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Abstract. We propose an extension of the sandwiched Rényi relative α-
entropy to normal positive functionals on arbitrary von Neumann alge-
bras, for the values α > 1. For this, we use Kosaki’s definition of non-
commutative Lp-spaces with respect to a state. We show that these ex-
tensions coincide with the previously defined Araki–Masuda divergences
(Berta et al. in arXiv:1608.05317, 2016) and prove some of their proper-
ties, in particular the data processing inequality with respect to positive
normal unital maps. As a consequence, we obtain monotonicity of the
Araki relative entropy with respect to such maps, extending the results
of Müller-Hermes and Reeb. (Ann. Henri Poincaré 18:1777–1788, 2017)
to arbitrary von Neumann algebras. It is also shown that equality in data
processing inequality characterizes sufficiency (reversibility) of quantum
channels.

1. Introduction

The classical Rényi relative entropies were introduced by an axiomatic ap-
proach in [39], as the unique family of divergences satisfying certain natu-
ral properties. As it turned out, these quantities play a central role in many
information-theoretic tasks, see, e.g., [9] for an overview. A straightforward
quantum generalization is given by standard quantum Rényi relative
α-entropies, defined for density matrices ρ, σ as

Dα(ρ‖σ) =

⎧
⎨

⎩

1
α−1 log

(
Tr ρασ1−α

)
if α ∈ (0, 1) or supp(ρ) ⊆ supp(σ)

∞ otherwise,

where supp(ρ) denotes the support of ρ and α > 0, α �= 1. These quantities
share the useful properties of the classical Rényi relative entropy, but not for
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all values of the parameter α. In particular, for a quantum channel Φ, the data
processing inequality (DPI)

Dα(Φ(ρ)‖Φ(σ)) ≤ Dα(ρ‖σ) (1)

holds for α in the range (0, 2], [15,34]. Moreover, for α ∈ (0, 1) the standard
Rényi relative entropies appear as error exponents and cutoff rates in hypoth-
esis testing [4,14,27].

Another quantum version of Rényi relative entropy was introduced in
[31,46]. It is the sandwiched Rényi relative α-entropy, defined as

D̃α(ρ‖σ) =

⎧
⎪⎨

⎪⎩

1
α−1 log Tr

[(
σ

1−α
2α ρσ

1−α
2α

)α]
if supp(ρ) ⊆ supp(σ)

∞ otherwise
(2)

for α > 0, α �= 1. The sandwiched entropies satisfy DPI for α ∈ [1/2, 1) ∪
(1,∞), [5,11,31,46]. For α > 1, D̃α have an operational meaning as strong
converse exponents in quantum hypothesis testing and channel coding, [28,29].
Moreover, both Dα and D̃α yield the Umegaki relative entropy

D1(ρ‖σ) =

⎧
⎨

⎩

Tr ρ(log(ρ) − log(σ)) if supp(ρ) ⊆ supp(σ)

∞ otherwise

in the limit as α → 1. On the other hand, in the limit α → ∞, D̃α gives the
relative max entropy

D̃∞(ρ‖σ) = log(inf{λ > 0, ρ ≤ λσ}), (3)

see [31,46] for the proofs of these properties.

Remark 1.1. Both Dα and D̃α are contained in the family of entropic pres-
sure functionals introduced in [16, Section 3.3] as a tool for studying entropic
fluctuations in quantum statistical mechanics. The same family of functionals
in the context of quantum information theory was studied in [3].

Let (Φ, ρ, σ) be a triple consisting of a quantum channel Φ and a pair of
states ρ, σ on the input space of Φ. A channel Ψ satisfying Ψ ◦ Φ(ρ) = ρ and
Ψ◦Φ(σ) = σ is called a recovery map for (Φ, ρ, σ). If a recovery map exists, we
say that the channel Φ is sufficient (or reversible) with respect to {ρ, σ}. This
terminology was introduced in [36,37], by analogy with the classical notion of
a sufficient statistic. Clearly, if Φ is sufficient with respect to {ρ, σ}, equality
must be attained in DPI. It is much less obvious that the opposite implication
holds in some cases. This was first observed in [36,37] for D1 and D1/2 and
later extended to a large class of quantum divergences, including Dα with
α ∈ (0, 2), [15]. The same property for D̃α with α > 1 was proved in [18].

Quantum versions of relative entropies are usually studied in the finite
dimensional setting. Nevertheless, the standard version Dα is derived from the
quasi-entropies [34], which were defined in [35] also in the more general context
of von Neumann algebras. Moreover, the entropies Dα have similar properties
and play a similar role in quantum hypothesis testing in this setting, [17]. A
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definition of sandwiched Rényi entropies for states on von Neumann algebras
was recently proposed in [7]. These entropies are called the Araki–Masuda di-
vergences and are based on the Araki–Masuda definition of noncommutative
Lp spaces with respect to a state. It is conjectured that these quantities char-
acterize the strong converse exponents in binary quantum hypothesis testing,
as in the finite dimensional case.

The aim of the present work is to propose a von Neumann algebraic
extension of D̃α for α > 1 using the interpolating family of Kosaki’s Lp-
spaces, [23,43]. This approach was inspired by the work by Beigi [5], where a
similar family of norms (in finite dimensions) was used to prove DPI for D̃α

with α > 1. It was later observed [30] that this method works even for positive
trace-preserving maps and taking the limit α → 1 implies that the quantum
relative entropy is monotone under such mappings. This important result was
also extended to density operators on infinite dimensional Hilbert spaces. The
framework of interpolation norms was also used in [18] to show that in finite
dimensions, equality in DPI for D̃α, α > 1 implies sufficiency of the channel.

As one of the main results, we prove that the proposed quantities coincide
with the Araki–Masuda divergences of [7]. This was independently proved by
Hiai [13], using different methods. For normal states ψ, ϕ of an arbitrary von
Neumann algebra M, we further prove the following properties of D̃α:

(a) Positivity: D̃α(ψ‖ϕ) ≥ 0, with equality if and only if ψ = ϕ.
(b) Monotonicity: if ψ �= ϕ and D̃α(ψ‖ϕ) < ∞ for some α > 1, then the

function α′ �→ D̃α′(ψ‖ϕ) is strictly increasing for α′ ∈ (1, α].
(c) Limit values: for α → 1, the Araki relative entropy D1(ψ‖ϕ) is obtained,

α → ∞ yields the relative max entropy D̃∞(ψ‖ϕ).
(d) Relation to the standard Rényi relative entropy: for α > 1,

D2−1/α(ψ‖ϕ) ≤ D̃α(ψ‖ϕ) ≤ Dα(ψ‖ϕ).

(e) Order relations: D̃α can be extended to all positive normal functionals
on M. With this extension, ψ0 ≤ ψ and ϕ0 ≤ ϕ imply

D̃α(ψ0‖ϕ) ≤ D̃α(ψ‖ϕ), D̃α(ψ‖ϕ0) ≥ D̃α(ψ‖ϕ).

(f) Lower semicontinuity: the map (ψ,ϕ) �→ D̃α(ψ‖ϕ) is jointly lower semi-
continuous (on the positive part of the predual of M)

(g) Generalized mean: let ψ = ψ1 ⊕ ψ2, ϕ = ϕ1 ⊕ ϕ2. Then

exp{(α − 1)D̃α(ψ‖ϕ)} = exp{(α − 1)D̃α(ψ1‖ϕ1)}
+ exp{(α − 1)D̃α(ψ1‖ϕ1)}.

(h) Data processing inequality: D̃α(Φ(ψ)‖Φ(ϕ)) ≤ D̃α(ψ‖ϕ) holds for any
α > 1 and any positive trace-preserving map Φ. We also give some lower
and upper bounds on the value of D̃α(ψ‖ϕ) − D̃α(Φ(ψ)‖Φ(ϕ)).

We also prove a characterization of sufficiency: if 1 < α < ∞ and D̃α(ψ‖ϕ)
is finite, then equality in DPI for a 2-positive trace-preserving map Φ implies
that Φ is sufficient with respect to {ψ,ϕ}.
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The properties (a)–(d) and (h) for the Araki–Masuda divergences were
shown in [7]. Nevertheless we give independent proofs in our setting, which is
closely related to the required interpolation techniques. Note also that only
the second inequality was proved in (d) and complete positivity was required
for (h). Our proof of DPI is close to that of [5] and only positivity is assumed.
Note also that (c) and (h) together imply that the relative entropy D1(ψ‖ϕ) is
monotone under positive trace-preserving maps between the preduals, which
extends the result of [30].

The outline of the paper is as follows. In Sect. 2, we introduce the Kosaki’s
Lp-spaces and give an overview of their properties, together with some techni-
cal results needed later. In Sect. 3, we give the definition of D̃α and prove the
equality with Araki–Masuda divergences as well as the properties (a)–(h). The
last section deals with sufficiency of maps. Some more technical details and a
brief review on the complex interpolation method are given in Appendices.

2. Noncommutative Lp Spaces with Respect to a State

Let M be a (σ-finite) von Neumann algebra acting on a Hilbert space H and
let M+ be the cone of positive elements in M. We denote the predual by M∗,
its positive part by M+

∗ and the set of normal states by S∗(M). For ψ ∈ M+
∗ ,

we will denote by s(ψ) the support projection of ψ. For 1 ≤ p ≤ ∞, let Lp(M)
be the Haagerup’s Lp-space over M [12], precise definitions and further details
on Lp(M) can be found in the notes [42].

We will use the identification M∗ � ψ ↔ hψ ∈ L1(M) and the notation
Tr hψ = ψ(1) for the trace in L1(M). It this way, S∗(M) is identified with the
subset of elements in the positive cone L1(M)+ with unit trace. We will also
assume the standard form (λ(M), L2(M), J, L2(M)+) for M, see [42, Thm.
3.6], where λ is the left action

λ(x) : h �→ xh, h ∈ L2(M), x ∈ M
and the conjugation J is defined by Jh = h∗, h ∈ L2(M), see [40,41] for the
definition of a standard form. We denote the inner product in L2(M) by

(h, k) := Tr k∗h, h, k ∈ L2(M). (4)

For k ∈ L2(M), let ωk ∈ M+
∗ be the linear functional determined by k, that

is,

ωk(a) = (ak, k), a ∈ M.

For any ϕ ∈ M+
∗ , h

1/2
ϕ is the unique vector representative of ϕ in the positive

cone L2(M)+.
In this section, we describe the noncommutative Lp-spaces with respect

to a faithful normal state ϕ obtained by complex interpolation. These spaces
were defined in [23,44,47] and also in [43], where ϕ is allowed to be a weight.
We will follow the construction by Kosaki; details can be found in [23].
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2.1. The Space L∞(M, ϕ)
Fix a faithful normal state ϕ on M. To apply the complex interpolation
method, we first show that M can be continuously embedded into L1(M) �
M∗. For x ∈ M, we put

hx := h1/2
ϕ xh1/2

ϕ .

By Hölder’s inequality [42, Thm. 23], we have hx ∈ L1(M) and ‖hx‖1 ≤ ‖x‖.
Moreover, x �→ hx is injective and hx ∈ L1(M)+ if and only if x is positive.
Note also that for y ∈ M,

Tr hxy = Tr h1/2
ϕ xh1/2

ϕ y = Tr h1/2
ϕ yh1/2

ϕ x = Tr hyx.

The map x �→ hx is obviously linear and defines a continuous positive embed-
ding of M into L1(M). The image of M is the dense linear subspace

L∞(M, ϕ) := {hx, x ∈ M} ⊆ L1(M).

The norm in L∞(M, ϕ) is introduced as

‖hx‖∞,ϕ := ‖x‖.

The next lemma shows that positive elements in L∞(M, ϕ) can be easily
characterized. This result is a straightforward consequence of the commutant
Radon–Nikodym theorem, we give a proof for completeness.

Lemma 2.1. Let k ∈ L1(M)+. Then k = hx for some x ∈ M+ if and only if
k ≤ λhϕ for some λ > 0. In this case,

‖k‖∞,ϕ = ‖x‖ = inf{λ > 0, k ≤ λhϕ}.

Proof. Let x ∈ M+, then for all a ∈ M+,

Tr hxa ≤ ‖hxa‖1 = ‖xh1/2
ϕ ah1/2

ϕ ‖1 ≤ ‖x‖Tr hϕa

by Hölder’s inequality, so that hx ≤ ‖x‖hϕ. Conversely, let 0 ≤ k ≤ λhϕ.
By the commutant Radon–Nikodym theorem [40, Section 5.19], there is some
x ∈ M such that 0 ≤ x ≤ λ and for all y ∈ M,

Tr ky = (yh1/2
ϕ , Jxh1/2

ϕ ) = (yh1/2
ϕ , h1/2

ϕ x∗) = Tr xh1/2
ϕ yh1/2

ϕ = Tr h1/2
ϕ xh1/2

ϕ y.

It follows that k = hx. The last assertion follows from the fact that for positive
x ∈ M, ‖x‖ = inf{λ > 0, x ≤ λ}. �

To characterize arbitrary elements in L∞(M, ϕ), let M2 := M2(M) be
the algebra of 2×2 matrices over M. The predual of M2 can be identified with
M2(M∗), where for ψ ∈ (M2)∗, we put ψij(a) = ψ(a ⊗ |i〉〈j|). This means
that we also identify L1(M2) with M2(L1(M)).

Lemma 2.2. Let k ∈ L1(M). Let h2, k2 ∈ L1(M2) be defined as

h2 :=
(

hϕ 0
0 hϕ

)

, k2 :=
(

0 k
k∗ 0

)

.

Then k ∈ L∞(M, ϕ) if and only if k2 ≤ λh2 for some λ > 0. In this case,

‖k‖∞,ϕ = inf{λ > 0, k2 ≤ λh2}.
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Proof. Let k = hx and let λ ∈ R. Note that λh2 − k2 = h
1/2
2 xλh

1/2
2 , where

xλ :=
(

λ −x
−x∗ λ

)

,

and that ‖x‖ = ‖−x‖ = inf{λ > 0, xλ ≥ 0}. Hence k2 ≤ λh2 for any λ ≥ ‖x‖.
It is also clear that ‖x‖ is the smallest λ such that this inequality holds.

Conversely, assume that k2 ≤ λh2 for some λ > 0, which is equivalent to

Tr (λh2−k2)a ≥ 0 for any a ∈ M+
2 , [42, Thm. 33]. Let a =

(
a11 a12

a∗
12 a22

)

∈ M+
2 ,

then also

a− :=
(

a11 −a12

−a∗
12 a22

)

=
(

1 0
0 −1

)

a

(
1 0
0 −1

)

∈ M+
2

and note that Tr k2a− = −Tr k2a, Tr h2a− = Tr h2a. It follows that we have
±k2 ≤ λh2, so that 0 ≤ k2 + λh2 ≤ 2λh2. Since h2 defines a faithful positive
normal linear functional on M2, Lemma 2.1 applies, so that there is some

y =
(

y11 x
x∗ y22

)

∈ M+
2 such that

(
λhϕ k
k∗ λhϕ

)

= k2 + λh2 = h
1/2
2 yh

1/2
2 =

(
h

1/2
ϕ y11h

1/2
ϕ h

1/2
ϕ xh

1/2
ϕ

h
1/2
ϕ x∗h1/2

ϕ h
1/2
ϕ y22h

1/2
ϕ

)

.

It follows that y11 = y22 = λ and k = hx. Moreover, since y =
(

λ x
x∗ λ

)

is

positive, ‖x‖ ≤ λ. �
2.2. The Interpolation Spaces Lp(M, ϕ)
We now define the Lp-space over M with respect to ϕ as

Lp(M, ϕ) := C1/p(L∞(M, ϕ), L1(M)).

For definition of the space Cθ see “Appendix B”.
The norm in Lp(M, ϕ) will be denoted by ‖ · ‖p,ϕ. For 1 ≤ p ≤ ∞ and

1/q + 1/p = 1, put

ip : Lp(M) → L1(M), k �→ h1/2q
ϕ kh1/2q

ϕ .

Theorem 2.3 ([23, Theorem 9.1]). The map ip is an isometric isomorphism of
Lp(M) onto Lp(M, ϕ).

Using the polar decomposition in Lp(M) ([42, Proposition 12]), we obtain
that elements in Lp(M, ϕ) have the form h

1/2q
ϕ uh

1/p
ψ h

1/2q
ϕ , where ψ ∈ M+

∗ and
u ∈ M is a partial isometry such that u∗u = s(ψ) with norm

‖h1/2q
ϕ uh

1/p
ψ h1/2q

ϕ ‖p,ϕ = (Tr hψ)1/p = ψ(1)1/p.

Example 2.4. Assume that M is semifinite and let τ be a faithful normal semifi-
nite trace on M. By [42, p. 62], Lp(M) can be identified with the space Lp(τ) of
closed densely defined operators X affiliated with M, such that τ(|X|p) < ∞,
with the norm ‖X‖p = τ(|X|p)1/p. There is an operator ρϕ ∈ L1(τ) such that

ϕ(x) = τ(ρϕx), x ∈ M
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and we can define the embedding M ⊆ L1(τ) ≡ M∗ as x �→ ρ
1/2
ϕ xρ

1/2
ϕ . The

space Lp(M, ϕ) can be identified with the subspace in L1(τ) of elements of the
form X = ρ

1/2q
ϕ Y ρ

1/2q
ϕ with Y ∈ Lp(τ), and ‖X‖p,ϕ = ‖Y ‖p. In particular, if

M is finite dimensional, then Lp(M, ϕ) ≡ Lp(M) ≡ M as linear spaces and
we have

‖X‖p,ϕ = ‖ρ−1/2q
ϕ Xρ−1/2q

ϕ ‖p =
(

Tr |ρ
1−p
2p

ϕ Xρ
1−p
2p

ϕ |p
)1/p

.

We now list some important properties of the spaces Lp(M, ϕ). Let 1 ≤
p ≤ p′ ≤ ∞. Then Lp′(M, ϕ) ⊆ Lp(M, ϕ) and

‖k‖p,ϕ ≤ ‖k‖p′,ϕ, ∀k ∈ Lp′(M, ϕ). (5)

This follows easily by Theorem 2.3 and Hölder’s inequality, but it is also a
consequence of the abstract theory of complex interpolation, see [6, Theorem
4.2.1]. The space L∞(M, ϕ) is dense in L1(M) and therefore also in Lp(M, ϕ)
for each p > 1 by [6, Theorem 4.2.2]. It follows that Lp′(M, ϕ) and Lp(M, ϕ)
are compatible Banach spaces. By the reiteration theorem ([6, Theorem 4.6.1]),
we have

Cη(Lp′(M, ϕ), Lp(M, ϕ)) = Lpη
(M, ϕ), 0 ≤ η ≤ 1, (6)

where 1/pη = η/p + (1 − η)/p′.
Let now 1 ≤ p ≤ ∞, 1/p + 1/q = 1. The duality

〈k, hx〉 := Tr kx, x ∈ M, k ∈ L1(M)

extends to a duality between Lp(M, ϕ) and Lq(M, ϕ), given by

〈h1/2q
ϕ k1h

1/2q
ϕ , h1/2p

ϕ k2h
1/2p
ϕ 〉 = Tr k1k2, k1 ∈ Lp(M), k2 ∈ Lq(M). (7)

For 1 ≤ p < ∞, Lq(M, ϕ) is isometrically isomorphic to the Banach space
dual of Lp(M, ϕ). This follows immediately from Theorem 2.3 and duality of
Haagerup Lp-spaces [42, Thm. 32].

For each 1 ≤ p ≤ ∞, we have the following Clarkson-type inequalities.

Theorem 2.5 ([23], [38, Thm. 5.1]). Let h, k ∈ Lp(M, ϕ), 1 ≤ p ≤ ∞, 1/p +
1/q = 1. For 2 ≤ p ≤ ∞ we have

[
1
2

(‖h + k‖p
p,ϕ + ‖h − k‖p

p,ϕ

)
]1/p

≤ (‖h‖q
p,ϕ + ‖k‖q

p,ϕ

)1/q
.

For 1 ≤ p ≤ 2 the inequality reverses.

This implies that for 1 < p < ∞ the space Lp(M, ϕ) is uniformly convex
and uniformly smooth. We also have:

Theorem 2.6 ([38, Thm 5.3]). Let h, k ∈ Lp(M, ϕ), 1 < p ≤ 2, then

(‖h‖2
p + (p − 1)‖k‖2

p

)1/2 ≤
[
1
2
(‖h + k‖p

p + ‖h − k‖p
p)

]1/p

.

For 2 < p < ∞ the inequality reverses.
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The space Lp(M, ϕ) is strictly convex, hence for each 0 �= h ∈ Lp(M, ϕ),
there is a unique element Tq,ϕ(h) in the unit ball of Lq(M, ϕ) such that

〈Tq,ϕ(h), h〉 = ‖h‖p,ϕ.

Let h = h
1/2q
ϕ uk1/ph

1/2q
ϕ for some k ∈ L1(M)+ and a partial isometry u ∈ M

such that u∗u = s(k). Then by (7) we have

Tq,ϕ(h) = ‖h‖1−p
p,ϕ h1/2p

ϕ k1/qu∗h1/2p
ϕ . (8)

Restricted to the unit sphere of Lp(M, ϕ), the map Tq,ϕ is a uniformly contin-
uous bijection onto the unit sphere of Lq(M, ϕ) [10] and we have T−1

q,ϕ = Tp,ϕ

for this restriction.

2.3. Hadamard Three Lines Theorem

We first note that the infimum in the definition of the interpolation norm
‖ ·‖p,ϕ is attained, see (B.1). Let h ∈ Lp(M, ϕ) be of the form h = h

1/2q
ϕ kh

1/2q
ϕ

for some k ∈ Lp(M) and let k = ul1/p be the polar decomposition of k. Let
S ⊂ C be the strip S = {z ∈ C, 0 ≤ Re(z) ≤ 1} and put

fh,p(z) := ‖l‖1/p−z
1 h(1−z)/2

ϕ ulzh(1−z)/2
ϕ , z ∈ S. (9)

Then fh,p ∈ F := F(L∞(M, ϕ), L1(M)), fh,p(1/p) = h and we have ‖h‖p,ϕ =
|||fh,p|||F , cf. [23, proof of Theorem 9.1], see “Appendix B” for the necessary
definitions.

Lemma 2.7. Let f ∈ F and assume that ‖f(θ)‖1/θ,ϕ = |||f |||F for some θ ∈
(0, 1). Then

‖f(x + it)‖1/x,ϕ = |||f |||F , ∀x ∈ [0, 1], t ∈ R.

Proof. Let p = 1/θ, q = 1/(1 − θ). Put h := f(θ), then h ∈ Lp(M, ϕ) and
g := fTq,ϕ(h),q is in F . Let

K(z) := 〈g(1 − z), f(z)〉, z ∈ S.

Note that for z = x + it, f(z) ∈ L1/x(M, ϕ), g(1 − z) ∈ L1/(1−x)(M, ϕ) and
‖f(z)‖1/x,ϕ ≤ |||f |||F , ‖g(1 − z)‖1/(1−x),ϕ ≤ |||g|||F = 1. It follows that K is
continuous on S, analytic in the interior and bounded by

|K(x + it)| ≤ ‖g(1 − x − it)‖1/(1−x),ϕ‖f(x + it)‖1/x,ϕ ≤ |||f |||F .

Moreover, K(θ) = ‖f(θ)‖p,ϕ = |||f |||F . By the maximum modulus principle, K
must be a constant, so that K(z) = |||f |||F for all z ∈ S. It follows that we
must have ‖f(x + it)‖1/x,ϕ = |||f |||F for all x and t. �

The next lemma shows that the infimum in the definition of the interpo-
lation norm is attained also for the reiterated spaces.

Lemma 2.8. Let 1 ≤ p ≤ p′ ≤ ∞ and let η ∈ (0, 1), pη = η/p + (1 − η)/p′.
Let h ∈ Lpη

(M, ϕ) and put g(z) = fh,pη
(z/p + (1 − z)/p′), z ∈ S. Then

g ∈ Fp′,p := F(Lp′(M, ϕ), Lp(M, ϕ)), g(η) = h and ‖h‖pη,ϕ = |||g|||Fp′,p
.
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Proof. By [8, 32.3], for any f ∈ F the function q(z) = f(z/p + (1 − z)/p′)
belongs to Fp′,p and

|||q|||Fp′,p
= max{sup

t
‖q(it)‖p′,ϕ, sup

t
‖q(1 + it)‖p,ϕ} ≤ |||f |||F .

By reiteration (6),

‖h‖pη,ϕ ≤ |||g|||Fp′,p
≤ ∣

∣
∣
∣
∣
∣fh,pη

∣
∣
∣
∣
∣
∣
F = ‖h‖pη,ϕ.

The statement follows also by Lemma 2.7, by noticing that for any x ∈ [0, 1],
t ∈ R,

‖g(x + it)‖px,ϕ =
∣
∣
∣
∣
∣
∣fh,pη

∣
∣
∣
∣
∣
∣
F = ‖h‖pη,ϕ.

�

Assume that h ∈ Lp(M, ϕ), ‖h‖p,ϕ = 1. Note that by Lemma 2.7, the
values of the function fh,p run through the unit spheres of all the spaces
Lp′(M, ϕ). The next lemma shows that by applying the map Tq,ϕ we again
obtain an element of F .

Lemma 2.9. Let 1 < p < ∞, and let h ∈ Lp(M, ϕ), with ‖h‖p,ϕ = 1. Then for
all z = x + it, x ∈ (0, 1),

T1/(1−x),ϕ(fh,p(z)) = fTq,ϕ(h),q(1 − z).

Proof. Since ‖h‖p,ϕ = 1, we have h = h
1/2q
ϕ uh

1/p
ψ h

1/2q
ϕ for some ψ ∈ S∗(M)

and u∗u = s(ψ). By Lemma 2.7, ‖fh,p(x + it)‖1/x,ϕ = |||fh,p|||F = 1 and
‖fTq,ϕ(h),q(1 − x − it)‖1/(1−x),ϕ =

∣
∣
∣
∣
∣
∣fTq,ϕ(h),q

∣
∣
∣
∣
∣
∣
F = 1 for all x ∈ [0, 1] and

t ∈ R. By (7), we have

〈fh,p(z), fTq,ϕ(h),q(1 − z)〉 = Tr
(
h−it/2

ϕ uhz
ψh−it/2

ϕ

)(
hit/2

ϕ h1−z
ψ u∗hit/2

ϕ

)

= Tr hψ = 1.

By uniqueness, we must have T1/(1−x),ϕ(fh,p(z)) = fTq,ϕ(h),q(1 − z) for all
x ∈ (0, 1), t ∈ R. �

The inequality part of the following result is a version of Hadamard’s
three lines theorem. For convenience of the reader, we add a proof.

Theorem 2.10. Let 1 ≤ p ≤ p′ ≤ ∞ and let 0 < η < 1. Then for f ∈
F(Lp′(M, ϕ), Lp(M, ϕ)),

‖f(η)‖pη,ϕ ≤
(

sup
t∈R

‖f(it)‖p′,ϕ

)1−η (

sup
t∈R

‖f(1 + it)‖p,ϕ

)η

,

where 1/pη = η/p + (1 − η)/p′. Moreover, equality is attained if and only if

f(z) = fh,pη
(z/p + (1 − z)/p′)Mz−η,

for h = f(η) and M > 0.
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Proof. Let q, q′ and qη be the duals of p, p′ and pη, so that 1/qη = η/q + (1 −
η)/q′ and Lqη

(M, ϕ) = C1−η(Lq(M, ϕ), Lq′(M, ϕ)). Put h = f(η) and let

g(z) = fTqη,ϕ(h),qη
(z/q′ + (1 − z)/q).

By Lemma 2.8, g ∈ Fq,q′ and

g(1 − η) = Tqη,ϕ(h), |||g|||Fq,q′ = 1 = ‖Tqη,ϕ(h)‖qη,ϕ.

As in the proof of lemma 2.7, K(z) := 〈g(1 − z), f(z)〉 defines a bounded con-
tinuous function on S, analytic in the interior of S. By the usual Hadamard’s
three lines theorem,

‖f(η)‖pη,ϕ = |K(η)| ≤
(

sup
t∈R

|K(it)|
)1−η (

sup
t∈R

|K(1 + it)|
)η

≤
(

sup
t∈R

‖f(it)‖p′,ϕ

)1−η (

sup
t∈R

‖f(1 + it)‖p,ϕ

)η

.

Now assume that equality is attained. Let M0 = supt∈R
‖f(it)‖p′,ϕ, M1 =

supt∈R
‖f(1 + it)‖p,ϕ and let

F (z) := K(z)Mz−1
0 M−z

1 , z ∈ S.

Then |F (z)| ≤ 1 for all z ∈ S and F (η) = 1. By the maximum modulus
principle, F (z) = F (η) = 1 for all z, that is,

〈g(1 − z), f(z)Mz−1
0 M−z

1 〉 = 1, z ∈ S. (10)

Suppose first that ‖h‖pη,ϕ = 1. Note that by Lemma 2.9,

g(1 − z) = fTqη,ϕ(h),qη
(u) = T1/Re(u),ϕ(fh,pη

(1 − u)),

where u = z/q + (1 − z)/q′. Hence

g(1 − z) = Tqx,ϕ(fh,pη
(z/p + (1 − z)/p′)).

Since ‖f(x + it)Mx+it−1
0 M−x−it

1 ‖px,ϕ ≤ 1 by the first part of the proof, (10)
implies that we must have

f(z)Mz−1
0 M−z

1 = fh,pη
(z/p + (1 − z)/p′),

by definition and properties of Tqx,ϕ. If ‖h‖pη,ϕ = a �= 1, then we may replace
f by a−1f . Note that the above equality still holds, with M0 and M1 replaced
by a−1M0 and a−1M1. We obtain

f(z) = a(a−1f(z)) = afa−1h,pη
(z/p + (1 − z)/p′)(a−1M0)1−z(a−1M1)z

= fa−1h,pη
(z/p + (1 − z)/p′)M1−z

0 Mz
1

= a−1/pηfh,pη
(z/p + (1 − z)/p′)M1−z

0 Mz
1

= fh,pη
(z/p + (1 − z)/p′)AMz,

where A > 0 and M = M1/M0. Since f(η) = fh,pη
(1/pη) = h, we must have

AMη = 1. It follows that

f(z) = fh,pη
(z/p + (1 − z)/p′)Mz−η.
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For the converse, note that using Lemma 2.7, we obtain

M0 = sup
t

‖f(it)‖p′,ϕ = ‖h‖pη,ϕM−η

M1 = sup
t

‖f(1 + it)‖p,ϕ = ‖h‖pη,ϕM1−η.

It follows that M1/M0 = M and M1−η
0 Mη

1 = ‖h‖pη,ϕ. �

2.4. The Positive Cone in Lp(M, ϕ)
Let us denote Lp(M, ϕ)+ := Lp(M, ϕ) ∩ L1(M)+. Then it is clear that for
1 < p < ∞,

Lp(M, ϕ)+ = {h1/2q
ϕ h1/ph1/2q

ϕ , h ∈ L1(M)+}.

It follows by the properties of Lp(M)+ ([42]) that Lp(M, ϕ)+ is a closed convex
cone which is pointed and generates all Lp(M, ϕ). Note also that

L∞(M, ϕ)+ = {h1/2
ϕ xh1/2

ϕ , x ∈ M+}
is dense in Lp(M, ϕ)+, for any 1 ≤ p.

Let 1 < p < ∞ and let k ∈ Lp(M, ϕ), k = h
1/2q
ϕ uh1/ph

1/2q
ϕ , h ∈ L1(M)+.

Then k has a polar decomposition of the form

k = h1/2q
ϕ uh−1/2q

ϕ |k|p,ϕ = σϕ
−i/2q(u)|k|p,ϕ,

where |k|p,ϕ = h
1/2q
ϕ h1/ph

1/2q
ϕ ∈ Lp(M, ϕ)+ and σϕ denotes the modular group

of ϕ. We next look at self-adjoint elements in Lp(M, ϕ).

Lemma 2.11. Let 1 ≤ p < ∞ and k = k∗ ∈ Lp(M, ϕ). Then there is a
decomposition

k = kp,ϕ,+ − kp,ϕ,−,

where kp,ϕ,± ∈ Lp(M, ϕ)+ and we have

‖k‖p,ϕ = (‖kp,ϕ,+‖p
p,ϕ + ‖kp,ϕ,−‖p

p,ϕ)1/p.

Proof. If k = k∗, then k = h
1/2q
ϕ lh

1/2q
ϕ , where l = l∗ ∈ Lp(M). It follows that

l = u|h|1/p, where h = h∗ ∈ L1(M), h = h+ −h−, h+, h− ∈ L1(M)+, h+h− =
0. Moreover, u = e+ − e−, where e± := s(h±) and |h|1/p = (h+ + h−)1/p =
h

1/p
+ +h

1/p
− . It follows that k has the above form, with kp,ϕ,± = h

1/2q
ϕ h

1/p
± h

1/2q
ϕ

and we have

‖k‖p
p,ϕ = Tr |h| = Tr h+ + Tr h− = ‖kp,ϕ,+‖p

p,ϕ + ‖kp,ϕ,−‖p
p,ϕ.

�

Corollary 2.12. Let h ∈ Lp(M, ϕ)+ and let h1 ∈ L1(M)+ be such that h1 ≤ h.
Then h1 ∈ Lp(M, ϕ)+ and ‖h1‖p,ϕ ≤ ‖h‖p,ϕ.

Proof. The statement is obvious for p = 1 and follows easily from Lemma 2.1
for p = ∞. For 1 < p < ∞, let x ∈ M+, then

0 ≤ 〈hx, h1〉 = Tr h1x ≤ Tr hx = 〈hx, h〉 ≤ ‖hx‖q,ϕ‖h‖p,ϕ.
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Since L∞(M, ϕ)+ is dense in Lq(M, ϕ)+, it follows that 〈k, h1〉 ≤ 〈k, h〉 ≤
‖k‖q,ϕ‖h‖p,ϕ for all k ∈ Lq(M, ϕ)+. Let now k = k∗ ∈ Lq(M, ϕ), with decom-
position k = kq,ϕ,+ − kq,ϕ,− as in Lemma 2.11. Then

|〈k, h1〉| ≤ 〈kq,ϕ,+, h1〉 + 〈kq,ϕ,−, h1〉 ≤ ‖h‖p,ϕ(‖kq,ϕ,+‖q,ϕ + ‖kq,ϕ,−‖q,ϕ)

≤ ‖h‖p,ϕ21/q(‖kq,ϕ,+‖q
q,ϕ + ‖kq,ϕ,−‖q

q,ϕ)1/q = ‖h‖p,ϕ21/q‖k‖q,ϕ,

the last inequality follows by classical Hölder’s inequality. For k ∈ Lq(M, ϕ),
we have k = Re(k) + iIm(k), with the usual definition of the self-adjoint
elements Re(k) and Im(k) in Lq(M, ϕ). Then

|〈k, h1〉| ≤ |〈Re(k), h1〉| + |〈Im(k), h1〉|
≤ ‖h‖p,ϕ21/q(‖Re(k)‖q,ϕ + ‖Im(k)‖q,ϕ) ≤ ‖h‖p,ϕ21+1/q‖k‖q,ϕ.

Hence h1 defines a bounded positive linear functional on Lq(M, ϕ) and there-
fore h1 ∈ Lp(M, ϕ)+. To prove the last statement, note that by (8), Tq,ϕ(h1)
is a positive element in the unit ball of Lq(M, ϕ), so that

‖h1‖p,ϕ = 〈Tq,ϕ(h1), h1〉 ≤ 〈Tq,ϕ(h1), h〉 ≤ ‖h‖p,ϕ.

�

3. The Rényi Relative Entropy

We will need to extend the definition of Lp(M, ϕ) to all (not necessarily faith-
ful) normal states. So let ϕ ∈ S∗(M) and let s(ϕ) = e. Then ϕ restricts
to a faithful normal state on eMe and we may identify the predual (eMe)∗
with the set of all ψ ∈ M∗ such that eψe = ψ, where eψe(x) = ψ(exe),
x ∈ M. By [42, Theorem 7], hψ = heψe = ehψe for all such ψ. Hence
we may identify L1(eMe) � eL1(M)e and using the polar decomposition,
Lp(eMe) � eLp(M)e for all p ≥ 1. The space Lp(M, ϕ) is then defined as

Lp(M, ϕ) = {h ∈ L1(M), h = ehe ∈ Lp(eMe, ϕ|eMe)},

with the corresponding norm.

3.1. Definition and Basic Properties

Let 1 < α < ∞ and let ϕ, ψ ∈ S∗(M). We define

D̃α(ψ‖ϕ) =

⎧
⎨

⎩

α
α−1 log(‖hψ‖α,ϕ) if hψ ∈ Lα(M, ϕ)

∞ otherwise.
(11)

We first show that this definition is an extension of the sandwiched Rényi
relative α-entropy (2). Assume that dim(M) < ∞ and let τ0 be a faithful
normal trace on M. Any state ϕ ∈ S∗(M) is given by a density operator
ρϕ ∈ M+, such that ϕ(x) = τ0(ρϕx), x ∈ M.
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Proposition 3.1. Let dim(M) < ∞ and let ψ,ϕ ∈ S∗(M), with density oper-
ators ρϕ = σ, ρψ = ρ. Then

D̃α(ψ‖ϕ) =

⎧
⎨

⎩

1
α−1 log τ0[(σ

1−α
2α ρσ

1−α
2α )α], if supp(ρ) ⊆ supp(σ)

∞ otherwise.

Proof. We may assume that s(ψ) ≤ s(ϕ) =: e, otherwise ψ /∈ Lp(M, ϕ) and
supp(ρ) �⊆ supp(σ); hence both quantities are infinite. It follows that σ = eσe,
ρ = eρe. The statement now follows by Example 2.4. �

3.1.1. Relation to the Araki–Masuda Divergences. In this paragraph, we show
that D̃α is equal to the Araki–Masuda divergences introduced in [7]. These
divergences are based on the Araki–Masuda definition of the noncommutative
Lp-spaces, [2].

The Araki–Masuda Lp-spaces are defined with respect to a faithful state
ϕ ∈ S∗(M), using a standard form of M and a vector representative η of ϕ.
We will use the standard form (λ(M), L2(M), J, L2(M)+) and η = h

1/2
ϕ . For

ξ ∈ L2(M) and 2 ≤ p < ∞, the Araki–Masuda Lp-norm is defined as [2, Eq.
(1.4)]

‖ξ‖AM
p,ϕ = sup

ζ∈L2(M),‖ζ‖=1

‖Δ1/2−1/p
ζ,η ξ‖,

where Δζ,η is the relative modular operator, see “Appendix A.1”. The Araki–
Masuda Lp space is then the subspace of vectors ξ ∈ L2(M) such that this
expression is finite. By the polar decomposition [2, Thm. 3] and (A.3), this
happens if and only if

ξ = uh1/p
μ h1/2−1/p

ϕ (12)

for some (unique) partial isometry u ∈ M and μ ∈ M+
∗ , such that uu∗ = s(ωξ)

and u∗u = s(μ). In this case, ‖ξ‖AM
p,ϕ = μ(1)1/p.

The weighted Lp-norm of [7] is defined for any *-representation π : M →
B(H) using the spatial derivative. By restriction to the support, the definition
can be extended to non-faithful states. For ϕ ∈ S∗(M), 2 ≤ p ≤ ∞ and ξ ∈ H,
put

‖ξ‖BST
p,ϕ :=

{
supζ∈H,‖ζ‖=1 ‖Δ(ζ/ϕ)1/2−1/pξ‖, if s(ωξ) ≤ s(ϕ)

∞ otherwise
,

here Δ(ζ/ϕ) is the spatial derivative (see “Appendix A.2” for the definition).
The Araki–Masuda divergence is defined as follows. Let ϕ,ψ ∈ S∗(M)

and 1 < α < ∞. Let π : M → B(H) be any *-representation and let ξψ ∈ H
be any vector representative of ψ. Then

DAM
α (ψ‖ϕ) :=

2α

α − 1
log ‖ξψ‖BST

2α,ϕ . (13)

By [7, Lemma 3], the value of ‖ξ‖BST
p,ϕ depends only on the functional ωξ, not

on the representation π or the representing vector ξ. Therefore, DAM
α is well
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defined. Moreover, we may use the above standard form. By the equality (A.5),
we see that if ϕ is faithful, we have

‖ξ‖BST
p,ϕ = ‖ξ∗‖AM

p,ϕ , ∀ξ ∈ L2(M).

By the polar decomposition (12), we obtain the following statement.

Lemma 3.2. Let ξ ∈ L2(M) and let ϕ be faithful. Then ‖ξ‖BST
p,ϕ < ∞ if and

only if ξ = h
1/2−1/p
ϕ h

1/p
μ v for some partial isometry v ∈ M and μ ∈ M+

∗ ,
satisfying v∗v = s(ωξ) and vv∗ = s(μ). Moreover, such v and μ are unique
and we have ‖ξ‖BST

p,ϕ = μ(1)1/p.

We can now prove the main result of this paragraph.

Theorem 3.3. For any ϕ,ψ ∈ S∗(M) and 1 < α < ∞, DAM
α (ψ‖ϕ) =

D̃α(ψ‖ϕ).

Proof. We may assume that s(ψ) ≤ s(ϕ), otherwise both expressions are in-
finite. By restriction to the compressed algebra s(ϕ)Ms(ϕ), we may suppose
that ϕ is faithful.

Assume that DAM
α (ψ‖ϕ) is finite. Let ξψ ∈ L2(M) be any vector repre-

sentative of ψ, by (4) this is equivalent to ξψξ∗
ψ = hψ. By Lemma 3.2

ξψ = h1/2−1/2α
ϕ h1/2α

μ u = h1/2β
ϕ h1/2α

μ u

for some μ ∈ M+
∗ and a partial isometry u with u∗u = s(ψ), uu∗ = s(μ). Then

hψ = ξψξ∗
ψ = h

1/2β
ϕ hα

μh
1/2β
ϕ , so that hψ ∈ Lα(M, ϕ) and

‖hψ‖α,ϕ = μ(1)1/α = (‖ξψ‖BST
2α,ϕ)2.

It follows that DAM
α (ψ‖ϕ) = D̃α(ψ‖ϕ). If D̃α(ψ‖ϕ) < ∞, then

hψ ∈ Lp(M, ϕ), so that hψ = h
1/2β
ϕ h

1/α
μ h

1/2β
ϕ for some μ ∈ M+

∗ . Put ξ :=
h

1/2β
ϕ h

1/2α
μ , then ξ ∈ L2(M) is a vector representative of ψ. Using again

Lemma 3.2, we have ‖ξ‖BST
2α,ϕ = μ(1)1/2α = ‖hψ‖1/2

α,ϕ, this implies the result. �

Remark 3.4. Using [23, Theorem 9.1], the mapping L2(M) � k �→ h
1/2
ϕ k ∈

L1(M) and Lemma 3.2, we can see that the BST-norms can be obtained by
complex interpolation as follows. Consider the map

x �→ h1/2
ϕ x, x ∈ M.

By Hölder inequality, it is a continuous embedding of M into L2(M). The
norm ‖ · ‖BST

p,ϕ is then the norm of the interpolation space C1/p(M, L2(M)).

3.1.2. Relation to Standard Rényi Relative Entropies. Let ψ,ϕ ∈ S∗(M).
The standard version of the Rényi relative entropy Dα for α > 0, α �= 1 was
defined by Petz [32,35] and can be written using the relative modular operator
Δψ,ϕ (see “Appendix A.1”):

Dα(ψ‖ϕ) =

⎧
⎨

⎩

1
α−1 log(h1/2

ϕ ,Δα
ψ,ϕh

1/2
ϕ ), if s(ψ) ≤ s(ϕ)

∞ otherwise.
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Note that by (A.3) we may formally write

Dα(ψ‖ϕ) =
1

α − 1
log(Tr hα

ψh1−α
ϕ ).

If α ∈ (0, 1), this quantity is always well defined and finite, the function α �→
Dα(ψ‖ϕ) is increasing and the limit for α ↑ 1 is equal to the Araki relative
entropy [1]

D1(ψ‖ϕ) =

⎧
⎨

⎩

(h1/2
ψ , log(Δψ,ϕ)h1/2

ψ ), if s(ψ) ≤ s(ϕ)

∞ otherwise.

For α > 1 it may happen that h
1/2
ϕ /∈ D(Δα/2

ψ,ϕ) and then Dα(ψ‖ϕ) = ∞. But
if Dα0(ψ‖ϕ) is finite for some α0 > 1, then the function α �→ Dα(ψ‖ϕ) is
increasing on (1, α0] and the limit limα↓1 Dα(ψ‖ϕ) = D1(ψ‖ϕ) holds, see [7,
Proposition 11] for a proof of these properties.

We next find upper and lower bounds for D̃α in terms of Dα. For this, we
use some upper and lower bounds on the norm ‖hψ‖p,ϕ. The upper bound in
the following proposition was proved also in [7] and can be seen as an extension
of the Araki–Lieb–Thirring inequality of [25] to non-semifinite case.

Proposition 3.5. Let ψ,ϕ ∈ M+
∗ , s(ψ) ≤ s(ϕ), p > 1. Then

ψ(1)1−p‖Δ1−1/2p
ψ,ϕ h1/2

ϕ ‖2p
2 ≤ ‖hψ‖p

p,ϕ ≤ ‖Δp/2
ψ,ϕh1/2

ϕ ‖2.

Proof. For the first inequality, we may assume that hψ ∈ Lp(M, ϕ), so that
hψ = h

1/2q
ϕ h

1/p
ξ h

1/2q
ϕ for some ξ ∈ M+

∗ and ‖hψ‖p
p,ϕ = ξ(1). By uniqueness of

the polar decomposition in L2(M), we have

h
1/2p
ξ h1/2q

ϕ = uh
1/2
ψ ,

where u is a partial isometry with u∗u = s(ψ). By Sect. A.1, h
1/2
ψ ∈ D(Δ1/2q

ψ,ϕ )
and

Δ1−1/2p
ψ,ϕ h1/2

ϕ = Δ1/2q
ψ,ϕ Δ1/2

ψ,ϕh1/2
ϕ = Δ1/2q

ψ,ϕ h
1/2
ψ = h

1/2q
ψ u∗h1/2p

ξ .

By Hölder’s inequality,

‖h
1/2q
ψ u∗h1/2p

ξ ‖2 ≤ ‖h
1/2q
ψ ‖2q‖h

1/2p
ξ ‖2p = ψ(1)1/2qξ(1)1/2p.

This implies the first inequality. For the second inequality, assume that h
1/2
ϕ ∈

D(Δp/2
ψ,ϕ) (otherwise the right-hand side is infinite, and there is nothing to

prove). By [41, Lemma VI.2.3], it follows that there is a bounded continuous
function k : S → L2(M), holomorphic in the interior of S, given by

k(z) := Δzp/2
ψ,ϕ h1/2

ϕ .

On the other hand, we have Δ−p/2
ϕ,ψ h

1/2
ϕ = JΔp/2

ψ,ϕJh
1/2
ϕ = JΔp/2

ψ,ϕh
1/2
ϕ , so that

h
1/2
ϕ ∈ D(Δ−p/2

ϕ,ψ ) and there is a bounded continuous function k′ : S → L2(M),
holomorphic in the interior of S, given by

k′(z) := Δ−zp/2
ϕ,ψ h1/2

ϕ .
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Hence f(z) := k′(z)k(z) defines a bounded continuous function S → L1(M),
holomorphic in the interior. By (A.3), we have

k(z) = h
zp/2
ψ h1/2−zp/2

ϕ , k′(z) = h1/2−zp/2
ϕ h

zp/2
ψ , Re(z) ≤ 1/p.

It follows that

f(it) = h1/2
ϕ

(
h−itp/2

ϕ hitp
ψ h−itp/2

ϕ

)
h1/2

ϕ , t ∈ R,

so that f(it) ∈ L∞(M, ϕ) and ‖f(it)‖∞,ϕ ≤ 1. Further, we obtain by Hölder’s
inequality

‖f(1 + it)‖1 ≤ ‖k′(1 + it)‖2‖k(1 + it)‖2 = ‖Δp/2
ψ,ϕh1/2

ϕ ‖2
2.

It follows that f ∈ F(L∞(M, ϕ), L1(M)) and since f(1/p) = hψ, we obtain
by Theorem 2.10 that ‖hψ‖p,ϕ ≤ ‖Δp/2

ψ,ϕh
1/2
ϕ ‖2/p

2 . �

Corollary 3.6. Let ψ,ϕ ∈ S∗(M), α > 1. Then

D2−1/α(ψ‖ϕ) ≤ D̃α(ψ‖ϕ) ≤ Dα(ψ‖ϕ).

Proof. Immediate from Proposition 3.5. �
3.1.3. Properties of the Function α �→ D̃α .

Proposition 3.7. Let ψ,ϕ ∈ S∗(M) be such that hψ ∈ Lα(M, ϕ) for some
1 < α < ∞.

(i) D̃α(ψ‖ϕ) ≥ 0, with equality if and only if ψ = ϕ.
(ii) If ψ �= ϕ, the function α′ �→ D̃α′(ψ‖ϕ) is strictly increasing for α′ ∈

(1, α].

Proof. By (5), ‖hψ‖α,ϕ ≥ ‖hψ‖1 = 1, hence D̃α(ψ‖ϕ) ≥ 0. Since hϕ =
h

1/2
ϕ 1h

1/2
ϕ ∈ L∞(M, ϕ) and

1 = ‖hϕ‖1 ≤ ‖hϕ‖α,ϕ ≤ ‖hϕ‖∞,ϕ = ‖1‖ = 1,

we have D̃α(ϕ‖ϕ) = 0, for all α. Assume now that D̃α(ψ‖ϕ) = 0. Choose any
1 < p < α, then 1 ≤ ‖hψ‖p,ϕ ≤ ‖hψ‖α,ϕ = 1, so that ‖hψ‖p,ϕ = 1. Let f be
the constant function f(z) ≡ hψ for all z ∈ S, then clearly f ∈ Fα,1 (recall
the notation of Sect. 2.3). Let η ∈ (0, 1) be such that 1/p = η + (1 − η)/α,
then f satisfies equality in the Hadamard three lines theorem (Theorem 2.10)
at η. It follows that hψ ≡ fhψ,p(z + (1 − z)/α), z ∈ S (note that in this case
M = M1/M0 = 1). Hence fhψ,p(z) ≡ hψ for all z ∈ S. Putting z = 0, we get
hψ = chϕ, where c = ‖hψ‖α,ϕ = 1. This finishes the proof of (i).

For (ii), let 1 < α′ < α′′ ≤ α. Then hψ ∈ Lα(M, ϕ) ⊆ Lα′′(M, ϕ) ⊆
Lα′(M, ϕ). Let η be such that η + (1 − η)/α′′ = 1/α′. Then 1 − η = β′′/β′,
where 1/β′ + 1/α′ = 1 and 1/α′′ + 1/β′′ = 1. We consider again the constant
function f(z) ≡ hψ, which this time is an element of Fα′′,1. By Theorem 2.10
with p = 1 and p′ = α′′, we obtain

‖hψ‖α′,ϕ ≤ ‖hψ‖1−η
α′′,ϕ = ‖hψ‖β′′/β′

α′′,ϕ

Taking the logarithm proves D̃α′(ψ‖ϕ) ≤ D̃α′′(ψ‖ϕ). Assume now that equal-
ity holds, then it follows that hψ ≡ fhψ,α′(z+(1−z)/α′′)Mz−η, similarly as in
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the proof of (i). Putting u := z + (1 − z)/α′′, we obtain hψ ≡ fhψ,α′(u)Mau+b

for all u with Re(u) between 1/α′′ and 1, here a, b ∈ R. This equality extends
to all u ∈ S. Again, putting u = 0, we obtain hψ = chϕ, which implies ψ = ϕ,
since both ϕ and ψ are states. �

We next discuss the limit values α = 1,∞. Let us define

D̃∞(ψ‖ϕ) :=

⎧
⎨

⎩

log ‖hψ‖∞,ϕ if hψ ∈ L∞(M, ϕ)

∞ otherwise.

This quantity is clearly an extension of the relative max entropy (3).

Proposition 3.8. Let ψ,ϕ ∈ S∗(M). Then
(i) limα→∞ D̃α(ψ‖ϕ) = D̃∞(ψ‖ϕ).
(ii) If D̃α(ψ‖ϕ) is finite for some α > 1, then

lim
α↓1

D̃α(ψ‖ϕ) = D1(ψ‖ϕ).

Proof. First, let y ∈ M and consider the function [0, 1] � θ �→ log(‖hy‖1/θ,ϕ).
This function is decreasing by (5) and by applying Theorem 2.10 to the con-
stant function f(z) ≡ hy, we see that it is also convex. It follows that this
function must be continuous on the interval (0, 1]. Consequently, we must have
limq→1 ‖hy‖q,ϕ = ‖hy‖1 = ϕ(y).

To prove (i), it is enough to show that limp→∞ ‖hψ‖p,ϕ = ‖hψ‖∞,ϕ,
where we put the norms infinite if hψ /∈ Lp(M, ϕ). Note that the function
p �→ ‖hψ‖p,ϕ is increasing and bounded above by ‖hψ‖∞,ϕ. The statement (i)
is clearly true if the limit is infinite, so assume that limp→∞ ‖hψ‖p,ϕ = M < ∞.
We then have

‖hψ‖p,ϕ ≤ M ≤ ‖hψ‖∞,ϕ

for all 1 ≤ p < ∞. Let y ∈ M+. Then for any q > 1

〈hy, hψ〉
‖hy‖q,ϕ

≤ ‖hψ‖p,ϕ ≤ M, 1/p + 1/q = 1,

hence ψ(y) = 〈hy, hψ〉 ≤ M‖hy‖q,ϕ. Taking the limit q → 1, we obtain ψ(y) ≤
M‖hy‖1 = Mϕ(y). Since this holds for all y ∈ M+, we obtain ψ ≤ Mϕ
and by Lemma 2.1, hψ ∈ L∞(M, ϕ), with ‖hψ‖∞,ϕ ≤ M . The statement
(ii) follows from Corollary 3.6 and properties of the standard Rényi relative
entropy Dα(ψ‖ϕ). �

3.2. Extension to M+
∗

It is clear from Theorem 2.3 and the remarks at the beginning of Sect. 3 that
the spaces Lp(M, ϕ) can be defined for ϕ ∈ M+

∗ (we put Lp(M, ϕ) = {0} for
ϕ = 0) and that for λ > 0, ‖h‖p,λϕ = λ1/q‖h‖p,ϕ for any h ∈ Lp(M, ϕ) =
Lp(M, λϕ). The definition of D̃α can thus be extended to positive normal
functionals. It is easy to see that for μ, λ > 0 and ψ,ϕ ∈ M+

∗ , we have

D̃α(μψ‖λϕ) = D̃α(ψ‖ϕ) +
α

α − 1
log μ − log λ. (14)
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With this extension, we have the following order relations.

Proposition 3.9. Let ψ,ψ0, ϕ, ϕ0,∈ M+
∗ and ψ0 ≤ ψ, ϕ0 ≤ ϕ. Let 1 < α < ∞.

Then D̃α(ψ0‖ϕ) ≤ D̃α(ψ‖ϕ) and D̃α(ψ‖ϕ0) ≥ D̃α(ψ‖ϕ).

Proof. For the first inequality, we may assume that ψ ∈ Lα(M, ϕ). The in-
equality then follows by Corollary 2.12. Let now ϕ0 ≤ ϕ and assume that
h ∈ L∞(M, ϕ0). By Lemma 2.2, it is easy to see that then h ∈ L∞(M, ϕ)
and ‖h‖∞,ϕ ≤ ‖h‖∞,ϕ0 . It follows that if f ∈ F(L∞(M, ϕ0), L1(M)), then
f ∈ F(L∞(M, ϕ), L1(M)) and

|||f |||F(L∞(M,ϕ),L1(M)) ≤ |||f |||F(L∞(ϕ0),L1(M)).

By the definition of the interpolation norm, we obtain ‖hψ‖α,ϕ ≤ ‖hψ‖α,ϕ0 ,
this implies the second inequality. �

Proposition 3.10. D̃α : M+
∗ × M+

∗ → [0,∞] is jointly lower semicontinuous.

Proof. It suffices to prove that the set {(ψ,ϕ) ∈ M+
∗ × M+

∗ , ‖hψ‖α,ϕ ≤ a} is
closed in M∗ × M∗ for each a ≥ 0. So let ψn and ϕn be sequences of positive
normal functionals, converging in M∗ to ψ and ϕ, respectively, and such that
‖hψn

‖α,ϕn
≤ a. By Theorem 2.3, we have

hψn
= h1/2β

ϕn
knh1/2β

ϕn
, kn ∈ Lα(M)+, ‖kn‖α = ‖hψn

‖α,ϕn
≤ a.

Since the space Lα(M) is reflexive and {kn} is bounded, we may assume that
kn converges to some k weakly in Lα(M), and then ‖k‖α ≤ a.

Let h := h
1/2β
ϕ kh

1/2β
ϕ , so that h ∈ Lα(M, ϕ) with ‖h‖α,ϕ = ‖k‖α ≤ a.

We will show that hψn
converges to h weakly in L1(M) and hence we must

have hψ = h. So let x ∈ M. Then by Hölder’s inequality,

|Tr (hψn
− h)x| = |Tr (h1/2β

ϕn
knh1/2β

ϕn
− h1/2β

ϕ kh1/2β
ϕ )x|

≤ |Tr (h1/2β
ϕn

− h1/2β
ϕ )knh1/2β

ϕn
x|

+ |Tr h1/2β
ϕ kn(h1/2β

ϕn
− h1/2β

ϕ )x| + |Tr h1/2β
ϕ (kn − k)h1/2β

ϕ x|
≤ ‖h1/2β

ϕn
− h1/2β

ϕ ‖2β‖kn‖α(ϕn(1)1/2β + ϕ(1)1/2β)‖x‖
+ |Tr (kn − k)h1/2β

ϕ xh1/2β
ϕ |

It was proved by Kosaki [24, Theorem 4.2] that the map L1(M)+ � h �→
h1/p ∈ Lp(M)+ is norm continuous. Hence the first part of the last expression
converges to 0. Since h

1/2β
ϕ xh

1/2β
ϕ ∈ Lβ(M) for any x ∈ M, the second part

goes to 0 as well. �

Let now N = M⊕M and ϕ1, ϕ2 ∈ M+
∗ be faithful, ϕ = ϕ1⊕ϕ2. By [42],

Lp(N ) = Lp(M) × Lp(M) and ‖(k1, k2)‖p = (‖k1‖p
p + ‖k2‖p

p)
1/p, 1 ≤ p ≤ ∞.

By this and Theorem 2.3, we obtain that Lp(N , ϕ) = Lp(M, ϕ1)×Lp(M, ϕ2)
and for h = (h1, h2) ∈ Lp(N , ϕ),

‖(h1, h2)‖p,ϕ = (‖h1‖p
p,ϕ1

+ ‖h2‖p
p,ϕ2

)1/p. (15)
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Proposition 3.11. Let ψ1, ψ2, ϕ1, ϕ2 ∈ M+
∗ and let ψ = ψ1 ⊕ ψ2, ϕ = ϕ1 ⊕ ϕ2.

Then

exp{(α − 1)D̃α(ψ‖ϕ)} = exp{(α − 1)D̃α(ψ1‖ϕ1)}
+ exp{(α − 1)D̃α(ψ1‖ϕ1)}.

Proof. Follows immediately from (15) and the definition of D̃α. �

3.3. Data Processing Inequality

Let N be another von Neumann algebra and let Φ : L1(M) → L1(N ) be
a positive linear trace-preserving map. Then Φ defines a positive linear map
M∗ → N∗, also denoted by Φ, mapping states to states. The adjoint Φ∗ : N →
M is normal, positive and unital. The map Φ will be fixed throughout this
section, together with ϕ ∈ S∗(M). We put e := s(ϕ) and e′ := s(Φ(ϕ)).

We first show that Φ maps L1(M, ϕ) into L1(N ,Φ(ϕ)), see the remarks
at the beginning of Sect. 3. From ϕ(Φ∗(1 − e′)) = Φ(ϕ)(1 − e′) = 0, it follows
that eΦ∗(1 − e′)e = 0 and hence eΦ∗(e′) = e, so that e ≤ Φ∗(e′). Let now
h = ehe ∈ L1(M)+, then

Tr h = Tr he ≤ Tr hΦ∗(e′) = Tr Φ(h)e′ ≤ Tr Φ(h) = Trh,

hence e′Φ(h)e′ = Φ(h) and Φ(h) ∈ L1(N ,Φ(ϕ)). Since L1(M, ϕ) is generated
by positive elements, this implies that Φ maps L1(M, ϕ) into L1(N ,Φ(ϕ)).

Assume next that h = hx for some x ∈ eM+e. Then hx ≤ ‖x‖hϕ and
since Φ is positive, we also have Φ(hx) ≤ ‖x‖Φ(hϕ). By Lemma 2.1, there is
some x′ ∈ e′N+e′ such that

Φ(hx) = Φ(h1/2
ϕ xh1/2

ϕ ) = Φ(hϕ)1/2x′Φ(hϕ)1/2 = Φ(hϕ)x′ ∈ L∞(N ,Φ(ϕ))+.

Since M+ generates M, it follows that Φ maps L∞(M, ϕ) into L∞(N ,Φ(ϕ)).
By linearity, the map x �→ x′ extends to a linear map Φ∗

ϕ : eMe → e′N e′,
which is obviously positive, unital and normal.

Proposition 3.12. For any 1 ≤ p ≤ ∞, Φ restricts to a contraction Lp(M, ϕ)
→ Lp(N ,Φ(ϕ)).

Proof. As we have seen, Φ maps L1(M, ϕ) into L1(N ,Φ(ϕ)) and L∞(M, ϕ)
into L∞(N ,Φ(ϕ)). For any h ∈ L1(M, ϕ),

‖Φ(h)‖1 = sup
x0∈N ,‖x0‖≤1

Tr Φ(h)x0 = sup
x0∈N ,‖x0‖≤1

Tr hΦ∗(x0) ≤ ‖h‖1,

the last inequality follows from the fact that Φ∗ is a unital positive map, hence
a contraction by the Russo–Dye theorem, [33]. Next, for x ∈ eMe,

‖Φ(hx)‖∞,Φ(ϕ) = ‖Φ(hϕ)Φ∗
ϕ(x)‖∞,Φ(ϕ) = ‖Φ∗

ϕ(x)‖ ≤ ‖x‖ = ‖hx‖∞,ϕ,

where we used Russo–Dye theorem for Φ∗
ϕ. The statement now follows by the

Riesz–Thorin theorem (Theorem B.1). �

Let us denote the preadjoint of Φ∗
ϕ by Φϕ. For any x ∈ eMe and h0 ∈

e′L1(N )e′, we have

〈h0,Φ(hx)〉 = 〈h0,Φ(hϕ)Φ∗
ϕ(x)〉 = Tr h0Φ∗

ϕ(x) = 〈Φϕ(h0), hx〉. (16)
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By the uniqueness part in [6, Theorem 4.4.1], this extends to

〈h0,Φ(h)〉 = 〈Φϕ(h0), h〉, h ∈ Lp(M, ϕ), h0 ∈ Lq(N ,Φ(ϕ)). (17)

Moreover, for x ∈ eMe,

Tr Φϕ(Φ(hϕ))x = Tr Φ(hϕ)Φ∗
ϕ(x) = Tr Φ(hϕ)1/2Φ∗

ϕ(x)Φ(hϕ)1/2

= Tr Φ(hx) = Trhx = Tr hϕx,

so that Φϕ(Φ(hϕ)) = hϕ. By Proposition 3.12, Φϕ defines a positive contraction
Lp(N ,Φ(ϕ)) → Lp(M, ϕ), for 1 ≤ p ≤ ∞.

Remark 3.13. As in the proof of Lemma 2.1, we have

Tr hxy = (yh1/2
ϕ , Jxh1/2

ϕ ), y ∈ eMe, x ∈ eM+e

and by linearity, this holds for all x ∈ eMe. It follows that Φ∗
ϕ is determined

by

(Φ∗(y0)h1/2
ϕ , Jxh1/2

ϕ ) = TrhxΦ∗(y0) = Tr Φ(hx)y0

= Tr Φ(hϕ)1/2Φ∗
ϕ(x)Φ(hϕ)1/2y0

= (y0Φ(hϕ)1/2, J0Φ∗
ϕ(x)Φ(hϕ)1/2)

for all y0 ∈ e′N e′ and x ∈ eMe, here J0 is the modular conjugation (adjoint
operation) on L2(e′N e′). In this form, the map Φ∗

ϕ was defined by Petz in [37]
and is therefore called the Petz dual. Moreover, it was proved that for any n,
Φ∗

ϕ is n-positive if and only if Φ is.

We are now ready to prove the data processing inequality for D̃α, together
with some lower and upper bounds in terms of the dual elements Tβ,ϕ(hψ) and
Tβ,Φ(ϕ)(Φ(hψ)), see (8).

Theorem 3.14. Let 1 < α < ∞, 1/α+1/β = 1. Let ψ,ϕ ∈ S∗(M) and assume
that hψ ∈ Lα(M, ϕ). Let us denote h := Tβ,ϕ(hψ), h0 = Tβ,Φ(ϕ)(Φ(hψ)). Then
for 1 < α ≤ 2,

D̃α(ψ‖ϕ) − D̃α(Φ(ψ)‖Φ(ϕ)) ≥ 2
∥
∥
∥
∥

1
2
(h − Φϕ(h0))

∥
∥
∥
∥

β

β,ϕ

and for 2 ≤ α < ∞,

D̃α(ψ‖ϕ) − D̃α(Φ(ψ)‖Φ(ϕ)) ≥ β(β − 1)
∥
∥
∥
∥

1
2
(h − Φϕ(h0))

∥
∥
∥
∥

2

β,ϕ

.

If 1 < α < ∞ and ‖h − Φϕ(h0)‖β,ϕ < 1, we also have an upper bound

D̃α(ψ‖ϕ) − D̃α(Φ(ψ)‖Φ(ϕ)) ≤ −β log (1 − ‖h − Φϕ(h0)‖β,ϕ) .

Proof. By (17), we obtain
‖Φ(hψ)‖α,Φ(ϕ)

‖hψ‖α,ϕ
=

〈h0,Φ(hψ)〉
‖hψ‖α,ϕ

= 〈Φϕ(h0), ‖hψ‖−1
α,ϕhψ〉

= 〈Φϕ(h0) + h, ‖hψ‖−1
α,ϕhψ〉 − 〈h, ‖hψ‖−1

α,ϕhψ〉
≤ ‖Φϕ(h0) + h‖β,ϕ − 1.
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Assume 1 < α ≤ 2, so that 2 ≤ β < ∞. Since ‖h‖β,ϕ, ‖Φϕ(h0)‖β,ϕ ≤ 1,
Clarkson’s inequality (Theorem 2.5) implies

‖Φϕ(h0) + h‖β,ϕ

≤ (2β − ‖h − Φϕ(h0)‖β
β,ϕ)1/β = 2

(

1 −
∥
∥
∥
∥

1
2
(h − Φϕ(h0)

∥
∥
∥
∥

β

β,ϕ

)1/β

.

Using the inequality (1 − xp)1/p ≤ 1 − 1
pxp for p > 1, x ∈ [0, 1], we obtain

‖Φϕ(h0) + h‖β,ϕ − 1 ≤ 1 − 2
β

‖1
2
(h − Φϕ(h0)‖β

β,ϕ

For 2 ≤ α < ∞, we apply Theorem 2.6 with h replaced by h + Φϕ(h0) and k
by h − Φϕ(h0), and obtain

‖Φϕ(h0) + h‖β,ϕ ≤ 2

(

1 − (β − 1)
∥
∥
∥
∥

1
2
(h − Φϕ(h0)

∥
∥
∥
∥

2

β,ϕ

)1/2

.

The inequality above with p = 2 now yields

‖Φϕ(h0) + h‖β,ϕ − 1 ≤ 1 − (β − 1)
∥
∥
∥
∥

1
2
(h − Φϕ(h0)

∥
∥
∥
∥

2

β,ϕ

The inequalities in (i) and (ii) follow by taking the logarithms and using the
inequality log x ≤ x − 1 for x > 0.

On the other hand, we have a lower bound

‖Φ(hψ)‖α,Φ(ϕ)

‖hψ‖α,ϕ
= 〈Φϕ(h0), ‖hψ‖−1

α,ϕhψ〉 = 〈h − (h − Φϕ(h0)), ‖ψ‖−1
α,ϕhψ〉

≥ 1 − ‖h − Φϕ(h0)‖β,ϕ.

If 1 − ‖h − Φϕ(h0)‖β,ϕ > 0, this implies (iii). �

The following result was obtained in [30] for algebras of bounded opera-
tors on a separable Hilbert space.

Corollary 3.15. Let ψ,ϕ ∈ S∗(M) and let Φ : L1(M) → L1(N ) be a positive
trace-preserving map. Then

D1(Φ(ψ)‖Φ(ϕ)) ≤ D1(ψ‖ϕ).

Proof. Immediate from Theorem 3.14 and Proposition 3.8. �

Corollary 3.16. For 1 < α < ∞, the map (ψ,ϕ) �→ exp{(α − 1)D̃α(ψ‖ϕ)} is
jointly convex.

Proof. The following arguments are standard. Let ψ1, ψ2, ϕ1, ϕ2 ∈ S∗(M). Let
ψ,ϕ ∈ S∗(M⊕M) be given by ψ = λψ1 ⊕ (1−λ)ψ2 and ϕ = λϕ1 ⊕ (1−λ)ϕ2.
By Proposition 3.11 and (14), we obtain
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exp{(α − 1)D̃α(ψ‖ϕ)} = exp{(α − 1)D̃α(λψ1‖λϕ1)}
+ exp{(α − 1)D̃α((1 − λ)ψ2‖(1 − λ)ϕ2)}

=λ exp{(α − 1)D̃α(ψ1‖ϕ1)}
+ (1 − λ) exp{(α − 1)D̃α(ψ2‖ϕ2)}.

Let Φ : L1(M ⊕ M) → L1(M) be given by (h1, h2) �→ h1 + h2, then Φ is
obviously positive and trace preserving and

Φ(ϕ) = λϕ1 + (1 − λ)ϕ2, Φ(ψ) = λψ1 + (1 − λ)ψ2.

The statement now follows by Theorem 3.14. �
We also obtain a characterization of equality in DPI, which will be useful

in the next section.

Corollary 3.17. Let ψ,ϕ ∈ S∗(M) and assume that ψ ∈ Lα(M, ϕ). Then
D̃α(ψ‖ϕ) = D̃α(Φ(ψ)‖Φ(ϕ)) if and only if

Φϕ ◦ Tβ,Φ(ϕ) ◦ Φ(hψ) = Tβ,ϕ(hψ).

If α = 2, this is equivalent to Φϕ ◦ Φ(ψ) = ψ.

Proof. The first statement is immediate from Theorem 3.14. Let now α = 2,
then

‖Φ(hψ)‖2
2,Φ(ϕ) = 〈Φ(hψ),Φ(hψ)〉 = 〈hψ,Φϕ ◦ Φ(hψ)〉

≤ ‖hψ‖2,ϕ‖Φϕ ◦ Φ(hψ)‖2,ϕ ≤ ‖hψ‖2
2,ϕ.

The statement now follows by equality condition in the Schwarz inequality. �

4. Sufficiency of Channels

In this section, we study the case of equality in DPI for D̃α. The aim is to
show that this equality implies existence of a recovery map for (Φ, ψ, ϕ). For
this, we need that the map Φ is 2-positive, which will be assumed in the rest
of the paper.

Let ψ,ϕ ∈ S∗(M) and let Φ : L1(M) → L1(N ) be a 2-positive trace-
preserving map. We say that Φ is sufficient with respect to {ψ,ϕ} if there
exists a 2-positive trace-preserving recovery map Ψ : L1(N ) → L1(M), such
that Ψ ◦ Φ(hψ) = hψ and Ψ ◦ Φ(hϕ) = hϕ.

Remark 4.1. In the above definition, we may also assume that both Φ and
Ψ are completely positive and trace-preserving maps, such maps are usually
called quantum channels. This definition seems stronger, but in fact it is fully
equivalent, in the sense that if Φ is 2-positive and trace preserving and there is
a 2-positive recovery map Ψ for (Φ, ψ, ϕ), then there are quantum channels Φ̃
and Ψ̃ that coincide with Φ and Ψ when restricted to {ψ,ϕ} and {Φ(ψ),Φ(ϕ)},
respectively.

The following theorem is one of the crucial results of [37]. Note that it
implies that Φϕ is a universal recovery map.
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Theorem 4.2 [20,37]. Let Φ : L1(M) → L1(N ) be a trace-preserving 2-positive
map. Let ϕ ∈ S∗(M) be faithful and assume that Φ(ϕ) is faithful as well. Then
Φ is sufficient with respect to {ψ,ϕ} if and only if Φϕ ◦ Φ(hψ) = hψ.

The following is a standard result of ergodic theory.

Lemma 4.3. Let Ω : L1(M) → L1(M) be 2-positive and trace preserving,
admitting a faithful normal invariant state. Then there is a faithful normal
conditional expectation E on M such that ψ ∈ S∗(M) is invariant under Ω
if and only if ψ ◦ E = ψ.

Proof. Let S be the set of all normal invariant states of Ω and let I be the
set of all 2-positive unital normal maps T : M → M, such that ψ ◦ T = ψ
for all ψ ∈ S. Then I is a semigroup (i.e., closed under composition), convex
and closed with respect to the pointwise weak*-topology. By the mean ergodic
theorem [26], I contains a conditional expectation E, such that

T ◦ E = E ◦ T = E, ∀T ∈ I.

Since E ∈ I, ψ ◦ E = ψ for all ψ ∈ S. On the other hand, let ψ ∈ S∗(M) be
such that ψ ◦ E = ψ, then

ψ ◦ Ω∗ = ψ ◦ E ◦ Ω∗ = ψ ◦ E = ψ,

because Ω∗ ∈ I. �

Lemma 4.4. Let ϕ ∈ S∗(M) be faithful. Let 1 < p < ∞ and let ψ ∈ S∗(M)
be such that

hψ = ch1/2q
ϕ h1/p

ω h1/2q
ϕ

for some c > 0 and ω ∈ S∗(M). Let Φ : L1(M) → L1(N ) be a 2-positive trace-
preserving map such that Φ(ϕ) is faithful. Then Φ is sufficient with respect to
{ψ,ϕ} if and only if it is sufficient with respect to {ω, ϕ}.
Proof. Let Ω = Φϕ◦Φ, then ϕ is a faithful invariant state for Ω. By Lemma 4.3
and Theorem 4.2, there is a faithful normal conditional expectation E such
that ϕ◦E = ϕ and Φ is sufficient with respect to {ψ,ϕ} if and only if ψ◦E = ψ.
Let us denote the range of E by M0.

We now apply the results in “Appendix A.3”. Let ψ ◦ E = ψ, that is,
E1(hψ) = hψ. By (A.7) and (A.8),

hψ = E1(hψ) = cE1(h1/2q
ϕ h1/p

ω h1/2q
ϕ ) = ch1/2q

ϕ Ep(h1/p
ω )h1/2q

ϕ .

Since ip is an isomorphism (see Theorem 2.3), we see that we must have h
1/p
ω =

Ep(h
1/p
ω ) ∈ Lp(M0). But then also hω ∈ L1(M0), so that ω ◦ E = ω and Φ is

sufficient with respect to {ω, ϕ}. Conversely, if ω◦E = ω, then h
1/p
ω ∈ Lp(M0),

so that hψ ∈ L1(M0) and ψ ◦ E = ψ. �

Lemma 4.5. Let Φ : L1(M) → L1(N ) be a positive trace-preserving map and
let 1 < p < ∞. Let h ∈ Lp(M, ϕ) be such that ‖Φ(h)‖p,Φ(ϕ) = ‖h‖p,ϕ. Then

‖Φ(fh,p(θ))‖1/θ,Φ(ϕ) = ‖fh,p(θ)‖1/θ,ϕ, ∀θ ∈ (0, 1).
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Proof. By Proposition 3.12, Φ ◦ fh,p ∈ F(L∞(N ,Φ(ϕ)), L1(N )) =: F0 and
|||Φ ◦ fh,p|||F0

≤ |||fh,p|||F . Since Φ ◦ fh,p(1/p) = Φ(h), we have

‖Φ(h)‖p,Φ(ϕ) ≤ |||Φ ◦ fh,p|||F0
≤ |||fh,p|||F = ‖h‖p,ϕ = ‖Φ(h)‖p,Φ(ϕ),

hence ‖Φ◦fh,p(1/p))‖p,Φ(ϕ) = |||Φ(fh,p)|||F0
= |||fh,p|||F . The result now follows

by Lemma 2.7. �

We are now prepared to prove the main result of this section.

Theorem 4.6. Let Φ : L1(M) → L1(N ) be a 2-positive trace-preserving map
and let 1 < α < ∞. Let ϕ,ψ ∈ S∗(M) be such that hψ ∈ Lα(M, ϕ). Then Φ
is sufficient with respect to {ψ,ϕ} if and only if D̃α(ψ‖ϕ) = D̃α(Φ(ψ)‖Φ(ϕ)).

Proof. By the assumptions, s(ψ) ≤ s(ϕ) and we may suppose that both ϕ and
Φ(ϕ) are faithful, by restriction to the corresponding compressed algebras.
Further, we have hψ = h

1/2β
ϕ h

1/α
ω h

1/2β
ϕ for some ω ∈ M+

∗ , here 1/α+1/β = 1.
Suppose that D̃α(ψ‖ϕ) = D̃α(Φ(ψ)‖Φ(ϕ)). Then ‖Φ(hψ)‖α,Φ(ϕ) = ‖hψ‖α,ϕ

and by Lemma 4.5,

‖Φ(fhψ,α(1/2))‖2,Φ(ϕ) = ‖fhψ,α(1/2)‖2,ϕ.

Note that

fhψ,α(1/2) = ch1/4
ϕ h1/2

ω h1/4
ϕ ∈ L1(M)+

for some constant c > 0, hence there is some ψ1 ∈ S∗(M), such that fhψ,α(1/2)
= dhψ1 , where d > 0 is obtained by normalization. It follows that hψ1 ∈
L2(M, ϕ) and we have

‖Φ(hψ1)‖2,Φ(ϕ) = ‖hψ1‖2,ϕ.

By Corollary 3.17, this implies that Φ is sufficient with respect to {ψ1, ϕ} and
by Lemma 4.4, Φ is sufficient with respect to {ω1, ϕ}, where ω1 = ω(1)−1ω.
Using Lemma 4.4 again, we obtain that Φ is sufficient with respect to {ψ,ϕ}.

The converse statement follows immediately from DPI (Theorem 3.14).
�

5. Concluding Remarks

In this paper, an extension of the sandwiched Rényi relative α-entropies to the
setting of von Neumann algebras is defined for α > 1, using an interpolating
family of noncommutative Lp-spaces with respect to a state. For this exten-
sion, we proved that it coincides with the previously defined Araki–Masuda
divergences [7]. Further, some of the basic properties are shown, in particular
the data processing inequality with respect to positive trace-preserving maps.
Since the limit α → 1 yields the Araki relative entropy D1, this implies that D1

is monotone under such maps and not only adjoints of unital Schwarz maps,
as previously known [45]. For M = B(H), this fact was recently observed in
[30].
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Another main result of the paper is the fact that preservation of the
extended sandwiched entropies characterizes sufficiency of 2-positive trace-
preserving maps. Note that for most of the proofs 2-positivity was not needed,
indeed, Lemma 4.3 is the only place where more than positivity is necessary. It
would be interesting to see whether similar results can be proved assuming only
positivity, since the results known so far on sufficiency of maps need stronger
positivity conditions. Note that for α = 2, an extension to positive maps is
proved in Corollary 3.17.

The Araki–Masuda divergences were defined in [7] also for α ∈ [1/2, 1). A
treatment of D̃α for these values in our setting will be given elsewhere, see [19].
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Appendix A. Some Technical Results in Haagerup Lp-Spaces

A.1. Relative Modular Operator

We discuss the definition of the relative modular operator and its form in the
standard representation (λ(M), L2(M), J, L2(M)+).

Let η, ξ ∈ L2(M) and let ψ = ωη = (· η, η), ϕ = ωξ = (· ξ, ξ). The
conjugate-linear operator Sη,ξ with domain Mξ + L2(M)(1 − s(ϕ)) is defined
as

Sη,ξ : xξ + ζ �→ s(ϕ)x∗η, x ∈ M, ζ ∈ L2(M)(1 − s(ϕ)). (A.1)
Let also Fη,ξ be defined on the domain ξM + (1 − s(ϕ))L2(M) as

Fη,ξ : ξy + ζ ′ �→ ηy∗s(ϕ), y ∈ M, ζ ′ ∈ (1 − s(ϕ))L2(M). (A.2)

Then Sη,ξ, Fη,ξ are densely defined and closable, and we have S̄ = F ∗, F̄ = S∗.
The closures have polar decompositions

S̄η,ξ = Jη,ξΔ
1/2
η,ξ , F̄η,ξ = Δ1/2

η,ξ Jξ,η = Jξ,ηΔ−1/2
ξ,η ,

where Jη,ξ is a partial anti-isometry, Jξ,η = J∗
η,ξ and Δη,ξ is a positive self-

adjoint operator on L2(M), called the relative modular operator. This operator
does not depend on the choice of the vector representative η of ψ, and we
may replace Jη,ξ with J if η, ξ ∈ L2(M)+ (which means that η = h

1/2
ψ , ξ =

h
1/2
ϕ ). See, e.g., [2, Appendix C] and [41] for more details. We use the notation

Δψ,ϕ := Δ
η,h

1/2
ϕ

.
Note that for z = α + it, 0 ≤ α ≤ 1/2, t ∈ R, we have [22]

D(Δz
ψ,ϕ) = D(Δα

ψ,ϕ) = {k ∈ L2(M), hα
ψkh−α

ϕ ∈ L2(M)}
= {k ∈ L2(M),∃k′ ∈ L2(M), hα

ψks(ϕ) = k′hα
ϕ}

and for k ∈ D(Δz
ψ,ϕ),

Δz
ψ,ϕk = hz

ψkh−z
ϕ = hit

ψk′h−it
ϕ . (A.3)
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Moreover, since JΔψ,ϕJ = Δ−1
ϕ,ψ, we have D(Δ−z

ϕ,ψ) = D(Δ−α
ϕ,ψ) = JD(Δα

ψ,ϕ)
and for k ∈ D(Δz

ψ,ϕ),

Δ−z
ϕ,ψk∗ = h−z

ϕ k∗hz
ψ = h−it

ϕ (k′)∗hit
ψ . (A.4)

A.2. The Spatial Derivative

We now recall the definition of the spatial derivative Δ(η/ϕ) of [7] in the above
standard representation. Let Hϕ := [Mh

1/2
ϕ ] = L2(M)s(ϕ) and let ξ ∈ L2(M)

be such that the corresponding functional is majorized by ϕ:

ωξ(a∗a) = ‖aξ‖2 ≤ Cξϕ(a∗a), ∀a ∈ M,

for some positive constant Cξ. Then

Rϕ(ξ) : ah1/2
ϕ �→ aξ, a ∈ M

extends to a bounded linear operator Hϕ → L2(M). Obviously, Rϕ(ξ) extends
to a bounded linear operator on L2(M) by putting it equal to 0 on L2(M)(1−
s(ϕ)). Moreover, this operator commutes with the left action of M, so that
it belongs to λ(M)′ = ρ(M), where ρ is the right action ρ(a) : h �→ ha,
h ∈ L2(M). In fact, ωξ is majorized by ϕ if and only if ξ ∈ h

1/2
ϕ M, so

that there is some yξ ∈ M such that ξ = h
1/2
ϕ yξ, s(ϕ)yξ = yξ and we have

Rϕ(ξ) = ρ(yξ).
Let now η ∈ L2(M). The spatial derivative Δ(η/ϕ) is a positive self-

adjoint operator associated with the quadratic form ξ �→ (η,Rϕ(ξ)Rϕ(ξ)∗η)
as

(ξ,Δ(η/ϕ)ξ) = (Δ(η/ϕ)1/2ξ,Δ(η/ϕ)1/2ξ) = (η,Rϕ(ξ)Rϕ(ξ)∗η)

= (Rϕ(ξ)∗η,Rϕ(ξ)∗η) = (ηy∗
ξs(ϕ), ηy∗

ξs(ϕ))

= (F
η,h

1/2
ϕ

ξ, F
η,h

1/2
ϕ

ξ),

see (A.2). Since h
1/2
ϕ M + (1 − s(ϕ))L2(M) is a core for both Δ(η/ϕ) and

F
η,h

1/2
ϕ

, it follows that

Δ(η/ϕ) = F ∗
η,h

1/2
ϕ

F
η,h

1/2
ϕ

= JΔω,ϕJ,

where ω := ωη. This implies that for any ξ ∈ L2(M) and γ ∈ C, we have

‖Δ(η/ϕ)γξ‖2 = ‖Δγ
ω,ϕJξ‖2 = ‖Δγ

ω,ϕξ∗‖2. (A.5)

A.3. Extensions of Conditional Expectations

A conditional expectation E on a von Neumann algebra M is a positive con-
tractive normal projection onto a von Neumann subalgebra M0 ⊆ M. A condi-
tional expectation is necessarily completely positive and satisfies the condition

E(xay) = xE(a)y, x, y ∈ M0, a ∈ M. (A.6)

Assume a faithful normal state φ and a von Neumann subalgebra M0 ⊆ M
are given, such that there is a conditional expectation E satisfying φ ◦ E = φ.
Then the space Lp(M0) for 1 ≤ p ≤ ∞ can be identified with a subspace in
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Lp(M) and E can be extended to a contractive projection Ep of Lp(M) onto
Lp(M0), [21]. This extension is positive and satisfies

Es(hlk) = hEr(l)k, h ∈ Lp(M0), k ∈ Lq(M0), l ∈ Lr(M), (A.7)

whenever 1 ≤ p, q, r ≤ ∞ are such that 1/p + 1/q + 1/r = 1/s ≤ 1. Moreover,
for p = 1, we have

E1 : hψ �→ hψ◦E , ψ ∈ M∗. (A.8)

Appendix B. The Complex Interpolation Method

In this paragraph, we briefly describe the complex interpolation method, fol-
lowing [6], see also [23].

Let (X0,X1) be a compatible pair of Banach spaces, with norms ‖ · ‖0

and ‖ · ‖1. For our purposes, it is enough to assume that X0 is continuously
embedded in X1. Let S ⊂ C be the strip S = {z ∈ C, 0 ≤ Re(z) ≤ 1} and let
F = F(X0,X1) be the set of functions f : S → X1 such that

(a) f is bounded, continuous on S and analytic in the interior of S
(b) For t ∈ R, f(it) ∈ X0 and the map t ∈ R �→ f(it) ∈ X0 is continuous and

bounded.

For f ∈ F , let

|||f |||F = max
{

sup
t

‖f(it)‖0, sup
t

‖f(1 + it)‖1

}

.

Then (F , |||·|||F ) is a Banach space. For 0 < θ < 1, the interpolation space is
defined as the set

Cθ(X0,X1) = {f(θ), f ∈ F}
endowed with the norm

‖x‖θ = inf{|||f |||F , f(θ) = x, f ∈ F}. (B.1)

Since Cθ(X0,X1) is the quotient space F/Kθ with respect to the closed
subspace Kθ = {f ∈ F , f(θ) = 0}, we see that Cθ(X0,X1) is a Banach space.
Moreover, we have the continuous embeddings

X0 ⊆ Cθ(X0,X1) ⊆ X1

and Cθ defines an exact interpolation functor of exponent θ, which means that
the following abstract version of the Riesz–Thorin interpolation theorem holds.

Theorem B.1. Let (X0,X1) and (Y0, Y1) be pairs of compatible Banach spaces
and let T : X1 → Y1 be a bounded linear operator such that T (X0) ⊆ Y0. If
‖Tx‖Y1 ≤ M1‖x‖X1 , x ∈ X1 and ‖Tx0‖Y0 ≤ M0‖x0‖X0 for x0 ∈ X0, then for
θ ∈ (0, 1),

‖Tx‖θ ≤ M1−θ
0 Mθ

1 ‖x‖θ.
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