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with Infinite Mass Boundary Conditions
in Sectors
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Abstract. This paper deals with the study of the two-dimensional Dirac
operator with infinite mass boundary conditions in sectors. We investi-
gate the question of self-adjointness depending on the aperture of the
sector: when the sector is convex it is self-adjoint on a usual Sobolev
space, whereas when the sector is non-convex it has a family of self-
adjoint extensions parametrized by a complex number of the unit circle.
As a by-product of the analysis, we are able to give self-adjointness re-
sults on polygonal domains. We also discuss the question of distinguished
self-adjoint extensions and study basic spectral properties of the Dirac
operator with a mass term in the sector.

1. Introduction

1.1. Motivations and State of the Art

Relativistic quantum particles (electrons or quarks) confined in planar or spa-
tial regions are efficiently described by a Hamiltonian given by the Dirac op-
erator in a domain of the two- or three-dimensional Euclidean space with
adequate boundary conditions. The question we address in this paper is re-
lated to two models of mathematical physics involving such Hamiltonians: the
so-called graphene quantum dots and the MIT bag model. We discuss both of
them below.

1.1.1. Graphene Quantum Dots. These two-dimensional models come into
play when investigating graphene, that is a two-dimensional allotrope of carbon
where the atoms are located on an infinite hexagonal lattice (see, for instance,
[9]). It turns out that the massless Dirac operator is the effective Hamilton-
ian describing low-energy properties of electrons in such a structure but, as in
practice only finite size sheets of graphene can be obtained, one has to consider
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the Dirac operator in a bounded domain. The shape of this domain may vary,
according to whether one is interested in nano-tubes, nano-ribbons or flakes
and the bounded confining systems are called graphene quantum dots. Mathe-
matically, this translates to the study of the massless Dirac operator imposing
particular boundary conditions on the boundary of a domain (the quantum
dot). On the one hand, boundary conditions can be obtained by specific cuts
of the carbon sheet, the most common ones being the zigzag and armchair
boundary conditions (see [2]). On the other hand, another confining system
can be formally obtained via a coupling of the massless Dirac operator with a
mass potential that is zero inside the quantum dot and infinite elsewhere (see
for instance [32] where this boundary condition is physically justified and [33]
for a rigorous mathematical derivation). The resulting boundary conditions
are called infinite mass boundary conditions, and the two-dimensional Dirac
operator in a domain with these precise boundary conditions is the operator
we are interested in this paper.

1.1.2. MIT Bag Model. In the mid-1970’s, physicists in the MIT proposed a
phenomenological model to describe the confinement of quarks inside hadrons
(see [10–12,20,21]) and this model, called the MIT bag model, has predicted
successfully many properties of hadrons (see, for instance, [13]). It involves the
three-dimensional Dirac operator with a mass term in a bounded domain of the
Euclidean space with adequate boundary conditions. These conditions can be
seen as the three-dimensional counterpart of the infinite mass boundary con-
ditions for graphene quantum dots, and our interest in this three-dimensional
model has drawn our attention to its two-dimensional analogue.

From a mathematical point of view, the first challenge studying Dirac
operators in bounded domains is to understand on which domain they are
self-adjoint. Because the Dirac operator is an elliptic operator of order one,
one expect this domain to be contained in the usual Sobolev space H1. Of
course, it depends on the boundary conditions and it is true for the MIT bag
model for sufficiently smooth domains, as proved in [4] for C2,1-smooth domains
and in [26] for C2-smooth domains. Moreover, when one deals with C∞-smooth
domains more general results can be found in [6, Thm. 4.11] and in [8] where
the authors use pseudo-differential techniques and Calderón projectors. In di-
mension two, the question of self-adjointness is addressed in [7] for C2-smooth
domains of the Euclidean plane. For a large class of boundary conditions, the
authors prove that indeed, the domain of self-adjointness is contained in H1.
However, we would like to point out that it is known to be false for zigzag
boundary conditions (see [17,31]) and it has important consequences for the
spectral features of the problem.

In this paper, we tackle the question of self-adjointness for the two-
dimensional Dirac operator with infinite mass boundary conditions in sectors
and, as a by-product of the analysis, we deduce a self-adjointness result on
polygonal domains. To our knowledge, this is the first attempt to mathemat-
ically handle this question for corner domains although polygonal graphene
quantum dots have drawn attention among the physicists community in the
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past few years (see for instance [3,22,27,34] for triangular, rectangular, trape-
zoidal and hexagonal graphene quantum dots). Actually, the question of self-
adjointness is the first step toward future investigations. First, in a perspective
of numerical applications, it is rather natural to consider polygonal domains
because any two-dimensional domain, even smooth, is meshed with polygons.
Second, we have in mind the investigation of the MIT bag operator in poly-
hedral domains in the regime of infinite mass. This is motivated by the work
[5] where it is proved that for smooth domains, the asymptotics of the eigen-
values in the usual Dirac gap are driven by a Laplace–Beltrami operator on
the boundary with a curvature induced potential. As corners can be thought
of as points of “infinite” curvature we aim to understand their influence on
the spectrum of the MIT bag operator in this asymptotic regime. Because the
geometry is less involved in dimension two, in a first attempt to shed some
light on this question, we focus on the two-dimensional counterpart of the
MIT bag model that is the Dirac operator with a mass term and infinite mass
boundary conditions. This motivates the part of the present paper concerning
basic spectral properties of such an operator.

Finally, let us describe the techniques we use in this paper. They are
reminiscent of [35, Section 4.6] and [16] where the three-dimensional Dirac-
Coulomb operator is studied as well as [15] which deals with the case of a
radial δ-shell interaction. The key point in all these works is to investigate the
restrictions of the operator to stable subspaces of functions of fixed angular
momentum. Then, the restricted operators only act in the radial variable and
their self-adjoint extensions can be studied using classic ODE techniques [36].
We obtain the result for the whole operator using the standard result [28,
Theorem X.11].

1.2. The Dirac Operator with Infinite Mass Boundary Conditions in Sectors

For ω ∈ (0, π), let Ωω denote the two-dimensional sector of half-aperture ω

Ωω = {r(cos(θ), sin(θ)) ∈ R
2 : r > 0, |θ| < ω}. (1.1)

Let (D,D(D)) denote the Dirac operator with mass m ∈ R and infinite mass
boundary conditions in Ωω. It is defined by

D(D) = {u ∈ H1(Ωω ; C
2) : Bnu = u on ∂Ωω},

Du = −iσ · ∇u + mσ3u, for all u ∈ D(D),
(1.2)

where the Pauli matrices σ = (σ1, σ2, σ3) are 2× 2 Hermitian matrices defined
by

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 − i
i 0

)
and σ3 =

(
1 0
0 − 1

)
.

For a ∈ R
d (for d = 2, 3), we set

σ · a =
d∑

k=1

σkak.
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Remark that the Pauli matrices satisfy

(σ · a)(σ · b) = 12(a · b) + iσ · (a × b), for a, b ∈ R
3. (1.3)

For almost all s ∈ ∂Ωω, n(s) denotes the outer unit normal at the point s. Let
v ∈ R

2 be a unit vector, the matrix Bv is defined by

Bv = −iσ3σ · v. (1.4)

Let us remark that Bv satisfies

Bv
∗ = Bv, Bv

2 = 12, Sp(Bv) = {±1}, (1.5)

where 12 denotes the 2 × 2 identity matrix.

Remark 1.1. The operator (D,D(D)) is symmetric and densely defined (see
Lemma 3.2).

1.3. Main Results

Our main result is stated in Sect. 1.3.1 and concerns the question of self-
adjointness of the operator (D,D(D)) in a sector. When there are several
self-adjoint extensions, we discuss in Sect. 1.3.2 which one should be chosen
as the “distinguished” one. Finally in Sect. 1.3.3 we state results regarding
polygonal domains and in Sect. 1.3.4 we give basic spectral properties of D.

1.3.1. Self-Adjointness in Sectors. In the following theorem, we give all self-
adjoint extensions of the Dirac operator with infinite mass boundary conditions
in sectors.

Theorem 1.2. The following holds.

(i) [Convex sectors] If ω ∈ (0, π/2], (D,D(D)) is self-adjoint.
(ii) [Non-Convex sectors] If ω ∈ (π/2, π), (D,D(D)) is symmetric and closed

but not self-adjoint. The set of self-adjoint extensions of D is the collec-
tion of operators

{(Dγ ,D(Dγ))| γ ∈ C, |γ| = 1}
defined for v ∈ D(D) by

D(Dγ) = D(D) + span(v+ + γv−),

Dγv = Dv,

Dγ(v+ + γv−) = i(v+ − γv−) + mσ3(v+ + γv−),

and where
v+(r cos(θ), r sin(θ)) = Kν0(r)u0(θ) − iKν0+1(r)u−1(θ),

v−(r cos(θ), r sin(θ)) = Kν0(r)u0(θ) + iKν0+1(r)u−1(θ),

u0(θ) :=
1

2
√

ω

(
eiθν0

−ie−iθν0

)
, u−1(θ) :=

1
2
√

ω

(
e−iθ(ν0+1)

ieiθ(ν0+1)

)
.

Here, r > 0, θ ∈ (−ω, ω), ν0 = π−2ω
4ω and Kν denotes the modified Bessel

function of the second kind of parameter ν.
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Remark 1.3. The distinction between convex an non-convex sectors in Theo-
rem 1.2 is not surprising: it is reminiscent of [23] where the so-called corner
singularities for elliptic operators of even order are investigated. We also men-
tion the books [18,19] where the Laplacian in polygonal domains with various
boundary conditions is studied.

Remark 1.4. For θ0 ∈ [0, 2π], let us consider the rotated sector

Ωω,θ0 := {r
(
cos(θ), sin(θ)

) ∈ R
2 : r > 0, |θ − θ0| < ω}.

Remark that e−iσ2θ0 is a rotation matrix of angle θ0 and we have Ωω,θ0 =
e−iσ2θ0Ωω.

Let Uθ0 be the unitary transformation defined by

Uθ0 : L2(Ωω,θ0 , C
2) −→ L2(Ωω, C2)

v �−→ ei(θ0/2)σ3v(e−iσ2θ0 ·).
It satisfies

U−1
θ0

(−iσ · ∇ + mσ3)Uθ0 = −iσ · ∇ + mσ3,

U−1
θ0

(σ · n)Uθ0 = σ · (e−iσ2θ0n
)
,

for all unit vector n ∈ R
2 (see [35, Sections 2 and 3]). This ensures that

Theorem 1.2 essentially covers every sectors.

Remark 1.5. Let ν ∈ R. For further use, we recall some properties of the
modified Bessel functions Kν of the second kind (see [25, Chapter 7 Section 8
and Chapter 12 Section 1] or [1]).

(i) The functions r ∈ (0,+∞) �→ Kν(r) ∈ R are positive and decreasing.
(ii) For r > 0, we have

Kν(r) = K−ν(r).

(iii) For r > 0, we have

Kν(r) ∼r→0

{
Γ(ν)

2

(
r
2

)−ν if ν > 0
− log(r) if ν = 0

(1.6)

and

Kν(r) ∼r→+∞
( π

2r

)1/2

e−r.

In particular, the domain of Dγ [see Theorem 1.2 (ii)] rewrites using
r−|ν0|χ(r) and r−(1−|ν0|)χ(r), instead of Kν0 and Kν0+1, respectively. Here
χ : R+ �→ [0, 1] is a smooth function which equals 1 in a neighborhood of 0
and 0 for r large enough.
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1.3.2. Physical Remarks on the Self-Adjoint Extensions in Sectors. For non-
convex sectors, a natural question is to know whether some self-adjoint exten-
sions given in Theorem 1.2(ii) are more relevant than others from the physical
point of view. The following propositions try to shed some light on this ques-
tion.

Charge conjugation symmetry The Dirac operator anticommutes with the
charge conjugation operator C. It is defined for u ∈ C

2 by

Cu = σ1u. (1.7)

In particular, for all ω ∈ (0, π), the operator C is an antiunitary transformation
that leaves D(D) invariant, it satisfies C2 = 12 and

DC = −CD.

This property is strongly related to the particle/antiparticle interpretation of
the spectrum of the Dirac operator (see [35, Section 1.4.6]).

The following proposition gives the extensions of D that still satisfy these
properties with respect to the charge conjugation operator C.

Proposition 1.6. Let ω ∈ (π/2, π). The only self-adjoint extensions of
(D,D(D)) such that

CD(Dγ) = D(Dγ)

are the extensions
(
Dγ ,D(Dγ)

)
for γ = ±1. In these cases, we have the anti-

commutation relation

{C,Dγ} = CDγ + DγC = 0.

Scale invariance.
Since Ωω is invariant by dilations, we immediately get that D(D) is stable

under the action of the group of dilations. For non-convex sectors, we obtain
the following proposition.

Proposition 1.7. Let ω ∈ (π/2, π). The only self-adjoint extensions of
(D,D(D)) such that for all u ∈ D(Dγ) and all α > 0 we have

[x ∈ Ωω �→ u(αx) ∈ C
2] ∈ D(Dγ)

are the extensions
(
Dγ ,D(Dγ)

)
for γ = ±1.

This proposition is essential in the proofs using Virial identities (see Re-
mark 1.14).

Kinetic energy.
From a physical point of view, it is reasonable to impose the domain of

the Dirac operator with infinite mass boundary conditions to be contained in
the formal form domain H1/2(Ωω). It turns out that only a single self-adjoint
extension of D satisfies this condition.

Proposition 1.8. Let ω ∈ (π/2, π). The only self-adjoint extension of (D,D(D))
satisfying D(Dγ) ⊂ H1/2(Ωω) is (D1,D(D1)).

Remark 1.9. The proof of Proposition 1.8 shows a stronger statement. Indeed,
if γ = 1, we have D(Dγ) ⊂ H3/4−ε(Ωω) for all ε ∈ (0, 1/4).



Vol. 19 (2018) Self-Adjointness of Dirac Operators 1471

1.3.3. About Polygonal Domains. Using Theorem 1.2(i), Remark 1.4 and par-
titions of unity, we obtain the following result.

Corollary 1.10. Let Ω ⊂ R
2 be a convex polygonal domain. The Dirac operator

(DΩ,D(DΩ)) defined by

D(DΩ) = {u ∈ H1(Ω,C2), Bnu = u on ∂Ω},

Du = −iσ · ∇u + mσ3u for all u ∈ D(DΩ),

is self-adjoint.

Remark 1.11. A similar statement can be formulated for non-convex polygonal
domains using Theorem 1.2(ii). We chose not to write it down here for the sake
of readability.

1.3.4. Spectral Properties in Sectors. Now, we investigate spectral properties
of the self-adjoint operators in sectors. We restrict ourselves to the physical
case γ = 1 and, for the sake of readability, we introduce the following unified
notation:

Dsa =

{
D if ω ∈ (0, π/2],
D1 if ω ∈ (π/2, π).

where D and D1 are defined in (1.2) and Theorem 1.2(ii), respectively. As de-
fined Dsa is self-adjoint. The following two propositions describe basic spectral
properties of Dsa. The first one is about the structure of its essential spectrum
and the second one deals with its point spectrum.

Proposition 1.12. Let ω ∈ (0, π). We have

Sp(Dsa) = Spess(D
sa) =

{
R if m ≤ 0,

R\(−m,m) if m ≥ 0.

Proposition 1.13. Let ω ∈ (0, π). Dsa has no point spectrum in R\(−|m|, |m|).
Remark 1.14. The localization of the point spectrum is a consequence of the
Virial identity (see in particular [35, Section 4.7.2] and Section 5.2). Neverthe-
less, this identity gives no information on the existence of point spectrum in
(−|m|, |m|) for negative m.

1.4. Organization of the Paper

In Sect. 2, we prove Theorem 1.2 and state the main lemmas that we need.
Their proofs are gathered in Sect. 3. In Sect. 4, we discuss the physically
relevant self-adjoint extensions. Finally, the spectral properties of Proposi-
tions 1.12 and 1.13 are proved in Sect. 5.

2. Self-Adjoint Extensions of D

In this section, we state the main lemmas on which rely the proofs of Theo-
rem 1.2(i)–(ii). Their proofs are detailed in Section 3. Note that without loss
of generality, we can assume that m = 0 since mσ3 is a bounded self-adjoint
operator.
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2.1. The Operator in Polar Coordinates

Let us introduce the polar coordinates in Ωω

x(r, θ) =
(

x1(r, θ)
x2(r, θ))

)
=

(
r cos(θ)
r sin(θ)

)
= rerad(θ), (2.1)

for r > 0 and θ ∈ (−ω, ω), where

erad(θ) =
(

cos(θ)
sin(θ)

)
, eang(θ) =

d

dθ
erad(θ) =

(− sin(θ)
cos(θ)

)
. (2.2)

For further use, we recall the following basic relation

iσ3σ · eang = σ · erad. (2.3)

For all Ψ ∈ L2(Ωω,C2), we get

ψ(r, θ) = Ψ(x(r, θ))

belongs to L2((0,+∞), rdr) ⊗ L2((−ω, ω),C2). In this system of coordinates,
the Dirac operator rewrites

D = −iσ · erad∂r − iσ · eang

r
∂θ = −iσ · erad

(
∂r + i

σ3

r
∂θ

)

= −iσ · erad

(
∂r +

12 − K

2r

) (2.4)

where
K = σ3 (−2i∂θ) + 12. (2.5)

In what follows, we rely on properties of K to build invariant subspaces of D.

2.2. Study of the Operator K

Remark that for all r > 0, the boundary matrices write

Bn(reiω) = −iσ3σ · eang(ω) =: B+

Bn(re−iω) = iσ3σ · eang(−ω) =: B−
(2.6)

where Bn is defined in (1.4). Now, let us describe the spectral properties of K.

Lemma 2.1. The following holds.
(i) The operator (K,D(K)) acting on L2((−ω, ω),C2) with K defined in

(2.5) and

D(K) = {u ∈ H1((−ω, ω),C2) : B+u(ω) = u(ω) and B−u(−ω) = u(−ω)}
is self-adjoint and has compact resolvent.

(ii) Its spectrum is

Sp(K) = {λκ , κ ∈ Z}
with λκ := π(1+2κ)

2ω . For κ ∈ Z, we have ker (K − λκ) = span(uκ) where

uκ :=
1

2
√

ω

(
eiθ λκ−1

2

(−1)κ+1ie−iθ λκ−1
2

)
,

and (uκ)κ∈Z is an orthonormal basis of L2((−ω, ω),C2).
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(iii) We have (σ · erad) D(K) ⊂ D(K), {K,σ · erad} = 0 and

u−(κ+1) = (−1)κi(σ · erad)uκ.

Remark 2.2. Thanks to Lemma 2.1(iii), we remark that Sp(K) is symmetric
with respect to 0.

Remark 2.3. The wave functions expansion in angular harmonics for the Dirac
operator on R

2 has been a major inspiration for this work. In this case, the
operator acting in the angular variable is called the spin-orbit operator and is
defined by

K̃ = −2i∂θ + σ3 = σ3K,

D(K̃) = H1(R/2πZ,C2).

It is self-adjoint and commutes with the Dirac operator on R
2; thus, the

eigenspaces of K̃ yield invariant subspaces of the full operator. We refer to
[35, Section 4.6] where the spherical symmetry in R

3 is extensively studied.
In our case, K̃ does not behave well with respect to the infinite mass

boundary conditions. Nevertheless, the slight change we have done overcome
this difficulty. Below, we list properties of K that motivates its introduction.

(a) It is a first-order operator in the angular variable θ.
(b) Its domain takes into account the infinite mass boundary conditions and

renders K self-adjoint.
(c) It has good anticommutation relations with D.

2.3. Invariant Subspaces of D

Now, we introduce invariant subspaces of D and study the resulting restricted
operators. The following lemma is an adaptation of [29, Theorem XIII.85] to
our framework.

Lemma 2.4. We have

L2((0,+∞), rdr) ⊗ L2((−ω, ω),C2) = ⊕κ≥0Eκ

where Eκ = L2((0,+∞), rdr) ⊗ span(uκ, u−(κ+1)). Moreover, the following
holds.

(i) For all κ ∈ N, the operator (dκ,D(dκ)) defined by

D(dκ) = D(D) ∩ Eκ

dκ = D∣∣Eκ

is a well-defined unbounded operator on the Hilbert space Eκ.
(ii) For all κ ∈ N, the operator (dκ,D(dκ)) is unitarily equivalent to the

operator (dκ
ω,D(dκ

ω)) defined by
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D(dκ
ω) =

{(
a
b

)
∈ L2((0,+∞),C2, rdr) :

∫ ∞

0

(
|ȧ|2 + |ḃ|2 +

|λκ − 1|2
4r2

|a|2 +
|λκ + 1|2

4r2
|b|2

)
rdr < +∞

}
,

dκ
ω = (−1)κ

(
iσ2

(
∂r +

1
2r

)
+ σ1

λκ

2r

)
=(−1)κ

(
0 ∂r+ λκ+1

2r

−∂r + λκ−1
2r 0

)
.

(iii) Let

v =
∑
κ∈Z

aκuκ

be any element of D(D), we have

‖Dv‖2
L2(Ωω,C2) =

∑
κ∈Z

∫ ∞

0

(
|ȧκ|2 + |λκ − 1|2 |aκ(r)|2

4r2

)
rdr = ‖∇v‖2

L2(Ωω,C2).

(iv) For all κ ∈ N, the operators (D,D(D)) and (dκ
ω,D(dκ

ω)) are symmetric
and closed.

(v) Let {(d̃κ
ω,D(d̃κ

ω))| κ ≥ 0} be a family of extensions of the operators
{(dκ

ω,D(dκ
ω))| κ ≥ 0}. Denote by (D̃,D(D̃)) the extension of (D,D(D))

which satisfies

D(D̃) = ⊕κ≥0 D(d̃κ
ω).

The operator (D̃,D(D̃)) is self-adjoint if and only if the operators
(d̃κ

ω,D(d̃κ
ω)) are self-adjoint. In this case, we have

Sp(D̃) =
⋃
κ∈Z

Sp
(
d̃κ

ω

)
.

The following lemma concludes our study. Its proof relies on [30, Theorem
VIII.3], [28, Theorem X.2] and some properties of the modified Bessel functions
(see for instance [25, Chapter 12] or [1, Chapter 9]).

Lemma 2.5. The following holds.
(i) Let κ ≥ 1 and ω ∈ (0, π). The operator (dκ

ω,D(dκ
ω)) is self-adjoint. When

κ = 0, (d0
ω,D(d0

ω)) is self-adjoint as long as ω ∈ (0, π/2].
(ii) For all ω ∈ (π/2, π), (d0

ω,D(d0
ω)) is not self-adjoint but has infinitely

many self-adjoint extensions (d0,γ
ω ,D(d0,γ

ω )) defined by

D(d0,γ
ω ) = D(d0

ω) + span(a+ + γσ3a+),

d0,γ
ω (a + c0(a+ + γσ3a+)) = d0

ωa + c0i(a+ − γσ3a+),

with a ∈ D(d0
ω), c0 ∈ C,

a+ : r �→
(

Kλ0−1
2

(r)
−iKλ0+1

2
(r)

)

and γ ∈ C such that |γ| = 1.

Theorem 1.2(i)–(ii) follow from Lemmas 2.1, 2.4 and 2.5.
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3. Proofs of Lemmas 2.1, 2.4 and 2.5

In Sect. 3.1, we gather basic results that are necessary in what remains of
this section. Sections 3.2, 3.3 and 3.4 deal with the proofs of Lemmas 2.1, 2.4
and 2.5, respectively.

3.1. Preliminary Study

The following lemma is about basic spectral properties of the matrices Bv

defined in (1.4).

Lemma 3.1. For all unit vector v ∈ R
2, the matrix Bv satisfies

ker(Bv ± 12) = σ3 ker(Bv ± 12)⊥ = σ · v ker(Bv ± 12)⊥.

Proof. Since {σ3,Bv} = 0, we have

σ3 ker(Bv ± 12)⊥ = σ3 ran(Bv ± 12) = ran(Bv ∓ 12) = ker(Bv ± 12).

Moreover, as {σ · v,Bv} = 0, the same proof yields the other equality. �

For the sake of completeness, we recall the following standard result on
the symmetry of the Dirac operator with infinite mass boundary conditions.

Lemma 3.2. The operator (D,D(D)) is symmetric and densely defined.

Proof. Let u, v ∈ D(D). Since Ωω is a Lipschitz domain, an integrations by
parts yields

〈Du, v〉L2(Ωω,C2) − 〈u,Dv〉L2(Ωω,C2) = 〈−iσ · nu, v〉L2(∂Ωω,C2) ,

(see [24, Section 3.1.2]). Thanks to Lemma 3.1, almost everywhere on the
boundary we have

−i(σ · n)u ∈ σ · n ker(Bn − 12) = ker(Bn − 12)⊥.

Thus 〈−iσ · nu, v〉L2(∂Ωω,C2) = 0 and we obtain

〈Du, v〉L2(Ωω,C2) = 〈u,Dv〉L2(Ωω,C2) .

�

3.2. Study of the Angular Part: Proof of Lemma 2.1

The proof is divided into several steps.

3.2.1. Step 1: Symmetry of K. Let u, v ∈ D(K), an integration by parts and
Lemma 3.1 yield

〈Ku, v〉L2((−ω,ω),C2) − 〈u,Kv〉L2((−ω,ω),C2)

=
∫ ω

−ω

∂θ

( 〈−2iσ3u, v〉
C2

)
dθ

= 〈−2iσ3u(ω), v(ω)〉
C2 − 〈−2iσ3u(−ω), v(−ω)〉

C2 = 0. (3.1)

Hence, K is symmetric.
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3.2.2. Step 2: Self-Adjointness of K. Let u ∈ D(K∗). Using test functions in
C∞

c ((−ω, ω),C2) ⊂ D(K), we remark that the distribution Ku belongs to
L2((−ω, ω),C2) which gives u ∈ H1((−ω, ω),C2). Performing again integra-
tion by parts (3.1), we get

σ3u(ω) ∈ ker(B+ − 12)⊥,

σ3u(−ω) ∈ ker(B− − 12)⊥.

Thanks to Lemma 3.1, we obtain that u belongs to D(K) and thus K is self-
adjoint. Finally, the compact Sobolev embedding

H1((−ω, ω),C2) ↪→ L2((−ω, ω),C2),

implies that K has compact resolvent. Hence, its spectrum is discrete and it
concludes the proof of Lemma 2.1(i).

3.2.3. Step 3: Study of Sp(K). Let λ ∈ R, we look for solutions of

Ku = λu (3.2)

belonging to D(K). Remark that without taking the boundary conditions into
account, the set of solutions of (3.2) is the vector space

E1
λ := span

((
eiθ λ−1

2

0

)
,

(
0

e−iθ λ−1
2

))
.

Assume u ∈ E1
λ ∩ D(K). In particular, u writes

u =

(
aeiθ λ−1

2

be−iθ λ−1
2

)

for some constants a, b ∈ C. Using (2.3), the boundary conditions read

u(ω) = B+u(ω) = −σ · erad(ω)u(ω) = −
(

0 e−iω

eiω 0

)
u(ω) =

(
−be−iω λ+1

2

−aeiω λ+1
2

)
,

u(−ω) = B−u(−ω) = σ · erad(−ω)u(−ω) =

(
0 eiω

e−iω 0

)
u(−ω) =

(
beiω λ+1

2

ae−iω λ+1
2

)
.

It yields

a = beiωλ = −be−iωλ.

Hence, there is a non-trivial solution of (3.2) belonging to D(K) if and only if
e2iωλ = −1. We deduce that the spectrum of K is

Sp(K) =
{

π(1 + 2κ)
2ω

, κ ∈ Z

}
.

For κ ∈ Z, define λκ := π(1+2κ)
2ω . If κ is even, we have a = ib and

ker (K − λκ) = span

(
eiθ λκ−1

2

−ie−iθ λκ−1
2

)
,
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if κ is odd, we have a = −ib and

ker (K − λκ) = span

(
eiθ λκ−1

2

ie−iθ λκ−1
2

)
.

This proves Lemma 2.1(ii).

3.2.4. Step 4: The Commutation Relation. Since σ · erad commutes with Bn,
we obtain

(σ · erad)D(K) ⊂ D(K).

We also have

Kσ · erad = σ3 (σ · erad(−2i∂θ) − 2iσ · eang) + σ · erad

= −σ · eradσ3(−2i∂θ) − σ · erad = −σ · eradK.

This ends the proof of Lemma 2.1(iii).

3.3. Invariant Subspaces: Proof of Lemma 2.4

Let us remark that the direct sum decomposition is a direct consequence of
Lemma 2.1(ii). What remains of the proof is divided into several steps.

3.3.1. Proof of Points (i) and (ii). These points follow from identity (2.4)

D = −iσ · erad

(
∂r +

12 − K

2r

)

and Lemma 2.1(iii). Indeed, for all κ ∈ N and all v ∈ Eκ there exist a, b ∈
L2((0,+∞), rdr) such that for all r > 0 and all θ ∈ (−ω, ω), v writes

v(r, θ) = a(r)uκ(θ) + b(r)u−(κ+1)(θ).

If v ∈ H1(Ωω,C2), since −iσ3∂θ = K−1
2 , we have

‖∇v‖2
L2(Ωω,C2) =

∫ ∞

0

(
|ȧ|2 + |ḃ|2 +

|λκ − 1|2
4r2

|a|2 +
|λ−(κ+1) − 1|2

4r2
|b|2

)
rdr

and

Dv = dκv = (−1)κ+1u−(κ+1)

(
ȧ +

1 − λκ

2r
a

)
+ (−1)κuκ

(
ḃ +

1 + λκ

2r
b

)
.

This ends this part of the proof.

3.3.2. Proof of Points (iii) and (iv). Let v ∈ D(D). Decomposing v in the
orthonormal basis (uκ)κ∈Z, it writes

v =
∑
κ∈Z

aκuκ.
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Using Lemma A.1, we have

‖Dv‖2
L2(Ωω,C2) =

∑
κ∈Z

∫ ∞

0

∣∣∣∣ȧκ +
1 − λκ

2r
aκ

∣∣∣∣
2

rdr

=
∑
κ∈Z

∫ ∞

0

(
|ȧκ|2 + |λκ − 1|2 |aκ(r)|2

4r2

)
rdr

= ‖∇v‖2
L2(Ωω,C2).

and Lemma 2.4(iv) is proved.

3.3.3. Proof of Point (v). This last point is proved as in [35, Lemma 4.15]
using [30, Theorem VIII.3].

3.4. Proof of Lemma 2.5

Let κ ∈ N. In this proof, we apply the basic criterion for self-adjointness [30,
Theorem VIII.3]. In particular, we have to study the vector spaces

ker((dκ
ω)∗ ± i12).

Remark that

D((dκ
ω)∗) ⊂

{(
a
b

)
∈ L2((0,∞), rdr)2 : dκ

ω

(
a
b

)
∈ L2((0,∞), rdr)2

}
.

Since {dκ
ω, σ3} = 0, we obtain

ker((dκ
ω)∗ − i12) = σ3 ker((dκ

ω)∗ + i12).

Hence, it remains to look for L2((0,∞), rdr)2 solutions of

(dκ
ω − i12)

(
a
b

)
= 0. (3.3)

It is well known that the set of solutions is a vector space of dimension 2, and
moreover, the solutions are smooth on (0,∞). Remark that

(dκ
ω + i12) (dκ

ω − i12) = (dκ
ω)2 + 12,

which implies

0 =
(
(dκ

ω)2 + 12

) (
a
b

)

= − 1

r2

⎛
⎝r2∂2

r + r∂r −
(
r2 + (λκ−1)2

4

)
0

0 r2∂2
r + r∂r −

(
r2 + (λκ+1)2

4

)
⎞
⎠ (

a
b

)
.

Thus, a and b are modified Bessel functions (see [25, Chapter 12, Section
1] and [1]) of parameters λκ−1

2 and λκ+1
2 , respectively. The modified Bessel

functions of the first kind do not belong to L2((1,∞), rdr). Consequently, for
(a, b) to belong to L2((1,∞), rdr)2 a and b necessarily write a = a0Kλκ−1

2

and b = b0Kλκ+1
2

with a0, b0 ∈ C. Recall that Kν denotes the modified Bessel
function of the second kind of parameter ν ∈ R. It is known that Kν = K−ν

and
˙K|ν|(r) +

|ν|
r

K|ν|(r) = −K|ν|−1(r) (3.4)
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for all r > 0. Thanks to Remark 1.5, for b to belong to L2((0, 1), rdr) one
needs λκ < 1. We have

(a) λκ ≥ 3/2 for any κ ≥ 1 and any ω ∈ (0, π),
(b) λ0 ≥ 1 for any ω ∈ (0, π/2],
(c) λ0 < 1 for any ω ∈ (π/2, π).

Hence, in cases (a) and (b), we get b0 = 0. Taking into account (3.3) and (3.4)
we also get a0 = 0 which implies

ker((dκ
ω)∗ ± i12) = {0}

and [30, Theorem VIII.3] ensures that (dκ
ω,D(dκ

ω)) is a self-adjoint operator.
In case (c), we get

(
a
b

)
∈ span(a0

+), with a0
+ =

(
Kλ0−1

2
(r)

−iKλ0+1
2

(r)

)
.

Actually, a0
+ belongs to D((dκ

ω)∗) which yields

ker((dκ
ω)∗ − i12) = span(a0

+) and ker((dκ
ω)∗ + i12) = span(σ3a

0
+).

We conclude thanks to [28, Theorem X.2].

4. Distinguished Self-Adjoint Extensions of D

The goal of this section is to prove Propositions 1.6 and 1.8 about the distin-
guished extensions of

(
D,D(D)

)
when ω ∈ (π/2, π).

4.1. Proof of Proposition 1.6

The anticommutation of C with D is straightforward. The only thing left to
prove is the following lemma.

Lemma 4.1. Let ω ∈ (π/2, π) and let γ ∈ C be such that |γ| = 1. The following
statements are equivalent.

(a) γ = ±1.
(b) CD(Dγ) ⊂ D(Dγ) and DγC = −CDγ .

Proof. Let u ∈ D(Dγ). Thanks to Theorem 1.2(ii), there exist v ∈ D(D) and
c0 ∈ C such that u = v + c0(v+ + γv−). The following equalities hold:

Cv+ = iv+, Cv− = iv−.

As Cu = Cv + ic0(v+ + γv−) we have Cu ∈ D(Dγ) if and only if γ ∈ R, that
is γ = ±1. Now, let γ = ±1, we have

DγCu = DCv − c0(v+ − γv−) = −CDv − c0(v+ − γv−).

As Dγ(v+ + γv−) = i(v+ − γv−), we get CDγ(v+ + γv−) = (v+ − γv−) which
yields DγCu = −CDγu. �
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4.2. Proof of Proposition 1.7

Proposition 1.7 is a consequence of the following lemma.

Lemma 4.2. Let α > 0 and γ = eis ∈ C for s ∈ [0, 2π). The unitary map

Vα : L2(Ωω,C2) −→ L2(Ωω,C2)
u �−→ αu(α·) (4.1)

satisfies

V−1
α (−iσ · ∇)Vα = α(−iσ · ∇),

VαD(Dγ) =

{
D(Dγ) if γ = ±1( i.e., if s ∈ {0, π}),
D(Dγ̃) otherwise,

where γ̃ = e
2i arctan

(
tan(s/2)

αλ0

)
.

Proof. Let α > 0 and γ = eis ∈ C. As D(dκ
ω) is scale-invariant for all κ ≥ 1,

using Lemma 2.4 we are reduced to investigate the operator d0,γ
ω . Thanks to

Remark 1.5 we have

VαD(D±1) = D(D±1)

and for γ �= −1 and r > 0,

(1 + γ)

(
K 1−λ0

2
(αr)

−i1−γ
1+γ K 1+λ0

2
(αr)

)
∼r→0

1 + γ

α
1−λ0

2

(
K 1−λ0

2
(r)

−iα−λ0 1−γ
1+γ K 1+λ0

2
(r)

)
.

We have

−i
1 − γ

1 + γ
= − tan(s/2)

which rewrites

−iα−λ0
1 − γ

1 + γ
= −α−λ0 tan(s/2) = −i

1 − γ̃

1 + γ̃

for γ̃ = e
2i arctan

(
tan(s/2)

αλ0

)
. This ensures that VαD(Dγ) = D(Dγ̃) and the result

follows. �

4.3. Proof of Proposition 1.8

To prove Proposition 1.8 it is enough to prove the following lemma.

Lemma 4.3. Let ω ∈ (π/2, π) and let ν0 be as defined in Theorem 1.2. The
following holds true.

(i) The function

(r cos(θ), r sin(θ)) ∈ Ωω �→ Kν0(r)u0(θ)

belongs to H1/2(Ωω).
(ii) The function

(r cos(θ), r sin(θ)) ∈ Ωω �→ Kν0+1(r)u−1(θ)

does not belong to H1/2(Ωω).
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Proof. Using [14, Cor. 4.53.], we have H1/2(Ωω) ↪→ L4(Ωω) and thanks to
Remark 1.5 we get

|Kν0+1(r)u−1(θ)|4 r =
1

23ω2
|Kν0+1(r)|4r ∼r→0

C

r4(ν0+1)−1

for all r > 0 and θ ∈ (−ω, ω). Since

ν0 =
π − 2ω

4ω
> −1/2,

this function does not belong to L4(Ωω) and Lemma 4.3(ii) is proved.
Let us prove Lemma 4.3(i). Let r > 0 and θ ∈ (−ω, ω), we have

|∇Kν0u0|2(r, θ) =
1
4ω

|∂rKν0(r)|2 +
|Kν0(r)|2

4ωr2
2|ν0|2.

Thanks to (3.4) and Remark 1.5, Kν0u0 belongs to W 1,p(Ωω) as soon as

1 ≤ p <
2

|ν0| + 1
.

Since we have

min
ω∈(π/2,π)

2
|ν0| + 1

=
8
5

>
4
3

and W 1,4/3(Ωω) ↪→ H1/2(Ωω), we get Lemma 4.3(i). �

5. Spectrum of Dsa

This section is devoted to the proofs of Propositions 1.12 and 1.13.

5.1. Proof of Proposition 1.12

The proof is divided into three steps. In Steps 1 and 2 we construct Weyl
sequences for the Dirac operator with infinite mass boundary conditions on
Ωπ/2 and the free Dirac operator in R

2 denoted by D0, respectively. For a
general ω ∈ (0, π), Weyl sequences for the Dirac operator with infinite mass
boundary conditions in Ωω can be obtained using adequate cutoff functions.
The last step ensures that the Weyl sequences actually yield the whole essential
spectrum.

Step 1: Weyl sequences for m ≥ 0 on R
2. Let χ : [0,+∞) �→ [0, 1] be a

C∞-smooth function such that

χ(x) =

{
1 if x < 1
0 if x > 2.

(5.1)

Let λ > m and define

u :

⎧⎪⎨
⎪⎩

R
2 −→ C

2

(x1, x2) �−→
(√

λ+m
λ−m

1

)
eix1

√
λ2−m2

.
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In particular, remark that (−iσ ·∇+mσ3 −λ)u = 0. Now, for n > 0, we define
the sequence of functions

un(x1, x2) = u(x1, u2)χ(|x1|/n)χ(|x2|/n) ∈ H1(R2,C2).

We get

‖un‖2
L2(R2,C2) = 2

( λ

λ − m

)
n2‖χ‖4

L2(R)

and

‖(−iσ · ∇ + mσ3 − λ)un‖2
L2(R2,C2)

≤ 4
n2

( λ

λ − m

)∫
R2

(
χ′(|x1|/n)χ(|x2|/n)

)2dx1dx2

= 4
( λ

λ − m

)∫
R2

(
χ′(|x1|)χ(|x2|)

)2dx1dx2.

Thus, we obtain

‖(−iσ · ∇ + mσ3 − λ)un‖2
L2(R2,C2)

‖un‖2
L2(R2,C2)

→ 0, when n → +∞.

In particular, λ belongs to the spectrum of the free Dirac operator and thus
(m,+∞) ⊂ Sp(D0). As the spectrum of a self-adjoint operator is closed, the
end-point m also belongs to the spectrum. Recall that C is the charge conjuga-
tion operator introduced in (1.7). The same reasoning yield that the sequence
(Cun)n>0 is also a Weyl sequence but for the value −λ. In particular we obtain

(−∞,−m] ∪ [m,+∞) ⊂ Sp(D0).

As the set on the left-hand side is not discrete, actually we have proved that

(−∞,−m] ∪ [m,+∞) ⊂ Spess(D0).

Finally, localizing the sequences (un)n>0 and (Cun)n>0 inside Ωω and away
from the boundary (with well chosen cutoff functions), we obtain

(−∞,−m] ∪ [m,+∞) ⊂ Spess(Dsa).

Step 2: Weyl sequences for m < 0 on Ωπ/2. Let λ ∈ R and define

u :

⎧⎨
⎩

Ωπ/2 −→ C
2

(x1, x2) �−→
(

1
−i

)
emx1−iλx2 .

In particular, remark that we have (−iσ · ∇ + mσ3 − λ)u = 0 and B−e1u = u
on ∂Ωπ/2 where e1 = (1, 0)T . We define the sequence of functions (un)n>0 by

un(x1, x2) = u(x1, x2)χ(|x2|/n), for (x1, x2) ∈ Ωπ/2

and with χ defined in (5.1). Note that as constructed, un ∈ D(Dsa). We get

‖un‖2
L2(Ωπ/2,C2) = 2

(∫ +∞

0

e2mx1dx1

)(∫
R

|χ(|x2|/n)|2dx2

)

=
n

|m|
∫
R

|χ(|x2|)|2dx2
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and

‖(Dsa − λ)un‖2
L2(Ωπ/2,C2) =

2
n2

‖|∂2χ(|x2|/n)|emx1‖2
L2(Ωπ/2,C2)

=
2

|m|n
∫
R

|∂2χ(|x2|)|2dx2.

This proves that (un)n>0 is a Weyl sequence and λ belongs to the spectrum
of Dsa. We get R ⊂ Sp(Dsa) which actually read

Sp(Dsa) = Spess(Dsa) = R.

This proof can be adapted to the domain Ωω with ω ∈ (0, π) and negative
mass using Remark 1.4 and adequate cutoff functions.

Step 3: Reverse inclusion for the essential spectrum. The only thing left
to investigate is the case m > 0. Thanks to Remark 1.9, we have D(Dsa) ⊂
H3/4−ε(Ωω,C2) for all ε ∈ (0, 1/4). Hence, for all u ∈ D(Dsa), an integration
by parts yields

2Re 〈−iσ · ∇u, σ3u〉L2(Ωω,C2) = ‖u‖2
L2(∂Ωω,C2).

It gives

‖Dsau‖2
L2(Ωω,C2) = ‖σ · ∇u‖2

L2(Ωω,C2) + m2‖u‖2
L2(Ωω,C2) + m‖u‖2

L2(∂Ωω,C2).

This ensures that whenever m ≥ 0, the spectrum of (Dsa)2 is included in
[m2,+∞) and in particular, we have

Sp(Dsa) ⊂ (−∞,−m] ∪ [m,+∞).

It concludes the proof of Proposition 1.12.

5.2. Proof of Proposition 1.13

Assume that λ ∈ Sp(Dsa) is an eigenvalue. Let v be a normalized eigenfunction
associated with λ. For α > 0, recall that Vα is the unitary map introduced in
(4.1). Thanks to Proposition 1.7, Vα

(D(Dsa)
) ⊂ D(Dsa). Moreover, we have

0 = 〈(Dsa − λ)v,Vαv〉L2(Ωω,C2) = 〈v, (Dsa − λ)Vαv〉L2(Ωω,C2)

= 〈v,Vα(α(Dsa − λ) + (α − 1)(λ − mσ3))v〉L2(Ωω,C2)

= (α − 1) 〈v,Vα(λ − mσ3)v〉L2(Ωω,C2) .

For α �= 1 we obtain

0 = 〈(λ12 − mσ3)v,Vαv〉L2(Ωω,C2) .

Since
(
α ∈ (0,+∞) �→ Vαv ∈ L2(Ωω,C2)

)
is continuous, taking the limit

α → 1 gives
λ‖v‖2

L2(Ωω,C2) = m 〈σ3v, v〉L2(Ωω,C2) (5.2)
which yields

|λ|‖v‖2
L2(Ωω,C2) = |m|∣∣ 〈σ3v, v〉L2(Ωω,C2)

∣∣ ≤ |m|‖v‖2
L2(Ωω,C2)

and necessarily |λ| ≤ |m|. Assume by contradiction that λ = m. Writing
v = (v1, v2), (5.2) implies that v2 vanishes on Ωω. Taking the infinite mass
boundary conditions into account, we get v1|∂Ωω

= 0 which implies that v1 ∈
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H1
0 (Ωω,C). Moreover, since (v1, 0) is an eigenfunction of Dsa, v1 satisfies the

Cauchy–Riemann equation

−i(∂1 + i∂2)v1 = 0 in Ωω.

An integration by parts gives ‖∇v1‖L2(Ωω,C2) = 0 and v1 has to vanish. This
gives us the wanted contradiction, and the case λ = −m can be done similarly.
It ends the proof of Proposition 1.13
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Appendix A. A Result on Radial Functions

Lemma A.1. Let a ∈ L2((0,+∞), rdr) be a function such that ȧ, a
r ∈

L2((0,+∞), rdr). We have

Re
∫ ∞

0

(
ȧ(r)

a(r)
r

)
rdr = 0.

Proof. The function r1/2a belongs to H1(0,+∞) thus, in particular, a ∈
C0(0,∞). For r0 > 0, we have

Re
∫ ∞

r0

(
ȧ(r)

a(r)
r

)
rdr =

∫ ∞

r0

d
dr

|a|2(r)dr = −|a|2(r0).

Hence |a|2 has a finite limit at 0. Since a/r ∈ L2((0,+∞), rdr), we get |a|2(0) =
0 which yields

Re
∫ ∞

0

(
ȧ(r)

a(r)
r

)
rdr = 0.

�
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18(4), 1371–1383 (2017)

[8] Booß Bavnbek, B., Lesch, M., Zhu, C.: The Calderón projection: new definition
and applications. J. Geom. Phys. 59(7), 784–826 (2009)

[9] Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The
electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

[10] Chodos, A.: Field-theoretic Lagrangian with baglike solutions. Phys. Rev. D
12(8), 2397–2406 (1975)

[11] Chodos, A., Jaffe, R.L., Johnson, K., Thorn, C.B.: Baryon structure in the bag
theory. Phys. Rev. D 10(8), 2599–2604 (1974)

[12] Chodos, A., Jaffe, R.L., Johnson, K., Thorn, C.B., Weisskopf, V.F.: New ex-
tended model of hadrons. Phys. Rev. D 9(12), 3471–3495 (1974)

[13] DeGrand, T., Jaffe, R.L., Johnson, K., Kiskis, J.: Masses and other parameters
of the light hadrons. Phys. Rev. D 12, 2060–2076 (1975)

[14] Demengel, F., Demengel, G.: Espaces fonctionnels. Savoirs Actuels (Les Ulis)

[Current Scholarship (Les Ulis)]. EDP Sciences, Les Ulis; CNRS Éditions, Paris
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Université Paris-Saclay
Paris
France

Communicated by Jan Derezinski.

Received: July 12, 2017.

Accepted: February 15, 2018.


	Self-Adjointness of Dirac Operators with Infinite Mass Boundary Conditions in Sectors
	Abstract
	1. Introduction
	1.1. Motivations and State of the Art
	1.1.1. Graphene Quantum Dots
	1.1.2. MIT Bag Model

	1.2. The Dirac Operator with Infinite Mass Boundary Conditions in Sectors
	1.3. Main Results
	1.3.1. Self-Adjointness in Sectors
	1.3.2. Physical Remarks on the Self-Adjoint Extensions in Sectors
	1.3.3. About Polygonal Domains
	1.3.4. Spectral Properties in Sectors

	1.4. Organization of the Paper

	2. Self-Adjoint Extensions of D
	2.1. The Operator in Polar Coordinates
	2.2. Study of the Operator K
	2.3. Invariant Subspaces of D

	3. Proofs of Lemmas 2.1, 2.4 and 2.5
	3.1. Preliminary Study
	3.2. Study of the Angular Part: Proof of Lemma 2.1
	3.2.1. Step 1: Symmetry of K
	3.2.2. Step 2: Self-Adjointness of K
	3.2.3. Step 3: Study of Sp(K)
	3.2.4. Step 4: The Commutation Relation

	3.3. Invariant Subspaces: Proof of Lemma 2.4
	3.3.1. Proof of Points (i) and (ii)
	3.3.2. Proof of Points (iii) and (iv)
	3.3.3. Proof of Point (v)

	3.4. Proof of Lemma 2.5

	4. Distinguished Self-Adjoint Extensions of D
	4.1. Proof of Proposition 1.6
	4.2. Proof of Proposition 1.7
	4.3. Proof of Proposition 1.8

	5. Spectrum of Dsa
	5.1. Proof of Proposition 1.12
	5.2. Proof of Proposition 1.13

	Acknowledgements
	Appendix A. A Result on Radial Functions
	References




