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Interpolation Inequalities and Spectral
Estimates for Magnetic Operators
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Abstract. We prove magnetic interpolation inequalities and Keller–Lieb–
Thirring estimates for the principal eigenvalue of magnetic Schrödinger
operators. We establish explicit upper and lower bounds for the best
constants and show by numerical methods that our theoretical estimates
are accurate.

1. Introduction and Main Results

In dimensions d = 2 and d = 3, let us consider the magnetic Laplacian defined
via a magnetic potential A by

−ΔA ψ = −Δ ψ − 2 iA · ∇ψ + |A|2ψ − i (divA)ψ .

The magnetic field is B = curlA. The quadratic form associated with −ΔA

is given by
∫
Rd |∇Aψ|2 dx and well defined for all functions in the space

H1
A(Rd) :=

{
ψ ∈ L2(Rd) : ∇Aψ ∈ L2(Rd)

}

where

∇A := ∇ + iA .

We shall consider the following spectral gap inequality

‖∇Aψ‖2
2 ≥ Λ[B] ‖ψ‖2

2 ∀ψ ∈ H1
A(Rd) . (1.1)

Let us notice that Λ depends only on B = curlA. Throughout this paper, we
shall assume that there is equality in (1.1) for some function in H1

A(Rd). If B is
a constant magnetic field, we recall that Λ[B] = |B|. If d = 2, the spectrum of
−ΔA is the countable set {(2j +1) |B| : j ∈ N}, the eigenspaces are of infinity
dimension and called the Landau levels. The eigenspace corresponding to the
lowest level (j = 0) is called the Lowest Landau Level and will be considered
in Sect. 5.4.
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Let us denote the critical Sobolev exponent by 2∗ = +∞ if d = 2 and
2∗= 6 if d = 3, and define the optimal Gagliardo–Nirenberg constant by

Cp :=

⎧
⎨

⎩

minu∈H1(Rd)\{0}
‖∇u‖2

2+‖u‖2
2

‖u‖2
p

if p ∈ (2, 2∗),

minu∈H1(Rd)\{0}
‖∇u‖2

2+‖u‖2
p

‖u‖2
2

if p ∈ (1, 2) .
(1.2)

The first purpose of this paper is to establish interpolation inequalities in the
presence of a magnetic field. With A and B = curlA as above, such that (1.1)
holds, let us consider the magnetic interpolation inequalities

‖∇Aψ‖2
2 + α ‖ψ‖2

2 ≥ μB(α) ‖ψ‖2
p ∀ψ ∈ H1

A(Rd) (1.3)

for any α ∈ (−Λ[B],+∞) and any p ∈ (2, 2∗),

‖∇Aψ‖2
2 + β ‖ψ‖2

p ≥ νB(β) ‖ψ‖2
2 ∀ψ ∈ H1

A(Rd) (1.4)

for any β ∈ (0,+∞) and any p ∈ (1, 2) and, in the limit case corresponding to
p = 2,

‖∇Aψ‖2
2 ≥ γ

∫

Rd

|ψ|2 log
( |ψ|2

‖ψ‖2
2

)

dx + ξB(γ) ‖ψ‖2
2 ∀ψ ∈ H1

A(Rd) (1.5)

for any γ ∈ (0,+∞). Throughout this paper μB(α), νB(β) and ξB(γ) denote
the optimal constants in, respectively, (1.3), (1.4) and (1.5), considered as func-
tions of the parameters α, β and γ. We observe that μ0(1) = Cp if p ∈ (2, 2∗),
ν0(1) = Cp if p ∈ (1, 2) and ξ0(γ) = γ log

(
π e2/γ

)
if p = 2 (which is the clas-

sical constant in the Euclidean logarithmic Sobolev inequality: see (3.7)). We
shall assume that the magnetic potential A ∈ L2

loc(R
d) satisfies the technical

assumption

lim
σ→+∞ σd−2

∫

Rd

|A(x)|2 e−σ |x| dx = 0 if p ∈ (2, 2∗) ,

lim
σ→+∞

σ
d
2 −1

log σ

∫

Rd

|A(x)|2 e−σ |x|2 dx = 0 if p = 2 ,

lim
σ→+∞ σd−2

∫

|x|<1/σ

|A(x)|2 dx if p ∈ (1, 2) .

(1.6)

Theorem 1.1. Assume that d = 2 or 3, p ∈ (1, 2) ∪ (2, 2∗), and α > 2 if d = 2
or α = 3 if d = 3. Let A ∈ Lα

loc(R
d) be a magnetic potential satisfying (1.6)

and B = curlA be a magnetic field on R
d such that (1.1) holds for some

Λ = Λ[B] > 0 and equality is achieved in (1.1) for some function ψ ∈ H1
A(Rd).

Then, the following properties hold:
(i) For any p ∈ (2, 2∗), the function μB : (−Λ,+∞) → (0,+∞) is monotone

increasing, concave and such that

lim
α→(−Λ)+

μB(α) = 0 and lim
α→+∞ μB(α)α

d−2
2 − d

p = Cp .

(ii) For any p ∈ (1, 2), the function νB : (0,+∞) → (Λ,+∞) is monotone
increasing, concave and such that

lim
β→0+

νB(β) = Λ and lim
β→+∞

νB(β)β− 2 p
2 p+d (2−p) = Cp .
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(iii) The function ξB : [0,+∞) → R is continuous, concave, such that
ξB(0) = Λ[B] and

ξB(γ) = d
2 γ log

(
π e2

γ

)
(1 + o(1)) as γ → +∞ .

Equality is achieved in (1.3), (1.4) and (1.5) for some ψ ∈ H1
A(Rd) in the

case of constant magnetic fields. In the case of nonconstant magnetic fields,
there are cases where one can prove the existence of some ψ ∈ H1

A(Rd) for which
equality is achieved in (1.3), (1.4) and (1.5), but general sufficient conditions
are difficult to obtain. Some answers to this question can be found in [12,
Section 4] and in [17].

The main result of this paper is to establish lower bounds for the optimal
constants μB, νB and ξB in the case of general magnetic fields (respectively,
in Propositions 3.1, 3.4 and in Sect. 3.5) and in the case of two-dimensional
constant magnetic fields (respectively, in Propositions 4.2, 4.3 and 4.5). Upper
estimates, theoretical and numerical, are also given in Sect. 5.

The magnetic interpolation inequalities have interesting applications to
optimal spectral estimates for the magnetic Schrödinger operators

−ΔA + φ .

Let us denote by λA,φ its principal eigenvalue, and by
αB : (0,+∞) → (−Λ,+∞) the inverse function of α 
→ μB(α). We denote by
φ− := (φ − |φ|)/2 the negative part of φ. By duality as we shall see in Sect. 2,
Theorem 1.1 has a counterpart, which is a result on magnetic Keller–Lieb–
Thirring estimates.

Corollary 1.2. With these notations, let us assume that A satisfies the same
hypotheses as in Theorem 1.1. Then we have:

(i) For any q = p/(p − 2) ∈ (d/2,+∞) and any potential V such that
V− ∈ Lq(Rd),

λA,V ≥ −αB(‖V−‖q) . (1.7)

The function αB satisfies

lim
μ→0+

αB(μ) = Λ and lim
μ→+∞ αB(μ)μ

2 (q+1)
d−2−2 q = −C

2 (q+1)
d−2−2 q
p .

(ii) For any q = p/(2 − p) ∈ (1,+∞) and any potential W ≥ 0 such that
W−1 ∈ Lq(Rd),

λA,W ≥ νB
(‖W−1‖−1

q

)
. (1.8)

(iii) For any γ > 0 and any potential W ≥ 0 such that e−W/γ ∈ L1(Rd),

λA,W ≥ ξB (γ) − γ log
(∫

Rd e−W/γ dx
)

. (1.9)

Moreover equality is achieved in (1.7), (1.8) and (1.9) if and only if equality
is achieved in (1.3), (1.4) and (1.5).
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For general potentials changing sign, a more general estimate is proved in
Proposition 2.1. A first result without magnetic field was obtained by Keller in
the one-dimensional case in [16], before being rediscovered and extended to the
sum of all negative eigenvalues in any dimension by Lieb and Thirring in [19].
In the meantime, an estimate similar to (1.9) was established in [13] which, by
duality, provides a proof of the logarithmic Sobolev inequality given by Gross
in [14]. In the Euclidean framework without magnetic fields, scalings provide
a scale-invariant form of the inequality, which is stronger (see [11,26]) but was
already known as the Blachmann–Stam inequality and goes back at least to
[23]: see [24,25] for an historical account. Many papers have been devoted to
the issue of estimating the optimal constants for the so-called Lieb–Thirring
inequalities: see for instance [9,10,18] for estimates on the Euclidean space,
[6,7] in the case of compact manifolds, and [8] for non-compact manifolds
(infinite cylinders). As far as we know, no systematic study as in Theorem 1.1
nor as in Corollary 1.2 has been done so far in the presence of a magnetic field,
although many partial results have been previously obtained using, e.g., the
diamagnetic inequality.

Section 2 is devoted to the duality between Theorem 1.1 and Corol-
lary 1.2. Most of our paper is devoted to estimates of the best constants
in (1.3), (1.4) and (1.5), which also provide estimates of the best constants
in (1.7), (1.8) and (1.9). In Sect. 3 we prove lower estimates in the case of a
general magnetic field and establish Theorem 1.1. Sharper estimates are ob-
tained in Sect. 4 for a constant magnetic field in dimension two. Section 5
is devoted to upper bounds and the numerical computation of various upper
and lower bounds (constant magnetic field, dimension two). Our theoretical
estimates are remarkably accurate for the values of p and d that we have con-
sidered numerically, using radial functions. This is why we conclude this paper
by a numerical investigation of the stability of a radial optimal function.

2. Magnetic Interpolation Inequalities and
Keller–Lieb–Thirring Inequalities: Duality and a
Generalization

Let us prove Corollary 1.2 as a consequence of Theorem 1.1. Details on duality
will be provided in the proof and in the subsequent comments.

Proof of Corollary 1.2. Consider first Case (i) with q > d/2. Using the defini-
tion of the negative part of V and Hölder’s inequality with 1/q + 2/p = 1, we
know that
∫

Rd

|∇Aψ|2 dx +
∫

Rd

V |ψ|2 dx ≥
∫

Rd

|∇Aψ|2 dx +
∫

Rd

V− |ψ|2 dx

≥ ‖∇Aψ‖2
2 − ‖V−‖q ‖ψ‖2

p ≥ −αB(‖V−‖q) ‖ψ‖2
2 ,

(2.1)
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because, by Theorem 1.1, μB(α) = ‖V−‖q has a unique solution α = αB(‖V−‖q).
This proves (1.7). The optimality in (1.7) is equivalent to the optimality in (1.3)
because V = − |ψ|p−2 realizes the equality in Hölder’s inequality.

In Case (ii), by Hölder’s inequality with exponents 2/(2 − p) and 2/p,

‖ψ‖2
p =

(∫

Rd

W− p
2

(
W |ψ|2)

p
2 dx

)2/p

≤ ‖W−1‖q

∫

Rd

W |ψ|2 dx

with q = p/(2 − p), we know using (1.4) that
∫

Rd

|∇Aψ|2 dx +
∫

Rd

W |ψ|2 dx ≥
∫

Rd

|∇Aψ|2 dx + β ‖ψ‖2
p ≥ νB(β)

∫

Rd

|ψ|2 dx .

with β = 1/‖W−1‖q, which proves (1.8).
In Case (iii), let us consider

F [ψ,W ] :=
∫

Rd

|∇Aψ|2 dx +
∫

Rd

W |ψ|2 dx + γ log
(∫

Rd

e−W/γ dx

)

− ξB(γ)

for a given function ψ ∈ H1
A(Rd) such that ‖ψ‖2 = 1 and minimize this func-

tional with respect to the potential W , so that

|ψ|2 =
e−W/γ

∫
Rd e−W/γ dx

which implies W = Wψ := − γ log |ψ|2 − γ log
(∫

Rd e−W/γ dx
)
. Hence

F [ψ,W ] ≥ F [ψ,Wψ] =
∫

Rd

|∇Aψ|2 dx − γ

∫

Rd

|ψ|2 log
(|ψ|2) dx − ξB(γ) ≥ 0 ,

where the last inequality is given by (1.5). Minimizing F [ψ,W ] with respect
to W under the condition ‖ψ‖2 = 1 establishes (1.9). It is straightforward that
the equality case is given by the equality case in (1.5) when there is a function
ψ for which this equality holds. �

In Case (iii) of Theorem 1.1 and Corollary 1.2, the duality relation of (1.5)
and (1.9) is a straightforward consequence of the convexity inequality

x y + y log y − y + e−x ≥ 0 ∀ (x, y) ∈ R × (0,+∞) .

A similar observation can be done in Cases (i) or (ii). If
q = p/(p − 2) ∈ (d/2,+∞), i.e., in Case (i), for an arbitrary negative po-
tential V and an arbitrary function ψ ∈ H1

A(Rd), we can rewrite (2.1) as
∫

Rd

|∇Aψ|2 dx +
∫

Rd

V |ψ|2 dx + αB(‖V ‖q) ‖ψ‖2
2 ≥ 0 .

By minimizing with respect to either V or ψ, we reduce the inequality to (1.3)
or (1.7), and in both cases V = − |ψ|p−2 is optimal. The two estimates are
henceforth dual of each other, which is reflected by the fact that p/2 and q are
Hölder conjugate exponents. Similarly in Case (ii), if q = p/(2− p) ∈ (1,+∞),
we have

∫

Rd

|∇Aψ|2 dx +
∫

Rd

W |ψ|2 dx − νB(β)
∫

Rd

|ψ|2 dx ≥ 0



1444 J. Dolbeault et al. Ann. Henri Poincaré

for any positive potential W and any ψ ∈ H1
A(Rd). Again a minimization with

respect to either W or ψ reduces the inequality to (1.4) or (1.8), which are
also dual of each other. With these observations, it is clear that Theorem 1.1
can be proved as a consequence of Corollary 1.2: the two results are actually
equivalent.

The restriction to a negative potential V or to its negative part (resp. to
a positive potential W ) is artificial in the sense that we can put the threshold
at an arbitrary level λ. Let us consider a general potential φ on R

d. We can
first rewrite (2.1) in a more general setting as

∫

Rd

|∇Aψ|2 dx +
∫

Rd

φ |ψ|2 dx

≥
∫

Rd

|∇Aψ|2 dx −
∫

Rd

(λ − φ)+ |ψ|2 dx + λ

∫

Rd

|ψ|2 dx

with λ ∈ R, μ = ‖(λ − φ)‖q,+ and q = p/(p−2). Here ‖u‖q,+ is a new notation
which stands for

‖u‖q,+ :=
(∫

u>0

uq dx

)1/q

.

Using (1.7), we know that
∫

Rd

|∇Aψ|2 dx +
∫

Rd

φ |ψ|2 dx ≥ − (αB(μ) − λ)
∫

Rd

|ψ|2 dx .

This makes sense of course if μ is finite and well defined which, for instance,
requires that

λ ≤ lim
R→+∞

infess
|x|>R

φ(x) .

A similar estimate holds in the range p ∈ (1, 2). Let λ ≤ infessx∈Rd φ(x). Then
we have

‖ψ‖2
p =

(∫

Rd

(φ − λ)− p
2

(
(φ − λ) |ψ|2)

p
2 dx

)2/p

≤ 1
β

∫

Rd

(φ − λ) |ψ|2 dx ,

with 1/β = ‖(φ − λ)−1‖q and q = p/(2 − p). Using (1.8), we know that

∫

Rd

|∇Aψ|2 dx +

∫

Rd

φ |ψ|2 dx ≥
∫

Rd

|∇Aψ|2 dx + β ‖ψ‖2
p + λ ‖ψ‖2

2 ≥ (νB(β) + λ) ‖ψ‖2
2 .

We can collect these estimates in the following result.

Proposition 2.1. Let d = 2 or 3. Let φ ∈ L1
loc(R

d) be an arbitrary potential.
(i) If q > d/2, p = 2 q

q−1 and αB is defined as in (1.7), we have

λA,φ ≥ − (αB (‖(λ − φ)‖q,+) − λ).

(ii) If q ∈ (1,+∞), p = 2 q
q+1 and νB defined as in (1.8), we have

λA,φ ≥ λ + νB
(‖(φ − λ)−1‖−1

q

)
.

These estimates hold for any λ ∈ R such that all above norms are well defined,
with the additional condition that φ ≥ λ a.e. in Case (ii).
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Notice that weaker conditions than φ ≥ λ a.e. can be given, like, for
instance, infψ∈H1

A(Rd)

∫
(φ−λ)<0

(|∇Aψ|2 + (φ − λ) |ψ|2) dx ≥ 0. Details are left
to the reader. In Corollary 1.2, Case (iii) does not involve a threshold at
level λ = 0 and one can notice that the estimate (1.9) is invariant under the
transformation φ 
→ φ − λ, λA,φ 
→ λA,φ−λ = λA,φ − λ.

3. Lower Estimates: General Magnetic Field

In this section, we consider a general magnetic field in dimension d = 2 or
3. We establish lower estimates of the best constants in (1.3), (1.4) and (1.5)
before proving Theorem 1.1.

3.1. Preliminaries: Interpolation Inequalities Without Magnetic Field

Assume that p > 2 and let Cp denote the optimal constant defined in (1.2),
that is, the best constant in the Gagliardo–Nirenberg inequality

‖∇u‖2
2 + ‖u‖2

2 ≥ Cp ‖u‖2
p ∀u ∈ H1(Rd) . (3.1)

By scaling, if we test (3.1) by u
( · /λ

)
, we find that

‖∇u‖2
2 + λ2 ‖u‖2

2 ≥ Cp λ2− d (1− 2
p ) ‖u‖2

p ∀u ∈ H1(Rd) ∀λ > 0 . (3.2)

An optimization on λ > 0 shows that the best constant in the scale-invariant
inequality

‖∇u‖d (1− 2
p )

2 ‖u‖2−d (1− 2
p )

2 ≥ Sp ‖u‖2
p ∀u ∈ H1(Rd) (3.3)

is given by

Sp = 1
2 p (2 p − d (p − 2))1−d p−2

2 p (d (p − 2))
d (p−2)

2 p Cp . (3.4)

Next, let us consider the case p ∈ (1, 2) and the corresponding Gagliardo–
Nirenberg inequality

‖∇u‖2
2 + ‖u‖2

p ≥ Cp ‖u‖2
2 ∀u ∈ H1(Rd) ∩ Lp(Rd) (3.5)

where, compared to the case p > 2, the positions of the norms ‖u‖2
2 and ‖u‖2

p

have been exchanged. A scaling similar to the one of (3.2) shows that, for any
λ > 0,

‖∇u‖2
2 + λ2+d 2−p

p ‖u‖2
p ≥ Cp λ2 ‖u‖2

2 ∀u ∈ H1(Rd) ∩ Lp(Rd) ∀λ > 0 .

(3.6)

By optimizing on λ > 0, we obtain the scale-invariant inequality

‖∇u‖
d (2−p)

d (2−p)+2 p

2 ‖u‖
2 p

d (2−p)+2 p
p ≥ S1/2

p ‖u‖2 ∀u ∈ H1(Rd) ∩ Lp(Rd)

with

Sp = 1
d (2−p)+2 p (2 p)

2 p
d (2−p)+2 p (d (2 − p))

d (2−p)
d (2−p)+2 p Cp .

Optimal functions for (3.5) or (3.6) have compact support according to, e.g.,
[1,4,5,21]. See Sect. 5.2 for more details.
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The logarithmic Sobolev inequality corresponds to the limit case p = 2.
Let us consider (3.2) written with λ2 = 1

p−2 , i.e.,

‖∇ψ‖2
2 − 1

p−2

(‖ψ‖2
p − ‖ψ‖2

2

) ≥
[

Cp

(
1

p−2

)1−d p−2
2 p − 1

p−2

]

‖ψ‖2
p .

By passing to the limit as p → 2, we recover the Euclidean logarithmic Sobolev
inequality with optimal constant in case γ = 1/2. The general case correspond-
ing to any γ > 0, that is

‖∇ψ‖2
2 ≥ γ

∫

Rd

ψ2 log
(

ψ2

‖ψ‖2
2

)

dx + d
2 γ log

(
π e2

γ

) ‖ψ‖2
2 ∀ψ ∈ H1(Rd) ,

(3.7)

follows by a simple scaling argument. It was proved in [3] that there is equality
in the above inequality if and only if, up to a translation and a multiplication
by a constant, ψ(x) = e−γ |x|2/4.

As a consequence, we obtain that the limit of Cp as p → 2+ is 1 and

lim
p→2+

[

Cp

(
1

p−2

)1−d p−2
2 p − 1

p−2

]

= d
4 log

(
π e2

)
.

In other words, this means that

Cp = 1 − d
2 p (p − 2) log(p − 2) + d

4 log
(
π e2

)
(p − 2) + o(p − 2) as p → 2+ .

Let ε = p − 2 → 0+. We have shown that

Cp = 1 − d
4 ε log ε + d

4 ε log
(
π e2

)
+ o(ε) . (3.8)

3.2. Case p ∈ (2,+∞)

Let

μinterp(α) :=

⎧
⎨

⎩

Sp (α + Λ)Λ−d p−2
2 p if α ∈

[
−Λ, Λ (2 p−d (p−2))

d (p−2)

]
,

Cp α1−d p−2
2 p if α ≥ Λ (2 p−d (p−2))

d (p−2) ,

where Cp denotes the optimal constant in (3.1) and Sp is given by (3.4).

Proposition 3.1. Let d = 2 or 3. Consider a magnetic field B with magnetic
potential A and assume that (1.1) holds for some Λ = Λ[B] > 0. For any
p ∈ (2,+∞), any α > −Λ, the function μB(α) defined in (1.3) satisfies

μB(α) ≥ μinterp(α).

Proof. Let t ∈ [0, 1]. From the diamagnetic inequality

‖∇|ψ|‖2 ≤ ‖∇Aψ‖2 (3.9)

and from (1.1) and (3.2) applied with λ = α+Λ t
1−t , we deduce that

‖∇Aψ‖2
2 + α ‖ψ‖2

2 ≥ t
(‖∇Aψ‖2

2 − Λ ‖ψ‖2
2

)
+ (1 − t)

(

‖∇|ψ|‖2 +
α + Λ t

1 − t
‖ψ‖2

2

)

≥ Cp (1 − t)
d (p−2)

2 p (α + t Λ)
1−d p−2

2 p ‖ψ‖2
p
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for any ψ ∈ H1
A. Finally we can optimize the quantity

t 
→ (1 − t)
d (p−2)

2 p (α + t Λ)1−d p−2
2 p

on the interval t ∈ [max{0,−α/Λ}, 1]. The optimum value in the interval
(−α/Λ, 1) is achieved for t = 1 − d p−2

2 p − d α (p−2)
2 Λ p , which proves the first

inequality. For α ≥ Λ (2 p−d (p−2))
d (p−2) , the maximum is achieved at t = 0, which

proves the second inequality. �

By duality the estimates of Proposition 3.1 provide a lower estimate for
the best constant in the Keller–Lieb–Thirring estimate (1.7).

Corollary 3.2. Under the assumptions of Proposition 3.1, for any
q = p/(p − 2) ∈ (d/2,+∞) and any potential V such that in V− ∈ Lq(Rd), we
have

λA,V ≥ Λ − S−1
p Λ

d
2 q ‖V−‖q if ‖V−‖q ∈

[
0, 2 q

d Λ1− d
2 q Sp

]
,

λA,V ≥ − (
C−1

p ‖V−‖q

) 2 q
2 q−d if ‖V−‖q ≥ 2 q

d Λ1− d
2 q Sp .

Proof. With p = 2 q
q−1 , the estimates of Proposition 3.1 on α 
→ μB(α) provide

estimates on its inverse μ 
→ αB(μ) which go as follows:

αB(μ) ≤ S−1
p Λ

d
2 q μ − Λ if μ ∈

[
0, 2 q

d Λ1− d
2 q Sp

]
,

αB(μ) ≤ (
C−1

p μ
) 2 q

2 q−d if μ ≥ 2 q
d Λ1− d

2 q Sp .

The result is then a consequence of Corollary 1.2. �

3.3. Further Interpolation Inequalities in Case p ∈ (2,+∞)

Without magnetic field, Gagliardo–Nirenberg interpolation inequalities can be
put in scale-invariant form (3.3) by optimizing (3.2) on the scale parameter
λ > 0. In the presence of a magnetic field, one may wonder if an inequality
similar to (3.3) exists. The following result provides a positive answer.

Corollary 3.3. Under the assumptions of Proposition 3.1, with Λ = Λ[B], for
any θ ∈ [1 − 2/p, 1) and any ψ ∈ H1

A(Rd), we have
(‖∇Aψ‖2

2 + α ‖ψ‖2
2

)θ/2 ‖ψ‖1−θ
2

≥ μinterp(α)
1
4 (p θ−p+2)

(
min

{
1, (1 + α

Λ )1− 2
p
}
Sp

) p
4 (1−θ)

‖ψ‖p .

Proof. With θ� = 1 − 2
p , we can write

(‖∇Aψ‖2
2 + α ‖ψ‖2

2

)θ/2 ‖ψ‖1−θ
2

=
(‖∇Aψ‖2

2 + α ‖ψ‖2
2

) 1
2

θ−θ�
1−θ�

(
(‖∇Aψ‖2

2 + α ‖ψ‖2
2

) 1
2 (1− 2

p ) ‖ψ‖
2
p

2

) 1−θ
1−θ�

≥ (
μinterp(α) ‖ψ‖2

p

) 1
2

θ−θ�
1−θ�

(
(‖∇Aψ‖2

2 + α ‖ψ‖2
2

) 1
2 (1− 2

p ) ‖ψ‖
2
p

2

) 1−θ
1−θ�

.



1448 J. Dolbeault et al. Ann. Henri Poincaré

If α ∈ (−Λ, 0], it follows from (1.1) and (3.9) that

‖∇Aψ‖2
2 + α ‖ψ‖2

2 ≥ (
1 + α

Λ

) ‖∇Aψ‖2
2 ≥ (

1 + α
Λ

) ‖∇|ψ|‖2
2 ,

while we can simply drop α ‖ψ‖2
2 when α ≥ 0. Hence it follows from (3.3) that

(‖∇Aψ‖2
2 + α ‖ψ‖2

2

)θ/2 ‖ψ‖1−θ
2

≥ (
μinterp(α) ‖ψ‖2

p

) 1
2

θ−θ�
1−θ�

(
min

{
1, (1 + α

Λ )
1
2 (1− 2

p )
}
S1/2

p ‖ψ‖p

) 1−θ
1−θ�

,

which concludes the proof. �

3.4. Case p ∈ (1, 2)

Let νinterp be given by

νinterp(β)

:=

⎧
⎪⎨

⎪⎩

Cp β
2 p

2 p+d (2−p) if β ≥ β� :=
(

2 p+d (2−p)
d (2−p)

Λ C−1
p

) 2 p+d (2−p)
2 p ,

Λ + β Λ
d (p−2)

2 p 2 p

d (2−p)

(
d (2−p)

2 p+d (2−p)

) 2 p+d (2−p)
2 p C

2 p+d (2−p)
2 p

p if β ∈ [0, β�] ,

where Cp denotes the optimal constant in (3.5).

Proposition 3.4. Let d = 2 or 3. Consider a magnetic field B with magnetic
potential A and assume that (1.1) holds for some Λ = Λ[B] > 0. For any
p ∈ (1, 2), any β > 0, the function νB defined in (1.4) satisfies

νB(β) ≥ νinterp(β).

Proof. For all ψ ∈ H1
A, by (1.1) and (3.9), we obtain that

‖∇Aψ‖2
2 + β ‖ψ‖2

p = t
(‖∇Aψ‖2

2 − Λ ‖ψ‖2
2

)
+ (1 − t) ‖∇Aψ‖2

2 + β ‖ψ‖2
p + Λ t ‖ψ‖2

2

≥ (1 − t) ‖∇|ψ|‖2
2 + β ‖ψ‖2

p + Λ t ‖ψ‖2
2 .

Next we apply (3.6) to u = |ψ| with λ2 =
(

β
1−t

) 2 p
2 p+d (2−p)

. This yields

‖∇Aψ‖2
2 + β ‖ψ‖2

p ≥
[
(1 − t)

d (2−p)
2 p+d (2−p) β

2 p
2 p+d (2−p) Cp + Λ t

]
‖ψ‖2

2 .

If β ≤ β�, the right-hand side is maximal for some explicit t ∈ [0, 1], otherwise
the maximum on [0, 1] is achieved by t = 0, which concludes the proof. �

By duality the estimates of Proposition 3.4 provide a lower estimate for
the best constant in the Keller–Lieb–Thirring estimate (1.8).

Corollary 3.5. Under the assumptions of Proposition 3.4, for any
q = p/(2 − p) ∈ (1,+∞) and any nonnegative potential W such that
W−1 ∈ Lq(Rd), we have

λA,W ≥ νB

(‖W −1‖−1
q

) ≥ Λ + Λ
d (p−2)

2 p 2 p
d (2−p)

(
d (2−p)

2 p+d (2−p)
Cp

) 2 p+d (2−p)
2 p ‖W −1‖−1

q

if ‖W −1‖−1
q ∈ [0, β�] ,

λA,W ≥ νB

(‖W −1‖−1
q

) ≥ Cp ‖W −1‖
− 2 p

2 p+d (2−p)
q if ‖W −1‖−1

q ≥ β� .
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3.5. Proof of Theorem 1.1

Proof of Theorem 1.1. Let us consider Case (i): p ∈ (2, 2∗). The positivity of
the function μB is a consequence of Proposition 3.1 while the concavity follows
from the definition of α 
→ μB(α) as the infimum on H1

A(Rd) of an affine
function of α. The estimate as α → (−Λ)+ is easily obtained by considering
as test function the function ψ ∈ H1

A(Rd) for which there is equality in (1.1).
We know from Proposition 3.1 that

lim
α→+∞ μB(α)α

d−2
2 − d

p ≥ Cp .

To prove the equality, we take as test function for μB(α) the function
vα := v(

√
α ·), with α > 0, where the radial function v realizes the equality

in (3.1). The function v is smooth, positive everywhere and decays like e−|x| as
|x| → +∞. Notice that vα realizes the equality in (3.2) and there is a con-
stant C > 0 such that vα(x) ≤ C exp

( − √
α |x|) for any x ∈ R

d. Since
‖∇Av‖2

2 ≤ ‖∇v‖2
2 + 2 ‖∇v‖2 ‖A v‖2 + ‖A v‖2

2, we obtain that

‖∇Avα‖2
2 + α ‖vα‖2

2

α
2−d
2 + d

p ‖vα‖2
p

≤ Cp + 2
√
Cp ε + ε2 with ε2 = C2

∫
Rd |A(x)|2 e− 2

√
α |x| dx

α
2−d
2 + d

p ‖vα‖2
p

.

The result follows from α
2−d
2 + d

p ‖vα‖2
p = α

2−d
2 ‖v‖2

p and (1.6) with σ = 2
√

α.
The proof of (ii) is very similar to that of (i). The positivity of the function

νB is a consequence of Proposition 3.4 while the concavity follows from the
definition of β 
→ νB(β). From Proposition 3.4, we know that

lim
β→+∞

νB(β)β− 2 p
2 p+d (2−p) ≥ Cp .

To prove the equality, for any β > 0, we take as test function for νB(β) the
function

wβ(x) := w
(
β

p
2 p+d (2−p) x

)
∀x ∈ R

d ,

where the radial function w realizes the equality in (3.5), so that wβ real-
izes the equality in (3.6). The function w has compact support and can be
estimated from above and from below, up to a multiplicative constant, by
the characteristic function of centered balls. The same computation as above
shows that

‖∇Awβ‖2
2 + β ‖wβ‖2

p

β
2 p

2 p+d (2−p) ‖wβ‖2
2

≤ Cp + 2
√

Cp ε + ε2

with ε2 = C2

∫
Rd |A(x)|2

∣
∣
∣
∣w

(
β

p
2 p+d (2−p) x

)∣
∣
∣
∣

2

dx

β
2 p

2 p+d (2−p) ‖wβ‖2
2

. The result follows from

β
2 p

2 p+d (2−p) ‖wβ‖2
2 = β

(2−d) p
2 p+d (2−p) ‖w‖2

2

and (1.6) with σ = β
p

2 p+d (2−p) .
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The case p = 2 is much simpler. As a straightforward consequence of
the Euclidean logarithmic Sobolev inequality (3.7) and of the diamagnetic
inequality (3.9), we know that

‖∇Aψ‖2
2 ≥ γ

∫

Rd

|ψ|2 log
( |ψ|2

‖ψ‖2
2

)

dx + d
2 γ log

(
π e2

γ

) ‖ψ‖2
2 ∀ψ ∈ H1

A(Rd) .

As a consequence, we deduce the existence of a concave function ξB in Inequal-
ity (1.9), such that

ξB (γ) ≥ d
2 γ log

(
π e2

γ

) ∀ γ > 0 .

Note that the r.h.s. is negative for γ large. The function
wγ(x) = (γ/π)d/4 e− γ

2 |x|2 is optimal in (3.7) and can be used as a test func-
tion in (1.5) in the regime as γ → +∞. Using the fact that ‖wγ‖2 = 1,
‖∇wγ‖2 =

√
d γ and

‖∇Awγ‖2
2 ≤ ‖∇wγ‖2

2 + 2 ‖∇wγ‖2 ‖A wγ‖2 + ‖A wγ‖2
2

= γ

∫

Rd

|wγ |2 log |wγ |2 dx + d
2

γ log
(

π e2

γ

)
+ 2 ‖∇wγ‖2 ‖A wγ‖2 + ‖A wγ‖2

2 ,

we get that, for some positive constant c,

0 ≤ ‖∇Awγ‖2
2 − γ

∫

Rd

|wγ |2 log |wγ |2 dx − ξB (γ)

≤ d
2 γ log

(
π e2

γ

) − ξB (γ) + 2
√

d γ ‖A wγ‖2 + ‖Awγ‖2
2

≤ d
2 γ log

(
π e2

γ

)
⎡

⎣1 − ξB (γ)
d
2 γ log

(
π e2

γ

) − c ε
√

log
(

γ
π e2

) − ε2

⎤

⎦

where ε2 = γ
d
2 −1 ∫

Rd |A(x)|2 e− γ |x|2 dx
d
2 log

(
γ

π e2

)
π

d
2

→ 0 as γ → +∞ according to (1.6).

This establishes that ξB (γ) is equal to d
2 γ log

(
π e2/γ

)
at leading order as

γ → +∞. �

4. Lower Estimates: Constant Magnetic Field in Dimension Two

In the particular case when the magnetic field is constant, of strength B > 0,
and d = 2, we can improve the lower estimates of the last section. In this
section we assume that B = (0, B) and choose the gauge so that

A1 = B
2 x2 , A2 = −B

2 x1 ∀x = (x1, x2) ∈ R
2 . (4.1)

4.1. A Preliminary Result

The next result follows from [20, proof of Theorem 3.1] by Loss and Thaller.

Proposition 4.1. Consider a constant magnetic field with field strength B in
two dimensions. For every c ∈ [0, 1], we have

∫

R2
|∇Aψ|2 dx ≥ (

1 − c2
) ∫

R2
|∇ψ|2 dx + c B

∫

R2
ψ2 dx ,
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and equality holds with ψ = u eiS and u > 0 if and only if

(−∂2u
2, ∂1u

2
)

=
2u2

c
(A + ∇S) . (4.2)

Proof. For every c ∈ [0, 1],
∫

R2
|∇Aψ|2 dx =

∫

R2
|∇u|2 dx +

∫

R2
|A + ∇S|2 u2 dx

=
(
1 − c2

) ∫

R2
|∇u|2 dx +

∫

R2

(
c2 |∇u|2 + |A + ∇S|2 u2

)
dx .

An expansion of the square shows that
∫

R2

(
c2 |∇u|2 + |A + ∇S|2 u2

)
dx ≥

∫

R2
2 c |∇u| |A + ∇S|u dx ,

with equality only if c |∇u| = |A + ∇S|u. Next we obtain that

2 |∇u| |A + ∇S|u = |∇u2| |A + ∇S| ≥ (∇u2
)⊥ · (A + ∇S) ,

where
(∇u2

)⊥ :=
(−∂2u

2, ∂1u
2
)
, and there is equality if and only if

(−∂2u
2, ∂1u

2
)

= γ (A + ∇S)

for some γ. Since c |∇u| = |A + ∇S|u, we have γ = 2u2/c. Integration by
parts yields

∫

R2

(
c2 |∇u|2 + |A + ∇S|2 u2

)
dx ≥ B c

∫

R2
u2 dx .

�

4.2. Case p ∈ (2,+∞)

Proposition 4.2. Consider a constant magnetic field with field strength B in
two dimensions. Given any p ∈ (2,+∞), and any α > −B, we have

μB(α) ≥ Cp

(
1 − c2

)1− 2
p (α + c B)

2
p =: μLT(α) , (4.3)

with

c = c(p, η) =

√
η2 + p − 1 − η

p − 1
=

1

η +
√

η2 + p − 1
∈ (0, 1) (4.4)

and η = α (p − 2)/(2B).

Proof. For any α > −B, ψ ∈ H1
A(R2) and c ∈ [0, 1] such that α + c B ≥ 0, we

use Proposition 4.1 to write

‖∇Aψ‖2
2 + α ‖ψ‖2

2 ≥ (
1 − c2

) ∫

R2
|∇u|2 dx + (α + c B)

∫

R2
u2 dx

with u = |ψ|. By applying (3.2) with λ2 = (α + c B)/
(
1 − c2

)
, we get

‖∇Aψ‖2
2 + α ‖ψ‖2

2 ≥ Cp

(
1 − c2

)1− 2
p (α + c B)

2
p ‖ψ‖2

p .



1452 J. Dolbeault et al. Ann. Henri Poincaré

Next we optimize the function c 
→ (
1 − c2

)1− 2
p (α + c B)

2
p in the interval

[0, 1]. This function reaches its maximum at c such that

(p − 2) c (α + c B) = B (1 − c2).

Notice that α + c B is nonnegative. With

η =
α (p − 2)

2B
,

the equation for c becomes

(p − 1) c2 + 2 η c − 1 = 0.

which is solved by (4.4). �

4.3. Case p ∈ (1, 2)

Now let us turn our attention to the case p ∈ (1, 2). The strategy of the proof
of Proposition 4.2 applies: for any c ∈ (0, 1), for any β > 0, by applying (3.6)
with λ4/p = β/(1 − c2), we obtain

‖∇Aψ‖2
2 + β ‖ψ‖2

p ≥
(
c B + Cp β

p
2 (1 − c2)1− p

2

)
‖ψ‖2

2 .

The function c 
→ c B+Cp βp/2 (1−c2)1−p/2 is positive in [0, 1] and its derivative
is positive at 0+, and negative in a neighborhood of 1−. The maximum is
achieved at the unique point c∗ ∈ (0, 1) given by

c∗
(1 − c2∗)p/2

=
B

(2 − p)Cp βp/2
. (4.5)

This establishes the following result.

Proposition 4.3. Consider a constant magnetic field with field strength B in
two dimensions. Given any p ∈ (1, 2), and any β > 0, we have

νB(β) ≥ c∗ B + Cp β
p
2 (1 − c2

∗)
1− p

2 =: νLT(β)

with c∗ given by (4.5).

4.4. Logarithmic Sobolev Inequality

By passing to the limit as p → 2+ in (4.3), we obtain a two-dimensional
magnetic logarithmic Sobolev inequality.

Lemma 4.4. Consider a constant magnetic field with field strength B > 0 in
two dimensions. Then for any γ > 0, the best constant in (1.5) satisfies

ξB(γ) ≥ B c
(
2, γ

B

)
+ γ log

(
π e2 c(2, γ/B)

B

)
, (4.6)

where c(2, η) :=
√

η2 + 1 − η.
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Proof. By using (3.8) with d = 2 and (4.4), we see that for any η > 0,

Cp (1 − c2)1− 2
p

(
2 η B
p−2 + c B

) 2
p − 2 η B

p−2

= 2 η B
ε

[(
1 − ε

2 log ε + ε
2 log

(
π e2

)) (
1 + ε

2 log
(
1 − c2

))

·
(
1 + ε

2
c
η

) (
1 − ε

2 log
(

2 η B
ε

))
− 1

]
+ o(ε)

→ B
[
c(2, η) + η log

(
π e2 c(2,η)

B

)]

as ε = p − 2 → 0+, because 1 − c(2, η)2 = 2 η c(2, η). By rewriting (4.3) with
α = 2 η B

p−2 as

‖∇Aψ‖2
2 ≥ 2 η B

p−2

(‖ψ‖2
p − ‖ψ‖2

2

)
+

[
Cp (1 − c2)1− 2

p
(

2 η B
p−2 + c B

) 2
p − 2 η B

p−2

]
‖ψ‖2

p

we can pass to the limit as p → 2+ and establish (4.6) by setting γ = η B. �

It turns out that the above magnetic logarithmic Sobolev inequality is
optimal. To identify the minimizers, we observe that the magnetic Schrödinger
operator is not invariant under the standard translations. For any
b = (b1, b2) ∈ R

2,

∇Aψ = (∇Aφ)(x − b) if φ(x − b) = e−i B (b1 x2−b2 x1)/2 ψ(x) ∀x ∈ R
2

and −ΔA commutes with the magnetic translations ψ 
→ ei B (b1 x2−b2 x1)/2

ψ(x − b) if A is given by (4.1).

Proposition 4.5. Consider a constant magnetic field with field strength B > 0
in two dimensions. Then the logarithmic Sobolev inequality (1.5) holds with

ξB(γ) = B c
(
2, γ

B

)
+ γ log

(
π e2 c(2, γ/B)

B

)

where c(2, η) :=
√

η2 + 1−η, and the optimizer is given, up to a multiplication
by a complex constant and a magnetic translation, by ψ(x) = e−γ |x|2/4.

In other words, optimizers in inequality (1.5) are of the form

ψ(x) = C e− γ
4

|x−b|2
4 + i B

2 (b1 x2−b2 x1) ∀x ∈ R
2 , C ∈ C , b = (b1, b2) ∈ R

2 .

Notice that in the semi-classical regime corresponding to a limit of the mag-
netic field B such that 1/(2 η) = Λ = Λ[B] → 0, we recover the classical
logarithmic Sobolev inequality (3.7) without magnetic field.

Proof. Using Proposition 4.1 and Inequality (3.7), for all c ∈ [0, 1] we obtain

∫

R2
|∇Aψ|2 dx ≥ σ (1 − c2)

∫

R2
|ψ|2 log

( |ψ|2
‖ψ‖2

2

)
dx +

(
B c + σ (1 − c2) log

(
π e2

σ

)) ‖ψ‖2
2 .

We recover (4.6) with σ (1 − c2) = γ and c = c
(
2, γ

B

)
.

According to Proposition 4.1, equality holds if ψ = u eiS satisfies (4.2)
and, simultaneously, ψ realizes the equality case in (3.7), i.e.,

ψ(x) = C e− γ
4 |x−b|2 ∀x ∈ R

2
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with C ∈ C and b ∈ R
2. By (4.2), this means that S has to satisfy

∂1S = −B

2
b2 , ∂2S =

B

2
b1 ,

which implies S = B
2 (b1 x2 − b2 x1) + D, for some constant D. �

5. An Upper Estimate and Some Numerical Results

In this section, we assume that d = 2, consider a constant magnetic field,
establish a theoretical upper bound, and numerically compute the difference
with the lower bounds of Sects. 3 and 4.

5.1. An Upper Estimate: Constant Magnetic Field in Dimension Two

Let r =
√

x2
1 + x2

2 = |x| be the radial coordinate associated to any
x = (x1, x2) ∈ R

2 and assume that the magnetic potential is given by (4.1).
For every integer k ∈ N we introduce the special symmetry class

ψ(x) =
(

x2+ i x1
|x|

)k

v(|x|) ∀x ∈ R
2 . (Ck)

With this notation, if ψ ∈ Ck, then

1
2π

∫

R2
|∇Aψ|2 dx =

∫ +∞

0

|v′|2 r dr +
∫ +∞

0

(
k
r − B r

2

)2 |v|2 r dr.

Let us define

Q(p)
α [ψ] :=

‖∇Aψ‖2
2+α ‖ψ‖2

2
‖ψ‖2

p
if p > 2 , Q(p)

β [ψ] :=
‖∇Aψ‖2

2+β ‖ψ‖2
p

‖ψ‖2
2

if p ∈ (1, 2).

The existence of minimizers of Q(p)
α in Ck was proved in [12, Theorem 3.5] for

any k ∈ N. In the class C0, with a slight abuse of notations, we have ψ = v

and simple upper estimates can be obtained using vσ(r) = e− r2/(2 σ) as test
function:

‖∇Avσ‖2
2 = π

4

(
4 + σ2

)
, ‖vσ‖2

2 = π σ and ‖vσ‖2
p =

(
2
p π σ

) 2
p

.

Case (i). Assume first that p ∈ (2,+∞) and let θ := 2/p. We observe that

Q(p)
α [vσ] = 1

8 (2π)1−θ pθ fα,θ(σ) where fα,θ(σ) := σ 2−θ + 4α σ1−θ + 4σ−θ .

The function fα,θ has a unique minimum on (0,+∞), which is determined by
the second order equation

(2 − θ)σ2 + 4α (1 − θ)σ − 4 θ = 0 ,

namely σ = σ+(α, θ) with

σ+(α, θ) := 2

√
4α2 (1 − θ)2 + θ (2 − θ) − α (1 − θ)

2 − θ
.

With θ = 2/p, this gives the estimate

Q(p)
α [vσ+(α,θ)] = 1

8 (2π)1−θ pθ fα,θ

(
σ+(α, θ)

)
=: μGauss(α).
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Case (ii). When p ∈ (1, 2), with θ := 2
p ∈ (1, 2] and κ(β, θ) := 8 θθ π1−θ β, we

get that

Q
(p)
β [vσ] = 1

8 gβ,θ(σ) where gβ,θ(σ) := σ +
2
σ

+ κ(β, θ)σθ−1 .

Elementary considerations show that gβ,θ(σ) has a unique minimum
σ = σ−(β, θ) determined by the equation

1 − 2
σ2

+ κ(β, θ) (θ − 1)σθ−2 = 0,

which is in general not explicit. However, a simple elimination shows that

Q(p)
β [vσ−(β,θ)] =

1

8
gβ,θ

(
σ−(β, θ)

)
=

1

8

(
2 θ

θ−1
1

σ−(β,θ)
+ θ−2

θ−1
σ−(β, θ)

)
=: νGauss(β) .

Proposition 5.1. With the above notations, we have

μB(α) ≤ μGauss(α) if p > 2 and νB(β) ≤ νGauss(β) if p ∈ (1, 2).

5.2. Numerical Estimates Based on Euler–Lagrange Equations

Instead of a Gaussian test function, one can numerically compute the minimum
of Q(p)

α in the class C0 by solving the corresponding Euler–Lagrange equation.
Case (i). Assume that p ∈ (2,+∞). The equation is

− v′′ − v′

r
+

(
B2

4 r2 + α
)

v = μEL(α)
(∫ +∞

0

|v|p r dr

) 2
p −1

|v|p−2 v .

(5.1)

Without loss of generality we can restrict the problem to positive solutions
such that

μEL(α) =
(∫ +∞

0

|v|p r dr

)1− 2
p

and then we have to solve the reduced problem

− v′′ − v′

r
+

(
B2

4 r2 + α
)

v = |v|p−2 v

among positive functions in H1((0,+∞), r dr) such that
∫ +∞
0

|v|2 r dr < +∞.
From the existence result [12, Theorem 3.5], we know that μEL(α) is given by
the infimum of

( ∫ +∞
0

|v|p r dr
)1−2/p on the set of solutions. Uniqueness and

nondegeneracy of positive solutions to the above equation has been proved in
[15] and [22]. Numerically, we solve the ODE on a finite interval, which induces
a numerical error: the interval has to be chosen large enough, so that the
computed value is a good upper approximation of μEL(α). Case (ii). Assume
that p ∈ (1, 2). A radial minimizer of Q(p)

α solves

− v′′ − v′

r
+ B2

4 r2 v = νEL(β) v − β

(∫ +∞

0

|v|p r dr

) 2
p −1

|v|p−2 v .
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Without loss of generality we can restrict the problem to positive solutions
such that

β =
(∫ +∞

0

|v|p r dr

)1− 2
p

and have therefore to solve the reduced problem

− v′′ − v′

r
+ B2

4 r2 v = ν v − |v|p−2 v (5.2)

among nonnegative functions in H1((0,+∞), r dr) such that∫ +∞
0

|v|p r dr < +∞. Notice that the compact support principle applies accord-
ing to, e.g., [1,4,5,21], since p−1 < 1 so that the nonlinearity in the right-hand
side of (5.2) is non-Lipschitz. Numerically, we can therefore solve (5.2) using
a shooting method, with a shooting parameter a = v(0) > 0 that has to be
adjusted to provide a nonnegative solution with compact support, which mini-
mizes

∫ +∞
0

|v|p r dr. The set of solutions is then parametrized by the parameter
ν > 0, while β is recovered by the above integral condition. In other words,
we approximate ν 
→ βB(ν) and recover β 
→ νB(β) as the inverse of βB. Since
we compute the size of the support of the approximated solution, there is no
numerical error due to finite size truncation.

5.3. Numerical Results

We illustrate the Case (i), p ∈ (2,+∞), by computing for p = 3 and
B = 1, in dimension d = 2, an approximation of α 
→ μB(α).
Upper estimates μGauss(α) ≥ μEL(α) ≥ μB(α) and lower estimates
μinterp(α) ≤ μLT(α) ≤ μB(α) are surprisingly close: see Figs. 1 and 2.

In Case (ii), p ∈ (1, 2), the range of the curve β 
→ νB(β) differs from
the case p > 2 but again upper estimates νGauss(β) ≥ νEL(β) ≥ νB(β) and

2 4 6 8 10

2

4

6

8

Figure 1. Case d = 2, p = 3, B = 1: plot of α 
→ (2π)2/p−1 μB(α)
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Figure 2. Case d = 2, p = 3, B = 1: comparison of
the upper estimates α 
→ μGauss(α) and α 
→ μEL(α) of
Sects. 5.1 and 5.2, with the lower estimates α 
→ μinterp(α) and
α 
→ μLT(α) of Propositions 3.1 and 4.2. Plots rep-
resent the curves log10(μGauss/μEL), log10(μLT/μEL) and
log10(μinterp/μEL) so that α 
→ μEL(α) corresponds to a
straight line at level 0. The exact value associated with μB

lies in the gray area

0 1 2 3 4 5 6
0

2

4

6

8

Figure 3. Case d = 2, p = 1.4, B = 1: plot of β 
→ νB(β).
The horizontal axis is measured in units of (2π)1−2/p β

lower estimates νinterp(β) ≤ νLT(β) ≤ νB(β) are surprisingly close: see
Figs. 3 and 4.

5.4. Asymptotic Regimes

We investigate some asymptotic regimes in the case of a constant magnetic
field of intensity B.
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3 5

-0.02

-0.01

-0.0005

0.0005

0.0010

2 4

42

Figure 4. Case d = 2, p = 1.4, B = 1, with same hori-
zontal scale as in Fig. 3: comparison of the upper estimates
β 
→ νGauss(β) and β 
→ νEL(β) of Sects. 5.1 and 5.2, with the
lower estimates νinterp(β) and β 
→ νLT(β) of Propositions 3.4
and 4.3. Plots represent the curves log10(νGauss/νEL),
log10(νLT/νEL) and log10(νinterp/νEL) so that
α 
→ νEL(β) corresponds to a straight line at level 0.
The exact value associated with νB lies in the gray area

Convergence Toward the Lowest Landau Level. Assume that d = 2, p > 2 and
let us consider the regime as α → (−B)+. We denote by LLL the eigenspace
corresponding to the Lowest Landau Level.

Proposition 5.2. Let d = 2 and consider a constant magnetic field with field
strength B. If ψα is a minimizer for μB(α) such that ‖ψα‖p = 1, then there
exists a non trivial ϕα ∈ LLL such that

lim
α→(−B)+

‖ψα − ϕα‖H1
A(R2) = 0 .

Proof. Let ψα ∈ H1
A(R2) be an optimal function for (1.3) such that ‖ψα‖p = 1

and let us decompose it as ψα = ϕα + χα, where ϕα ∈ LLL and χα is in the
orthogonal of LLL. Then, by the orthogonality of ϕα and χα, we get

μB(α) ≥ (α + B) ‖ϕα‖2
2 + (α + 3B) ‖χα‖2

2 ≥ (α + 3B) ‖χα‖2
2 ∼ 2B ‖χα‖2

2

as α → (−B)+ because ‖∇χα‖2
2 ≥ 3B ‖χα‖2

2. Since limα→(−B)+ μB(α) = 0 by
Theorem 1.1, this implies that limα→(−B)+ ‖χα‖2 = 0. On the other hand, we
know that

μB(α) = (α + B) ‖ϕα‖2
2 + ‖∇A χα‖2

2 + α ‖χα‖2
2 ≥ 2

3 ‖∇A χα‖2
2 ,

which concludes the proof. �

Semi-classical Regime. Let us consider the small magnetic field regime. We
assume that the magnetic potential is given by (4.1) if d = 2. In dimension
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d = 3, we choose A = B
2 (−x2, x1, 0) and observe that the constant magnetic

field is B = (0, 0, B), while the spectral gap in (1.1) is Λ[B] = B.

Proposition 5.3. Let d = 2 or 3 and consider a constant magnetic field B of
intensity B with magnetic potential A and assume that (1.1) holds for some
Λ = Λ[B] > 0.
(i) For p ∈ (2, 2∗) and for any fixed α and μ > 0, we have

lim
ε→0+

μεB(α) = Cp α
d
p − d−2

2 and lim
ε→0+

αεB(μ) =
(
C−1

p μ
) 2 p

2 p−d (p−2) .

(ii) For p ∈ (1, 2) and any fixed β > 0, we have

lim
ε→0+

νεB(β) = Cp β
2 p

2 p+d (2−p) .

Proof. Consider any function ψ ∈ H1
A(Rd) and for any ε > 0 define

ψ(x) = χ(
√

ε x). With our standard choice for A, we have that
√

εA
(
x/

√
ε
)

=
A(x). From

‖∇εAψ‖2
2 + α ‖ψ‖2

2

‖ψ‖2
p

= ε
d
p − d−2

2
‖∇Aχ‖2

2 + α ε−1 ‖χ‖2
2

‖χ‖2
p

,

we deduce that

μεB(α) = ε
d
p − d−2

2 μB

(
α ε−1

)
.

By a similar argument we can easily see that

αεB(μ) = ε αB

(
μ ε− 2 q−d

2 q

)
and νεB(β) = ε νB

(
β ε

d−2
2 − d

p

)
.

The conclusion follows by considering the asymptotic regime as ε → 0+ in
Theorem 1.1 and in Corollary 1.2. �
5.5. A Numerical Result on the Linear Stability of Radial Optimal Functions

Bonheure et al. show in [2] that for a fixed α > 0 and for B small enough,
the optimal functions for (1.3) are radially symmetric functions, i.e., belong
to C0. As shown in Proposition 5.3, this regime is equivalent to the regime as
α → +∞ for a given B, at least if the magnetic field is constant. On the other
hand, the numerical results of Sect. 5 show that α 
→ μB(α) is remarkably well
approximated from above by functions in C0. The approximation from below
of Proposition 4.3, although not exact, is found to be numerically very close.

This raises the open question of whether, in the case of constant mag-
netic fields, equality in (1.3) is realized by radial functions for a given constant
magnetic field B and an arbitrary α. As mentioned in Sect. 5.2, from [15,22],
we know that the branch of solutions in C0 is isolated in the class of radial
functions. Perturbing these radial solutions in a larger class of functions is
natural. Let us analyze the stability of the solutions to (5.1) under perturba-
tions by functions in C1. Assume that d = 2 and p > 2. Let us denote by ψ0

a minimizer of Q(p)
α on the class (C0) of radial functions, normalized so that,

with a standard abuse of notation, ψ0(x) = ψ0(|x|) solves

−ψ′′
0 − ψ′

0

r
+

(
B2

4 r2 + α
)

ψ0 = |ψ0|p−2 ψ0 ,
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and consider the test function

ψε = ψ0 + ε ei θ v

where v is a radial function, depending only on r = |x|, and ei θ = (x1+i x2)/r.
In the asymptotic regime as ε → 0+, we have

∫

R2
|∇Aψε|2 dx + α

∫

R2
|ψε|2 dx −

(∫

R2
|∇Aψ0|2 dx + α

∫

R2
|ψ0|2 dx

)

=
(∫

R2
|∇Av|2 dx + α

∫

R2
|v|2 dx

)

ε2 + o(ε2)

= 2π

∫ +∞

0

[
|v′|2 +

((
1
r − B r

2

)2
+ α

)
|v|2

]
r dr ε2 + o(ε2)

and

‖ψε‖2
p − ‖ψ0‖2

p = 2π p
2 ‖ψ0‖2−p

p

(∫ +∞

0

|ψ0|p−2 v2 r dr

)

ε2 + o(ε2) .

Altogether, we obtain

(
Q

(p)
α [ψε] − μ0(α)

)
‖ψ0‖2

p

= 2π

[∫

R2
|v′|2 dx +

∫

R2

((
1
r

− B r
2

)2
+ α

)

|v|2 dx − p
2

∫ +∞

0
|ψ0|p−2 v2 r dr

]

ε2 + o(ε2)

2 4 6 8

1

2

3

4

Figure 5. Case p = 3 and B = 1: plot of μ solving (5.3) as
a function of α. A careful investigation shows that μ is always
positive, including in the limiting case as α → (−B)+, thus
proving the numerical stability of the optimal function in C0

with respect to perturbations in C1
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where μ0(α) = ‖ψ0‖p−2
p = Q

(p)
α [ψ0]. The linear stability of ψ0 with respect to

perturbations in (C1) can be recast as the eigenvalue problem

− v′′ − v′

r
+

((
1
r − B r

2

)2
+ α

)
v − p

2 |ψ0|p−2 v = μ v . (5.3)

The numerical results for d = 2, B = 1 and p = 3 of Fig. 5 suggest that Q
(p)
α

is linearly stable for α > −B, not too large. This indicates that μEL is a good
candidate for computing the exact value of μB for arbitrary values of B’s.
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[9] Dolbeault, J., Felmer, P., Loss, M., Paturel, E.: Lieb–Thirring type inequalities
and Gagliardo–Nirenberg inequalities for systems. J. Funct. Anal. 238, 193–220
(2006)

[10] Dolbeault, J., Laptev, A., Loss, M.: Lieb–Thirring inequalities with improved
constants. J. Eur. Math. Soc. (JEMS) 10, 1121–1126 (2008)

[11] Dolbeault, J., Toscani, G.: Stability results for logarithmic Sobolev and
Gagliardo–Nirenberg inequalities. Int. Math. Res. Not. IMRN 2016, 473–498
(2016)

[12] Esteban, M.J., Lions, P.L.: Stationary solutions of nonlinear Schrödinger equa-
tions with an external magnetic field. In: Li, Y.Y. (ed.) Partial Differential Equa-
tions and the Calculus. Progr. Nonlinear Differential Equations Appl., vol. I, pp.
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