

e
−(αlext +αl′ext

)(pext
f )2(pext

f′ )2(1 − Q2
ext ;f,f ′)

]

×
[

∏

f∈Fext ,f ′∈Fint

[1 − Q3
ext ;f,f ′ ]

][
∏

f∈Fint

e−(
∑

�∈f α�)[p
4
f −2p2

f ]

]

×
[

∏

f,f ′∈Fint
f �=f ′

e−(
∑

�∈f,�∈f′ α�)(pf )
2(pf′ )2

]

×
[

∏

c∈CycleG

e−(
∑

l∈Lc
αl)p

2
0;c

][
∏

c,c′∈CycleG
c �=c′

e
−(

∑
l∈Tc∩T

c′ αl)p0;cp0;c′

]

×
[

∏

lext ∈Lext

e−αlext p2
0;lext [1 − Q1

lext ]

][
∏

lext ∈Lext

[1 − Q2
lext ]

]
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×
[

∏

lext ,l′ext ∈Lext

lext �=l′ext

[1 − Q3
lext ,l′ext

]

]

(68)

and this recasts as

AG;4({p0;lext }; {pextf }) = κ(λ)δ

(
∑

lext

p0;lext

)∫ [
∏

lext ∈Lext

dαlext eαlext

]

×
[

∏

lext ∈Lext ∩L1

(−ip0;lext )

][
∏

lext ∈Lext ∩L2

e

(
∑

f∈Fext

εlext fpextf

)]

×
[

∏

f∈Fext

e
−(αlext +αl′ext

)[(pext
f )4−2(pext

f )2]

]

×
[

∏

f,f ′∈Fext
f �=f ′

e
−(αlext +αl′ext

)(pext
f )2(pext

f′ )2

][
∏

lext ∈Lext

e−αlext p2
0;lext

]

×
∫ [

∏

l∈Lint

dαle
αl

]∫ [
∏

c∈CycleG

dp0;c

][
∏

f∈Fint

dpf

]

×
[

∏

l∈Lint ∩L1

(−i
∑

c∈CycleG

εlcp0;c)

][
∏

l∈Lint ∩L2

e

(
∑

f∈Fint

εlfpf

)]

×
[

∏

f∈Fint

e−(
∑

�∈f α�)[p
4
f −2p2

f ]

][
∏

f,f ′∈Fint
f �=f ′

e−(
∑

�∈f,�∈f′ α�)(pf )
2(pf′ )2

]

×
[

∏

c∈CycleG

e−(
∑

l∈Lc
αl)p

2
0;c

][
∏

c,c′∈CycleG
c �=c′

e
−(

∑
l∈Tc∩T

c′ αl)p0;cp0;c′

]

×
{

1 +
∑

σ=1,2

∑

l∈Lint ∩Lσ

Q4;σ
l −

∑

f∈Fext

Q1
ext ;f −

∑

f,f ′∈Fext
f �=f ′

Q2
ext ;f,f ′

−
∑

f∈Fext ,f ′∈Fint

Q3
ext ;f,f ′ −

∑

lext ∈Lext

Q1
lext −

∑

lext ∈Lext

Q2
lext

−
∑

lext ,l′ext ∈Lext

lext �=l′ext

Q3
lext ,l′ext

+
∑

Q · Q + . . .

}

. (69)

where the last expression
∑

Q · Q + . . . stands for higher-order products of
the remainders Q.
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The zeroth order in that expansion is of the form

AG;4({p0;lext }; {pextf }; 0) = κ(λ)δ

(
∑

lext

p0;lext

)[
∏

lext ∈Lext ∩L1

(−ip0;lext )

]

×
[

∏

lext ∈Lext ∩L2

e

(
∑

f∈Fext

εlext fpextf

)]

(70)

×
∫ [

∏

lext ∈Lext

dαlext eαlext

][
∏

lext ∈Lext

e−αlext p2
0;lext

]

(71)

×
[

∏

f∈Fext

e
−(αlext +αl′ext

)[(pext
f )4−2(pext

f )2]

]

×
[

∏

f,f ′∈Fext
f �=f ′

e
−(αlext +αl′ext

)(pext
f )2(pext

f′ )2

]

(72)

×
∫ [

∏

l∈Lint

dαle
αl

]∫ [
∏

c∈CycleG

dp0;c

]

×
[

∏

f∈Fint

dpf

][
∏

l∈Lint

[

− i
∑

c∈CycleG

εlcp0;c + e

(
∑

f∈Fint

εlfpf

)]]

×
[

∏

f∈Fint

e−(
∑

�∈f α�)[p
4
f −2p2

f ]

][
∏

f,f ′∈Fint
f �=f ′

e−(
∑

�∈f,�∈f′ α�)(pf )
2(pf′ )2

]

×
[

∏

c∈CycleG

e−(
∑

l∈Lc
αl)p

2
0;c

][
∏

c,c′∈CycleG
c �=c′

e
−(

∑
l∈Tc∩T

c′ αl)p0;cp0;c′

]

. (73)

By a small combinatorics and essentially variable renaming, the expressions
(70), (71) and (72) can be combined to give 4 propagators glued together to
form a vertex with pattern given by (60) and the three last lines are integrals
over internal momenta and will give a log-divergent contribution. This term
will therefore renormalize λm associated with the melonic vertex of the form
b1.

We now address the Q remainder terms and recall that for an internal line
l we have p0;l ∼ M il ∼ α

− 1
2

l , for an external line lext , p0;lext ∼ M jlext ∼ α
− 1

2
lext

.
A momentum pf associated with a closed or external face f is of the order
pf ∼ M−if /2, if = min�∈f i�. Note that if f is external, then necessarily if is
nothing but one of the index jlext of one of the two external sliced propagators
lext .

Keeping in mind i(Gi
(k)) = minl∈Lint (Gi

(k))
il > e(Gi

(k)) =

suplext ∈Lext (Gi
(k))

jlext , the following bounds are valid on a single Gi
(k) graph:
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∣
∣
∣
∣
∣

∑

l∈Lint ∩L1

Q4;1
l

∣
∣
∣
∣
∣
=

∑

l∈Lint

∣
∣
∣
∣
∣

∑
lext

εllext p0;lext

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∑
c∈CycleG

εlcp0;c

∣
∣
∣
∣
∣

≤ c1M
e(Gi

(k))

c2Mi(Gi
(k))

≤ C4;1M
−(i(Gi

(k))−e(Gi
(k))),

∣
∣
∣
∣
∣

∑

l∈Lint ∩L2

Q4;2
l

∣
∣
∣
∣
∣
=

∑

l∈Lint ∩L2

∣
∣
∣
∣
∣

∑
f∈Fext

εlf (pext
f )2

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
e

(
∑

f∈Fint
εlf pf

)∣
∣
∣
∣
∣

≤ c′
1M

e(Gi
(k))

c′
2Mi(Gi

(k))
≤ C4;2M

−(i(Gi
(k))−e(Gi

(k))),

∣
∣
∣
∣
∣

∑

lext ∈Lext

Q1
lext

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∑

lext ∈Lext

(
∑

l∈Tlext

αl

)

p2
0;lext

∫ 1

0
ds e

−(
∑

l∈Tlext
αl)p2

0;lext

∣
∣
∣
∣
∣

≤ C1M
−2(i(Gi

(k))−e(Gi
(k))),

∣
∣
∣
∣
∣

∑

lext ∈Lext

Q2
lext

∣
∣
∣
∣
∣
= 2

∣
∣
∣
∣
∣

[
∑

c∈CycleG

(
∑

l∈Tc∩Tlext

αl

)

p0;c

]

p0;lext

×
∫ 1

0
ds e

−2(
∑

c∈CycleG
(
∑

l∈Tc∩Tlext
αl)p0;c)p0;lext

∣
∣
∣
∣
∣

≤ C2M
−(2i(Gi

(k))−i(Gi
(k))−e(Gi

(k))) ≤ C2M
−(i(Gi

(k))−e(Gi
(k))),

∣
∣
∣
∣
∣

∑

lext ,l′
ext ∈Lext

lext �=l′
ext

Q3
lext ,l′

ext

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∑

lext ,l′
ext ∈Lext

lext �=l′
ext

(
∑

l∈Tlext ∩Tl′ext

αl

)

p0;lext p0;l′
ext

∫ 1

0
ds e

−(
∑

l∈Tlext
∩T

l′ext
αl)p0;lext p0;l′ext

∣
∣
∣
∣
∣

≤ C3M
−2(i(Gi

(k))−e(Gi
(k))),

∣
∣
∣
∣
∣

∑

f∈Fext

Q1
ext ;f

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∑

f∈Fext

(
∑

l∈f

αl

)

[(pext
f )4 − 2(pext

f )2]

∫ 1

0
ds e−s(

∑
l∈f αl)(pext

f
)2
∣
∣
∣
∣
∣

≤ C′
1M

−2(i(Gi
(k))−e(Gi

(k))),
∣
∣
∣
∣
∣

∑

f,f ′∈Fext
f �=f ′

Q2
ext ;f,f ′

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∑

f,f ′∈Fext
f �=f ′

(
∑

l∈f,l∈f ′

αl

)

(pext
f )2(pext

f ′ )2
∫ 1

0
ds e−s(

∑
l∈f,l∈f′ αl)(pext

f
)2(pext

f′ )2
∣
∣
∣
∣
∣

≤ C′
2M

−2(i(Gi
(k))−e(Gi

(k))),
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∣
∣
∣
∣
∣

∑

f,f ′∈Fext
f �=f ′

Q3
ext ;f,f ′

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

(
∑

l∈f,l∈f ′

αl

)

(pext
f )2(pf ′)2

∫ 1

0
ds e−s(

∑
l∈f,l∈f′ αl)(pext

f
)2(pf′ )2

∣
∣
∣
∣
∣

≤ C′
3M

−(2i(Gi
(k))+i(Gi

(k))−e(Gi
(k))) ≤ C′

3M
−(i(Gi

(k))−e(Gi
(k))), (74)

where Ci, ci, c′
i and C ′

i are constants depending on the graph. Using these
bounds, we have the following bound on the first-order corrections:

|AG;4({p0;lext }; {pextf }; 1)| ≤ C
∏

(i,k)∈N2

Mωd(Gi
(k))M−(i(Gi

(k))−e(Gi
(k)), (75)

where C is another constant. Hence, since i(Gi
(k)) − e(Gi

(k)) > 0, this bound
shows that the remainder will bring enough decay to ensure the convergence
during the sum over scale attributions. In the same vein, higher-order products
of Q(·)’s will be even more convergent. Finally, after changing the pattern of
external momenta in the four-point correlator in a way to produce other type
of melonic interactions of the form bc of any color c = 0, 1, 2, 3, we can perform
an analysis entirely parallel to the above and show that the zeroth-order term
will renormalize λm and remainders will be again convergent.

Two-Point Amplitudes There is a unique boundary graph for any two-point
amplitude and it is such that g∂G = 0. As discussed in Sect. 5, there are
several types of two-point graphs which could diverge. Their general degree of
divergence is of the form ωdeg(G) = 1− p/2, p ∈ {0, 1, 2}. We will focus on the
maximal degree case, that is p = 0, ωdeg(G) = 1, where the expansion needs
to be pushed at second order. There other cases can be understood from this
point.

We consider a perturbative amplitude issued from the expansion if the
correlator

〈ψp0;1;123 ψp0;1123〉, (76)

where ψ = χσ. We use the same notation as above for external line momenta,
external face momenta. See Fig. 4.

The expression (61) remains true for any graph amplitude. We now
expand the exponentials appearing therein:

e
−(αlext +

∑
l∈Tlext

αl)p
2
0;lext = e−αlext p2

0;lext

[
1 − Q1

lext + Q1′

lext

]
,

Figure 4. A two-point graph with external lines and the
resulting external momenta
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Q1
lext =

(
∑

l∈Tlext

αl

)

p20;lext ,

Q1′

lext =

[(
∑

l∈Tlext

αl

)

p20;lext

]2 ∫ 1

0

ds (s − 1)e
−s(

∑
l∈Tlext

αl)p
2
0;lext ,

e
−2(

∑
c∈CycleG

(
∑

l∈Tc∩Tlext
αl)p0;c)p0;lext = 1 − Q2

lext + Q2′

lext ,

Q2
lext = 2

[
∑

c∈CycleG

(
∑

l∈Tc∩Tlext

αl

)

p0;c

]

p0;lext ,

Q2′

lext =

[

2

[
∑

c∈CycleG

(
∑

l∈Tc∩Tlext

αl

)

p0;c

]

p0;lext

]2

×
∫ 1

0

ds (1 − s)e
−2s(

∑
c∈CycleG

(
∑

l∈Tc∩Tlext
αl)p0;c)p0;lext ,

e
−(

∑
l∈Tlext

∩T
l′ext

αl)p0;lext p0;l′ext = 1 − Q3
lext ,l′ext

+ Q3′

lext ,l′ext
,

Q3
lext ,l′ext

=

(
∑

l∈Tlext ∩Tl′ext

αl

)

p0;lext p0;l′ext ,

Q3′

lext ,l′ext
=

[(
∑

l∈Tlext ∩Tl′ext

αl

)

p0;lext p0;l′ext

]2

×
∫ 1

0

ds (1 − s)e
−s(

∑
l∈Tlext

∩T
l′ext

αl)p0;lext p0;l′ext . (77)

Meanwhile, for momenta associated with faces, we have

e−(
∑

�∈f α�)[(p
ext
f )4−2(pext

f )2] = e
−(αlext +αl′ext

)[(pext
f )4−2(pext

f )2]
(1 − Q1

ext ;f + Q1′
ext ;f ),

Q1
ext ;f =

(
∑

l∈f

αl

)

[(pext
f )4 − 2(pext

f )2],

Q1′
ext ;f =

[(
∑

l∈f

αl

)

[(pext
f )4 − 2(pext

f )2]

]2 ∫ 1

0

ds (1 − s)e−s(
∑

l∈f αl)(p
ext
f )2 ,

e
−(

∑
�∈f,�∈f′ α�)(p

ext
f )2(pext

f′ )2
= e

−(αlext +αl′ext
)(pext

f )2(pext
f′ )2

(1 − Q2
ext ;f + Q2′

ext ;f ),

Q2
ext ;f,f ′ =

(
∑

l∈f,l∈f ′

αl

)

(pext
f )2(pext

f ′ )2, (78)

Q2′
ext ;f,f ′ =

[(
∑

l∈f,l∈f ′

αl

)

(pext
f )2(pext

f ′ )2
]2 ∫ 1

0

ds (1 − s)e
−s(

∑
l∈f,l∈f′ αl)(p

ext
f )2(pext

f′ )2
,

e−(
∑

�∈f,�∈f′ α�)(p
ext
f )2(pf′ )2 = 1 − Q3

ext ;f,f ′ + Q3′
ext ;f,f ′ ,
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Q3
ext ;f,f ′ =

(
∑

l∈f,l∈f ′

αl

)

(pext
f )2(pf ′)2,

Q3
ext ;f,f ′ =

[(
∑

l∈f,l∈f ′

αl

)

(pext
f )2(pf ′)2

]2 ∫ 1

0

ds (1 − s)e−s(
∑

l∈f,l∈f′ αl)(p
ext
f )2(pf′ )2 .

(79)

The last factor to expand becomes:
[

∏

l∈Lint ∩L1

(−ip0;l)

][
∏

l∈Lint ∩L2

e

(
∑

f∈F
εlfpf

)][
∏

v∈V
δ

(
4∑

l=1

p0;l;v

)]

= [Q1 + Q2;1 + Q2;2 + Q3]

[
∏

v∈V
δ

(
4∑

l=1

p0;l;v

)]

,

Q1 =

[
∏

l∈Lint ∩L1

(−i
∑

c∈CycleG

εlcp0;c)

]

×
[

∏

l∈Lint ∩L2

e

(
∑

f∈Fint

εlfpf

)]

,

Q2;1 =
∑

l∈Lint ∩L1

{[

− i
∑

lext

εllext p0;lext

][
∏

l′∈Lint ∩L1
l′ �=l

(−i
∑

c∈CycleG

εl′cp0;c)

]}

×
[

∏

l∈Lint ∩L2

e

(
∑

f∈Fint

εl′fpf

)]

,

Q2;2 =
∑

l∈Lint ∩L2

{[
∑

f∈Fext

εlf (pext
f )2

][
∏

l′∈Lint ∩L2
l′ �=l

e

(
∑

f∈Fint

εl′fpf

)]}

×
[

∏

l′∈Lint ∩L1

(−i
∑

c∈CycleG

εl′cp0;c)

]

, (80)

and Q3 is the sum of all remainder terms invoking all higher orders of the
product

∣
∣
∣
∣
∣

∏

l∈A

[

− i
∑

lext

εllext p0;lext

]
∏

l∈B

[
∑

f∈Fext

εlf (pextf )2
]∣
∣
∣
∣
∣
,

for two subsets A and B of internal lines, A,B ⊂ Lint , with cardinality |A| ≥ 2
if |B| = 0, or |B| > 1 if |A| = 0, or |A| + 2|B| ≥ 3, if A > 0 and B > 0.

We insert these expansions in the two-point amplitude and get:

AG;2({p0;lext }; {pext
f }) = κ(λ)δ

(
∑

lext

p0;lext

)∫ [
∏

lext ∈Lext

dαlext eαlext

]

×
[

∏

lext ∈Lext ∩L1

(−ip0;lext )

][
∏

lext ∈Lext ∩L2

e

(
∑

f∈Fext

εlext fpext
f

)]
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×
[

∏

f∈Fext

e
−(αlext +αl′ext

)[(pext
f )4−2(pext

f )2]

]

×
[

∏

f,f ′∈Fext
f �=f ′

e
−(αlext +αl′ext

)(pext
f )2(pext

f′ )2
][

∏

lext ∈Lext

e−αlext p2
0;lext

]

×
[

∏

f∈Fint

e−(
∑

�∈f α�)[p
4
f −2p2

f ]

][
∏

f,f ′∈Fint
f �=f ′

e−(
∑

�∈f,�∈f′ α�)(pf )2(pf′ )2
]

×
[

∏

c∈CycleG

e−(
∑

l∈Lc
αl)p

2
0;c

][
∏

c,c′∈CycleG
c�=c′

e
−(

∑
l∈Tc∩T

c′ αl)p0;cp0;c′

]

×
(
Q1 +

∑

σ=1,2

Q2;σ + Q3
)

×
{

1 −
∑

f∈Fext

(Q1
ext ;f + Q1′

ext ;f ) −
∑

f,f ′∈Fext
f �=f ′

(Q2
ext ;f,f ′ + Q2′

ext ;f,f ′)

−
∑

f∈Fext ,f ′∈Fint

(Q3
ext ;f,f ′ + Q3′

ext ;f,f ′)

−
∑

lext ∈Lext

(Q1
lext + Q1′

lext ) −
∑

lext ∈Lext

(Q2
lext + Q2′

lext )

−
∑

lext ,l′ext ∈Lext
lext �=l′ext

(Q3
lext ,l′ext

+ Q3′
lext ,l′ext

)

+
∑

(Q + Q) · (Q + Q) + . . .

}

. (81)

where
∑

(Q + Q) · (Q + Q) + . . . involves all types of higher-order products of
the remainders Q

(·)
ext ;− and Q

(·)
lext

, Q
(·)
lext ,l′ext

.
At zeroth order, we have the following amplitude

AG;2({p0;lext }; {pextf }; 0) = κ(λ)δ

(
∑

lext

p0;lext

)∫ [
∏

lext ∈Lext

dαlext eαlext

]

×
[

∏

lext ∈Lext ∩L1

(−ip0;lext )

][
∏

lext ∈Lext ∩L2

e

(
∑

f∈Fext

εlext fpextf

)]

×
[

∏

f∈Fext

e
−(αlext +αl′ext

)[(pext
f )4−2(pext

f )2]

]

(82)

×
[

∏

f,f ′∈Fext
f �=f ′

e
−(αlext +αl′ext

)(pext
f )2(pext

f′ )2

]
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×
[

∏

lext ∈Lext

e−αlext p2
0;lext

]

×
∫ [

∏

l∈Lint

dαle
αl

]∫ [
∏

c∈CycleG

dp0;c

]

×
[

∏

f∈Fint

dpf

][
∏

l∈Lint ∩L1

(

− i
∑

c∈CycleG

εlcp0;c

)][
∏

l∈Lint ∩L2

e

(
∑

f∈Fint

εlfpf

)]

×
[

∏

f∈Fint

e−(
∑

�∈f α�)[p
4
f −2p2

f ]

][
∏

f,f ′∈Fint
f �=f ′

e−(
∑

�∈f,�∈f′ α�)(pf )
2(pf′ )2

]

×
[

∏

c∈CycleG

e−(
∑

l∈Lc
αl)p

2
0;c

][
∏

c,c′∈CycleG
c �=c′

e
−(

∑
l∈Tc∩T

c′ αl)p0;cp0;c′

]

. (83)

Some change of variables allows us to show that the contribution of the external
momenta can be recast as two propagators glued together and the factors from
the integral over internal momenta which produces a linearly divergent term.
This term renormalizes the mass (or the chemical potential, hence the Fermi
radius in a condensed matter interpretation). Beware that this mass renor-
malization has a logarithmically divergent part corresponding to the constant
part of the Q1 term in (81).

We focus on the next order that we denote:

AG;2({p0;lext }; {pext
f }; 1) = κ(λ)δ

(
∑

lext

p0;lext

)∫ [
∏

lext ∈Lext

dαlext eαlext

]

×
[

∏

lext ∈Lext ∩L1

(−ip0;lext )

][
∏

lext ∈Lext ∩L2

e

(
∑

f∈Fext

εlext fpext
f

)]

×
[

∏

f∈Fext

e
−(αlext +αl′ext

)[(pext
f )4−2(pext

f )2]

][
∏

f,f ′∈Fext
f �=f ′

e
−(αlext +αl′ext

)(pext
f )2(pext

f′ )2
]

×
[

∏

lext ∈Lext

e−αlext p2
0;lext

]

×
∫ [

∏

l∈Lint

dαle
αl

] ∫ [
∏

c∈CycleG

dp0;c

][
∏

f∈Fint

dpf

]⎡

⎣
∏

f∈Fint

e−(
∑

�∈f α�)[p
4
f −2p2

f ]

⎤

⎦

×
[

∏

f,f ′∈Fint
f �=f ′

e−(
∑

�∈f,�∈f′ α�)(pf )2(pf′ )2
]

(84)

×
[

∏

c∈CycleG

e−(
∑

l∈Lc
αl)p

2
0;c

][
∏

c,c′∈CycleG
c�=c′

e
−(

∑
l∈Tc∩T

c′ αl)p0;cp0;c′

]
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×
{

∑

σ=1,2

Q2;σ + Q1

[

−
∑

f∈Fext ,f ′∈Fint

Q3
ext ;f,f ′ −

∑

lext ∈Lext

Q2
lext

]}

. (85)

We focus on the Q’s terms and put them in the form

Q1
∑

f∈Fext ,f ′∈Fint

Q3
ext ;f,f ′ =

∑

f∈Fext

(pext
f )2

[(
∑

f ′∈Fint

(pf ′)2
)

Q1

(
∑

l∈f,l∈f ′

αl

)]

Q1
∑

lext ∈Lext

Q2
lext =

∑

lext ∈Lext

p0;lext

[

2Q1
∑

c∈CycleG

(
∑

l∈Tc∩Tlext

αl

)

p0;c

]

Q2;1 = −i
∑

lext ∈Lext

p0;lext

{
∑

l∈Lint ∩L1

εllext

∏

l′∈Lint ∩L1
l′ �=l

[

− i
∑

c∈CycleG

εl′cp0;c

]}

×
[

∏

l∈Lint ∩L2

e

(
∑

f∈Fint

εl′fpf

)]

Q2;2 =
∑

f∈Fext

(pext
f )2

{
∑

l∈Lint ∩L2

εlf

∏

l′∈Lint ∩L2
l′ �=l

[

e

(
∑

f∈Fint

εl′fpf

)]}

×
[

∏

l′∈Lint ∩L1

(

− i
∑

c∈CycleG

εl′cp0;c

)]

. (86)

At this point, one observes that the integral over all internal momenta of
the above expressions could be brought as

∑
f∈Fext

(pextf )2 × coeff(f) and
−ip0;lext ×coeff ′(lext ), where coeff(f) and coeff ′(lext ) are constants depending
on the graph. To be able to put those results as

−ip0;lext coeff ′(lext ) +

⎡

⎣
∑

f∈Fext

(pextf )2

⎤

⎦× coeff

= −ip0;lext coeff ′(lext ) +

[

(p1;lext )2 + (p2;lext )2 + (p3;lext )2
]

× coeff, (87)

which is of the form of the prefactor of the kinetic term and where coeff is
another constant independent of f , we must gather all colored graphs which
only differ through color permutation, and sum their contributions which must
be all equal. Thus, this term (and the like by symmetrizing the graph) renor-
malizes the two wave functions Δp0 and Δp2 .

The last step is to prove the convergence of all remainder terms. We
provide the following bounds of the remainders Q (under bounded integrals)
∣
∣
∣

∑

f∈Fext

Q1
ext ;f

∣
∣
∣ =

∣
∣
∣
∣
∣

∑

f∈Fext

[(pextf )4 − 2(pextf )2]

[(
∑

l∈f

αl

)]∣
∣
∣
∣
∣
≤ k1M

−2[i(Gi
(k))−e(Gi

(k))],

∣
∣
∣

∑

f,f ′∈Fext
f �=f ′

Q2
ext ;f,f ′

∣
∣
∣=

∣
∣
∣
∣
∣

∑

f,f ′∈Fext
f �=f ′

(pextf )2(pextf ′ )2

[(
∑

l∈f,l∈f ′
αl

)]∣
∣
∣
∣
∣
≤ k2M

−2[i(Gi
(k))−e(Gi

(k))],
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∣
∣
∣

∑

lext ∈Lext

Q1
lext

∣
∣
∣ =

∣
∣
∣
∣
∣

∑

lext ∈Lext

(p0;lext )2

[(
∑

l∈Tlext

αl

)]∣
∣
∣
∣
∣
≤ k3M

−2[i(Gi
(k))−e(Gi

(k))],

∣
∣
∣

∑

lext ,l′ext ∈Lext
lext �=l′ext

Q3
lext ,l′ext

∣
∣
∣

=
∣
∣
∣

∑

lext ,l′ext ∈Lext
lext �=l′ext

p0;lext p0;l′ext

[(
∑

l∈Tlext ∩Tl′ext

αl

)]
∣
∣
∣ ≤ k4M

−2[i(Gi
(k))−e(Gi

(k))], (88)

where k’s are constants. Using i(Gi
(k)) − e(Gi

(k)) > 1, and the fact that the

integral over Q1 brings the mass divergence Mωdeg(Gi
(k))=1 and that the integral

over Q2 brings lead to a log-divergent contribution, these bounds show that
any term in the expansion involving one of the above expression as a factor
has a strictly negative divergence degree. Further, we have

|Q1′

lext | ≤ k5M
−4[i(Gi

(k))−e(Gi
(k))],

|Q2′

lext | ≤ k6M
−2[i(Gi

(k))−e(Gi
(k))],

|Q3′

lext ,l′ext
| ≤ k7M

−4[i(Gi
(k))−e(Gi

(k))],

|Q1′

ext ;f | ≤ k7M
−4[i(Gi

(k))−e(Gi
(k))],

|Q2′

ext ;f,f ′ | ≤ k8M
−4[i(Gi

(k))−e(Gi
(k))],

|Q3
ext ;f,f ′ | ≤ k9M

2[−2i(Gi
(k))+i(Gi

(k))+e(Gi
(k))] ≤ M−2[i(Gi

(k))−e(Gi
(k))]. (89)

Hence, any product of the above with Q1 or Q2;σ will immediately lead a
negative degree of divergence. In the same way, we can also show that Q3 and
the other higher-order products of Q’s will contribute to convergent terms.
After removing the divergences, all these contributions bring a sufficient decay
to sum over the scale attributions and will lead to convergence. Thus, the
model becomes renormalizable at all orders of perturbations.

7. Conclusion

We have proved the renormalizability of a tensor SYK model with a pair of
Majorana tensor fields, in which time and tensor indices both govern a kind
of renormalization group (t0, �x) ∈ [−β

2 , β
2 ] × R

3 or ∈ [−β
2 , β

2 ] × U(1)3. Our
model considers the orthogonal invariant (melonic and tetraedric) interactions
introduced by Carrozza–Tanasa and uses the local-time interaction introduced
by Klebanov–Tarnolposki which is common to all the SYK-type models. But
it is endowed with a new notion of renormalization since it is based on the
standard propagator of non-relativistic condensed matter. We achieved the
proof of the perturbative ultraviolet renormalizability of the model through a
multi-scale analysis and a power counting theorem which, interestingly, mixes
the ordinary power counting of local field theory and the power counting of a
non-local part coming from the tensorial convolution of the indices. A detailed
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study of the degree of divergence of an arbitrary graph proves that only the
quartic melonic interactions renormalize as expected from the large N limit.

Having shown perturbative ultraviolet renormalizability, a next step is to
compute the perturbative and non-perturbative flow equations for this model.
Quartic melonic tensor field theory are generally UV asymptotically free [76].
A natural question is to check whether this remains true for the tensor SYK
field theories introduced in this paper. Here the model is somehow different
with two wave function couplings (Δp0 and Δp2). The property of asymptotic
safety or asymptotic freedom in the UV for tensor field theories mainly rests
on the existence of a rapid growth of the coefficients of the wave function
renormalization relatively to the quartic coupling. For our present situation,
we foresee that at one loop, the tadpole gives no contribution to Δp0 but there
will be still a contribution to Δp2 . All ingredients which trigger asymptotic
freedom are therefore still present.

Of course the most interesting physics of this model lies in the infrared
regime, which we intend to explore in a future study. We expect the tetraedric
interaction to become more interesting in this regime. We may also have to
consider variants of the model action (12), obtained by coloring differently the
vertices with the two fields χ1 and χ2.
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