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Abstract. We propose an extension of the sandwiched Rényi relative a-
entropy to normal positive functionals on arbitrary von Neumann alge-
bras, for the values a > 1. For this, we use Kosaki’s definition of non-
commutative L,-spaces with respect to a state. We show that these ex-
tensions coincide with the previously defined Araki-Masuda divergences
(Berta et al. in arXiv:1608.05317, 2016) and prove some of their proper-
ties, in particular the data processing inequality with respect to positive
normal unital maps. As a consequence, we obtain monotonicity of the
Araki relative entropy with respect to such maps, extending the results
of Miiller-Hermes and Reeb. (Ann. Henri Poincaré 18:1777-1788, 2017)
to arbitrary von Neumann algebras. It is also shown that equality in data
processing inequality characterizes sufficiency (reversibility) of quantum
channels.

1. Introduction

The classical Rényi relative entropies were introduced by an axiomatic ap-
proach in [39], as the unique family of divergences satisfying certain natu-
ral properties. As it turned out, these quantities play a central role in many
information-theoretic tasks, see, e.g., [9] for an overview. A straightforward
quantum generalization is given by standard quantum Rényi relative
a-entropies, defined for density matrices p, o as

—Llog (Trp®c'=*) if a € (0,1) or supp(p) C supp(c)
Da(pllo) =
0 otherwise,

where supp(p) denotes the support of p and o > 0, @ # 1. These quantities
share the useful properties of the classical Rényi relative entropy, but not for
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all values of the parameter «. In particular, for a quantum channel ®, the data
processing inequality (DPI)

Do (2(p)[|®(a)) < Dalpllo) (1)

holds for « in the range (0,2], [15,34]. Moreover, for a € (0,1) the standard
Rényi relative entropies appear as error exponents and cutoff rates in hypoth-
esis testing [4,14,27].

Another quantum version of Rényi relative entropy was introduced in
[31,46]. It is the sandwiched Rényi relative a-entropy, defined as

i ﬁlog Tr [(o%pa%) ] if supp(p) C supp(o)
Dalpllr) = .

00 otherwise

for & > 0, a # 1. The sandwiched entropies satisfy DPI for o € [1/2,1) U
(1,00), [5,11,31,46]. For a > 1, D, have an operational meaning as strong
converse exponents in quantum hypothesis testing and channel coding, [28,29].
Moreover, both D, and D, yield the Umegaki relative entropy

Tr p(log(p) — log(0))  if supp(p) < supp(c)
D1 (pllo) =
00 otherwise

in the limit as o — 1. On the other hand, in the limit o — oo, D gives the
relative max entropy

Doo(pllo) = log(inf{\ > 0, p < Ao'}), (3)
see [31,46] for the proofs of these properties.

Remark 1.1. Both D, and D, are contained in the family of entropic pres-
sure functionals introduced in [16, Section 3.3] as a tool for studying entropic
fluctuations in quantum statistical mechanics. The same family of functionals
in the context of quantum information theory was studied in [3].

Let (®, p,0) be a triple consisting of a quantum channel ® and a pair of
states p, o on the input space of ®. A channel ¥ satisfying ¥ o ®(p) = p and
Vod(o) = o is called a recovery map for (@, p, o). If a recovery map exists, we
say that the channel ® is sufficient (or reversible) with respect to {p,c}. This
terminology was introduced in [36,37], by analogy with the classical notion of
a sufficient statistic. Clearly, if ® is sufficient with respect to {p, o}, equality
must be attained in DPI. It is much less obvious that the opposite implication
holds in some cases. This was first observed in [36,37] for D; and D, 2 and
later extended to a large class of quantum divergences, including D, with
o € (0,2), [15]. The same property for D, with a > 1 was proved in [18].

Quantum versions of relative entropies are usually studied in the finite
dimensional setting. Nevertheless, the standard version D,, is derived from the
quasi-entropies [34], which were defined in [35] also in the more general context
of von Neumann algebras. Moreover, the entropies D, have similar properties
and play a similar role in quantum hypothesis testing in this setting, [17]. A



Vol. 19 (2018)  Rényi Relative Entropies and Noncommutative Ly-Spaces 2515

definition of sandwiched Rényi entropies for states on von Neumann algebras
was recently proposed in [7]. These entropies are called the Araki-Masuda di-
vergences and are based on the Araki-Masuda definition of noncommutative
L, spaces with respect to a state. It is conjectured that these quantities char-
acterize the strong converse exponents in binary quantum hypothesis testing,
as in the finite dimensional case.

The aim of the present work is to propose a von Neumann algebraic
extension of D, for a > 1 using the interpolating family of Kosaki’s L,-
spaces, [23,43]. This approach was inspired by the work by Beigi [5], where a
similar family of norms (in finite dimensions) was used to prove DPI for D,
with a > 1. It was later observed [30] that this method works even for positive
trace-preserving maps and taking the limit a« — 1 implies that the quantum
relative entropy is monotone under such mappings. This important result was
also extended to density operators on infinite dimensional Hilbert spaces. The
framework of interpolation norms was also used in [18] to show that in finite
dimensions, equality in DPI for Dy, o > 1 implies sufficiency of the channel.

As one of the main results, we prove that the proposed quantities coincide
with the Araki-Masuda divergences of [7]. This was independently proved by
Hiai [13], using different methods. For normal states ¢, ¢ of an arbitrary von
Neumann algebra M, we further prove the following properties of Dy:

(a) Positivity: Dq (1)]|¢) > 0, with equality if and only if 1) = .
(b) Monotonicity: if ¢ # ¢ and Dy (1]|¢) < oo for some o > 1, then the

function o — Dy (1)||¢) is strictly increasing for o/ € (1,0].

(¢) Limit values: for & — 1, the Araki relative entropy D1(¢||¢) is obtained,

o — oo yields the relative max entropy Do (1)]|¢).

(d) Relation to the standard Rényi relative entropy: for a > 1,

D2—1/o¢(7/}||90) < Da(wHSO) < Da(W@)

(e) Order relations: D, can be extended to all positive normal functionals
on M. With this extension, ¥y < ¢ and ¢y < ¢ imply

Da(toll9) < Da(¥llg),  Da(¥lwo) > Da(¥lle).

(f) Lower semicontinuity: the map (1, ¢) — Dqo(2)||¢) is jointly lower semi-
continuous (on the positive part of the predual of M)
(g) Generalized mean: let ¢ = 1)1 @ 12, © = 1 @ @a. Then

exp{(a = 1)Da(¢l)} = exp{(a = 1) Da(¢1][¢1)}

+exp{(a — 1)Dq (21 ]|01)}-

(h) Data processing inequality: Do (®())||®(¢)) < Do (t|l¢) holds for any
a > 1 and any positive trace-preserving map ®. We also give some lower
and upper bounds on the value of D, (¢||p) — D (®(¥)]|P(p)).

We also prove a characterization of sufficiency: if 1 < a < oo and Dy (1]|¢)
is finite, then equality in DPI for a 2-positive trace-preserving map ® implies
that @ is sufficient with respect to {1, ¢}.
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The properties (a)—(d) and (h) for the Araki-Masuda divergences were
shown in [7]. Nevertheless we give independent proofs in our setting, which is
closely related to the required interpolation techniques. Note also that only
the second inequality was proved in (d) and complete positivity was required
for (h). Our proof of DPT is close to that of [5] and only positivity is assumed.
Note also that (¢) and (h) together imply that the relative entropy D1 (¢]|¢) is
monotone under positive trace-preserving maps between the preduals, which
extends the result of [30].

The outline of the paper is as follows. In Sect. 2, we introduce the Kosaki’s
L,-spaces and give an overview of their properties, together with some techni-
cal results needed later. In Sect. 3, we give the definition of D, and prove the
equality with Araki-Masuda divergences as well as the properties (a)—(h). The
last section deals with sufficiency of maps. Some more technical details and a
brief review on the complex interpolation method are given in Appendices.

2. Noncommutative L, Spaces with Respect to a State

Let M be a (o-finite) von Neumann algebra acting on a Hilbert space H and
let M™ be the cone of positive elements in M. We denote the predual by M,,,
its positive part by M and the set of normal states by &,(M). For ) € M,
we will denote by s(1) the support projection of 1. For 1 < p < oo, let L,(M)
be the Haagerup’s L,-space over M [12], precise definitions and further details
on L,(M) can be found in the notes [42].

We will use the identification M, 3 ¢ <> hy, € L1(M) and the notation
Tr hy = (1) for the trace in Ly (M). It this way, &, (M) is identified with the
subset of elements in the positive cone Li(M)T with unit trace. We will also
assume the standard form (A(M), La(M), J, Lo(M)*) for M, see [42, Thm.
3.6], where X is the left action

Az) :h—zh, heLy(M), xeM

and the conjugation J is defined by Jh = h*, h € La(M), see [40,41] for the
definition of a standard form. We denote the inner product in Lo(M) by

(h,k) == Trk*h, h,k € Ly(M). (4)

For k € Ly(M), let wy € M be the linear functional determined by k, that
is,

wi(a) = (ak, k), a€ M.

For any ¢ € M, hi,/ % is the unique vector representative of ¢ in the positive
cone Lo(M)T.

In this section, we describe the noncommutative L,-spaces with respect
to a faithful normal state ¢ obtained by complex interpolation. These spaces
were defined in [23,44,47] and also in [43], where ¢ is allowed to be a weight.
We will follow the construction by Kosaki; details can be found in [23].
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2.1. The Space Lo (M, )

Fix a faithful normal state ¢ on M. To apply the complex interpolation
method, we first show that M can be continuously embedded into L; (M) ~
M.,. For z € M, we put

. pl/2 1/2
he = hi/2zhl/?.

By Holder’s inequality [42, Thm. 23], we have h, € Li(M) and ||h;|l1 < |z||.
Moreover, x + h, is injective and h, € Li(M)" if and only if z is positive.
Note also that for y € M,

Trh,y =Tr h}a/zazh;/zy =Tr h;/zyh}ﬁﬁa: = Tr hyx.

The map x +— h, is obviously linear and defines a continuous positive embed-
ding of M into L;(M). The image of M is the dense linear subspace

Los(M, @) :={hq, © € M} C Li(M).
The norm in L (M, ¢) is introduced as
halloo,e = (1.

The next lemma shows that positive elements in L., (M, ) can be easily
characterized. This result is a straightforward consequence of the commutant
Radon—Nikodym theorem, we give a proof for completeness.

Lemma 2.1. Let k € L1(M)T. Then k = hy for some x € M™ if and only if
k < Ah, for some A > 0. In this case,

koo, = |lz|| = inf{\ > 0,k < Ah,}.
Proof. Let x € M™, then for all a € M™T,
Trhya < ||hgal; = ||xh;/2ah;/2\\1 < ||lz||Tr hya

by Holder’s inequality, so that h, < ||z|/h,. Conversely, let 0 < k < Ahg,.
By the commutant Radon—Nikodym theorem [40, Section 5.19], there is some
x € M such that 0 < x < X and for all y € M,

Trky = (yh}p/z, J:ch}a/Q) = (yh}o/z, h}a/Qx*) =Tr :ch}a/thi,/z =Tr h}a/Q:ch;/zy.
It follows that k = h,. The last assertion follows from the fact that for positive
z €M, ||z|| = inf{\ > 0,z < A} O

To characterize arbitrary elements in Lo, (M, @), let Mg := M3(M) be
the algebra of 2 x 2 matrices over M. The predual of M5 can be identified with
My(M..), where for ¢ € (Ma),, we put ¥;;(a) = ¥(a ® |i)(j]). This means
that we also identify Ly(Msz) with Ma(Li(M)).

Lemma 2.2. Let k € L1(M). Let ha, ko € L1(Ms) be defined as

_(hy O (0 E
= (")) = (5):

Then k € Loo(M, @) if and only if ke < Ahg for some A > 0. In this case,
|Elloo, = Inf{\ > 0, ks < Aho}.
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Proof. Let k = h, and let A € R. Note that Ahy — ky = ha/*z,h3/?, where

A —x
Ty = gt A P

and that ||z|| = || —z| = inf{\ > 0, xx > 0}. Hence ky < Ahg for any A > ||z||.
It is also clear that ||z|| is the smallest A such that this inequality holds.
Conversely, assume that ko < Ahy for some A > 0, which is equivalent to

Tr (Aho—keo)a > 0 for any a € M;‘, [42, Thm. 33]. Let a = (ail a12) € M;’,

a1z @22
then also
[ an —a2) (1 O 1 0 "
== (—a’{Q az ) - (0 —1)“(0 —1> €M,
and note that Trksa_ = —Trksa, Tr hoa_ = Tr hsga. It follows that we have

+ko < Ahg, so that 0 < kg + Mg < 2Ahg. Since ho defines a faithful positive
normal linear functional on My, Lemma 2.1 applies, so that there is some

y = (y{} . ) € M such that
z Y22

1/2 1/2 1/2 ,1/2
(Ahf § ) = ko 4+ Ahy = h;myh;/z = hﬁ/zynhf}z }172 $h¢1/2 .
k*  Ahg hg “x*hy hg “yaohy

It follows that y11 = y22 = A and k = h,. Moreover, since y = (a;\* i) is

positive, ||z] < A. O
2.2. The Interpolation Spaces L, (M, ¢)
We now define the L,-space over M with respect to ¢ as
LP(M7 (P) = Cl/p(LOO(Mv 90)7 Ll(M))

For definition of the space Cy see “Appendix B”.

The norm in L,(M, ¢) will be denoted by || - |[5,,. For 1 < p < oo and
1/¢+1/p=1, put

ipt Ly(M) — Li(M), & hl/>khl/?

Theorem 2.3 ([23, Theorem 9.1]). The map i, is an isometric isomorphism of
L,(M) onto L,(M, ).

Using the polar decomposition in L, (M) ([42, Proposition 12]), we obtain
that elements in L, (M, ) have the form h}o/zquhfp/phso/Qq, where 1) € M} and
u € M is a partial isometry such that u*u = s()) with norm

10 2B 2 = (T )7 = (1)1,

Example 2.4. Assume that M is semifinite and let 7 be a faithful normal semifi-
nite trace on M. By [42, p. 62], L,(M) can be identified with the space L, (7) of
closed densely defined operators X affiliated with M, such that 7(|X|?) < oo,
with the norm || X ||, = 7(|X|?)'/?. There is an operator p, € L; () such that

p(x) =7(ppz), €M
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and we can define the embedding M C Li(7) = M, as z p 1/2 . The
space L,(M, ¢) can be identified with the subspace in L;(7) of elements of the
form X = pi/Qqu;/Qq with Y € L,(7), and || X||,,, = ||Y]p. In particular, if
M is finite dimensional, then L,(M,¢) = L,(M) = M as linear spaces and

we have

1/p
1X o = 1051720 p5 1 20], = (Trpw Xp |p) .

We now list some important properties of the spaces L,(M, ¢). Let 1 <

p < p' <oo. Then Ly (M, ) C L,(M,p) and
[kllpe < [|Ellprps Yk € Ly (M, ). (5)
This follows easily by Theorem 2.3 and Holder’s inequality, but it is also a
consequence of the abstract theory of complex interpolation, see [6, Theorem
4.2.1]. The space Lo (M, ¢) is dense in L; (M) and therefore also in L,(M, ¢)
for each p > 1 by [6, Theorem 4.2.2]. It follows that L, (M, ¢) and L,(M, ¢)

are compatible Banach spaces. By the reiteration theorem ([6, Theorem 4.6.1]),
we have

CW(LP'(M>90)’LP(M7(P)) Lpn(M’QD)v 0 S n S 17 (6)

where 1/py =n/p+ (1 —n)/p'.
Let now 1 <p < oo, 1/p+1/q = 1. The duality

(k,hy) :=Trke, zeM, ke Li(M)
extends to a duality between L,(M, ¢) and Ly(M, p), given by
(hY/?Ue b2, B *Pkohld?P) = Trkika, k1 € Lp(M), ky € Lg(M).  (7)

For 1 < p < 00, Ly(M, ) is isometrically isomorphic to the Banach space
dual of L,(M, ). This follows immediately from Theorem 2.3 and duality of
Haagerup L,-spaces [42, Thm. 32].

For each 1 < p < 0o, we have the following Clarkson-type inequalities.
Theorem 2.5 (23], [38, Thm. 5.1]). Let h,k € L,(M, ), 1 <p < o0, 1/p+
1/¢=1. For 2 < p < co we have

1 P P v q q /4
5 (I +EIE, +1h =R | < (IRlE, + 1%15,)

For 1 <p <2 the inequality reverses.

This implies that for 1 < p < oo the space L,(M, ) is uniformly convex
and uniformly smooth. We also have:

Theorem 2.6 ([38, Thm 5.3]). Let h,k € L,(M, ), 1 <p <2, then

2 2 1/2 1 P P /p
(IRl + (0 = 1)IIE]7) S U+ KlIE + [l — EI[5)

For 2 < p < oo the inequality reverses.
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The space L, (M, ¢) is strictly convex, hence for each 0 # h € L,(M, ¢),
there is a unique element T, ,(h) in the unit ball of L,(M, ¢) such that

(Ta.o(h), h) = [|Pllp.e-

Let h = hi,/zquk’l/phglpﬂq for some k € L;(M)* and a partial isometry u € M
such that u*u = s(k). Then by (7) we have

Typ(h) = IRl P R 2Pk u* hy/ . (8)

Restricted to the unit sphere of L,,(M, ¢), the map Ty, is a uniformly contin-
uous bijection onto the unit sphere of Ly (M, ¢) [10] and we have T, L =T,
for this restriction.

2.3. Hadamard Three Lines Theorem

We first note that the infimum in the definition of the interpolation norm
| |Ip. is attained, see (B.1). Let h € L,(M, @) be of the form h = hl**knl/*?
for some k € L,(M) and let k = ul'/? be the polar decomposition of k. Let
S C C be the strip S = {z € C, 0 < Re(z) <1} and put

Frp(z) = ”lH1/pfzh§01—z)/2ulzhs(01—z)/27 e S 9)

Then fnp € F := F(Loo(M, @), L1(M)), fnp(1/p) = h and we have |||, =
[ frpll 2> cf. [23, proof of Theorem 9.1], see “Appendix B” for the necessary
definitions.

Lemma 2.7. Let f € F and assume that || f(0)|1/9,, = ||fll £ for some 0
(0,1). Then

1f(z+it)lijee = Ifll7, Vze€0,1], t€R.
Proof. Let p = 1/0, ¢ = 1/(1 — 0). Put h := f(6), then h € L,(M,¢) and
9= 1, ,(n),q 15 in F. Let
K(2):=(g9(1 - 2),f(2)), ze€b.

Note that for z = x +it, f(2) € Li/,(M, ), g(1 = 2) € L1/1-2)(M,p) and

1F ) l1/ze < fllz N9 = 2)l1/a-a).0 < llgllz = 1. It follows that K is
continuous on S, analytic in the interior and bounded by

[K(z+at)] < [lg(t =2 = it)1/q-a)e | f (@ +it)1/e < £l £

Moreover, K(6) = || f(0)|lp,, = I fll z- By the maximum modulus principle, K
must be a constant, so that K(z) = ||f[| for all z € S. It follows that we
must have || f(x +it)[|1/2,, = || f]l z for all x and ¢. O

The next lemma shows that the infimum in the definition of the interpo-
lation norm is attained also for the reiterated spaces.

Lemma 2.8. Let 1 < p < p' < oo and let n € (0,1), p, =n/p+ (1 —n)/p".
Let h € L, (M,p) and put g(z) = frp, (z/p+ (1 = 2)/p'), 2 € S. Then
9 € Fppi=F(Ly (M, p), Lp(M,9)), g(n) = h and ”thm@ = |Hg|||]-'p,yp'
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Proof. By [8, 32.3], for any f € F the function ¢q(z) = f(z/p+ (1 — 2)/p)
belongs to F, , and

llallz, = maX{Slgp HQ(”)HP’,%SIZP la(t+it)llpt < I fll 2

By reiteration (6),

1llpe < Nallz, < ol = WAlp, -

The statement follows also by Lemma 2.7, by noticing that for any z € [0, 1],
t € R,
lg(@ +it)lp,.o = 1 Fn.00 [ 2 = WPl -
O
Assume that h € L,(M, ), |||y, = 1. Note that by Lemma 2.7, the
values of the function fp, run through the unit spheres of all the spaces

L, (M, ). The next lemma shows that by applying the map T , we again
obtain an element of F.

Lemma 2.9. Let 1 < p < oo, and let h € L,(M,p), with ||h||,, = 1. Then for
all z=x +it, x € (0,1),

T1/(-2).(fnp(2)) = fr, o(n).a(1 = 2)-
i — _ p1/2q,31/pp1/2q .
Proof. Since ||hl|p,, = 1, we have h = hi/ ™ uh,/"h, ™ for some 1) € &.(M)

and w*u = s(¢). By Lemma 2.7, ||fnp(z + it)|l1/20 = Ifnpll = 1 and
1

Hqu,w(h),q(]- - T = Z‘t)”l/(l—ac),ga = |||qu1LP(h)7q|H]__ =1 for all z € [O
t € R. By (7), we have

s Iy et = 2)) = T (B 2uhih 2 ) (W20 i)
= Trhy = 1.

and

By uniqueness, we must have 71,1 _4),,(fnp(2)) = fr, (n),q(1 — 2) for all
€ (0,1), ¢ € R. 0

The inequality part of the following result is a version of Hadamard’s
three lines theorem. For convenience of the reader, we add a proof.

Theorem 2.10. Let 1 < p < p' < oo and let 0 < n < 1. Then for f €
f(LP’(MaSO)vLP(MWO))J

n

150Dl < (supll 50 ) (suphra+ o)l )

where 1/p, =n/p+ (1 —n)/p’. Moreover, equality is attained if and only if

f(2) = frp, (2/p+ (1= 2)/p ) M*7",
for h = f(n) and M > 0.
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Proof. Let ¢, ¢’ and ¢, be the duals of p, p" and p,;, so that 1/¢,, =n/q+ (1 —
n)/q" and Ly, (M, @) = C1_y(Lg(M, @), Ly (M, 9)). Put h = f(n) and let

9(2) = fr,, (0.0, (2/4 + (1 = 2)/q).
By Lemma 2.8, g € F, 4 and
91 =n) =To 0 (h), Mlgllz, , = 1= 1Ta,.0 (M) lla, -

As in the proof of lemma 2.7, K(z) := (g(1 — z), f(z)) defines a bounded con-
tinuous function on S, analytic in the interior of S. By the usual Hadamard’s
three lines theorem,

1-n n
10Dl = 1K1 < (suplcinl)  (suplicta o))
teRrR teR
1—n n
< (suplls@oly.)  (supllr+ i
teR teR
Now assume that equality is attained. Let My = sup,eg ||f(it)|lp o, M1 =
supyer || f(1 +dt)|lp,, and let
F(2):=K(z)M; 'M;*, z¢€8.

Then |F(z)] < 1 for all z € S and F(n) = 1. By the maximum modulus
principle, F'(z) = F(n) =1 for all z, that is,

(g1 = 2), f(ME M%) =1, z €S, (10)
Suppose first that [|h[,, , = 1. Note that by Lemma 2.9,
9(L=2) = fr, )0, (W) = T1/Re(w), o (frp, (1 — 1)),
where u = z/q+ (1 — z)/q’. Hence
9(1 = 2) = Ty, o (frp, (z/p + (1 = 2) /D).

Since || f(z + it) MGt M|, » < 1 by the first part of the proof, (10)
implies that we must have

FEMGTIMT* = fogp, (2/p+ (1= 2)/p),
by definition and properties of Ty, . If ||h]|,, , = a # 1, then we may replace

f by a~'f. Note that the above equality still holds, with My and M; replaced
by a='My and a~'M;. We obtain

f(z) =ala™ f(2)) = afornp, (/0 + (1= 2)/p") (@™ Mo)' % (o~ My)*
= fa=thp, (z/p+ (1 = 2)/p ) My ~* M7
=a VP (2/p+ (1= 2)/p/ )My~ M
= fhp, (2/p+ (1 —2)/p")AM?,

where A > 0 and M = M, /My. Since f(n) = fnp,(1/py) = h, we must have
AM" = 1. It follows that

F(2) = fup, (2/p + (1= 2)/p)) M7,



Vol. 19 (2018)  Rényi Relative Entropies and Noncommutative Ly-Spaces 2523

For the converse, note that using Lemma 2.7, we obtain

Mo = 50D (1) > = 1l M

My = sup F(1+ i) = [l o217

It follows that M, /My = M and My~ "M} = ||h

Pn,p O]

2.4. The Positive Cone in L, (M, )
Let us denote L,(M, @)t := L,(M,p) N Li(M)*. Then it is clear that for
1<p<oo,
Ly(M. )" = {h/*hY/Phi/2, h € Li(M)*}.
It follows by the properties of L,(M)* ([42]) that L,(M, ¢)" is a closed convex
cone which is pointed and generates all L,(M, ¢). Note also that
+_gpl/2,21/2 +
Loo(M, @)t = {hl/?zhl)? = € M}

is dense in L, (M, @)™, for any 1 < p.
Let 1 < p < oo and let k € L,(M, @), k = hif *ub¥/Phi/* h € Ly(M)*.
Then k has a polar decomposition of the form

k= hs10/2qUh;1/2q|k|p,w = Ufi/zq(u)|k|p,<p’

where |k, = hslp/thl/phglp/Zq € L,(M, )T and 0¥ denotes the modular group
of ¢. We next look at self-adjoint elements in L, (M, ¢).

Lemma 2.11. Let 1 < p < oo and k = k* € L,(M,p). Then there is a
decomposition

k=kpor = Fpo—
where ky .+ € Ly,(M, )t and we have

1kllpe = (1ot 15 + p o~ [, 0) 1P

Proof. 1f k = k*, then k = hi/*1hi/*?, where | = I* € L,(M). It follows that
I = ulh|'/P where h = h* € Ly(M),h=hy —h_, hi,h_ € Ly(M)*, hyh_ =
0. Moreover, u = e, —e_, where ex := s(hs) and |h|/? = (hy +h_)V/P =
hi/p +hMP Tt follows that k has the above form, with kpo+ = hglp/Qthi/phglp/zq
and we have
1B} = Trlhl = Trhy +Trho = |[kpe 5.6 + [1kpo. 7o
U

Corollary 2.12. Let h € L,(M, )" and let hy € Li(M)* be such that hy < h.
Then hy € L,(M, )" and ||hy

p,p S Hh”p,tp'

Proof. The statement is obvious for p = 1 and follows easily from Lemma 2.1
for p = 0o. For 1 < p < oo, let x € M™, then

0 <(hg,h1) = Trhyx <Trha = (hy, h) < ||hellqollPllpe-
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Since Loo(M, )" is dense in Ly(M, )", it follows that (k,hy) < (k,h) <
]l g.0llBllp,e for all k € Ly(M, @) ", Let now k = k* € Ly(M, ), with decom-
position k = kg o + — kq,o,— as in Lemma 2.11. Then

‘<k»h1>| < <kq,%+7h1> + <kQ1§077’h1> < ||h|
< |lllp,p2" 4 (g o+

e (lkqo+llae + kg~ lla.p)

Z,w + ||kq7sa7—||q,g;)1/q = Hh||p,s021/q||k||q,<p7

the last inequality follows by classical Holder’s inequality. For k € Ly (M, ),
we have k = Re(k) + iIm(k), with the usual definition of the self-adjoint
elements Re(k) and Im(k) in Ly(M, ¢). Then

[(k; )| < [(Re(k), ha)| + [(Im(K), b))

< 1 Pllp 2"/ (IRe(k) g, + [T (k) p2' TR

ap) <P

q,¢"

Hence h; defines a bounded positive linear functional on L,(M, ¢) and there-
fore hy € L,(M,¢)". To prove the last statement, note that by (8), Ty, (h1)
is a positive element in the unit ball of L,(M, ¢), so that

Hh1||PW = <Tq,w(h1)ahl> < <Tq,v(h1)vh> < Hh”p,@'

3. The Rényi Relative Entropy

We will need to extend the definition of L, (M, ¢) to all (not necessarily faith-
ful) normal states. So let ¢ € &,.(M) and let s(¢) = e. Then ¢ restricts
to a faithful normal state on eMe and we may identify the predual (eMe).,
with the set of all v € M, such that ee = 1, where eve(z) = p(exe),
z € M. By [42, Theorem 7|, hy = heye = ehye for all such 1. Hence
we may identify L;(eMe) ~ eL;(M)e and using the polar decomposition,
L,(eMe) ~ eL,(M)e for all p > 1. The space L,(M, ) is then defined as

L,(M,p)={h € Liy(M), h=ehe € Ly(eMe,p|crme)}

with the corresponding norm.

3.1. Definition and Basic Properties
Let 1 < oo < o0 and let ¢, ¢ € &,(M). We define

) 2 og([hpllare) if hy € La(M, @)
Da(wlly) = ()

00 otherwise.

We first show that this definition is an extension of the sandwiched Rényi
relative a-entropy (2). Assume that dim(M) < oo and let 79 be a faithful
normal trace on M. Any state ¢ € &,(M) is given by a density operator
py € M, such that ¢(z) = 10(pyx), x € M.
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Proposition 3.1. Let dim(M) < oo and let 1, o € &,(M), with density oper-
ators p, = o, py, = p. Then

1—a 11—« .
—Llogo[(0 % po == )?], if supp(p) C supp(o)

Do () =
00 otherwise.

Proof. We may assume that s(¢0) < s(¢) =: e, otherwise ¢ ¢ L,(M,¢) and
supp(p) & supp(o); hence both quantities are infinite. It follows that o = eoe,
p = epe. The statement now follows by Example 2.4. g

3.1.1. Relation to the Araki-Masuda Divergences. In this paragraph, we show
that D, is equal to the Araki-Masuda divergences introduced in [7]. These
divergences are based on the Araki-Masuda definition of the noncommutative
L,-spaces, [2].

The Araki-Masuda Ly,-spaces are defined with respect to a faithful state
p € 6,(M), using a standard form of M and a vector representative 7 of ¢.
We will use the standard form (A(M), La(M), J, Lo(M)T) and n = h}/? For
£ € Ly(M) and 2 < p < oo, the Araki-Masuda Ly,-norm is defined as [2, Eq.
(1.4)]

AM 1/2-1/p
o = sup (AN &l
PE ey e= T

1€

where A¢ , is the relative modular operator, see “Appendix A.1”. The Araki-
Masuda L, space is then the subspace of vectors & € La(M) such that this
expression is finite. By the polar decomposition [2, Thm. 3] and (A.3), this
happens if and only if

€= uh}/”h}ﬁ/%l/p (12)

for some (unique) partial isometry u € M and p € M, such that uu* = s(we)
and w*u = s(p). In this case, [|¢[|4M = pu(1)!/7.

The weighted L,-norm of [7] is defined for any *-representation = : M —
B(H) using the spatial derivative. By restriction to the support, the definition
can be extended to non-faithful states. For ¢ € 6,(M),2 <p < ocand & € H,
put

P T ’

€[S SUPcer ef=1 IA(C/0)2T1PE|], i s(we) < ()
00 otherwise

here A((/y) is the spatial derivative (see “Appendix A.2” for the definition).

The Araki-Masuda divergence is defined as follows. Let ¢, 9 € G,(M)
and 1 < a < 00. Let m : M — B(H) be any *-representation and let &, € H
be any vector representative of ¢. Then

2c
DM (l|) := o8 €y ll5m - (13)

By [7, Lemma 3], the value of ||§ ||55T depends only on the functional we, not

on the representation 7 or the representing vector ¢. Therefore, DAM is well
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defined. Moreover, we may use the above standard form. By the equality (A.5),
we see that if ¢ is faithful, we have

- ||§ |p,<p ’ Vf € LQ(M)
By the polar decomposmon (12), we obtain the following statement.

Lemma 3.2. Let £ € Lao(M) and let ¢ be faithful. Then ||§||BST < oo if and

only if & = h}o/%l/ph}/pv for some partial isometry v € M and u € M,
satisfying v'v = s(wg) and vv* = s(u). Moreover, such v and p are unique
and we have ||£||§iT = pu(1)V/7.

We can now prove the main result of this paragraph.

Theorem 3.3. For any ¢,¢ € 6.(M) and 1 < a < oo, DAM (y]|p) =
Da(¥]l¢)-

Proof. We may assume that s(¢) < s(¢), otherwise both expressions are in-
finite. By restriction to the compressed algebra s(p)Ms(¢), we may suppose
that ¢ is faithful.

Assume that DAM (3)]|) is finite. Let &y € La(M) be any vector repre-
sentative of ¢, by (4) this is equivalent to §,¢;, = hy. By Lemma 3.2

gw _ hio/271/2ah}l‘/2au _ h;/zﬁh}/&lu

for some p € M and a partial isometry u with u*u = s(¢), uu* = s(u). Then
hy = E4El = h}o/zﬁhzhi,/zﬁ, so that hy, € Lo(M, p) and

1y llae = p(1)* = (1€ ]15275)°.
It follows that DAM(ille) = Da(¥l@). If Duo(4llg) < oo, then
hy € Ly(M,p), so that hy = h}/zﬁh}/ahi/m for some p € M}. Put § :=

hi,/ 28 h}/ 20‘, then & € Ly(M) is a vector representative of . Using again

BST _ M(l)l/Qa

CToRA = Hh¢,||i/3,, this implies the result. O

Lemma 3.2, we have ||{]]

Remark 3.4. Using [23, Theorem 9.1], the mapping Lo(M) 3 k — h;/zk €
Li(M) and Lemma 3.2, we can see that the BST-norms can be obtained by
complex interpolation as follows. Consider the map

xn—>h30/2x, x e M.

By Holder inequality, it is a continuous embedding of M into Ly(M). The
norm || - |75 is then the norm of the interpolation space C,(M, Ly(M)).

3.1.2. Relation to Standard Rényi Relative Entropies. Let ¢, ¢ € &,(M).
The standard version of the Rényi relative entropy D, for a > 0, a # 1 was
defined by Petz [32,35] and can be written using the relative modular operator
Ay, (see “Appendix A.17):

—Llog(hy hy? AN 1/2), if s(¢) < s()
Do (¥]le) =

00 otherwise.
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Note that by (A.3) we may formally write

Da(Wlle) = —

If « € (0,1), this quantity is always well defined and finite, the function o +—
D, (¢|lp) is increasing and the limit for a 7 1 is equal to the Araki relative
entropy [1]

log(Tr h(’h1 .

(hi/* log(Ay,p)hy/?), if s(v) < s(p)
Di(%lg) =

00 otherwise.

For a > 1 it may happen that hiY” ¢ D(Azﬁ) and then D, (¢||p) = co. But
if Dy, (¥|¢) is finite for some ag > 1, then the function o — D, (¢|¢) is
increasing on (1, o] and the limit lim, 1 Do (¢|¢) = D1(¢||¢) holds, see [7,
Proposition 11] for a proof of these properties.

We next find upper and lower bounds for D, in terms of D,. For this, we
use some upper and lower bounds on the norm ||y ||, . The upper bound in
the following proposition was proved also in [7] and can be seen as an extension
of the Araki-Lieb—Thirring inequality of [25] to non-semifinite case.

Proposition 3.5. Let ¢, p € M}, s(¢) < s(p), p > 1. Then

1—-1/2 2
Y)IPIAL PR < (|hyllE, < 1A 2RY2)2.

Proof. For the first 1nequahty7 we may assume that hy € L,(M, ¢), so that
hy = h}o/Qqhé/ph}P/Qq for some £ € M} and ||hy | , = £(1). By uniqueness of
the polar decomposition in Ly(M), we have
1/2p31/2q _ 1/2
he " hl ™" = uhy

where u is a partial isometry with u*u = s(¢). By Sect. A.1, hl/2 € D(A1/2q)
and

1-1/2py1/2 _ 1/2q /23172 _ AY/2qp1/2 _ 1 1/2q %3 1/2p
AM hy A A ’whw Aw,whd) —hw uh5 .

By Hoélder’s inequality,
2 * 2 2 1/2
27w kPl < (1B |lag g ll2p = (1) 29E(1)1/2.

This implies the first inequality. For the second inequality, assume that hl/ 2

(AZ{ i) (otherwise the right-hand side is infinite, and there is nothing to

prove). By [41, Lemma VI.2.3], it follows that there is a bounded continuous
function k : S — L2 (M), holomorphic in the interior of S, given by

. AZP/271)2
k(z) = A, hJ".
On the other hand, we have Afp/Zhglp/2 = JAp/2 Jh}p/2 = JAP/2 h;/Q so that

hl/2 € D(Awlzp/z) and there is a bounded continuous function &’ : S — Ly(M),
holomorphic in the interior of S, given by

K(2) = AP0l
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Hence f(z) := k'(2)k(z) defines a bounded continuous function S — L; (M),
holomorphic in the interior. By (A.3), we have

k(z) = hfpp/Qh;/%zp/{ K (z) = hglo/szp/ZhIpr/Qv Re(z) < 1/p.
It follows that
Fit) = 02 (n PR R ) Y2, e R,

so that f(it) € Loo(M,¢) and || f(it)]|s,, < 1. Further, we obtain by Hélder’s
inequality

. . . 2
IF (L4t 1 < (1K' (1 + it) |2 [lk(1 + i) [l = AT/ 2 Y23,

It follows that f € F(Loo(M, ), L1(M)) and since f(1/p) = hy, we obtain
by Theorem 2.10 that ||y, < [|A%/2 0% |57, 0

Corollary 3.6. Let ¢, € 6,(M), a > 1. Then
D271/a(¢”@) < DaWHW) < Daw”@)-

Proof. Immediate from Proposition 3.5. O
3.1.3. Properties of the Function o« +— D,.

Proposition 3.7. Let ¢, ¢ € &,(M) be such that hy, € Lo(M,¢) for some
1 <a<oo.
(i) Do(¥|¢) >0, with equalzty if and only if ¥ = .
(i) If ¥ # ¢, the function o/ — D, (Y||l@) is strictly increasing for o €
1

(1,al.
Proof. By (5),
hY*1hy? € Loo(M, ) and

1= Hhtp”l >

we have D, (¢ll¢) = 0, for all a. Assume now that D, (¢[|¢) = 0. Choose any
1 <p<a,thenl < |hylpe < ||hylla,, =1, so that ||hyllpe = 1. Let f be
the constant function f(z) = hy for all z € S, then clearly f € F, 1 (recall
the notation of Sect. 2.3). Let n € (0,1) be such that 1/p = n+ (1 —n)/«,
then f satisfies equality in the Hadamard three lines theorem (Theorem 2.10)
at 7. It follows that hy = fu, (2 + (1 = 2)/a), 2 € S (note that in this case
M = My /My = 1). Hence fp,, »(2) = hy for all z € S. Putting z = 0, we get
hy = chy,, where ¢ = ||hy||a,, = 1. This finishes the proof of (i).

For (ii), let 1 < o/ < @” < a. Then hy € Lo(M,p) C Lo (M, ) C
Lo (M, ). Let  be such that n+ (1 —n)/a” =1/a’. Then 1 —n = 3"/,
where 1/3' 4+ 1/’ =1 and 1/a” + 1/3"” = 1. We consider again the constant
function f(z) = hy, which this time is an element of F,~ ;. By Theorem 2.10
with p =1 and p’ = o, we obtain

1_ ﬁ” B
Irgllarp < IBpllin™, = Ihglins

Taking the logarithm proves Dy (1)]|¢) < Do (1h]|¢). Assume now that equal-
ity holds, then it follows that hy = f, o (24 (1 —2)/a”)M*"", similarly as in

~a(¢”@) > 0. Since h, =

=1 =1,

Py
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the proof of (i). Putting u := z + (1 — z)/a”, we obtain hy = fi, o (w) M+
for all w with Re(u) between 1/a’ and 1, here a,b € R. This equality extends
to all w € S. Again, putting v = 0, we obtain hy = ch,, which implies ¢ = ¢,
since both ¢ and 1 are states. O

We next discuss the limit values a = 1, 0. Let us define

log [Py lcc,e  if By € Loo(M, )

Doo (¢l ) =
00 otherwise.

This quantity is clearly an extension of the relative max entropy (3).

Proposition 3.8. Let ¢, o € G, (M). Then

(i) hmgc%oo Ea@”@) = Doo(wll(p>
(i) If Do(Y||) is finite for some a > 1, then

Eﬁiva(wn@) = D1(¢[|p).

Proof. First, let y € M and consider the function [0, 1] > 0 + log(||hyl|1/6,,)-
This function is decreasing by (5) and by applying Theorem 2.10 to the con-
stant function f(z) = h,, we see that it is also convex. It follows that this
function must be continuous on the interval (0, 1]. Consequently, we must have
limg 1 [[hyllg.e = 1hylls = & (y).

To prove (i), it is enough to show that limy, .o [|hy|lpe = [[hyllec,es
where we put the norms infinite if hy ¢ L,(M, ). Note that the function
P — ||y |lp,, is increasing and bounded above by ||Ay oo, The statement (i)
is clearly true if the limit is infinite, so assume that lim,_, ||Aylp., = M < o0.
We then have

1P llpe < M < [lhylloo,e
for all 1 < p < oo. Let y € M™. Then for any q > 1

hy,h
Byl iyl < M, 1/p+1/g=1,

17y lla.
hence ¥(y) = (hy, hy) < M||hylq,,- Taking the limit ¢ — 1, we obtain ¥(y) <
M||hyllh = Me(y). Since this holds for all y € M™, we obtain ¢y < My
and by Lemma 2.1, hy € Loo(M, @), with |hy| s, < M. The statement
(ii) follows from Corollary 3.6 and properties of the standard Rényi relative
entropy Do (¢]|¢). O

3.2. Extension to M}

It is clear from Theorem 2.3 and the remarks at the beginning of Sect. 3 that
the spaces L,(M, ¢) can be defined for ¢ € M} (we put L,(M, ¢) = {0} for
¢ = 0) and that for A\ > 0, [|Allpre = AV, for any h € L,(M,p) =
L,(M,Xp). The definition of D, can thus be extended to positive normal
functionals. It is easy to see that for p, A > 0 and ¥, p € M, we have

Dol Ag) = Da(tllip) + —

] log i1 — log . (14)
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With this extension, we have the following order relations.

Proposition 3.9. Let 1, vo, ¢, 00, € MI and o < ¥, o < . Let 1 < a < co.
Then D (toll¢) < Da(¥]l@) and Da(¥lpo) > Da(¥]0).

Proof. For the first inequality, we may assume that ¢» € L, (M, ). The in-
equality then follows by Corollary 2.12. Let now g < ¢ and assume that
h € Loo(M, o). By Lemma 2.2, it is easy to see that then h € Lo (M, p)
and ||h]lso,p < ||hlloo,po- It follows that if f € F(Loo(M,p0), L1(M)), then
f € F(Loo(M, ), L1(M)) and

A2 M)z ) < P2 (L 0. (1)
By the definition of the interpolation norm, we obtain [|hy|la,e < |7y |la,pos
this implies the second inequality.
Proposition 3.10. D, : M x M —[0,00] is jointly lower semicontinuous.

Proof. It suffices to prove that the set {(¢, ) € MF x MF, ||hylla,e < a}is
closed in M, x M, for each a > 0. So let 9,, and ¢,, be sequences of positive
normal functionals, converging in M, to 1 and ¢, respectively, and such that
|h, |l a,p, < @. By Theorem 2.3, we have

hwn = h;{fﬁknh;/nw, kn, € La(M)+v ||kn||a = ||hwn||a,wn < a.

Since the space L, (M) is reflexive and {k,} is bounded, we may assume that
kn converges to some k weakly in L, (M), and then ||k|, < a.

Let b := hi/*’khY/*" | so that h € Lo(M, ) with |[hllay, = [k < a.
We will show that hy, converges to h weakly in L;(M) and hence we must
have hy = h. So let x € M. Then by Hélder’s inequality,

|Tr (hy, —h)z| = |Tr(hii26knhiizﬁ _ h;/zﬁkh}a/z,am
< |Tr (hY/?P — hY?P )k h /P x|
T B2l (02 = B2 )l + [T /2 (e — )/
< (1hL2% = B [laglknlla(0n ()27 + 0(1)1/27) 2|
+ | Tr (k — k)R *Pahl/?P|

It was proved by Kosaki [24, Theorem 4.2] that the map L;(M)* > h —
hl/P € L,(M)" is norm continuous. Hence the first part of the last expression

converges to 0. Since h}a/wxh;/w € Lg(M) for any = € M, the second part
goes to 0 as well. O

Let now N' = M@ M and @1, ps € M be faithful, ¢ = p1 Gs. By [42],
Ly(N) = Ly(M) x Ly(M) and || (bus k)l = (a2 -+ [ol12)77, 1< p < oo,
By this and Theorem 2.3, we obtain that L,(N, ¢) = L,(M, ¢1) X L,(M, ¢2)
and for h = (hy, he) € L,(N, @),

(P2, h2)llpeo = (1hal} o, + NP2} o)) . (15)
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Proposition 3.11. Let 11,2, 01,02 € M and let o = 1)1 ® s, o = p1 B pa.
Then

exp{(a = 1) Da(¢[0)} = exp{(e = 1) Da(¢1[l 1)}

+exp{(a = 1) Da(¢1]lp1)}-
Proof. Follows immediately from (15) and the definition of D,,. O

3.3. Data Processing Inequality

Let N be another von Neumann algebra and let ® : Ly(M) — Li(N) be
a positive linear trace-preserving map. Then ® defines a positive linear map
M, — N, also denoted by ®, mapping states to states. The adjoint ®* : N’ —
M is normal, positive and unital. The map ® will be fixed throughout this
section, together with ¢ € &,(M). We put e := s(p) and ¢’ := s(P(p)).

We first show that ® maps L1 (M, ¢) into L1 (N, @(p)), see the remarks
at the beginning of Sect. 3. From ¢(®*(1 —¢')) = ®(p)(1 —€’) = 0, it follows
that e®*(1 — e’)e = 0 and hence e®*(¢’) = e, so that e < ®*(e’). Let now
h = ehe € Li(M)™, then

Trh = Trhe < Trh®*(e/) = Tr ®(h)e’ < Tr®(h) = Trh,
hence ¢'®(h)e’ = ®(h) and ®(h) € L1(N, ®(p)). Since L1 (M, ) is generated
by positive elements, this implies that ® maps L; (M, ¢) into L1 (N, ®(p)).

Assume next that h = h, for some x € eM™Te. Then h, < |z|h, and

since @ is positive, we also have ®(h;) < ||z||®(h,). By Lemma 2.1, there is
some z’ € ¢ N'e’ such that

®(h,) = q)(hslo/Qxhslo/Q) = (I)(hw)lmxlq)(hw)lp = q)(hgo)z’ € Lo (N, q>(¢))+-
Since M™ generates M, it follows that ® maps Lo (M, @) into Leo (N, ®()).

By linearity, the map = + 2’ extends to a linear map @7, : eMe — 'Ne¢/,
which is obviously positive, unital and normal.

Proposition 3.12. For any 1 < p < oo, ® restricts to a contraction L,(M, p)
— LN, 2()).-

Proof. As we have seen, ® maps L1 (M, ) into Li(N,®(p)) and Lo (M, )
into Loo (N, ®(p)). For any h € L1(M, o),

@)1 = sup Tr ®(h)zo = sup Tr h®* (20) < |1,
zo€N,|lzo| <1 o €N, [|lzoI<1

the last inequality follows from the fact that ®* is a unital positive map, hence
a contraction by the Russo-Dye theorem, [33]. Next, for x € eMe,

[@(ha)lloc, () = [[R(he) s (@) lloo,0(0) = 125 (@) < 2] = [[ha]loo e,

where we used Russo-Dye theorem for ®7. The statement now follows by the
Riesz—Thorin theorem (Theorem B.1). O

Let us denote the preadjoint of ®F by ®,. For any = € eMe and hy €
€' Li(N)e', we have

<h0, (I)(hz)> = <h0aq)(h<ﬂ)<l>;;(m)> = TI‘hO(I);(SE) = <(I)<P(h0)’h/a:> (16)
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By the uniqueness part in [6, Theorem 4.4.1], this extends to
(ho, B(0)) = (B, (ho) B, h € LM, @), ho € LN, B(9)).  (17)
Moreover, for x € eMe,
Tr @, (®(hy))z = Tr &(hy,)®%(x) = Tr &(hy,) '/ 20 ()@ (hy,)"/?
=Tr®(hy) = Trh, = Trhyz,
so that @, (®(h,)) = hy,. By Proposition 3.12, &, defines a positive contraction
Ly(N, ®(p)) = Lp(M, ), for 1 < p < oc.
Remark 3.13. As in the proof of Lemma 2.1, we have
Trh,y = (yhio/z, thi,/Q), y €eMe, ©€eMte
and by linearity, this holds for all z € eMe. It follows that ® is determined
by
(@ (yo)hy/*, Jwhy?) = Tr ha®* (y0) = Tr @ (ha)yo
= Tr & (hy)" 2@ () (hy) ' *yo
= (yo®(hy)'?, Jo® ()8 (h,)'?)
for all yg € e/Ne/ and = € eMe, here Jy is the modular conjugation (adjoint
operation) on Ly (e’Ne’). In this form, the map ®, was defined by Petz in [37]

and is therefore called the Petz dual. Moreover, it was proved that for any n,
@7, is n-positive if and only if @ is.

We are now ready to prove the data processing inequality for D,, together
with some lower and upper bounds in terms of the dual elements T, (hy) and

Tﬁﬁb(go) ((I)(hw)), see (8)

Theorem 3.14. Let 1 < aw < 00, 1/a+1/6 = 1. Let 3, p € &,.(M) and assume
that hy € Lo(M, ). Let us denote h :=Tp ,(hy), ho = Tg,a(0)(P(hy)). Then
forl<a<2,

_ . 1 B

Dulblle) = Du(®WIR() 2 2 50 0,00)|

e

and for 2 < a < 00,
2

Da(wle) = Da(@()[#(e) 55~ 1) | 300 - 2,00

Bye
If1 <a<ooand||h—®,(ho)lg,, <1, we also have an upper bound

Da(¥llp) = Da((1)[|®(p)) < —Blog (1 = [Ih — Dy (ho)lls.e) -
Proof. By (17), we obtain

@)ooy (hos ®(hy)) .
2(e) _ = (@, (ho), 17y |5 5 )
- ol P n et

= (Pp(ho) + I, hy I3 phe) = (s hsllG he)
<@y (ho) + hllge — 1.
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Assume 1 < a < 2, so that 2 < § < oo. Since ||A||g,4, |Py(ho)llg,e < 1,
Clarkson’s inequality (Theorem 2.5) implies

8 1/p

ﬁm@)

@4 (ho) + Rllg.e
Using the inequality (1 — zP)Y/? <1 — %xp for p> 1, z € [0, 1], we obtain

1
< (2% —||h — %(ho)ugw)l/ﬂ =2 (1 - H2(h — @4 (ho)

2,1
1@ (ho) + Pllge —1 <1 - 5”5(h — ®,(ho)ll5,,

For 2 < o < 00, we apply Theorem 2.6 with & replaced by h + ®,(ho) and k
by h — ®,(ho), and obtain

5 N\ 1/2

ﬁ,so)

2

@Amﬂ+mmws2<1—w—1W§m—¢dm>

The inequality above with p = 2 now yields

1
19, 0) + il =1 < 1= (5= 1) 30 @, (8o

B,

The inequalities in (i) and (ii) follow by taking the logarithms and using the
inequality logx <z — 1 for = > 0.
On the other hand, we have a lower bound
@ (7o)l v, ()

= (Pp(ho), |hyllz o) = (h = (h = @y (ho)), 10115 Lhe)
[ e

> 1= [[h =Py (ho)llp.e-
If 1 —||h — ®,(ho)||g,e > 0, this implies (iii). O

The following result was obtained in [30] for algebras of bounded opera-
tors on a separable Hilbert space.

Corollary 3.15. Let ¢, € &.(M) and let ® : L1(M) — Ly (N) be a positive
trace-preserving map. Then

D1(2(9)[[@(¢)) < Di(d]#)-

Proof. Immediate from Theorem 3.14 and Proposition 3.8. O

Corollary 3.16. For 1 < o < 00, the map (¢, ¢) — exp{(a — 1)D,(¢|©)} is
jointly convex.

Proof. The following arguments are standard. Let ¢, 12, 1, 2 € &,(M). Let
Y, 0 € G (M@BM) be given by 1 = A\p1 & (1 — A\)be and p = A1 @ (1 — N)pa.
By Proposition 3.11 and (14), we obtain
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exp{(a = 1) Da(¥[|)} =exp{(a = 1)D (Awl\lx\%)}
+exp{(a—1) a((L=A)ell(1 = A)e2)}
=Aexp{(a —1)D (1/11H<P1)}
+ (1= A exp{(a — 1) Da(¢2]|2)}-
Let ® : Liy(M @ M) — Li(M) be given by (hy,he) — hy + he, then @ is
obviously positive and trace preserving and
P(p) =Ap1 + (1= N2, @(¢) = A1 + (1 — A)ta.
The statement now follows by Theorem 3.14. O
We also obtain a characterization of equality in DPI, which will be useful
in the next section.
Corollary 3.17. Let 1, € G, (M) and assume that ¢ € Lo(M, ). Then
Da(¥llp) = Da(®(¥)[|2(p)) if and only if
Py, 0T 9(,) © P(hy) = Tp,p(hy).
If a = 2, this is equivalent to ®, 0 O(¢) = 1.

Proof. The first statement is immediate from Theorem 3.14. Let now o = 2,
then

12(h)l3 0oy = (B(hy), @(hy)) = (hy, By 0 B(hyy))
< Nhyllzpl|®p 0 @(hy) 2 < [1Rll3 -

The statement now follows by equality condition in the Schwarz inequality. [

4. Sufficiency of Channels

In this section, we study the case of equality in DPI for D,. The aim is to
show that this equality implies existence of a recovery map for (®,, ). For
this, we need that the map ® is 2-positive, which will be assumed in the rest
of the paper.

Let ¢, p € 6.(M) and let ® : L1 (M) — Ly(N) be a 2-positive trace-
preserving map. We say that @ is sufficient with respect to {1, p} if there
exists a 2-positive trace-preserving recovery map ¥ : Ly (N) — Li(M), such
that ¥ o ®(hy) = hy and ¥ o ®(hy,) = he,.

Remark 4.1. In the above definition, we may also assume that both & and
U are completely positive and trace-preserving maps, such maps are usually
called quantum channels. This definition seems stronger, but in fact it is fully
equivalent, in the sense that if ® is 2-positive and trace preserving and there is
a 2-positive recovery map W for (®, 1, ), then there are quantum channels P
and W that coincide with ® and W when restricted to {1, ¢} and {® (1), ®(¢)},
respectively.

The following theorem is one of the crucial results of [37]. Note that it
implies that ®, is a universal recovery map.
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Theorem 4.2 [20,37]. Let @ : L1(M) — L1(N) be a trace-preserving 2-positive
map. Let p € &,(M) be faithful and assume that ®(p) is faithful as well. Then
® is sufficient with respect to {1, p} if and only if , 0 P(hy) = hy.

The following is a standard result of ergodic theory.

Lemma 4.3. Let Q : Li(M) — Li(M) be 2-positive and trace preserving,
admitting a faithful normal invariant state. Then there is a faithful normal
conditional expectation E on M such that ¥ € &,.(M) is invariant under

if and only if Yo E = ).

Proof. Let S be the set of all normal invariant states of Q and let Z be the
set of all 2-positive unital normal maps T : M — M, such that Y o T = o
for all » € S. Then 7 is a semigroup (i.e., closed under composition), convex
and closed with respect to the pointwise weak*-topology. By the mean ergodic
theorem [26], Z contains a conditional expectation E, such that

ToE=EoT=E, VTel.
Since E € Z, ¢ o E = 4 for all ©p € S. On the other hand, let ¥ € &,(M) be
such that ¢ o £ = 1), then
Yo =1poFEoQ"  =vyYoE =1,
because Q* € 7. 0

Lemma 4.4. Let ¢ € &,(M) be faithful. Let 1 < p < oo and let v € &, (M)
be such that

hy = Ch;/Qqhi)/ph;/Qq

for somec >0 andw € &, (M). Let ® : L1(M) — L1 (N) be a 2-positive trace-
preserving map such that ®(p) is faithful. Then ® is sufficient with respect to
{1, } if and only if it is sufficient with respect to {w, v}.

Proof. Let Q = ®,0®, then ¢ is a faithful invariant state for (2. By Lemma 4.3
and Theorem 4.2, there is a faithful normal conditional expectation E such
that o ' = ¢ and ® is sufficient with respect to {1, ¢} if and only if o F' = ).
Let us denote the range of F by M.

We now apply the results in “Appendix A.3”. Let ) o £ = 1), that is,
Ey(hy) = hy. By (A.7) and (A.8),

hy = E1(hy) = cE1(h*hY/Phl/??) = chl/* B, (hY/P)hi/?.

Since 4, is an isomorphism (see Theorem 2.3), we see that we must have h}u/ P =
Ep(hi/p) € L,(My). But then also hy, € Li1(My), so that wo E = w and ® is

sufficient with respect to {w, ¢}. Conversely, if wo F' = w, then h? e L,(My),
so that hy € L1(Mp) and ¢ o E = 1. O

Lemma 4.5. Let ® : L1(M) — Li(N) be a positive trace-preserving map and
let 1 <p<oo. Let h € Ly(M,p) be such that | ®(h)||p.ap) = [|hl|p,e- Then

@ (frpO)ll1/0.00) = 1frp(@)ll1/6,4, VO € (0,1).
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Proof. By Proposition 3.12, ® o f, , € F(Leo(N,®(p)), L1(N)) =: Fy and
190 faplls, < llfipllr. Since B o frp(1/p) = B(k), we have

12(M)lp.ae) < 1o frpllz, < Wnplle = lPlpe = 12 o),

hence [|®o fr,(1/P))|lp,a(p) = 1®(fap)ll £, = [l frpllz- The result now follows
by Lemma 2.7. O

We are now prepared to prove the main result of this section.

Theorem 4.6. Let & : Li(M) — Li(N) be a 2-positive trace-preserving map
and let 1 < a < 0o. Let ¢, € G, (M) be such that hy € Lo(M, ). Then ®

is sufficient with respect to {1, ¢} if and only if Dy (]|@) = Da(®()]|®(p)).

Proof. By the assumptions, s(¢) < s(p) and we may suppose that both ¢ and
O(p) are faithful, by restriction to the corresponding compressed algebras.

Further, we have hy, = h}a/zﬁhi,/ahgp/Zﬁ for some w € M, here 1/a+1/8 = 1.

Suppose that Da(4[lp) = Da(®(%)[®(#)). Then [|®(hy)llaaie) = [hyllagp
and by Lemma 4.5,

1@ (frya(1/2))

l2,8(5) = [ fnya(1/2)]l2,0-
Note that
Frpa(1/2) = chl/*hPRY* € Ly(M)*

for some constant ¢ > 0, hence there is some ¥; € &,(M), such that fy,, «(1/2)
= dhy,, where d > 0 is obtained by normalization. It follows that hy, €
La(M, ) and we have

1D () l2,0(0) = |y,

By Corollary 3.17, this implies that ® is sufficient with respect to {1, ¢} and
by Lemma 4.4, ® is sufficient with respect to {w1, ¢}, where w; = w(1) lw.
Using Lemma 4.4 again, we obtain that ® is sufficient with respect to {¢, p}.

The converse statement follows immediately from DPI (Theorem 3.14).

O

|2,</>'

5. Concluding Remarks

In this paper, an extension of the sandwiched Rényi relative a-entropies to the
setting of von Neumann algebras is defined for o > 1, using an interpolating
family of noncommutative L,-spaces with respect to a state. For this exten-
sion, we proved that it coincides with the previously defined Araki-Masuda
divergences [7]. Further, some of the basic properties are shown, in particular
the data processing inequality with respect to positive trace-preserving maps.
Since the limit o — 1 yields the Araki relative entropy D1, this implies that Dy
is monotone under such maps and not only adjoints of unital Schwarz maps,
as previously known [45]. For M = B(H), this fact was recently observed in
[30].
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Another main result of the paper is the fact that preservation of the
extended sandwiched entropies characterizes sufficiency of 2-positive trace-
preserving maps. Note that for most of the proofs 2-positivity was not needed,
indeed, Lemma 4.3 is the only place where more than positivity is necessary. It
would be interesting to see whether similar results can be proved assuming only
positivity, since the results known so far on sufficiency of maps need stronger
positivity conditions. Note that for o = 2, an extension to positive maps is
proved in Corollary 3.17.

The Araki-Masuda divergences were defined in [7] also for o € [1/2,1). A
treatment of D,, for these values in our setting will be given elsewhere, see [19].
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Appendix A. Some Technical Results in Haagerup L,-Spaces
A.1. Relative Modular Operator

We discuss the definition of the relative modular operator and its form in the
standard representation (A\(M), La(M), J, Lo(M)™).

Let n,§ € Ly(M) and let ¢ = w, = (-n,1), ¢ = we = (-§,€). The
conjugate-linear operator S, ¢ with domain M¢ + La(M)(1 — s(¢)) is defined
as

¢ 2l o s(e)a’n, weM, e Ly(M)(1 - s(p)). (A1)
Let also F), ¢ be defined on the domain {M + (1 — s(¢))La(M) as
ty+ e nyts(e), yeM, (e (1= s(p)La(M). (A-2)

Then S,, ¢, Fy.¢ are densely defined and closable, and we have S = F*, F = S*.
The closures have polar decompositions

& = 1/2 1/2
Sne =y, &Angv Fhe= An,/g Je = Je, nA )

where J, ¢ is a partial anti-isometry, Je, = Jn,é and An,& is a positive self-
adjoint operator on Lo (M), called the relative modular operator. This operator
does not depend on the choice of the vector representative n of ¥, and we

may replace J,, ¢ with J if n,§ € Ly(M)T (which means that n = h1/2 £ =
h}a/z). See, e.g., [2, Appendix C] and [41] for more details. We use the notation
All}#’ = An,hi;/z'
Note that for z = o +it, 0 < o < 1/2, ¢t € R, we have [22]
D(A} ) = D(AY ) = {k € La(M), hijkh,® € Ly(M)}
= {k € Ly(M),3k" € Ly(M), hijks(p) = k'he}
and for k € D(AY, ),

z _ 1z —z __ gt —it
2 ok = hokh? = hilk'h . (A.3)
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Moreover, since JAy ,J = A;}w, we have D(A_%,) = D(A_%) = JD(AY, )
and for k € D(A, ),

ALK = ho*k*hi, = b (K) hil. (A.4)

A.2. The Spatial Derivative
We now recall the definition of the spatial derivative A(n/¢) of [7] in the above

standard representation. Let H,, := [Mh}am] = Ly(M)s(p) and let € € La(M)
be such that the corresponding functional is majorized by ¢:

we(a*a) = ||a&|* < Cepla*a), Ya € M,
for some positive constant C¢. Then
R?(¢) : ah}p/2 —al, aeM

extends to a bounded linear operator H, — Lo(M). Obviously, R () extends
to a bounded linear operator on Ly (M) by putting it equal to 0 on Lo (M)(1—
s(¢)). Moreover, this operator commutes with the left action of M, so that
it belongs to A(M)" = p(M), where p is the right action p(a) : h — ha,
h € Ly(M). In fact, we is majorized by ¢ if and only if £ € hgla/QM, S0
that there is some y¢ € M such that £ = hilp/Zyg, s(¢)ye = ye and we have

R(&) = p(ye)-

Let now n € La(M). The spatial derivative A(n/p) is a positive self-
adjoint operator associated with the quadratic form & — (n, R?(§)R%(£)*n)
as

(& AM/e)E) = (A(m/e) ¢, Aln/)'/%¢) = (1, R?(§)R?(£)™n)
= (R*(§)"n, R7(§)"n) = (my¢s(v),nyes(p))
= (Fn’h;/2§7 Fn’h;/zf)a

see (A.2). Since h;/QM + (1 — s(¢))L2(M) is a core for both A(n/¢) and
F77 i/2 it follows that
e

A(n/p) = F;,h;/an,hi/Z = JAu o,
where w := w,,. This implies that for any { € Ly(M) and v € C, we have
[AMm/e) Ell2 = 1AL ,JEll2 = 1AL &5 2 (A.5)

A.3. Extensions of Conditional Expectations

A conditional expectation E on a von Neumann algebra M is a positive con-
tractive normal projection onto a von Neumann subalgebra My C M. A condi-
tional expectation is necessarily completely positive and satisfies the condition

E(zay) = zE(a)y, x,y € Mo, a € M. (A.6)

Assume a faithful normal state ¢ and a von Neumann subalgebra My C M
are given, such that there is a conditional expectation E satisfying ¢ o ' = ¢.
Then the space L,(M,) for 1 < p < oo can be identified with a subspace in



Vol. 19 (2018)  Rényi Relative Entropies and Noncommutative Ly-Spaces 2539

»(M) and E can be extended to a contractive projection E, of L,(M) onto
»(Mo), [21]. This extension is positive and satisfies

Ey(hik) = hE,()k, h € Ly(Mo), k € Ly(Mq),l € L (M), (A7)

whenever 1 < p,q,r < oo are such that 1/p+1/q+ 1/r =1/s < 1. Moreover,
for p =1, we have

L
L

FEy: hw — h¢oE, P e M.. (AS)

Appendix B. The Complex Interpolation Method

In this paragraph, we briefly describe the complex interpolation method, fol-
lowing [6], see also [23].

Let (Xo,X1) be a compatible pair of Banach spaces, with norms || - ||
and || - ||;. For our purposes, it is enough to assume that Xy is continuously
embedded in X;. Let S C C be the strip S = {z € C, 0 < Re(z) < 1} and let
F = F(Xo, X1) be the set of functions f : S — X; such that

(a) f is bounded, continuous on S and analytic in the interior of S
(b) Fort e R, f(it) € Xo and the map t € R+ f(it) € X is continuous and
bounded.

For f € F, let

171 = e o 7)o £+ 0 .

Then (F, ||-|| ) is a Banach space. For 0 < # < 1, the interpolation space is
defined as the set

Co(Xo, X1) ={f(0), f € F}

endowed with the norm

[zllo = mf{{[fllz f(O) ==, feF} (B.1)

Since Cy(Xo, X1) is the quotient space F /Ky with respect to the closed
subspace Ky = {f € F, f(0) = 0}, we see that Cy(Xy, X1) is a Banach space.
Moreover, we have the continuous embeddings

Xo C Cy(Xo, X1) € Xy

and Cjy defines an exact interpolation functor of exponent €, which means that
the following abstract version of the Riesz—Thorin interpolation theorem holds.

Theorem B.1. Let (Xo, X1) and (Yo, Y1) be pairs of compatible Banach spaces
and let T : X1 — Y7 be a bounded linear operator such that T(Xo) C Yy. If
ITx|ly, < Millz||lx,, z € X1 and ||[Tzolly, < Mol||xollx, for zo € Xo, then for
6 e (0,1),

—0 7 r0
ITllo < Mo~ M7 |-
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