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Abstract. We prove a general stability property concerning finite-range,

attractive interacting particle systems on {− 1, 1}Zd

. If the particle system
has a unique stationary measure and, in a precise sense, relaxes to this
stationary measure at an exponential rate, then any small perturbation
of the dynamics also has a unique stationary measure to which it relaxes
at an exponential rate. To apply this result, we study the particular case
of Glauber dynamics for the Ising model. We show that for any nonzero
external field the dynamics converges to its unique invariant measure at
an exponential rate. Previously, this was only known for β < βc and
β sufficiently large. As a consequence of our stability property, we then
conclude that Glauber dynamics for the Ising model is stable to small,
non-reversible perturbations in the entire uniqueness phase, excluding
only the critical point.

1. Introduction

In this paper, we consider stochastic interacting particle systems—Markov
processes on Ω := {− 1, 1}Z

d

with finite-range rates. Probably, the most basic
question about such systems concerns their phase diagrams with respect to
variation of physical parameters like interaction strength, density, etc.: What
are their stationary states? Is there a unique stationary state? Is there sponta-
neous breaking of symmetries and/or long-range correlations? These issues are
reasonably well understood in the context of reversible dynamics, i.e., when the
process under study is reversible w.r.t. one or more measures. Indeed, in nat-
ural situations, see e.g., [19] it is known that the invariant measures are Gibbs
measures for a given potential and then the question reduces to classifying all
the Gibbs measures, a classical challenge of statistical mechanics. In physics,
the distinction between reversible and non-reversible dynamics corresponds to
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the distinction between equilibrium and non-equilibrium dynamics. In the for-
mer case, the system is coupled simply to a thermal bath, and in the latter case
it is, for example, driven by an external non-gradient field, or coupled to sev-
eral thermal baths with non-equal temperatures. The study of non-equilibrium
dynamics is a major challenge in statistical physics. To avoid confusion with
the usage of the term ‘equilibrium’ in probability, we will henceforth avoid it,
but we stress that our work is inspired by this challenge in physics.

Hence, our aim here is to move beyond reversible dynamics, where it
is much harder to formulate general truths. An example of such an attempt
to find a general rule is the positive rates conjecture ‘In 1d, noisy cellular
automata have unique invariant states.’ This conjecture has been proved false
by a very intricate counterexample [12,14], even though it is true within the
class of attractive dynamics [13]. Contrasting this, the restriction of the rates
conjecture to reversible dynamics is true: There is ‘absence of phase transitions
in 1d.’ This statement simply means that for short-range interactions, there
is a unique Gibbs state on Z. As such, the dynamics does not necessarily add
much to the question. Not so for non-reversible dynamics!

Beyond reversibility, one of the conceptually simplest problems con-
cerns small perturbations around reversibility. For example, if we add a small
reversibility-breaking term, is the phase diagram stable? This is the specific
question that we address in this note. Our aims are twofold. First, we want to
develop a general method allowing us to conclude that stationary measures of
small perturbations of a given reversible dynamics are unique, provided that
said reversible dynamics has a unique stationary measure. Second, we wish
to apply our general theory in a well-studied particular case, Ising Glauber
dynamics. Stability of the coexistence phase, that is, the stability of the prop-
erty that there is more than one stationary measure under perturbations, is
a more subtle question. We discuss it a bit further below, but have nothing
rigorous to say in this paper.

Ising Glauber dynamics is a natural reversible dynamics associated with
a ferromagnetic Ising model with a pair interaction potential (the model and
dynamics are described precisely in Sect. 2.1.1). In this particular case, the fol-
lowing picture is known to hold. The static phase diagram in spatial dimension
d may be expressed in terms of two real parameters: the inverse temperature
β and external field strength h. There is βc = βc(d) > 0 such that there is
a unique Gibbs state for β ≤ βc(d) or for a nonzero magnetic field h. For
β > βc(d) at h = 0, there is coexistence of a + and − phase (magnetic order-
ing). A remark worth making here is that in the uniqueness phase it is relatively
easy (via monotonicity) to see that the Gibbs measure is also the only station-
ary measure for the corresponding Glauber dynamics. That is, there are no
non-Gibbs stationary measures. To our knowledge, the corresponding result
is not known in the coexistence region, except in d = 2, see [23] (Chapter 4,
Theorem 5.14).

Let us give some natural examples of non-reversible perturbations to keep
in mind below. One can imagine making the temperature (which enters as a
parameter into the Glauber dynamics) site-dependent, e.g., being β ± δ with
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+ δ on the even sub-lattice of Z
d and − δ on the odd sub-lattice. Although our

aims are broader, let us note in passing that work related to this model just
mentioned appears in both the theoretical physics, [1], and economics litera-
ture, see e.g., [10]. In the present paper, we prove stability of the uniqueness
phase for the Ising model in the following sense (see also Corollary 2.3)

Theorem 1.1 (Stability of uniqueness). Let the parameters (β, h) and the
spatial dimension d be such that there is a unique Gibbs state for the Ising
model, but excluding the critical point (βc(d), 0). Then, the weakly perturbed—
possibly non-reversible—Glauber dynamics is still in the uniqueness regime (the
required smallness of the perturbation does in general depend on (β, h, d)).

A more precise formulation of this result appears below, see in particular
Corollary 2.3 and the paragraph containing Theorem 1.2. We regard this as the
main result of this paper as it completely settles our question in the uniqueness
phase for a touchstone example.

1.1. Previous Results

The literature related to our inquiry is sprawling. At first sight, there are a few
papers containing results which seem to be shades of ours, most prominently
[17]. Let us begin our short review by mentioning high-temperature techniques.
First, one may perturb around independent spin-flips using the independence
explicitly in the perturbation expansion, see e.g., [4,37]. A related technique
is a space–time analogue of the well-known Dobrushin uniqueness condition
from the theory of Gibbs states, see Theorem 4.1 of [7,23]. Due to their simplic-
ity, these methods are robust—they can both handle arbitrary short-ranged
classical (Markovian) perturbations. Unfortunately, they are also very restric-
tive in that they apply only in perturbative regimes; in the one case defined
by the explicit proximity to independent spin-flips and in the other by the
‘M ≤ ε—condition.’

In a different direction, recall that in equilibrium statistical mechanics
the free energy plays a central role in distinguishing between the uniqueness
and phase coexistence regimes. For translation-invariant interactions, differen-
tiability of the free energy is equivalent to uniqueness of (translation invari-
ant) Gibbs states. As a consequence, ‘stability’ of the uniqueness regime fol-
lows when this functional is C1. To this end, in [15], Gross showed that the
Dobrushin uniqueness condition implies that the free energy is C2, but that
it need not be analytic. Subsequent work by Dobrushin and Shlosman [8,9]
found a number of sufficient conditions (complete analyticity) implying analyt-
icity. Finally, Stroock and Zegarlinski [34] showed that one of these conditions
is equivalent to the existence of a log-Sobolev inequality for the associated
Glauber dynamics. Thus, for reversible dynamics, there is, at least at high
enough temperature, a circle of ideas which allows one to determine when the
uniqueness phase is stable. Of particular relevance to us, these conditions are
manifest both in the properties of the statics and the associated dynamics.

While the developments briefly discussed in the preceding paragraph cap-
ture some of the spirit of our inquiry, using log-Sobolev inequalities as basis
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for perturbing Glauber dynamics in the whole uniqueness phase is not viable.
For one thing, except in d = 2 [27,33], it is not known, even for the nearest
neighbor Ising model, whether a log-Sobolev inequality holds up to the critical
βc. If an external field h �= 0 is added to the Hamiltonian, there is always a
unique Gibbs measure by the Lee–Yang Theorem. However, for β large and
h small, it is known (by [3], see below) that complete analyticity does not
hold for d > 2 and hence the associated Glauber dynamics cannot satisfy a
log-Sobolev inequality.

Of course, complete analyticity and log-Sobolev inequalities are strong
sufficient conditions. Depending on one’s aim they need not be necessary,
especially if we assume that the dynamics under consideration has additional
helpful properties. There are two examples of this change of perspective that
we want to highlight, both involving the concept of attractivity for interacting
particle systems. [Attractivity is defined formally at Eqs. (2.2) and (2.3), while
an instance of its important consequence, the existence of monotone couplings
of trajectories, is discussed in Lemma 2.4.]

The first example, [17], proves, similar to our Theorem 2.2, that small
attractive perturbations of attractive particle systems in the uniqueness phase
also have unique invariant measures. Our result is stronger in that it allows
the perturbation to be non-attractive. In addition, our proof is considerably
shorter owing to our use of techniques not available at that time. In any case,
Holley’s result would allow one to show unicity of the invariant measure, up
to βc, for perturbations of Ising Glauber dynamics of the type suggested just
above Theorem 1.1.

The second example is of direct relevance to our proofs below. In [28],
Martinelli and Olivieri show that, given an attractive dynamics, the ‘Weak Spa-
tial Mixing’ (WSM) condition [see Eq. (1.2)] implies that the infinite-volume
dynamics has a unique stationary state 〈·〉∗, to which it is strongly exponen-
tially mixing,

sup
σ0

|〈σt(x)〉σ0 − 〈σ(x)〉∗| ≤ Ce−ct, (1.1)

where 〈·〉σ0 is the dynamics started from σ0. To state the WSM condition,
consider the extremal finite volume stationary states 〈·〉±

BL
in the cube BL of

side length L centered at origin, and corresponding to ± boundary conditions.
Then, the WSM condition means that

〈σ(0)〉+BL
− 〈σ(0)〉−

BL
≤ Ce−cL. (1.2)

Later, the paper [25] showed that for translation-invariant attractive systems,
the WSM condition (1.2) is in fact equivalent to (1.1). We note that several
(related) mixing conditions have been considered, starting with [8,9] (see [28]
for more background). Of particular, relevance are strong mixing conditions.
These express the idea that the influence of a perturbation at site y at the
boundary decays exponentially in the distance to y and not merely in the
distance to the boundary. Also, such conditions can be formulated for differ-
ent classes of volumes. In d = 2, these conditions (weak and strong, only on
squares or on disjoint unions of sufficient large squares) are equivalent [29],
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but not so in higher dimensions (see below). From our point of view, the main
advantage of the WSM condition (1.2) is that we can show it to hold true
throughout the uniqueness regime for ferromagnetic interactions. The WSM
condition was established already for β < βc in [16] (relying on unpublished
work by M. Aizenmann), and for h �= 0 and large β in [30]. Moreover, due
to complete analyticity [33], WSM follows in the entire uniqueness regime in
d = 2. In the present paper, we provide an argument which applies for h �= 0
and arbitrary β > 0.

Theorem 1.2. For any h �= 0 and finite-range ferromagnetic interaction Jxy ≥
0, the WSM condition (1.2) holds.

Note that an analogous result does not hold for strong (instead of weak)
mixing. Basuev showed [3] that for the d = 3 Ising model at weak field and low
T , strong mixing fails, giving rise to phase transitions in the boundary layer.

Remark 1.3. As first pointed out to us by D. Ueltschi [5], Ueltschi 1.2 gives
a new method for proving uniqueness of Gibbs measures when h �= 0. Tra-
ditionally, one relies on the Lee–Yang circle theorem to prove this result (for
intermediate values of β), though there is also a method relying on the GHS
inequality, see [31].

Martinelli and Olivieri do point out that their framework applies even
if the dynamics is not reversible with respect to 〈·〉∗. At first glance, such a
statement goes in the direction we wish to study. However, for a given non-
reversible dynamics, even one close to Glauber dynamics, checking the WSM
condition (1.2) directly seems hard, as one does not expect to have much a
priori control on the finite-volume stationary measures.

The Martinelli–Olivieri result can be reformulated in terms of a tech-
nique from the theory of Markov chains known as the Propp and Wilson
coupling [32]. The idea of applying this coupling to Ising Glauber dynam-
ics first appeared in [36], see Theorem 3.4 there, and was recently employed
in [26], see Lemma 2.1. Let us briefly recall the key point of those works
(proper definitions appear in Sect. 2.2). For any finite-range Markov process
on Ω, let Yt denote the dependence set of the origin tracked backwards from
time t to time 0. The authors of [26] observe that for an attractive dynamics,
E+[σt(0)] − E−[σt(0)] = 2P(Yt �= ∅), where E± denotes the expectation of
the process started from all +’s or all −’s, respectively. It is easy to see that
even if the process is not attractive, decay of P(Yt �= ∅) implies uniqueness
of the infinite-volume stationary measure, while the rate of its decay controls
mixing properties. This reformulation thus provides us with a useful tool, and
our proof is indeed based on it.

The main restriction on our proof technique is that the dynamics being
perturbed off is attractive and that the WSM condition is satisfied. It is not
clear to us the extent to which either of these conditions is necessary. Even for a
nearest neighbor ferromagnetic Ising model, one can invent reversible dynamics
with the Gibbs measure as the only stationary measure (in the uniqueness
regime) and for which our methods do not apply. For example, consider a
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dynamics in which nearest neighbor pairs of spins are flipped if and only if they
are the same (++ or −−) with rates given by the ratio of the corresponding
Gibbs weights. This is not an attractive dynamics, and we can therefore say
nothing about its stability properties.

To conclude our introductory section, let us say a few words regarding
the issue of the stability of coexistence. This seems to be a hard problem which
we have not yet made progress on. The difficulty here is the slow erosion of
droplets of the ‘wrong’ sign in an extremal low-temperature phase, say ‘−’
droplets in a sea of ‘+.’ It is believed that droplets disappear dynamically
by a mean curvature flow, which, at a microscopic level, is driven by entropic
effects, as opposed to energetic ones. Even for reversible models this picture has
not yet been demonstrated, in spite of some recent zero-temperature progress
[20,21]. The evolution of droplets is more tractable in models where they erode
faster, in particular for noisy perturbations of deterministic cellular automata
that enjoy the ‘eroder property’ (erosion of finite droplets in finite time). The
best-known model in this class is the NEC Toom model [35]. Coexistence of
distinct stationary states has been proven for this model and variants of it, see
[6,11,22,35] for an overview of models.

2. A General Theorem for Attractive Particle Systems

2.1. Setup and Result

We consider spin systems on the lattice. As usual, Ω = {− 1, 1}Z
d

is the space
of spin configurations σ = (σ(x))x∈Zd , equipped with the product topology.
We consider a Markov dynamics on Ω defined by local rates for spin updates.
Let the space of all continuous functions on Ω be denoted C(Ω). Let c0

x(σ) ≥ 0
denote the rate of flipping σ(x) to −σ(x) in the configuration σ, i.e., the
generator acting on C(Ω) is

Lf =
∑

x

c0
x(σ) (f(σx) − f(σ)) , (2.1)

where σx(y) = (1 − 2δx,y)σ(y). The superscript ‘0’ on c0 foreshadows the fact
that we will be comparing two dynamics; for the ‘unperturbed’ dynamics, we
use the superscript 0, while the ‘perturbed’ dynamics will be distinguished by
superscript 1, as in the perturbed rates c1(σ). We always assume these rates
to satisfy the following conditions:

1. Finite range for both c0, c1: There is a finite r such that for both i = 0, 1:
ci
x(σ) = ci

x(σ′) whenever σ(y) = σ′(y) for all |y − x|∞ > r.
2. Uniform bound supx,σ c0

x(σ) < ∞, for i = 0, 1.
3. Attractivity for c0: If σ ≥ σ′, then

σ(x) = σ′(x) = − 1 implies c0
x(σ) ≥ c0

x(σ′) (2.2)

σ(x) = σ′(x) = 1 implies c0
x(σ′) ≥ c0

x(σ). (2.3)

The construction of a Feller Markov process generated by the generator (2.1),
or likewise for c0 → c1, is standard, see e.g., [23]. The main case of interest for
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us is when the dynamics generated by c0 is reversible with respect to a Gibbs
measure. The above conditions can be easily verified for a given collection
of rates. The following assumption, however, is highly nontrivial and can be
verified only in specific (reversible) cases.

Let us denote the law of the Markov process generated by the rates c0

and started from σ by P
0
σ; then, our main assumption reads

Assumption 2.1 (Exponentially fast L∞-mixing for P
0). There is a unique

invariant state μ0, such that, for all cylinder functions f ,

sup
σ0

(
E

0
σ0

(ft) − μ0(f)
) ≤ C(f)e−tc,

where C(f) is translation invariant: C(f) = C(τxf).

As explained in Introduction, the paper [28] gives a method for check-
ing this assumption under the hypothesis that all finite-volume stationary
measures satisfy a certain weak mixing condition and that the rates c0 are
translation invariant.

Now, we come to our main technical result, which concerns the perturbed
Markov process P

1
σ defined by the rates c1. The fact that c1 is a small pertur-

bation of c0 is quantified by a parameter ε defined by

ε ≡ 2 sup
x,σ

∣∣∣c0
x(σ) − c1

x(σ)
∣∣∣. (2.4)

Theorem 2.2. If ε is sufficiently small, then the exponential L∞-mixing 2.1
holds for the process P

1 as well. In particular, this process has a unique sta-
tionary state μ1.

This theorem is surely not optimal. For one thing, one could definitely
relax the finite-range condition to exponential decay. However, the most nat-
ural question seems to us whether the attractivity of P

1 can be relaxed.

2.1.1. Main Application: Ising Glauber Dynamics. Let us briefly recall the
setup for this model. Let J : Z

d×Z
d → R

+ be a nonnegative bounded function
and write Jxy = J(x, y). We require that Jxy = Jyx and Jxy whenever |x −
y|1 > r for some finite r. Physically, this J plays the role of a ferromagnetic
interaction potential (between spins at sites x, y) with finite range. We also fix
the inverse temperature β > 0 and a magnetic field h ∈ R. To these data, we
associate a (formal) Hamiltonian

H(σ) = −
∑

x,y

Jxyσ(x)σ(y) −
∑

x

hσ(x)

and a Glauber dynamics by specifying the rates

c0
x(σ) = eβhx,eff (σ)σ(x), hx,eff(σ) = h +

∑

y

Jxyσ(y).

It is clear that these rates satisfy the 3 conditions stated above (finite range,
uniform bound and attractivity). The attractivity follows from the ferromag-
netic nature of the model, i.e., from the fact that Jxy ≥ 0. Let us see when this
dynamics has a unique invariant stationary state. Let us first check when there
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is a unique Gibbs state for the Hamiltonian H, see e.g., [18] for precise defi-
nitions and background. It is well known that this is the case if β ≤ βc(d) for
some critical βc(d), or, if h �= 0. Since the dynamics is attractive, the unique-
ness of the stationary state is equivalent to uniqueness of the Gibbs measure,
see Theorem 2.16 in Chapter 4 of [23]. To verify Assumption 2.1 (exponentially
fast mixing), we rely on the result of [28] which deduces this from the weak
spatial mixing (WSM) condition (1.2). Hence, it remains to prove the WSM
condition (1.2) and this can be done in the entire uniqueness regime, except
at the critical point β = βc(d), h = 0. More concretely, the WSM is proven

1. In d = 1, for all β > 0, by standard transfer matrix methods.
2. In d = 2, for h > 0 or β < βc(2), in [33]
3. For h = 0, β < βc, d ≥ 2 in [16].
4. For h �= 0 and large β in [30].
5. For h �= 0 and any β > 0 in the present paper, see Theorem 3.1.

With this statement in hand, the following result is hence immediate from
[28] combined with Theorem 2.2.

Corollary 2.3. For parameters (β, h) and spatial dimension d such that h �= 0
or β < βc(d), the following statements hold:

1. The convergence condition 2.1 holds for the Glauber dynamics on Ω.
2. Uniqueness of the stationary measure is stable to small perturbations in

the sense of Theorem 2.2.

2.2. Coupling Construction and Influence Clusters

Given a pair of processes with respective rates ci
x(σ) satisfying the assumptions

set down there, let σi
t, i = 0, 1 denote the corresponding Ω-valued Markov

processes. We warn the reader that we shall keep using the notation σ for
elements of Ω. We define an overall rate (finite by assumption)

λ := 2 sup
x,σ,i

ci
x(σ).

The pair of dynamics can be realized on a single probability space
(Σ, P,F) defined as follows: We have a collection of independent rate λ Poisson
processes Nx, indexed by x ∈ Z

d. For each arrival of these Poisson processes,
say at (x, t), we associate an independent uniform random variable Ux,t with
values in the unit interval [0, 1]. Define the numbers vi

x(σ) ∈ [0, 1] as

vi
x(σ) = (1/λ)

{
ci
x(σ) if σi(x) = 1

λ − ci
x(σ) if σi(x) = − 1

. (2.5)

Then, at each arrival (x, t) we update σi
t(x) as

σi
t(x) =

{
+1 if U ≥ vi

x(σi
t−)

− 1 if U < vi
x(σi

t−)
. (2.6)

We can check that the law of σi is indeed given by the P
i. Let Fs,t be the sigma

field generated by the arrivals between s and t and their associated U ’s. Hence,
for any x and s < t, the spin σi

t(x) are measurable w.r.t. Fs,t and σi
s. Fixing the
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data in Fs,t, we can consider σi
t(x) almost surely as a measurable function of

σi
s. If we wish to emphasize this dependence, we shall write σi

t(x) = σi
t(x; s, σi

s).

Lemma 2.4 (Attractivity of update scheme). For s < t, the function σ0
s �→ σ0

t

is almost surely increasing, i.e.,

σ0
s ≥ σ̃0

s implies σ0
t ≥ σ̃0

t .

Proof. For concreteness, let us write σ0
t− = (σ0

t−({x}c), σ0
t−(x)) =: (η, α) with

α = ± 1. At an arrival (x, t) (and depending on U = Ux,t), (η, α) gets updated
to (η, β) and it suffices to check that such an update is increasing in (η, α). The
only case that does not follow straightforwardly from Eqs. (2.2, 2.3) reduces
to the following: Take α = − 1, α′ = + 1, β = +1 and η ≤ η′, then (η, α) <
(η′, α′). The update (η,− 1) → (η, 1) happens when U ≥ 1 − (1/λ)c0

x((−1, η)),
and the update (η′,+1) → (η′,+1) happens when U ≥ (1/λ)c0

x((+1, η′)). For
the update to be increasing, we hence need that

(1/λ)c0
x((+1, η′)) ≤ 1 − (1/λ)c0

x((−1, η))

which follows because of λ ≥ 2 supσ c0
x(σ). �

Depending on U = Ux,t, we call the arrival at (x, t) a ‘perturbation
arrival’ if

(
U − v0

x(σ)
) (

U − v1
x(σ)
)

< 0, for some σ.

The idea of this definition is that if an arrival at (x, t) is not a perturbation
arrival, then

σ0
t− = σ1

t− implies σ0
t = σ1

t .

The probability that a given arrival is a ‘perturbation arrival’ is bounded by ε
[as defined in Eq. (2.4)].

2.3. Influence Clusters

The following description applies both for unperturbed and perturbed dynam-
ics. As such, we often do not write the superscripts 0/1 to distinguish
between the unperturbed and perturbed dynamics; Y,W, . . . can stand for
Y 0/1,W 0/1, . . .. Let | · | refer to the l∞-norm on Z

d and let

Sx = {y, |x − y| ≤ r}
and recall that both the rates ci are r-local. Let us say y, y′ ∈ Z

d are r-
neighbors if |y − y′| ≤ r and say a subset A ⊂ Z

d is r-connected if any pair of
vertices x, y ∈ A can be connected by a path of r-neighbors. Further, we shall
say a set A ⊂ Z

d × R is r-connected if for any pair (x, s), (y, t) ∈ A, there is a
piecewise constant-in-time path between them with jumps only at equal time
r-neighbors.

Definition 2.1 (Spatial influence sets). Fixing s < t, we say that y influences
σt(x) at time s if there is η ∈ Ω such that σi

t(x; s, η) �= σi
t(x; s, ηy). Let Y (s) =

Yx,t(s) be the (random) set of y ∈ Z
d at time s which influence σt(x).

Note that the sets Y (s), s ≤ t can change only at arrival times s.
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Definition 2.2 (Influence clusters). For any x, t we call

Wx,t = ∪s≤tY (s) × s

the influence cluster.

Note that Wx,t is a r-connected set. Sometimes, the influence clusters are
too complicated to work with, so we define also the much simpler notion of
light rays. A light ray R starting at (x, t) is (the graph of) a function s �→ x(s)
with s ∈ (−∞, t] (it is better to think of s running backwards) such that
x(t) = x and x(s) is constant in s, except possibly at such s where there is an
arrival at (x(s), s), in which case x(s−) = y for some y ∈ Sx(s).

So a light ray is a backwards running path that can jump to r-connected
sites whenever an arrival hits it. Note that the definition of light rays does not
involve the variables U , whereas the definition of influence clusters involves
them in an essential way. We need a basic lemma that is merely a restatement
of definitions.

Lemma 2.5. 1. For any x, t and u ≤ t;

(
W(x,t) ∩ {s ≤ u}) ⊂

(
∪

y:(y,u)∈W(x,t)

W(y,u)

)

2. For any x, t

W(x,t) ⊂
(

∪
R → (x, t)

R

)
,

the union running over light rays starting at (x, t).

This lemma expresses that influence clusters can grow at arrivals. What
is not captured by this lemma is the possibility and tendency of influence
clusters to die. This is the basic input from the unperturbed dynamics:

Lemma 2.6. There is a C and τ0 independent of x, t such that

P(Y 0
x,t(s) �= ∅) ≤ Ce−(t−s)/τ0 .

Proof. Let σ±
t (x) be the value of σ0

t (x) when the (unperturbed) dynamics was
started at t = 0 from all ±. It is a function of the U ’s in F0,t and σ0

0(y), y ∈
Y 0

x,t(0). By attractivity, we have

σ+
t (x) − σ−

t (x) = 2χ
(
Y 0

x,t(0) �= ∅)

Taking expectations, we get E
0
all +(σt(x)) − E

0
all −(σt(x)) = 2P(Y 0

x,t(0) �= ∅),
and hence the claim follows from 2.1. �

Now, we consider an influence cluster W 1 associated with the perturbed
dynamics with rates c1. Some of the arrivals in the cluster correspond to ‘per-
turbation arrivals.’ However, away from these arrivals, the cluster W 1 coincides
locally with some cluster W 0, by definition. The following lemma formalizes
this.
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Lemma 2.7. For the influence cluster W 1
x0,t0 , let (xi, ti), i = 1, 2, . . . be the

‘perturbation arrivals’ in the cluster, i.e., (xi, ti) ∈ W 1
x0,t0 , ordered anti-

chronologically: ti+1 < ti (this is possible almost surely). Then,

W 1
x0,t0 ⊂

(
W 0

x0,t0 ∪
i≥1

∪
y∈Sxi

W 0
y,ti

)
.

Since perturbation arrivals are unlikely and since the ‘reversible’ clusters
W 0 die out quickly, it is intuitively plausible that also the ‘reversible’ clusters
W 1 die out quickly:

Lemma 2.8. There is a C and τ1 independent of t, x such that

P(Y 1
x,t(s) �= ∅) ≤ Ce−(t−s)/τ1 .

The proof is given in the next section, relying on percolation arguments.
Given Lemma 2.7, the proof of Theorem 2.2 is immediate since Lemma 2.8
and the above construction imply that, for a cylinder function f that depends
only on σ(x), x ∈ X,

sup
σ,σ′

|E1(f(σt)|σs = σ) − E
1(f(σt)|σs = σ′)| ≤ C(f)e−(t−s)/τ1 ,

with C(f) = C‖f‖∞|X|.
2.4. Coarse Graining: Proof of Lemma 2.8

We partition Z
d × R with rectangular boxes B as follows. Fix large integers

L,M and we define first the box at origin

B0 = {0, 1, . . . ,M − 1}d × (0, L].

Then, for n = (k, l) ∈ Z
d × Z,

Bn = B0 + (Mk,Ll)

The parameter L will have to be chosen large compared to the typical
exponential decay time τ0 that appears in Lemma 2.6, i.e., we choose Lt = Lτ0

for some large L � 1.
For each box B, we consider also extended boxes that we denote by B̃.

They are defined to have the same center as B but with spatial linear size
3 times bigger, i.e., in the above description {0, 1, . . . ,M − 1}d is replaced
by {−M, . . . , 2M − 1}d. By the (spatial) boundary ∂B̃ of an extended box,
we understand the collection of points (x, t) inside B̃ such that there is an
(y, t), y ∈ Sx outside the box. By the top of the box B, we mean the collection
of points (x, t) inside the box such that (x, t+) is outside the box.

The choice of M is dictated by the requirement that it is unlikely that
a light ray began at the top of B can traverse the corresponding B̃ spatially,
i.e., exit B̃ on the spatial boundary. An arrival of the coupled process allows
a light ray to move a distance r sideways and the arrivals have rate λ clocks.
So the probability that a light ray started from a given point at the top of a
box B can spatial traverse B̃ is bounded by e−CL, provided we choose

M − 2 ≥ crL, for some c > 1.
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We call a box B bad if either of the following three events occurs:
1. A perturbation update occurs in B̃.
2. There is a (x, t) ∈ B such that a light ray R starting at (x, t) reaches ∂B̃.
3. There is an influence cluster W 0

x,t with (x, t) in the top of B such that
that W 0

x,t ∩ ∂B̃ = ∅ and W 0
x,t exits the box B̃ at the bottom, i.e., there is

a (y, s) ∈ W 0
x,t such that s < t and (y, s) /∈ B̃ (it necessarily follows that

y is in the spatial projection of B̃).
The event ‘box B is bad’ is measurable with respect to the data (arrivals and
U ’s) in the extended box B̃. For (1), (2), this is evident, and for (3) it follows
from the fact that boxes are open sets at the bottom whereas influence clusters
are closed sets.

The next lemma justifies the intuition that large influence clusters W 1

have long connected paths of bad boxes:

Lemma 2.9. If (y, s) ∈ W 1
x,t, then there is a path n1,n2, . . . ,nm in Z

d+1 such
that

1. |ni+1 − ni|∞ = 1 for i = 1, . . . ,m − 1.
2. The temporal coordinates (li)i are non-increasing.
3. Bn1 contains (x, t) and Bnm contains (y, s).
4. The boxes Bni

, 1 < i < m are bad.

Proof. If an influence cluster W 0
x,t, with (x, t) in the top of a box B, reaches the

time t−L, then that box B is necessarily bad [either the time t−L is reached
at the bottom of B̃, hence event (3)] occurs, or W 0

x,t travels far sideways, so
as to trigger event (2). Continuing with these considerations, and recalling
Lemma 2.7, the claim follows. �

Hence, the problem of large influence clusters is reduced to a percolation
problem of bad boxes. Let us now establish that the probability of being bad
is small.

Lemma 2.10. Fix L = �Nτ0� and M = 2r�Nτ0� for some N > 0. If N is
chosen large enough, and ε small enough (depending on L), then

P(Bn is bad) ≤ e−cN ,

uniformly in n.

Proof. We just go through the three possibilities in which a box can be bad:
(1) the probability of a perturbation arrival in a box B̃ is bounded by

CελNd+1.
(2) as explained above, we have that the probability of a light ray starting

from a given point in B reaching ∂B̃ is e−cN . Hence, considering all
possible starting points (we can reduce to the boundary of B) we get
Nde−cN .

(3) The probability of W 0
x,t reaching the time t − Lt is bounded by Ce−cN

by Lemma 2.6 and the choice of L. Summing over all x at the top of B,
we get Nde−cN .
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Hence, it indeed suffices to choose L � 1 and ε ≤ (1/λ)e−cN . �

We now finish the proof of Lemma 2.8. For any n ∈ Z
d+1, let Xn be the

event that the box Bn is not bad. Since Xn is measurable with respect to the
data of arrivals and U ’s in B̃n , we obtain that Xn is independent of Xn ′ , with
|n′ − n| > C for a finite C. Then, by [24], if p = infn P(Xn ) ≥ 1 − Ce−cN (see
Lemma 2.10) is taken close enough to 1, then the random field (Xn : n ∈ Z

d+1)
dominates stochastically a product random field of 0, 1-valued variables with
P(1) = ρ, where ρ can be chosen arbitrarily close to 1 upon increasing p.
Using now standard estimates for product random fields, Lemma 2.9 implies
Lemma 2.8.

3. The Weak Spatial Mixing Condition

The aim of this section is to prove the WSM condition (1.2) in the cases where
it is not established yet, namely h �= 0 and intermediate inverse temperatures
β, see the discussion in Sect. 2.1.1. Since β does not play any role in our
argument, from now on we absorb it into the interaction and field variables:
J ′

xy = βJxy and h′ = βh and we drop the ′ superscript since we will not
need to refer to the original parameters. Since time does not play any role in
this section, we write configurations as σ = (σx)x∈Zd . Let us introduce some
additional notation. First let

−Hb,J,h
S (σ) :=

∑

x	=y,x,y∈S

Jxyσxσy +
∑

x∈S

hσx +
∑

x∈S,y∈Bc
L

Jxyσxb, σ ∈ {−1, 1}S

be (minus) the Hamiltonian for an Ising model defined on a set S ⊂ BL

with interaction J = (Jxy), external field strength h and boundary condition
b ∈ {0,± 1} on the exterior Bc

L. Note, in particular, that there is no boundary
interaction corresponding to pairs {x, y} with x ∈ S and y ∈ BL\S. Corre-
sponding to this Hamiltonian, we define partition functions and finite-volume
Gibbs states in the usual way:

Zb,J,h
S =

∑

σ

exp
(
−Hb,J,h

S (σ)
)
,

〈F 〉±b,J,h
S =

1

Zb,J,h
S

∑

σ

F (σ) exp
(
−Hb,J,h

S (σ)
)
,

where F is any function on {− 1, 1}S . For the sake of recognizability, we write
for the boundary condition b = f,± instead of b = 0,± 1 (f stands for free
boundary conditions). As announce, we prove the WSM condition:

Theorem 3.1 (Weak spatial mixing). For any h �= 0 and any bounded finite-
range interaction Jxy, there are c, C > 0 so that

〈σ0〉h,+
BL

− 〈σ0〉h,−
BL

≤ Ce−cL.

The rest of Sect. 3 is devoted to the proof. By symmetry, it suffices to
consider h > 0 and we do so henceforth.
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3.1. The Variables χ, η

We introduce a change of variables on pairs of spin configurations which will
be instrumental in the proof. Let the fields χx, ηx be defined by

2χx = σ1
x + σ2

x, 2ηx = σ1
x − σ2

x.

Note that χx, ηx are Ising variables subject to the exclusion condition χx �= 0
if and only if ηx = 0. We have

Z+,J,h
BL

Z−,J,h
BL

=
∑′

χ,η

exp

⎛

⎝
∑

x,y

2Jx,y[χxχy + ηxηy] +
∑

x

2hχx +
∑

x∈S,y∈Bc
L

2Jxyηx

⎞

⎠ =: I,

(3.1)

where
∑′

χ,η
indicates that the exclusion condition is enforced. The RHS can

further be expressed as

I =
∑

V

Zf,2J,2h
BL\V Z+,2J,0

V . (3.2)

On the RHS of this equation, the sum is over subsets V ⊂ BL and is obtained
from Eq. (3.1) via the identification V = {x ∈ BL, χx = 0}. In the same way,
we derive

Z+,J,h
BL

Z−,J,h
BL

[
〈σ0〉+,J,h

BL
− 〈σ0〉−,J,h

BL

]
= 2

∑

V :0∈V

Zf,2J,2h
BL\V Z+,2J,0

V 〈η0〉+,2J,0
V .

(3.3)
Let us note already that 〈η0〉+,2J,0

V �= 0 if and only if there is a sequence
of vertices (0 = x0, x1, . . . , xk) such that xi ∈ V for all i, Jxi,xi+1 �= 0 and
xk ∈ Bc

L.

3.2. Basics of Random Currents

Ultimately, we are going to compare the RHS of Eq. (3.3) with
∑

V

Zf,2J,2h
BL\V Z+,2J,0

V

(
= Z+,J,h

BL
Z−,J,h

BL

)
.

This comparison requires us to do some surgery on the factor Z+,2J,0
V 〈η0〉+,2J,0

V

in the sum on the RHS of Eq. (3.3). Thus for the following discussion, let us
fix V such that 0 ∈ V and 0 is connected with Bc

L by the kernel J V [cf.
line below Eq. (3.3)] To perform the surgery (see the proof of Lemma 3.3), we
shall use the language of random currents [2], though we do not need the more
advanced technology developed in other papers using them (e.g., the switching
lemma and its many consequences). Let g be an external ‘site’ to be thought
of as representing all sites in Bc

L (so, unlike what is typically done, we are not
using this site to describe the external field). We extend the kernel Jxy to pairs
xg by setting

Jxg =
∑

y∈Bc
L

Jxy.



Vol. 19 (2018) Stability of Uniqueness Regime 2665

For subsets A ⊂ V , let EA denote the set of edges xy with x, y ∈ A ∪ {g}
such that x �= y and Jxy �= 0. Given the N ∪ {0}-valued vector n = (k, l) =
((kxy)xy∈EA

, (lx)x∈A) indexed by EA and A, let

W+,2J,2h
A (n) =

∏

xy∈EA

(2Jxy)kxy

kxy!

∏

x∈A

(2h)lx

lx!
(3.4)

and

∂n =

⎧
⎨

⎩x ∈ V ∪ {g} : lx +
∑

y 	=x

kxy is odd

⎫
⎬

⎭ .

Here, we note that if lx = 0 for x = g, the weight W+,2J,0
A (n) �= 0 only if lx = 0

for all x. In this case, we shall write n = k = (kxy)xy∈EA
. Similarly, we define

W f,2J,2h
A by omitting edges xg from the product in (3.4). By Taylor expansion

of exponentials and resummation over η, we have

Z+,2J,0
V 〈η0〉+,2J,0

V =
∑

k:∂k={0,g}
W+,2J,0

V (k). (3.5)

Similar formulas are derivable if h �= 0, but are not needed here.
Given k = (kxy)xy∈EA

, it is convenient to introduce the notation 0 k↔ x
to indicate that 0 is connected with x by edges uv such that kuv �= 0. In
particular, 0 k↔ g for any k contributing to (3.5). The (k-dependent) distance
distk(0, x) is then the minimal number of edges in a nonzero k-path from 0 to
x.

3.3. Clusters Around the Origin

We start from the above formula (3.5). The main idea is to relate this quantity
to a partition sum at h > 0, but this will only work for a subset T (to be
defined) of V around the origin. This set is constructed now and the main
point (Lemma 3.2) is to establish that it is large enough. In all that follows,
we assume, motivated by (3.5), that 0 ∈ V and 0 k↔ g. Let us define, for any
R > 0,

TR := {x ∈ V : distk(0, x) ≤ R} (3.6)

FR := {xy ∈ EV : x ∈ TR, y /∈ TR, kxy �= 0} (3.7)

Note that TR,FR depend on k. Recalling that the interaction is assumed to
be of finite range r, we have TR ⊂ BrR. It will turn out that we only work
with R such that rR < L/2 and L large, so we can assume that FR contains
no edges to g.

Let a denote a parameter to be chosen precisely later (but one should
think of it as small), and let

R0 = inf{R > L/(4r) : |FR| ≤ a|TR|}.
The necessary bound on the size of TR0 is then
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Lemma 3.2. For any a small enough, there is L0(a) such that for L >
L0(a), R0 < L/(2r).

Proof. Due to the finite-range condition on the interaction, the number of J-
edges (that is, xy such that Jxy �= 0) incident at any given site is bounded by
C(r) < ∞. Therefore,

|TR+1| − |TR| ≥ (1/C(r))|FR|. (3.8)

For the sake of a contradiction, let us assume that the condition |FR| ≤
a|TR| is violated for all R such that L/4 < Rr ≤ L/3. Then, the inequality
(3.8) implies

|TL/(3r)| ≥ (1 + a/C(r))L/(12r)|TL/(4r)|.
But this inequality implies exponential growth of BrR in R, contradicting
|BR| ∼ Rd in Z

d. �

Given a small enough, we will henceforth choose R = R0 as defined above
(in particular R0 < L/(2r) by Lemma 3.2), and we abbreviate T = TR0 and
F = FR0 .

3.4. Surgery on Eq. (3.5)

From Eq. (3.5), we may use T = T (k), defined above, to decompose
∑

∂k={0,g}
W+,2J,0(k) =

∑

X

W (X), (3.9)

where

W (X) :=
∑

∂k={0,g}
1{T = X}W+,2J,0

X (kEX
)W+,2J,0

V \X (kEV \X
)
∏

(xy)∈E∂V X

J
kxy
xy

kxy!
,

(3.10)
where we have written k = (kEX

,kE∂V X
,kEV \X

) following an X-dependent
decomposition of the edge set

EV = EX ∪ EV \X ∪ E∂ , E∂V X = {xy : x ∈ X, y ∈ V \ X}.

On the set X, we consider random currents m = (t, l) associated with
nonzero field, i.e., t = txy, l = lx. Let 0 m⇔ X denote the condition ∀x ∈ X :
0 m↔ x, that is, X is connected with respect to the current configuration m.
Then, naturally,

T (k) = X ⇒ 0 m⇔ X, if m = (t, l) with t = kEX
.

Our main aim in this section is to connect (3.10) to a sum in which h > 0.
This is achieved by the next lemma.

Lemma 3.3. If a is chosen small enough, there are C, c > 0 such that ∀X,

W (X) ≤ Ce−cLZ+,2J,0
V \X

∑

∂m=∅

1{0 m⇔ X}W f,2J,2h
X (m)

︸ ︷︷ ︸
=:KX

. (3.11)
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Proof. The main point is to compare W+,2J,0
X (kEX

) in (3.10) with a weight in
which h > 0, namely

Lemma 3.4. For any k contributing to (3.10),

W+,2J,0
X (kEX

) ≤ Ce−c|X|G(kEX
), with G(kEX

) :=
∑

m=(t,l)s.t.
t=kEX

,∂m=∅

W f,2J,2h
X (m).

(3.12)

Proof. The sum on the RHS is over l, constrained by kEX
. It is calculated

explicitly as
∑

l:∂(kEX
,l)=∅

W f,2J,2h
X (kEX

, l) = sinh(2h)|X\M | cosh(2h)|M |W+,2J,0
X (kEX

),

where

M = M(kEX
) =

{
x ∈ X\{0} :

∑

y∈X

kxy is even

}
.

Hence, the claim will follow once we exhibit that (for large enough L) the ratio
|M |

|X\M | can be made arbitrarily large by choosing a small enough. Recall that
k arises as a current configuration for which h = 0 and such that ∂k = {0, g}.
Since no site in X can connect directly to g, we conclude that any site in X \M
(other than 0) has to have an edge in F , i.e., |X \ M | ≤ |F| + 1. Since, for k
contributing to (3.10), T = X and invoking Lemma 3.2, we obtain then

|X \ M | ≤ 1 + a|X|
which settles the claim. �

We now end the proof of Lemma 3.3. Plugging (3.12) into (3.10),

W (X) ≤ C
∑

∂k={0,g}
e−c|X|1{T = X}G(kEX

)W+,2J,0
V \X (kEV \X

)
∏

xy∈E∂X

J
kxy
xy

kxy!
.

(3.13)
Let us first resum kEV \X

, keeping kEX
,kE∂

fixed:

∑

kEV \X
: ∂k={0,g}

W+,2J,0
V \X (kEV \X

) =

〈
∏

y∈P

σy

〉+,2J,0

V \X

≤ 1,

where P = {y ∈ V \ X :
∑

x∈X kyx is odd}. Next, we sum over kE∂
while

keeping F fixed. This leads to a factor C
|F|
J [from the last factor in (3.13)]. We

also note that, given T = X, the only constraint on kEX
is 0 k⇔ X. This leads

to

W (X) ≤ Ce−c|X|

⎛

⎝
∑

kEX

1{0 k⇔ X}G(kEX
)

⎞

⎠
∑

F :T=X

C|F|, (3.14)

where we have indicated that the last sum over F is constrained by T = X.
The quantity between brackets is, by definition, KX [cf. Eq. (3.11)]. For the
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sum over F , we need some combinatorics: By Lemma 3.2, we have |F| ≤ a|T |.
Furthermore, the number of edges that link to T from T c is always bounded
by C(r)|T | (with C(r) here being the volume of the sphere with radius r).
Therefore, the number of choices for F reduces to the number of ways to
pick a subset with up to a|T | elements from C(r)|T | elements. By standard
combinatorics, this is bounded as

poly(C(r)|T |)eC(r)|T |f( a
C(r) ), f(p) = −p log p − (1 − p) log(1 − p), p ∈ (0, 1),

where poly(·) stands for a polynomial. Obviously, f(p) → 0 as p → 0 and
hence, choosing a small enough, we can drop the sum over F in Eq. (3.14),
at the expense of readjusting the constant c in e−c|X|. Finally, we note that
|T | > L/(4r) by the definition of T and hence the lemma follows. �

3.5. Proof of Theorem 3.1

We are now ready to finish the proof. Summarizing the argument given up to
this point, in particular Eqs. (3.3), (3.5) and Lemma 3.3, we have shown that

Z+,J,h
BL

Z−,J,h
BL

[〈σ0〉+,J,h − 〈σ0〉−,J,h]

≤ Ce−cL
∑

V ⊂BL:0∈V

∑

X⊂V

Zf,2J,2h
BL\V Z+,2J,0

V \X KX , (3.15)

where KX appeared on the RHS of Eq. (3.11). Up to now, KX was defined
such that naturally KX = 0 when X = ∅. We extend this function, setting
K̃X = KX and setting K̃∅ = 1. Trivially, the bound (3.15) gives rise to

Z+,J,h
BL

Z−,J,h
BL

[〈σ0〉+,J,h − 〈σ0〉−,J,h]

≤ Ce−cL
∑

V ⊂BL

∑

X⊂V

Zf,2J,2h
BL\V Z+,2J,0

V \X K̃X . (3.16)

This is a crucial relaxation in connection with the next lemma (in the case
0 /∈ A).

Lemma 3.5. For any A ⊂ BL,

Zf,2J,2h
A =

∑

Y ⊂A

Zf,2J,2h
A\Y K̃Y . (3.17)

Proof. We proceed as in the run-up to Lemma 3.3, in particular we write the
analogues of Eqs. (3.9) and (3.10) but now with ∂k = ∅. Choosing Y the
connected component (by k) containing 0, we get the claim. �

By using first Eq. (3.2) and then Lemma 3.5, we now derive

Z+,J,h
BL

Z−,J,h
BL

=
∑

U⊂BL

Zf,2J,2h
BL\U Z+,2J,0

U =
∑

U⊂BL

∑

Y ⊂U

Zf,2J,2h
(BL\U)\Y Z+,2J,0

U K̃Y .

(3.18)
By the change of variables Y = X,U = BL \ V , we see that the RHS of
Eq. (3.18) is exactly equal to the double sum in Eq. (3.16). This implies hence
〈σ0〉+,J,h − 〈σ0〉−,J,h ≤ Ce−cL, which ends the proof. �
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[18] Israel, R .B.: Convexity in the Theory of Lattice Gases. Princeton University
Press, Princeton (2015)
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