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Matrix Product Ensembles of Hermite Type
and the Hyperbolic Harish-Chandra–
Itzykson–Zuber Integral

P. J. Forrester, J. R. Ipsen and Dang-Zheng Liu

Abstract. We investigate spectral properties of a Hermitised random
matrix product which, contrary to previous product ensembles, allows
for eigenvalues on the full real line. We prove that the eigenvalues form
a bi-orthogonal ensemble, which reduces asymptotically to the Hermite
Muttalib–Borodin ensemble. Explicit expressions for the bi-orthogonal
functions as well as the correlation kernel are provided. Scaling the latter
near the origin gives a limiting kernel involving Meijer G-functions, and
the functional form of the global density is calculated. As a part of this
study, we introduce a new matrix transformation which maps the space
of polynomial ensembles onto itself. This matrix transformation is closely
related to the so-called hyperbolic Harish-Chandra–Itzykson–Zuber inte-
gral.

1. Introduction

1.1. Statement of the Problem and Summary of Results

Let H be a matrix from the Gaussian unitary ensemble (GUE), and let each Gi

(i = 1, . . . ,M) denote a complex Ginibre matrix, i.e. a matrix with i.i.d. stan-
dard complex Gaussian entries. In this paper, we investigate the eigenvalues
of the Hermitised product matrix

WM = G†
M · · · G†

1HG1 · · · GM (1.1)

under the assumption that all matrices, H and Gi (i = 1, . . . ,M), are inde-
pendent. We will see that the eigenvalues form a bi-orthogonal ensemble [10].
Furthermore, this ensemble is closely related (in a sense that will be specified
in the next subsection) to the so-called Hermite Muttalib–Borodin ensem-
ble [10,46]. The latter is defined by the joint eigenvalue probability density
function (PDF)
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P̃ (x1, . . . , xN ) =
1

Z̃
(M)
N

∏

1≤j<k≤N

(xk − xj)
(
x2M+1

k − x2M+1
j

) N∏

�=1

|x�|αe−x2
� ,

(1.2)
where Z̃

(M)
N is a normalisation constant and α is a non-negative constant.

It will transpire that the bi-orthogonal ensemble structure associated with
the eigenvalue PDF of the product matrix (1.1) is a corollary of the following
more basic result.

Theorem 1. Let G be an n × N (n ≤ N) standard complex Gaussian matrix,
and let A be an n × n Hermitian matrix with eigenvalues a1, . . . , aN . If the
eigenvalues of A are pairwise distinct and ordered as

a1 < a2 < · · · < an0 < 0 < an0+1 < · · · < an, (1.3)

then the PDF of the nonzero eigenvalues of matrix X = G†AG is given by

Pn0
n ({aj}n

j=1; {xj}n
j=1) =

n∏

l=1

1
|al|

(xl/al)N−n

(N − l)!

×
∏

1≤j<k≤n

xk − xj

ak − aj
det

[
e−xi/aj

]n0

i,j=1
det

[
e−xi/aj

]n
i,j=n0+1

, (1.4)

where
x1 < · · · < xn0 < 0 < xn0+1 < · · · < xn. (1.5)

In particular, we see that X has n0 (n − n0) negative (positive) eigenvalues,
i.e. the same number as A. The remaining N −n eigenvalues are all identically
zero.

We remark that in Theorem 1 the case of n < N remains unanswered
although this is certainly of high interest; see [1,17] and references therein for
a relevant question.

The rest of this paper is organised as follows: in Sect. 2, we use The-
orem 1 to find the PDF for the eigenvalues of the product (1.1) as a bi-
orthogonal ensemble. Moreover, the explicit expression for the PDF is seen
to reduce asymptotically to the functional form (1.2) specifying the Hermite
Muttalib–Borodin ensemble. Explicit expressions for the bi-orthogonal func-
tions are derived in Sect. 3. Analogous to the theory of Hermite polynomi-
als [see, e.g. (4.16) below], we will see that it is convenient to consider bi-
orthogonal functions of even and odd degree separately. Section 4 provides
reformulations of the bi-orthogonal functions and the correlation kernel as
integral representations, which are more suited for asymptotic analysis. These
integral representations can also be expressed in terms of Meijer G-functions,
and we will see that they are closely related to known formulae stemming
from the product ensemble of Laguerre type. The local scaling limit at the
origin is derived and seen to be related to the Meijer G-kernel in Sect. 5. This
result is also compared with the local scaling limit of the Hermite Muttalib–
Borodin ensemble. Section 6 includes derivations of the global spectrum of the
product (1.1) as well as the Hermite Muttalib–Borodin ensembles. Since our
product ensemble reduces asymptotically to the Hermite Muttalib–Borodin
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Table 1. Summary of weight functions and support for the
three canonical orthogonal ensembles in random matrix the-
ory given by the joint distribution (1.6)

Ensemble Weight Support

Jacobi w(λ) = λa(1 − λ)b λ ∈ (0, 1)
Laguerre w(λ) = λae−λ λ ∈ (0, ∞)

Hermite w(λ) = |λ|ae−λ2
λ ∈ (−∞, ∞)

ensemble, they are as expected seen to have the same global spectrum, which
in turn is given in terms of the Fuss–Catalan density. Finally, Theorem 1 is
proven in Appendix. This theorem is an important result by itself. For this
reason, we provide three separate proofs each with their own merits.

1.2. First Motivation: Muttalib–Borodin Ensembles

Orthogonal polynomial ensembles are point processes on (a subset of) the real
line with a joint distribution given by

P (dx1, . . . ,dxn) =
1

Zn
Δn({x})2

n∏

k=1

w(xk)dxk, (1.6)

where ZN is a normalisation constant, w(x) is a non-negative weight function
and Δn({x}) denotes the Vandermonde determinant,

Δn({x}) = det
1≤i,j≤n

[
x j−1

i

]
=

∏

1≤i<j≤n

(xj − xi). (1.7)

Like the corresponding moment problem, it is often useful to distinguish
between models with support on a finite, semi-infinite and double-infinite inter-
val. The canonical examples are the Jacobi-, Laguerre-, and Hermite-ensembles
summarised in Table 1. These ensembles are named according to the corre-
sponding classical orthogonal polynomials. In fact, for a �= 0, the latter would
more appropriately be called the generalised Hermite ensemble.

In random matrix theory, these three ensembles play a fundamental role
as they appear as the distribution of the eigenvalues (or singular values) for
the transfer (or truncated unitary) ensemble, the complex Wishart (or chiral)
ensemble and the Gaussian unitary ensemble, respectively; see, for example,
[19].

A fundamental insight, which can be traced back to Wigner [54], is that
the joint distribution (1.6) allows an interpretation as the equilibrium measure
for a one-dimensional gas of pairwise repulsive point particles in a confining
potential. More precisely, consider the Gibbs measure for a classical gas of n
point particles which are pairwise repulsive according to a two-point potential
U(x, y) and confined by a common one-point potential V (x), i.e.

P (dx1, . . . ,dxn) =
1

Zn
e−βE(x1,...,xn)

n∏

k=1

dxk (1.8)
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with β denoting the inverse temperature and E the energy functional

E(x1, . . . , xn) =
1
2

n∑

k=1

V (xk) −
∑

1≤i<j≤n

U(xj , xi). (1.9)

We see that at β = 2 (sometimes referred to as the free fermion point), the
Gibbs measure (1.8) is identical to (1.6) provided we set V (λ) = − log w(λ)
and U(xi, xj) = log |xj − xi|. In this way, the eigenvalues of random matrices
relate to the Boltzmann factor of a simple statistical mechanical system with
one- and two-body interactions only.

A recent development in random matrix theory is the study of exactly
solvable product ensembles; see [2] for a review. As an example, let Gi (i =
1, . . . ,M) be independent complex Ginibre matrices (matrices whose entries
are i.i.d. standard complex Gaussians) and consider the Hermitian product

G†
M · · · G†

1G1 · · · GM . (1.10)

From the work of Akemann et al. [3,4], we know that the explicit PDF for the
eigenvalues of the matrix (1.10) is

P (M)(x1, . . . , xn) =
1

Z
(M)
n

Δn({x}) det
1≤i,j≤n

[
g
(M)
j (xi)

]
, xi > 0 (i = 1, . . . , n)

(1.11)

where Z
(M)
n is a known normalisation constant and g

(M)
j (x) (j = 1, . . . , n)

are given by certain Meijer G-functions. Generally, such PDFs are known as
polynomial ensembles [39].

It seems natural to ask whether these product ensembles also have (at
least approximately) an interpretation as a Gibbs measure of the form (1.8)
and (1.9). However, unlike the Vandermonde determinant, the determinant
in (1.11) cannot be evaluated as a product (for M ≥ 2). This prohibits a literal
interpretation of the eigenvalues of (1.10) as a statistical mechanical system
with only one- and two-body interactions. One could fear that this meant that
there was no simple physical interpretation related to (1.11). However, if we
consider (1.11) with each xj large, the Meijer G-functions can be replaced
by their asymptotic approximation [18]. After a change of variables, the joint
density (1.11) to leading order in the asymptotic expansion becomes [24]

P̃ (M)(x1, . . . , xn) =
1

Z̃
(M)
n

Δn({x})Δn({xM})
n∏

k=1

xa
k e−xk ,

xk > 0 (k = 1, . . . , n) (1.12)

where a is a known non-negative constant. This does correspond to the Boltz-
mann factor of a statistical mechanical system with one- and two-body inter-
actions only.

A comparison between (1.11) and (1.12) can be done a posteriori. A
connection between the two ensembles was first noted by Kuijlaars and Stivi-
gny [39], who observed that the hard edge scaling limit of (1.12) found in [10]
took the same functional form as the Meijer G-kernel found in the product
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ensemble [40], albeit with a different choice of parameters. Due to recent
progress, even more is known about the scaling limits of both models and
their similarities. Thus, it has been established that the two ensembles also
share the same global spectral distribution [9,11,26,45,50]. Furthermore, in
both cases, the local correlations in the bulk and near the soft edge are given
by the familiar sine and Airy process, respectively [43,55].

The ensemble (1.12) had, in fact, appeared in earlier random matrix
literature. It was first isolated by Muttalib [46], who suggested it as a naive
approximation to the transmission eigenvalues in a problem about quantum
transport. A feature of the new interaction is that bi-orthogonal polynomials
(rather than orthogonal polynomials) are needed in the study of correlation
functions. Such bi-orthogonal ensembles were considered in greater generality
by Borodin [10], who devoted special attention to PDFs

P (x1, . . . , xn) =
1

Zn

n∏

j=1

w(xl)

×
∏

1≤j<k≤n

∣∣xk − xj

∣∣ ∣∣ sgn(xk)|xk|θ − sgn(xj)|xj |θ
∣∣, (1.13)

with θ > 0 and w(x) representing one of the three classical weight functions
from Table 1. Following [26], we will henceforth refer to these ensembles as
the (Jacobi, Laguerre, Hermite) Muttalib–Borodin ensembles. We note that
the awkward dependence of signs in the last factor in (1.13) disappears when
the eigenvalues are non-negative (e.g. for Laguerre and Jacobi ensembles) and
when θ is an odd integer as in (1.2).

At the time of their introduction, the Muttalib–Borodin ensembles had
no obvious relation to any random matrix models defined in terms of PDFs on
their entries (except for the trivial case θ = 1) and could merely be interpreted
as a simple one-parameter generalisation of the classical ensembles. However,
we now see that the Laguerre Muttalib–Borodin ensemble has a close con-
nection to products of complex Gaussian random matrices (1.10) through the
approximation (1.12).

Knowing that the Laguerre Muttalib–Borodin ensemble appears as an
asymptotic approximation to the Gaussian product (1.10), it seems natural to
ask the reverse question: Can we find product ensembles which reduce asymp-
totically to the Jacobi and Hermite Muttalib–Borodin ensembles? If this is
possible, it would be reasonable to say we have completed a link between
the Muttalib–Borodin ensembles with classical weights and the new family of
product ensembles.

For the Jacobi Muttalib–Borodin ensemble, a link to products of random
matrices is provided by looking at the squared singular values of a product of
truncated unitary matrices [26,34]. In this paper, it is our aim to isolate a ran-
dom matrix product structure for which the eigenvalue PDF reduces asymp-
totically to the functional form of the Hermite Muttalib–Borodin ensemble.
This construction therefore completes the correspondence between product
ensembles and the three Muttalib–Borodin ensembles with classical weights,
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i.e. Laguerre, Jacobi, Hermite. Furthermore, the relevant product ensemble
provides by itself a new interesting class of integrable models, which unlike all
previous product ensembles (see the review [2]) allows for negative eigenvalues.

As the product ensemble in question must allow for negative eigenvalues,
it is no longer sufficient to investigate Wishart-type matrices like (1.10), which
are positive definite by construction. It turns out that the correct structure
is the Hermitised product of a GUE matrix and M complex Ginibre matrices
given by (1.1). The case M = 1 of (1.1) has previously been isolated in the
recent paper of Kumar [41] as an example of a matrix ensemble which permits
an explicit eigenvalue PDF.

1.3. Second Motivation: Hyperbolic Harish-Chandra–Itzykson–Zuber
Integrals

Another reason that the Hermitised random matrix product (1.1) is of particu-
lar interest is its relation to the so-called hyperbolic Harish-Chandra–Itzykson–
Zuber (HCIZ) integral. By way of introduction on this point, we note that it
is by now evident that the family of exactly solvable product ensembles is
intimately linked to a family of exactly solvable group integrals sometimes
referred to as integrals of HCIZ type. For the study of products of Ginibre
matrices (1.10), it was sufficient to know the familiar (and celebrated) HCIZ
integral [29,32]:

∫

U(N)/U(1)N

e− Tr AV BV −1
(V −1dV )

= πN(N−1)/2
det[e−aibj ]Ni,j=1∏

1≤i<j≤N (aj − ai)(bj − bi)
, (1.14)

where (V −1dV ) denotes the Haar measure on the unitary quotient group
U(N)/U(1)N , while A and B are Hermitian N × N matrices with eigenval-
ues a1 < · · · < aN and b1 < · · · < bN , respectively. However, for studies of
products of spherical, truncated unitary, or coupled random matrices general-
isations of the HCIZ integral are needed, see [5,34,42] for the two latter cases.
We emphasise that the product of truncated unitary matrices considered by
Kieburg et al. [34] required a previously unknown generalisation of the HCIZ
integral. Likewise, our study of the Hermitised random matrix product (1.1)
requires knowledge about the so-called hyperbolic HCIZ integral in which the
integration on the left-hand side of (1.14) should be replaced with an inte-
gration over the pseudo-unitary group (see Appendix A.3 for details). The
study of such hyperbolic group integrals was initiated by Fyodorov [27,28]. An
interesting feature of the hyperbolic HCIZ integral is that the integration over
the pseudo-unitary is non-compact, which forces us to introduce some addi-
tional constraints on the Hermitian matrices A and B to ensure convergence;
this is a difficulty which does not arise in other HCIZ-type integrals. Finally,
we mention that HCIZ-type integrals have other applications in theoretical
and mathematical physics beyond products of random matrices, for example,
the hyperbolic HCIZ integral was used to find the spectral properties of the
Wilson–Dirac operator in lattice quantum chromodynamics [35]. Moreover,



Vol. 19 (2018) Matrix Product Ensembles of Hermite Type 1313

HCIZ-type integrals represent a rich area of mathematical research, for exam-
ple, within the study of Lie groups, harmonic analysis, combinatorics and prob-
ability (e.g. matrix-valued Brownian motion); see, for example, the text [53].

2. Products of Random Matrices and Hermite
Muttalib–Borodin Ensembles

In this section, we establish that the eigenvalue PDF of the matrix prod-
uct (1.1) is a polynomial ensemble and show that it reduces asymptotically to
the Hermite Muttalib–Borodin ensemble (1.2).

As stated in the introduction, the eigenvalue PDF of (1.1) follows as a
consequence of Theorem 1. The idea is simple: let A be a random matrix from
a polynomial ensemble, i.e. it has an eigenvalue PDF of the form

PA({ak}n
k=1) =

1
Zn

∏

1≤i<j≤n

(aj − ai) det[wj(ai)]ni,j=1, (2.1)

where a1 ≤ a2 ≤ · · · ≤ an are the (ordered) eigenvalues of A, wj (j = 1, . . . , n)
is a family of weight functions and Zn is a normalisation constant. Now, let G
be an n × N (n ≤ N) standard complex Gaussian matrix. Then, Theorem 1
gives the eigenvalue PDF of G†AG. Moreover, it is seen that this new eigen-
value PDF is also a polynomial ensemble. In other words, Theorem 1 provides
a map from the class of polynomial ensembles into itself. Thus, we may apply
Theorem 1 recursively to construct hierarchies of polynomial ensembles. Let
us make this statement more precise.

Lemma 2. Let G be an n×N (n ≤ N) standard complex Gaussian matrix, and
let A be a random matrix from a polynomial ensemble with eigenvalue PDF
(2.1), independent of G. Then, the PDF for the nonzero eigenvalues of the
random matrix product G†AG is equal to

1
Zn

n∏

l=1

1
(N − l)!

∏

1≤j<k≤n

(xk − xj) det
1≤i,j≤n

[ ∫ ∞

0

da e−a

an−N+1
wj

(xi

a

)]
(2.2)

with the eigenvalues ordered x1 ≤ x2 ≤ · · · ≤ xn.

Proof. In order to use Theorem 1, we fix an n0 ∈ {0, 1, . . . , n} and assume that
the eigenvalues of A are ordered as (1.3). Consequently, the nonzero eigenvalues
of G†AG can be ordered as (1.5) almost surely. It follows from the conditional
eigenvalue PDF (1.4) and (2.1) that the eigenvalue PDF of G†AG (up to N −n
eigenvalues which are identically zero) is given by

∫

D

PA({ak}n
k=1)P

n0
n ({aj}n

j=1; {xj}n
j=1) da1 · · · dan

=
1

Zn

∏

1≤j<k≤n

(xk − xj)
∫

D

n∏

l=1

1
|al|

(xl/al)N−n

(N − l)!

×det
[{e−xi/aj }n0

i,j=1 0
0 {e−xi/aj }n

i,j=n0+1

]
det[wj(ai)]ni,j=1 da1 · · · dan,
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where the domain of integration D is given according to (1.3) and the eigenval-
ues xi (i = 1, . . . , n) are ordered according to (1.5). We note that the integral
on the second line in (2.3) is a close cousin to the well-known Andreief inte-
gral [7,16]. Upon expansion of the determinants, it is readily seen that (2.3)
may rewritten as

1
Zn

n∏

l=1

1
(N − l)!

∏

1≤j<k≤n

(xk − xj)

×det

⎡

⎢⎢⎢⎢⎣

{
−
∫ 0

−∞

da

a
(xi/a)N−ne−xi/awj(a)

}

i=1,...,n0
j=1,...,n{∫ ∞

0

da

a
(xi/a)N−ne−xi/awj(a)

}

i=n0+1,...,n
j=1,...,n

⎤

⎥⎥⎥⎥⎦
. (2.3)

If we make a change of variables a �→ −a in the first n0 rows in the determinant
in (2.3), then we get

1
Zn

n∏

l=1

1
(N − l)!

∏

1≤j<k≤n

(xk − xj)

× det
1≤i,j≤n

[ ∫ ∞

0

da

a

e−|xi|/a

(|xi|/a)n−N
wj((sgn xi)a)

]
; (2.4)

recall that xi (i = 1, . . . , n) is ordered according to (1.5). Finally, if we make
another change of variables a �→ |xi|/a in the i-th row, then (2.2) follows for
any fixed n0. Note that this result is independent of the choice of n0, so we
have the final result. �

Remark 3. The study of maps from the space of polynomial ensembles onto
itself is an interesting endeavour, since such maps give rise to new ran-
dom matrix ensembles without destroying integrability. In fact, the study
of such maps is presently an active area of research in random matrix the-
ory [13,33,37,38]. Lemma 2 provides a new transformation to this class of
maps, which cannot be obtained directly from any of the previously established
transformations. We note that Lemma 2 includes the transformation [39, The-
orem 2.1] as a special case arising when the matrix A is positive definite. A
restriction of Lemma 2 is that n ≤ N . Thus, it is seen that the PDF (2.2) devel-
ops a singularity for n > N , indicating that the formula is no longer generally
valid in this case, depending on the properties of wj . It would be interesting
to extend the above results to include the case n > N more generally.

With Lemma 2 at hand, we are ready to write down the eigenvalue PDF
for the product (1.1).

Theorem 4. Let ν0 = 0, ν1, . . . , νM be non-negative integers. Suppose that H
is an n × n GUE matrix and G1, . . . , GM are independent standard complex
Gaussian matrices where Gm is of size (νm−1 +n)× (νm +n). Then, the joint
PDF for the nonzero eigenvalues of the matrix (1.1) is given by
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P (M)(x1, . . . , xn) =
1

Z
(M)
n

∏

1≤i<j≤n

(xj − xi) det
1≤i,j≤n

[
g
(M)
j−1 (xi)

]
, (2.5)

where the weight functions g
(M)
j are defined recursively by

g
(0)
j (x) = xje−x2

and g
(m)
j (x) =

∫ ∞

0

dy

y
yνme−y g

(m−1)
j (x/y),

m = 1, . . . ,M (2.6)

and the normalisation constant is

Z(M)
n = 2−n(n−1)/2πn/2

M∏

m=0

n∏

j=1

Γ(νm + j). (2.7)

Proof. First, let us consider the simplest situation, that is a product of square
matrices, i.e. ν1 = · · · = νM = 0. As the eigenvalue PDF of an n × n GUE
matrix is given by (2.5) with M = 0, the theorem follows immediately by
applying Lemma 2 M times.

We need to be a little more careful when the case of rectangular matrices
is considered. The M = 1 case of the theorem is again an immediate conse-
quence of Lemma 2, which gives us the eigenvalues of W1 = G†

1HG1. However,
in order to apply Lemma 2 a second time and find the nonzero eigenvalues
of W2 = G†

2W1G2, we have to take into account that W1 has a zero eigen-
value with multiplicity ν1. To proceed, we can use the same idea as in [31].
The unitary invariance of Gaussian matrices tells us that W1

d= U†W1U and
G2

d= V G2 for any U, V ∈ U(n + ν1). It thus follows

W2 = G†
2W1G2

d=
[
G̃†

2 g†
2

] [X1 0
0 0

] [
G̃2

g2

]
= G̃†

2X1G̃2, (2.8)

where X1 = diag(x1, . . . , xn) is an n×n diagonal matrix distributed according
to (2.5) with M = 1, while G̃2 and g2 are standard Gaussian matrices of size
n × (n + ν2) and ν1 × (n + ν2), respectively. Now, Lemma 2 can be applied to
the right-hand side in (2.8), which gives us the PDF of the nonzero eigenvalues
of W2. Repeating this procedure completes the proof. �

Remark 5. We note that the case M = 1 of Theorem 4 is in agreement with
the result stated by Kumar [41, Eq. (46) and (47)]. However, the derivation
therein is incomplete due to the reliance on the HCIZ integral (1.14), rather
than its hyperbolic variant (A.38) below.

There are many other representations for the weight functions in Theo-
rem 4 beyond the recursive definition (2.6). As usual, it is particularly useful
for analytic purposes to write the weight functions in their contour integral
representation.
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Lemma 6. We have

g
(M)
j (x) =

(sgn x)j

4πi

∫ c+i∞

c−i∞
ds |x|s Γ

(j − s

2

) M∏

m=1

Γ(νm − s), (2.9)

where c < 0 is a negative constant.

Proof. By means of the residue theorem, it is seen that

g
(0)
j (x) = xje−x2

=
(sgn x)j

4πi

∫ c+i∞

c−i∞
ds |x|s Γ

(j − s

2

)
. (2.10)

Now, assume that g
(M−1)
j (x) is given by (2.9). From the recursive formula (2.6),

we have

g
(M)
j (x)=

∫ ∞

0

dy

y
yνM e−y (sgn x)j

4πi

∫ c+i∞

c−i∞
ds
( |x|

y

)s

Γ
(j − s

2

)M−1∏

m=1

Γ(νm − s).

(2.11)
It is a straightforward exercise, considering the asymptotic decay, to show that
with c < 0, the order of the integrals may be interchanged. Thus, we have

g
(M)
j (x) =

(sgn x)j

4πi

∫ c+i∞

c−i∞
ds |x|s Γ

(j − s

2

)M−1∏

m=1

Γ(νm − s)
∫ ∞

0

dy

y
yνM −se−y

(2.12)
and the lemma follows by induction. �

As already mentioned, functions with a contour integral representation
like (2.9) have certain properties which are useful for analytical purposes. In
fact, many of these properties may be found in the literature if we first recognise
the contour integral as a Fox H-function

g
(M)
j (x) =

(sgn x)j

2
HM+1,0

0,M+1

( −
(ν1, 1), . . . , (νM , 1), ( j

2 , 1
2 )

∣∣∣∣ |x|
)

(2.13)

or as a Meijer G-function

g
(M)
j (x) = (sgn x)j

M∏

m=1

2νm−1

√
π

G2M+1,0
0,2M+1

( −
ν1
2 , ν1+1

2 , . . . , νM

2 , νM+1
2 , j

2

∣∣∣∣
x2

4M

)
.

(2.14)
We refer to the book [44] for an extensive review of these functions; the Fox
H- and Meijer G-functions are defined by [44, Def. 1.1] and [44, Def. 1.5],
respectively.

As discussed in Sect. 1.2, one of our goals is to find a ‘classical gas’
approximation for (2.5). For this purpose, we can use the asymptotic result [18]

Gq,0
0,q

( −
b1, . . . , bq

∣∣∣∣x
)

∼ 1
q1/2

( 2π

x1/q

)(q−1)/2

x(b1+···+bq)/qe−qx1/q(
1 + O(x1/q)

)
,

(2.15)
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for x → ∞ (recall that a typical eigenvalue grows with n). This immediately
allows us to find a Muttalib–Borodin ensemble (1.13), which approximates the
product ensemble (2.5). However, for notational simplicity, it is convenient to
first make a change of variables

xi �→ x′
i = 2M

( yi√
2M + 1

)2M+1

(2.16)

for i = 1, . . . , n. Using the asymptotic formula (2.15) and making a change of
variable (2.16), we find the approximate PDF

P̃ (M)(y1, . . . , yn) =
1

Z̃(M)

∏

1≤i<j≤n

(yj − yi)(y2M+1
j − y2M+1

i )
n∏

k=1

|yk|αe−y2
k ,

(2.17)
where Z̃(M) is a new normalisation constant and α =

∑M
m=1(2νm + 1). We

recognise (2.17) as the Hermite Muttalib–Borodin ensemble (1.2). Note that
the approximation (2.15) is valid for large x and that the absolute value of
a typical eigenvalue grows with the matrix dimension n. Thus, one might
suspect agreement between the two models in the large-n limit except for
local correlations near the origin. We will return to a comparison between the
two models in Sects. 5 and 6.

It is worth noting that the following exact relation holds

Gq,0
0,q

( −
0, 1

q , . . . , q−1
q

∣∣∣∣x
)

=
(2π)(q−1)/2

q1/2
e−qx1/q

(2.18)

for integer q. This may be proven by writing the Meijer G-function on the left-
hand side as its integral representation and then using Gauss’ multiplication
formula for the gamma functions. The exact relation (2.18) tells us that we
can choose the parameters bk (k = 1, . . . , q) in (2.15) such that all subleading
terms in the expansion vanish, and (2.17) is exact.

3. Biorthogonality and Correlations

Generally, polynomial ensembles describe determinantal point processes. The
correlation kernel may be written as

Kn(x, y) =
n−1∑

k=0

pk(x)φk(x)
hk

, (3.1)

where pk(x) and φk(x) are bi-orthogonal functions with normalisation hk, i.e.
∫ ∞

−∞
dx pk(x)φk(x) = hkδk�. (3.2)

For both (2.5) and (2.17), the pk(x) will be a monic polynomial of degree k,
while

φk(x) − g
(M)
k (x) ∈ span{g

(M)
k−1(x), . . . , g(M)

0 (x)} (3.3)
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for the product ensemble (2.5) and

φk(x) − x(2M+1)k|x|αe−x2 ∈ span{x(2M+1)(k−1)|x|αe−x2
, . . . , |x|αe−x2} (3.4)

for the Hermite Muttalib–Borodin ensemble (2.17). In the latter case, the
bi-orthogonal structure is already known [10,12,21,36]. The main purpose of
this section is to determine the bi-orthogonal functions—and consequently the
kernel (3.1)—for the product ensemble (2.5).

3.1. The Oddness of Being Even

For M = 0, the bi-orthogonal functions are pn(x) = H̃n(x) and φn(x) =
H̃n(x)e−x2

with H̃n(x) denoting the Hermite polynomials in monic normalisa-
tion. We recall that the n-th Hermite polynomials are an even (odd) function
when n is even (odd); this is due to the reflection symmetry of the Gaussian
weight about the origin. A similar phenomenon is present for our product gen-
eralisation. In order to see this, we use an alternative form of the kernel (3.1).
We have [10,15]

Kn(x, y) =
n−1∑

k,�=0

(B(M)
n )−1

�,k xkg
(M)
� (y), (3.5)

where B
(M)
n = (b(M)

i,j )n−1
i,j=0 is the n-th bi-moment matrix constructed from the

bi-moments

b
(M)
k,� =

∫ ∞

−∞
xkg

(M)
� (x)dx. (3.6)

Simon [52] refers the inverse moment matrix representation (3.5) as the ABC
(Aitken–Berg–Collar) theorem.

In the following, it will be useful to extend the concept of odd and even
moments to bi-moments. We say that the bi-moments are odd (even) when
k + 
 is odd (even). Now, using that g

(M)
� (−x) = (−1)�g

(M)
� (x), we see that

the bi-moments satisfy

b
(M)
k,� = (−1)k+�b

(M)
k,� , k, 
 = 0, 1, . . . , (3.7)

which implies that all odd moments are equal to zero. In other words, the
entries in the bi-moment matrix vanish in a checkerboard pattern. Thus, by
reordering rows and columns, we may write the bi-moment matrix in a block
diagonal form B

(M)
n �→ diag(B(M,even)

n , B
(M,odd)
n ) with B

(M,even)
n = (b(M)

2k,2�)k,�

and B
(M,odd)
n = (b(M)

2k+1,2�+1)k,�. Using this reordering in the sum (3.5), we see
that the kernel splits into two parts

Kn(x, y) = Keven
n (x, y) + Kodd

n (x, y), (3.8)

where

Keven
n (x, y) =

� n−1
2 �∑

k,�=0

(B(M,even)
n )−1

�,k x2kg
(M)
2� (y) =

� n−1
2 �∑

k=0

p2k(x)φ2k(x)
h2k

, (3.9)
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Kodd
n (x, y) =

� n
2 �−1∑

k,�=0

(B(M,odd)
n )−1

�,k x2k+1g
(M)
2�+1(y) =

� n
2 �−1∑

k=0

p2k+1(x)φ2k+1(x)
h2k+1

.

(3.10)

Here, the latter equality in both (3.9) and (3.10) follows from comparison
with (3.1). Finally, we note that

Keven
2n (x, y) = Keven

2n−1(x, y) and Kodd
2n (x, y) = Kodd

2n+1(x, y). (3.11)

Thus, in the following, we can restrict our attention to kernels with an even
subscript.

3.2. Bi-orthogonal Functions

We are now ready to write down the bi-orthogonal functions for our product
ensemble. As explained in the previous subsection, it is convenient to consider
functions of odd and even degree separately.

Proposition 7. The ensemble defined by Theorem 4 is bi-orthogonalised by

p2n(x) =
n∑

�=0

(− 1
4 )n−�

(n − 
)!

M∏

m=0

Γ(νm + 2n + 1)
Γ(νm + 2
 + 1)

x2�,

φ2n(x) =
n∑

�=0

(− 1
4 )n−�

(n − 
)!
(2n)!
(2
)!

g
(M)
2� (x),

p2n+1(x) =
n∑

�=0

(− 1
4 )n−�

(n − 
)!

M∏

m=0

Γ(νm + 2n + 2)
Γ(νm + 2
 + 2)

x2�+1,

φ2n+1(x) =
n∑

�=0

(− 1
4 )n−�

(n − 
)!
(2n + 1)!
(2
 + 1)!

g
(M)
2�+1(x),

hn = 2−nπ1/2
M∏

m=0

Γ(νm + n + 1), (3.12)

with notation as above (recall that ν0 = 0).

There are several different approaches to prove Proposition 7. Here, we
will present a method which emphasises the relation to the Hermite polynomi-
als (see [30, Prop. 3.5] for the same method applied to the product ensemble of
Laguerre type). In order to use this approach, it is convenient to first calculate
the bi-moments.

Lemma 8. The bi-moments are given by

b
(M)
k,� = Γ

(k + 
 + 1
2

) M∏

m=1

Γ(νm + k + 1), (3.13)

for k + 
 even and zero otherwise. The bi-moment determinant is

D(M)
n := det

0≤k,�≤n
[b(M)

k� ] = 2−n(n+1)/2π(n+1)/2
M∏

m=0

n∏

j=0

Γ(νm + j + 1). (3.14)
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Proof. We insert the contour integral representation of the weight func-
tions (2.9) into the expression for the bi-moments (3.6), then we see that
the even moments are

bk� =
1

2πi

∫ ∞

0

dx

∫ c+i∞

c−i∞
ds xs Γ

(k + 
 − s

2

) M∏

m=1

Γ(νm + k − s). (3.15)

The integrals in this expression can be recognised as a combination of a Mellin
and an inverse Mellin transform, which yields (3.13).

In order to evaluate the bi-moment determinant (3.14), we note that

D(M)
n =

M∏

m=1

n∏

j=0

Γ(νm + j + 1) det
0≤k,�≤n

[
b
(M=0)
k�

]
. (3.16)

This completes the proof, since the M = 0 case is the well-known Hermite (or
GUE) case. �

Proof of Proposition 7. The bi-orthogonal functions may be expressed by
means of their bi-moments exactly as orthogonal polynomials through their
moments. Thus, we have

pn(x) =
1

D
(M)
n−1

det
i=0,...,n

j=0,...,n−1

[
b
(M)
i,j

∣∣∣∣x
i

]

and

φn(x) =
1

D
(M)
n−1

det
i=0,...,n−1

j=0,...,n

[
b
(M)
i,j

g
(M)
j (x)

]
. (3.17)

Furthermore, we have hn = D
(M)
n /D

(M)
n−1.

The constants hn are immediate from the above and (3.14). Thus, it
remains only to find the bi-orthogonal functions. To do so, we first note that

pn(x) =
∏n

k=0

∏M
m=1 Γ(νm + k + 1)

D
(M)
n−1

× det
i=0,...,n

j=0,...,n−1

[
b
(M=0)
i,j

∣∣∣∣
xi

∏M
m=1 Γ(νm + i + 1)

]
, (3.18)

φn(x) =
∏n−1

k=0

∏M
m=1 Γ(νm + k + 1)

D
(M)
n−1

det
i=0,...,n−1

j=0,...,n

[
b
(M=0)
i,j

g
(M)
j (x)

]
. (3.19)

This observation is important, since we know that the monic Hermite polyno-
mials (with respect to the weight e−x2

) are given by

H̃n(x) = 2−nHn(x) =
1

D
(M=0)
n−1

det
i=0,...,n

j=0,...,n−1

[
b
(M=0)
i,j

∣∣∣∣x
i

]
. (3.20)

It follows that the expressions for the bi-orthogonal function pn(x) and φn(x)
can be found using the known expressions for the Hermite polynomials and
then making substitutions
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xk �→ xk

∏M
m=1 Γ(νm + k + 1)

and xk �→ g
(M)
k (x), (3.21)

respectively. We recall that

H̃2n(x) =
n∑

�=0

(−1)n−�

(n − 
)!
(2n)!
(2
)!

(2x)2�

22n

and

H̃2n+1(x) =
n∑

�=0

(−1)n−�

(n − 
)!
(2n + 1)!
(2
 + 1)!

(2x)2�+1

22n+1
,

which makes it a straightforward exercise to verify the proposition. �

Remark 9. We recall that the bi-orthogonal functions also can be obtained
from the characteristic polynomial using that

pN (x) =
〈
det[xIN − WM ]

〉
and

∫

R

dx
φN−1(x)

z − x
=
〈 1

det[zIN − WM ]

〉

(3.22)
with 〈· · · 〉 denoting the matrix average and z ∈ C\R. The first relation allows
for an alternative method to calculate pN (x); see, for example, [22].

4. Integral Representations and Correlation Kernels

The explicit expressions for the bi-orthogonal functions given by Proposition 7
allow us to write down an explicit form for the correlation kernel by insertion
in (3.1). However, this formulation of the kernel is not optimal for asymptotic
analysis. For this reason, in this section, we will provide integral representations
of the bi-orthogonal functions as well as the kernel.

Proposition 10. The bi-orthogonal functions given by Proposition 7 have inte-
gral representations

p2n(|x|) =
√

π(2n)!
(−1)n22n

1
2πi

∮

Σ

ds |x|2s Γ(−s)
Γ(n + 1 − s)Γ

(
s + 1

2

)

×
M∏

m=1

Γ (νm + 2n + 1)
Γ(νm + 2s + 1)

, (4.1)

p2n+1(|x|) =
√

π(2n + 1)!
(−1)n22n+1

1
2πi

∮

Σ

ds |x|2s+1 Γ(−s)
Γ(n + 1 − s)Γ(s + 3

2 )

×
M∏

m=1

Γ(νm + 2n + 2)
Γ (νm + 2s + 2)

, (4.2)
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φ2n(|x|)
h2n

=
(−1)n 22n

√
π(2n)!

1
2πi

∫ c+i∞

c−i∞
dt |x|−2t−1 Γ(n − t)Γ(t + 1

2 )
Γ(−t)

×
M∏

m=1

Γ(νm + 2t + 1)
Γ (νm + 2n + 1)

, (4.3)

φ2n+1(|x|)
h2n+1

=
(−1)n 22n+1

√
π(2n + 1)!

1
2πi

∫ c+i∞

c−i∞
dt |x|−2t−2 Γ(n − t)Γ(t + 3

2 )
Γ(−t)

×
M∏

m=1

Γ(νm + 2t + 2)
Γ (νm + 2n + 2)

, (4.4)

where the contour Σ encloses the integers 0, 1, . . . , n in the negative direction
and − 1

2 < c < 0. We recall that p2n(x) and φ2n(x) are even functions, while
p2n+1(x) and φ2n+1(x) are odd functions.

Proof. The integrands in (4.1) and (4.2) have n + 1 simple poles located
at 0, 1, . . . , n; thus, the series representations in Proposition 7 follow upon
a straightforward application of the residue theorem.

In order to find the integral representation of the bi-orthogonal functions
φn(x), we first note that the weight functions can be written as

g
(M)
� (x) = (sgn x)�

∫ ∞

0

dy

y
y� e−y2

GM,0
0,M

( −
ν1, . . . , νM

∣∣∣∣
|x|
y

)
; (4.5)

this is easily seen starting from the recursive definition (2.6). Now, using (4.5)
in the expression for φn(x) (cf. Proposition 7), we see that

φn(x) =
∫ ∞

0

dy

y
e−y2

H̃n(y)GM,0
0,M

( −
ν1, . . . , νM

∣∣∣∣
|x|
y

)
. (4.6)

In other words, the bi-orthogonal functions φn(x) are an integral transform
of the Hermite polynomials with respect to a Meijer G-function as integral
kernel. The Hermite polynomial can itself be expressed as a Meijer G- or Fox
H-function (see [44, Sec. 1.8.1.]), and the remaining integral is well known
from the literature [44, Sec. 2.3.]. �

Proposition 11. Integral representations of the even and odd kernels are

Keven
2n (x, y) =

1
2 (2πi)2

∫ c+i∞

c−i∞
dt

∮

Σ

ds
|x|s|y|−t−1

s − t

Γ
(− s

2

)
Γ
(

t+1
2

)

Γ
(− t

2

)
Γ
(

s+1
2

) Γ
(

2n−t
2

)

Γ
(

2n−s
2

)

×
M∏

m=1

Γ (νm + t + 1)
Γ (νm + s + 1)

,

Kodd
2n (x, y) =

sgn (xy)
2 (2πi)2

∫ c+i∞

c−i∞
dt

∮

Σ

ds
|x|s |y|−t−1

s − t

Γ
(

1−s
2

)
Γ
(

t+2
2

)

Γ
(

1−t
2

)
Γ
(

s+2
2

) Γ
(

2n−t+1
2

)

Γ
(

2n−s+1
2

)

×
M∏

m=1

Γ (νm + t + 1)
Γ (νm + s + 1)

, (4.7)
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with −1 < c < 0, and the contour Σ is chosen such that it encircles 0, 1, . . . ,
2n − 1 in the negative direction with Re{s} > c for all s ∈ Σ.

Proof. As the proofs for the odd and even kernels are almost identical, we
provide only the proof for the even case. The odd case is easily verified by the
reader.

It follows the definition of the even kernel (3.9) together with contour
integral representation of the bi-orthogonal functions from Proposition 10 that

Keven
2n (x, y) =

1
(2πi)2

∫
dt

∮

Σ

ds |x|2s|y|−2t−1 Γ(−s)Γ(t + 1
2 )

Γ(−t)Γ(s + 1
2 )

×
M∏

m=1

Γ(νm + 2t + 1)
Γ(νm + 2s + 1)

n−1∑

k=0

Γ(k − t)
Γ(k + 1 − s)

. (4.8)

Following similar steps as in [40], we note the sum allows a telescopic evalua-
tion. This gives

Keven
2n (x, y)

=
1

(2πi)2

∫ c+i∞

c−i∞
dt

∮

Σ

ds
|x|2s|y|−2t−1

s − t

Γ(−s)Γ(t + 1
2 )

Γ(−t)Γ(s + 1
2 )

Γ(n − t)
Γ(n − s)

×
M∏

m=1

Γ(νm + 2t + 1)
Γ(νm + 2s + 1)

− 1
(2πi)2

∫ c+i∞

c−i∞
dt

∮

Σ

ds
|x|2s|y|−2t−1

s − t

Γ(t + 1
2 )

Γ(s + 1
2 )

M∏

m=1

Γ(νm + 2t + 1)
Γ(νm + 2s + 1)

.

(4.9)

Here, the integrand on the second line is zero as it has no poles encircled by
the contour Σ and, thus

Keven
2n (x, y)

=
1

(2πi)2

∫ c+i∞

c−i∞
dt

∮

Σ

ds
|x|2s|y|−2t−1

s − t

Γ(−s)Γ(t + 1
2 )

Γ(−t)Γ(s + 1
2 )

Γ(n − t)
Γ(n − s)

×
M∏

m=1

Γ(νm + 2t + 1)
Γ(νm + 2s + 1)

. (4.10)

Finally, the proposition follows by a change of variables s �→ s/2 and t �→
t/2. �

The above integral representations for the bi-orthogonal functions and the
kernel are probably the most convenient form for further asymptotic analysis,
as we will see in Sect. 5. However, it is also often helpful to express these
formulae in terms of special functions as (for example) it allows for use of pre-
defined mathematical software. Furthermore, such reformulations often guide
us to recognise patterns which otherwise would have been left unseen.
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The integral representations for the bi-orthogonal functions given by
Proposition 10 can also be recognised as several different types of special func-
tion; this includes generalised hypergeometric, Meijer G- and Fox H-functions.
Here, we will restrict ourselves to their Meijer G-function formulation.

Let us first consider the bi-orthogonal polynomials, which may be written
as

p2n(x) =
(−1)n

22n

M∏

m=0

Γ(νm + 2n + 1)
2 νmπ−1/2

× G1,0
1,2M+2

(
n + 1

−ν0
2 ,−ν0

2 + 1
2 , . . . ,−νM

2 ,−νM

2 + 1
2

∣∣∣∣
x2

22M

)
, (4.11)

p2n+1(x)
x

=
(−1)n

22n

M∏

m=0

Γ(νm + 2n + 2)
2 νm+1π−1/2

× G1,0
1,2M+2

(
n + 1

−ν0
2 ,−ν0

2 − 1
2 , . . . ,−νM

2 ,−νM

2 − 1
2

∣∣∣∣
x2

22M

)
. (4.12)

It is worth comparing these polynomials with the polynomial found in the
study of the Laguerre-like matrix product (1.10). Akemann et al. [3] found
that in this case the bi-orthogonal polynomial is given by

P (M)
n (x) = (−1)n

M∏

m=0

Γ(νm + n + 1)G1,0
0,M+1

(
n + 1

−ν0,−ν1, . . . ,−νM

∣∣∣∣x
)

. (4.13)

It is clear that the two families of polynomials are related as

p2n(x) ∝ P (2M+1)
n

( x2

22M

)
and p2n+1(x) ∝ xP (2M+1)

n

( x2

22M

)
(4.14)

with

{νm}M
m=0 �→ {νm/2, (νm − 1)/2}M

m=0

and

{νm}M
m=0 �→ {νm/2, (νm + 1)/2}M

m=0, (4.15)

respectively. This is a generalisation of the relation between Hermite and
Laguerre polynomials. Recall that

H̃2n(x) = L̃
(− 1

2 )
n (x2) and H̃2n+1(x) = xL̃

(+ 1
2 )

n (x2), (4.16)

where H̃n(x) and L̃
(α)
n (x) denote the Hermite and Laguerre polynomials in

monic normalisation.
Likewise, the (non-polynomial) bi-orthogonal functions may be written

as

φ2n(|x|)
|x| = (−1)n

M∏

m=1

2νm−2

π1/2
G2M+1,1

1,2M+2

( −n
νM

2 − 1
2 , νM

2 , . . . , ν0
2 − 1

2 , ν0
2

∣∣∣∣
x2

22M

)
,

(4.17)
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φ2n+1(|x|) = (−1)n
M∏

m=1

2νm−1

π1/2
G2M+1,1

1,2M+2

( −n
νM

2 + 1
2 , νM

2 , . . . , ν0
2 + 1

2 , ν0
2

∣∣∣∣
x2

22M

)
.

(4.18)

Again, we want to compare to the formula in [3], which this time reads

Φ(M)
n (x) = (−1)nGM,1

1,M+1

( −n
νM , . . . , ν1, ν0

∣∣∣∣x
)

. (4.19)

Evidently, we have the following relations

φ2n(|x|) ∝ |x|Φ(2M+1)
n

( x2

22M

)
and φ2n+1(|x|) ∝ Φ(2M+1)

n

( x2

22M

)
,

(4.20)
with (4) as before. Yet again, this is a generalisation of the relation between
Hermite and Laguerre polynomials. In the simplest case, the relations (4.20)
reduce to

H̃2n(x)wH(x) = |x|L̃(− 1
2 )

n (x2)w(− 1
2 )

L (x2)

and

H̃2n+1(|x|)wH(x) = L̃
(+ 1

2 )
n (x2)w( 1

2 )

L (x2),

where wH(x) = e−x2
and w

(α)
L (x) = xαe−x are the Hermite and Laguerre

weight functions.
It is, of course, well known that there are relations between ensembles

with reflection symmetry about the origin and ensembles on the half line (albeit
explicit formulae may be elusive). A general description of such relations in
the Muttalib–Borodin ensembles can be found in [21].

5. Scaling Limits at the Origin in Product and
Muttalib–Borodin Ensembles

With the integral representations of the correlation kernels established by
Proposition 11, we can turn to a study of asymptotic properties. Perhaps
the most interesting scaling regime is that of the local correlations near the
origin, referred to as the hard edge when the eigenvalues are strictly positive.
For other product ensembles [20,23,34,40], it has been observed that correla-
tions at the hard edge are determined by the so-called Meijer G-kernel, which
generalises the more familiar Bessel kernel. Below, we will see that the Meijer
G-kernel appears once again, but this time involving a sum.

Theorem 12. Let Kn(x, y) = Keven
n (x, y) + Kodd

n (x, y) with the even and odd
kernels given by Proposition 11. For x, y ∈ R\{0} and ν1 . . . , νM fixed, the
microscopic limit near the origin is

lim
n→∞

1√
n

K2n

( x√
n

,
y√
n

)
= Keven(x, y) + Kodd(x, y) (5.1)
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with

Keven(x, y) =
1

2(2πi)2

∫ c+i∞

c−i∞
dt

×
∫

Σ

ds
|x|s|y|−t−1

s − t

Γ(− s
2 )Γ( t+1

2 )
Γ(− t

2 )Γ( s+1
2 )

M∏

m=1

Γ(νm + t + 1)
Γ(νm + s + 1)

(5.2)

Kodd(x, y) =
sgn(xy)
2(2πi)2

∫ c+i∞

c−i∞
dt

×
∫

Σ

ds
|x|s |y|−t−1

s − t

Γ( 1−s
2 )Γ( t+2

2 )
Γ( 1−t

2 )Γ( s+2
2 )

M∏

m=1

Γ(νm + t + 1)
Γ(νm + s + 1)

,

(5.3)

where −1 < c < −1/2 and Σ encloses the non-negative half line in the negative
direction starting and ending at +∞ such that Re{s} > c for all s ∈ Σ.

Proof. We only consider the even kernel in Proposition 11 since the odd case
is very similar. After rescaling, we rewrite the integral representation of the
even kernel in Proposition 11 as

1√
n

Keven
2n

(
x√
n

,
y√
n

)
=

1
2(2πi)2

∫ c+i∞

c−i∞
dt

∫

Σ

ds
|x|s|y|−t−1

s − t

fn(s)
fn(t)

g(t)
g(s)

,

(5.4)

with

fn(s) =
Γ(n)Γ

(− s
2

)

n
s
2 Γ

(
n − s

2

) , g(s) = Γ
(

s + 1
2

) M∏

m=1

Γ (νm + s + 1) . (5.5)

For any fixed t ∈ c + iR and s ∈ Σ, using [48, eq. 5.11.13], we see

fn(s) = Γ
(
−s

2

)(
1 + O

(
1
n

))
, fn(t) = Γ

(
− t

2

)(
1 + O

(
1
n

))
. (5.6)

Formally, substituting (5.6) in (5.4) gives (5.2). To proceed rigorously, we need
to verify a condition for the exchange of limit and integration. For this purpose,
we will proceed to find two dominated functions, respectively, corresponding
to 1/|fn(t)| and |fn(s)|.

First, using [48, eq. 5.11.13], we have for sufficiently large n

1
|fn(t)| ≤ n

c
2 Γ(n − c

2 )
Γ(n)|Γ(− t

2 )| ≤ 2
|Γ(− t

2 )| , ∀t ∈ c + iR. (5.7)

Second, we require an upper bound for |fn(s)|. Noting the asymptotic
expansion, that as z → ∞ in the sector |arg(z)| ≤ π − δ (with 0 < δ < π)

Γ(z) = e−zzz− 1
2
√

2π

(
1 + O

(
1
z

))
, (5.8)
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it is easy to see that for a given y0 > 0, we can choose the contour
Σ = Σl ∪ Σr with

Σl =
{ c

2
+ iy : |y| ≤ y0

}
∪
{

x ± iy0 :
c

2
≤ x ≤ 1

}
, Σr =

{
x ± iy0 : x > 1

}
.

(5.9)
Thus, we get from (5.8) and the boundedness of Γ(−s/2) over Σl that for large
n, there exists a constant C1 = C1(y0) > 0 such that

|fn(s)| ≤ C1, ∀s ∈ Σl. (5.10)

In order to estimate fn(s) with s ∈ Σr, we use the integral representation

fn(s) =
n− s

2

2i sin πs
2

∫

C0

(1 − u)n−1(−u)− s
2−1du, (5.11)

where C0 is a counterclockwise path, which begins and ends at 1 and encir-
cles the origin once; see, for example, [48, eq. 5.12.10]. Note that we choose
(−u)−1−s/2 = e−(1+s/2) log(−u) with −π < arg(−u) < π. Change u by u/n and
deform the resulting contour into the path which starts from n, proceeds along
the (upper) real axis to 1, describes a circle of radius one counter-clock round
the origin and returns to n along the (lower) real axis. That is,

fn(s) =
1

2i sin πs
2

∫

C

(
1 − u

n

)n−1

(−u)− s
2−1du. (5.12)

Let s = v±iy0, v > 1. On the unit circle of the u-integral above write −u = eiθ.
Then, we easily obtain for n ≥ 1

|fn(s)| ≤ 1
2| sin πs

2 |
∫ π

−π

(
1 +

1
n

)n−1

|e−( s
2+1)iθ|dθ ≤ πe1+

πy0
2

| sin πs
2 | . (5.13)

On the upper and lower real axis, we have

|fn(s)| ≤ 1
2| sin πs

2 |
∫ n

1

(
1 − u

n

)n−1

|u− s
2−1e−( s

2+1)(∓iπ)|du

≤ 1
2| sin πs

2 |
∫ n

1

u− v
2 −1e

1
2πy0du

=
1

| sin πs
2 |e

1
2πy0

1 − n− v
2

v
≤ 1

| sin πs
2 |e

1
2πy0 . (5.14)

Using the simple fact | sin πs
2 | ≥ | sinh π

2 Im(s)|, combination of (5.13) and
(5.14) shows that there exists a constant C2 = C2(y0) > 0 such that

|fn(s)| ≤ C2, ∀s ∈ Σr. (5.15)

Together with (5.10), this gives us a bound C > 0, that is, for large n

|fn(s)| ≤ C, ∀s ∈ Σ. (5.16)

Finally, using (5.8) and the asymptotic formula that as y → ±∞
|Γ(x + iy)| ∼

√
2π|y|x− 1

2 e− 1
2π|y| (5.17)
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with bounded real value of x (see [48, eq. 5.11.9]), it is easy to conclude that
the function of variables s and t

||x|s|y|−t−1|
|s − t|

2
|Γ(− t

2 )|
|g(t)|
|g(s)| , (5.18)

is integrable along the chosen contours, whenever −1 < c < −1/2. Here, we
emphasise that the assumption −1/2 ≤ c < 0 does not ensure the convergence
in the special case M = 0, while for M ≥ 1, it can be relaxed to −1 < c < 0
as in Proposition 11.

With this, combining (5.7) and (5.16), we have indeed justified the inter-
change of limit and integrals for every M by the dominated convergence the-
orem, which completes the proof. �

For a comparison with other known results, it is useful to rewrite the
hard edge correlation function of Theorem 12 in terms of Meijer G-functions.
Using that

∫ 1

0

du us−t−1 =
1

s − t
, (5.19)

we see that the even and odd kernels can be written as

Keven(|x|, |y|)

=
|y|

22M

∫ 1

0

duG1,0
0,2M+2

( −
−ν0

2 ,−ν0
2 + 1

2 , . . . ,−νM

2 ,−νM

2 + 1
2

∣∣∣∣
x2

22M
u

)

× G2M+1,0
0,2M+2

( −
νM

2 − 1
2 , νM

2 , . . . , ν0
2 − 1

2 , ν0
2

∣∣∣∣
y2

22M
u

)
, (5.20)

Kodd(|x|, |y|)

=
|x|
22M

∫ 1

0

duG1,0
0,2M+2

( −
−ν0

2 ,−ν0
2 − 1

2 , . . . ,−νM

2 ,−νM

2 − 1
2

∣∣∣∣
x2

22M
u

)

× G2M+1,0
0,2M+2

( −
νM

2 + 1
2 , νM

2 , . . . , ν0
2 + 1

2 , ν0
2

∣∣∣∣
y2

22M
u

)
, (5.21)

respectively. We recall that the so-called Meijer G-kernel is given by [40]

KM
Meijer(x, y)=

∫ 1

0

duG1,0
0,M+1

( −
−ν0, . . . ,−νM

∣∣∣∣xu

)

×GM,0
0,M+1

( −
νM , . . . , ν0

∣∣∣∣ yu

)
(5.22)

with x, y > 0. We note that this kernel is single sided (x, y ∈ R+) while the
kernel from Theorem 12 is double sided (x, y ∈ R\{0}). However, it is also
evident that our new kernel may be re-expressed in terms of the Meijer G-
kernel. We have

Keven(|x|, |y|) =
|y|

22M
K2M+1

Meijer

( x2

22M
,

y2

22M

)
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and

Kodd(|x|, |y|) =
|x|
22M

K2M+1
Meijer

( x2

22M
,

y2

22M

)
(5.23)

with
{νm}M

m=0 �→ {νm/2, (νm − 1)/2}M
m=0

and
{νm}M

m=0 �→ {νm/2, (νm + 1)/2}M
m=0, (5.24)

respectively. Thus, the random product matrix (1.1) provides yet another
appearance of the Meijer G-kernel, albeit this time in a double-sided version.
For graphical representation of the Meijer G-kernel, we refer to [30, Fig. 3.2],
which shows plots of the local density (i.e. the kernel with x = y) for different
values of M .

A double-side hard edge scaling limit near the origin is also present in
the Hermite Muttalib–Borodin ensemble. In this case, the kernel is found to
be [10]

Keven(x, y) = K( α−1
2 ,θ)(x2, y2),

and
Kodd(x, y) = sgn(xy)|x|θ|y|K( α+θ

2 ,θ)(x2, y2), (5.25)
where

K(α,θ)(x, y) = θ

∫ 1

0

du(xu)αJα+1
θ , 1θ

(xu)Jα+1,θ((yu)θ) (5.26)

with Ja,b(x) denoting Wright’s Bessel function. In the case relevant to us (1.2),
we also have θ = 2M + 1. Furthermore, it is known from [39] that the ker-
nel (5.26) is a Meijer G-kernel whenever θ is a positive integer. In particular,
we have

( x2

22M

) 1
2M+1−1

K(α,2M+1)
(
(2M + 1)

( x2

22M

) 1
2M+1

, (2M + 1)
( y2

22M

) 1
2M+1

)

= K2M+1
Meijer

( y2

22M
,

x2

22M

)
, (5.27)

where the Meijer G-kernel on the right-hand side has indices

νm =
α + m − 1
2M + 1

, m = 1, . . . , 2M + 1, (5.28)

and as always ν0 = 0. It follows from (5.25) and (5.26) that the hard edge
correlations for the Hermite Muttalib–Borodin ensemble with appropriately
chosen parameters may be expressed in terms of the Meijer G-kernel in a
similar fashion as done for the product ensemble above. We note that the choice
of variables in (5.26) should be compared to the change of variables (2.16)
performed in the derivation of the asymptotic reduction (2.17).

It is worth verifying consistency of the simplest scenario of M = 0. When
M = 0, our matrix ensemble (1.1) reduces to the GUE; hence, the kernel given
by Theorem 12 must reduce to the sine kernel for M = 0. To see this, we use

G1,0
0,2

( −
0, 1

2

∣∣∣∣
x2

4

)
=

cos x√
π

and G1,0
0,2

( −
1
2 , 0

∣∣∣∣
x2

4

)
=

sin |x|√
π

. (5.29)
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It follows that

Keven(x, y) =
1
π

∫ 1

0

du√
u

cos(2x
√

u) cos(2y
√

u)

=
1
π

( sin 2(x − y)
2(x − y)

+
sin 2(x + y)

2(x + y)

)
, (5.30)

Kodd(x, y) =
1
π

∫ 1

0

du√
u

sin(2x
√

u) sin(2y
√

u)

=
1
π

( sin 2(x − y)
2(x − y)

− sin 2(x + y)
2(x + y)

)
, (5.31)

which upon insertion into (5.1) indeed reproduces the sine kernel.
In the end of this section, let us emphasise that there also exists a contour

integral representation of the limiting kernel in Theorem 12, which combines
the odd and even into a single formula.

Proposition 13. With the same notation as in Theorem 12, the limiting kernel
at the origin can be rewritten as

Keven(x, y) + Kodd(x, y) = 2Kν1,...,νM
(2x, 2y), (5.32)

where the kernel on the right-hand side is defined as

Kν1,...,νM
(x, y) =

∫

CR

dv

2πi
G1,0

0,M+1

( −
0,−ν1, . . . ,−νM

∣∣∣∣ − sgn(y)xv

)

×GM+1,0
0,M+1

( −
0, ν1, . . . , νM

∣∣∣∣ |y|v
)

, (5.33)

with CR denoting a path in the right-half plane from −i to i.

Proof. Using Euler’s reflection formula and duplication formula for the
gamma function, we see that

Keven(x, y) + Kodd(x, y)

=
1

(2πi)2

∫
dt

∫
ds (2|x|)s(2|y|)−t−1 g(s, t)

s − t

Γ(t + 1)
Γ(s + 1)

M∏

m=1

Γ(νm + t + 1)
Γ(νm + s + 1)

,

where

g(s, t) =
sin π

2 t

sin π
2 s

+ sgn(xy)
cos π

2 t

cos π
2 s

. (5.34)

In order to proceed, we will consider the cases xy < 0 and xy > 0 separately.
For xy < 0, it is seen that

g(s, t) =
2

sinπs
sin

π

2
(t − s) = − 2

π
Γ(−s)Γ(1 + s) sin

π

2
(t − s). (5.35)

Now (5.32) can be obtained using the integral representation

1
πi

∫

CR

dv vs−t−1 =
1

t − s
sin

π

2
(t − s), (5.36)
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with the contour CR as above, together with the definition of Meijer G-
function. For xy > 0, we note that

eiπsg(s, t) =
(

sin π
2 t

sin π
2 s

− cos π
2 t

cos π
2 s

)
+ 2ei π

2 (t+s). (5.37)

The s-variable integrand in the second part has no pole within the contour Σ.
Thus, the problem reduces to the proven situation. �

The simplest non-trivial case is M = 1. Here, we get

Kν(x, y) =
(y

x

)ν/2 1
πi

∫

CR

dv Iν

(
2
√

sgn(y)xv
)
Kν

(
2
√

|y|v), (5.38)

with the modified Bessel functions Iν and Kν , which follows immediately from
the fact that

G1,0
0,2

( −
0,−ν

∣∣∣∣ − z

)
= z−ν/2Iν(2

√
z), G2,0

0,2

( −
ν, 0

∣∣∣∣ z
)

= 2zν/2Kν(2
√

z).

(5.39)

6. Global Spectra in Product and Muttalib–Borodin Ensembles

The study of the scaling limit at the origin in the previous section introduces
a scale in which the average spacing between eigenvalues is of order unity.
A very different, but still well-defined, limiting process is the so-called global
scaling regime. In this regime, the average spacing between eigenvalues tends
to zero in such way that the spectral density tends to a quantity ρ(x) with
compact support I ⊂ R and

∫
I
ρ(x)dx = 1. Here, ρ(x) is referred to as the

global density. Throughout this section, the indices ν1 . . . , νM are kept fixed.
For the Laguerre Muttalib–Borodin ensemble specified by the

density (1.12), the global scaling limit corresponds to a change of variables
xj �→ nxj . Introducing the further change of variables xj �→ MxM

j , the global
density is known to be the so-called Fuss–Catalan density with parameter M
[26]. It can be specified by the moment sequence

FCM (k) =
1

Mk + 1

(
(M + 1)k

k

)
, k = 0, 1, . . . . (6.1)

These are the Fuss–Catalan numbers (the Catalan numbers are the case
M = 1).

Now, consider the product of M standard complex Gaussian random
matrices. Consistent with the discussion in Sect. 1.2, the corresponding global
density is again the Fuss–Catalan density with parameter M [6,9,45,47].

It is known that the Fuss–Catalan density, ρ
(M)
FC (x) say, can also be char-

acterised as the minimiser of the energy functional

E[ρ] = M

∫ L

0

dx ρ(x)x
1

M − 1
2

∫ L

0

dx

∫ L

0

dy ρ(x)ρ(y) log
(|x − y||x 1

M − y
1

M |)

(6.2)
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with L = (M + 1)M+1/MM ; see [14,22,24]. Note that the energy func-
tional (6.2) relates to (1.12) through the aforementioned change of variables.
Similarly, the energy functional corresponding to (1.2) is

Ẽ[ρ̃] = θ

∫ L̃

−L̃

dx ρ(x)x
2
θ − 1

2

∫ L̃

−L̃

dx

∫ L̃

−L̃

dy ρ̃(x)ρ̃(y)

× log
(|x − y|| sgn x|x| 1θ − sgn y|y| 1θ |)

= 2θ

∫ L̃

0

dx ρ(x)x
2
θ −

∫ L̃

0

dx

∫ L̃

0

dy ρ̃(x)ρ̃(y) log
(|x2 − y2||(x2)

1
θ − (y2)

1
θ |)

(6.3)

with θ = 2M+1. We note that changing variables x2 �→ x and y2 �→ y and then
setting ρ̃(x) = xρ(x2) reduce (6.3) to (6.2) with L = L̃2. Thus, the minimiser
in (6.3) is given in terms of the Fuss-Catalan density

ρ̃(x) = |x|ρ(M)
FC (x2) (6.4)

and is symmetric about the origin.
As an illustration, let us consider the simplest case, M = 1. The Fuss–

Catalan density becomes the celebrated Marčenko–Pastur density,

ρ
(M=1)
FC (x) =

1
2π

√
4 − x

x
, 0 < x < 4. (6.5)

The formula (6.4) then gives the standard result (see, e.g. [49]) that the energy
functional

Ẽ[ρ̃] =
∫ 2

−2

dx ρ̃(x)x2 −
∫ 2

−2

dx

∫ 2

−2

dy ρ̃(x)ρ̃(y) log |x − y| (6.6)

is minimised by

ρWigner(x) =
√

4 − x2

2π
, −2 < x < 2, (6.7)

which is Wigner’s semicircle law.
It has been demonstrated in Sect. 2 that the energy function implicit

in (6.3) underlies the eigenvalue distribution of the random matrix prod-
uct (1.1). Thus, we can anticipate that after appropriate scaling, the global
density for the product ensembles is given by (6.4). A direct proof of this
can be obtained through a number of different strategies. We consider first a
method based on the characteristic polynomial.

In terms of the global scaled variables, the key equation relating the
averaged characteristic polynomial to the global is the asymptotic formula [26]

1
n

d
dz

log
〈
det(znM+ 1

2 In − WM )
〉

= G̃M (z) + O(n−1), (6.8)

where G̃M (z) is the Stieltjes transform of the global spectral density,

G̃M (z) =
∫ L̃

−L̃

dx
ρ̃(x)
z − x

. (6.9)
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Following the strategy first used in [22], the formula (6.8) leads to a character-
isation of the Stieltjes transform (6.9), upon realising that the characteristic
polynomial satisfies a linear differential equation.

Proposition 14. Consider a matrix product (1.1) with even matrix dimension,
n = 2N . Let

f(z) =
〈
det(zIn − WM )

〉
(6.10)

denote the characteristic polynomial. Then, (6.10) is a solution to the (2M+2)-
th differential equation,

2z2
(
z

d
dz

− n
)
f(z) =

M∏

m=0

(
z

d
dz

+ νm

)(
z

d
dz

+ νm − 1
)
f(z), (6.11)

with asymptotic boundary condition f(z) ∼ zn for |z| → ∞.

Proof. The characteristic polynomial (6.10) is identical to the bi-orthogonal
polynomial p2N (z). As shown earlier, this polynomial is proportional to a Mei-
jer G-function (4.11). It is well known that such Meijer G-functions satisfy the
differential equation (6.11). The asymptotic boundary condition follows triv-
ially, since f(z) is a monic polynomial. �

Changing variables z �→ nM+ 1
2 ẑ/

√
2 in (6.11) and using that [22]

f (k)(ẑ)
f(ẑ)

∼
(f ′(ẑ)

f(ẑ)

)k

(6.12)

to leading order in n, we see that for large n, the differential equation (6.11)
reduces to the algebraic equation (see, e.g. [8] for M = 1)

z2(zG̃M (z) − 1) = (zG̃M (z))2M+2 (6.13)

with asymptotic condition G̃M (z) ∼ 1/z as |z| → ∞. This equation is to be
compared to the algebraic equation satisfied by the Stieltjes transform of the
Fuss–Catalan density,

z(zGM (z) − 1) = (zGM (z))M+1, (6.14)

see, for example, [22]. With z �→ z2 and M �→ 2M + 1 and setting G̃M (z) =
zG2M+1(z2), we see that (6.14) reduces to (6.13). This prescription is equiva-
lent to (6.4), thus verifying this formula as the evaluation of the global density.

The same result can also be obtained using free probability techniques.
To see this, we need some additional notation. Let a be a non-commutative
random variable with distribution dμ(x) = ρ(x)dx. The Stieltjes transform
Ga(z) of the variable a is defined analogous to (6.9). The S-transform is defined
as

Sa(z) =
1 + z

z
γ−1(z) with γ(z) = −1 + z−1Ga(z−1). (6.15)

Now assume that a and b are two freely independent non-commutative random
variables and that the Stieltjes transform Gb(z) satisfies a functional equation
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P (z,Gb(z)) = 0. It is known [47] that under these conditions, the Stieltjes
transform Gab(z) of the product ab satisfies

P
(
zSa(zGab(z) − 1),

zGab(z)
Sa(zGab(z) − 1)

)
= 0. (6.16)

Moreover, we know that if a is given by the free normal distribution (i.e.
Wigner’s semicircle) and b is given by the free Poisson distribution (i.e.
Marčenko–Pastur), then

Sa(z) =
1

1 + z
and Gb(z)2 − zGb(z) + 1 = 0. (6.17)

We can now use that the limiting distributions for the GUE and the
Wishart ensemble are the free normal and the free Poisson, respectively. Thus,
using (6.16) M times, we see that our product (1.1) indeed gives rise to the
functional equation (6.13).

It is also possible to construct a parametrisation of the global density in
terms of elementary functions based on the polynomial equation (6.13). With

x2
0 =

(
sin((2M + 2)ϕ)

)2M+2

sin ϕ
(
sin((2M + 1)ϕ)

)2M+1
, 0 ≤ ϕ ≤ π

2M + 2
, (6.18)

we have

ρ̃(x0) =
1
π

√
sin ϕ

sin(2M + 1)ϕ

(
sin(2r + 1)ϕ
sin(2M + 2)ϕ

)M

sinϕ,

0 ≤ ϕ ≤ π

2M + 2
, (6.19)

see, for example, [22]. We remark that it follows that the singularity at the
origin blows up like

ρ̃(x0) ∼ 1
π

sin
π

2M + 2
|x0|− M

M+1 (6.20)

as x0 → 0.

7. Conclusion and Outlook

In this paper, we have shown that it is possible to construct a Hermitised
random matrix product for which the eigenvalues form a determinantal point
process on the entire real line with an explicit kernel. This is a fundamental
new contribution to the study of random matrix product ensembles, since all
previous exactly solvable models of this type have had eigenvalues restricted
to the positive half line. Furthermore, we have argued that this Hermitised
product ensemble can be considered a natural generalisation of the classical
Hermite ensemble (i.e. GUE) in similar way as the squared singular values of
matrix products with Gaussian matrices [3,4] and truncated unitary matri-
ces [34] can be considered generalisations of the Laguerre and Jacobi ensem-
bles, respectively. To this point, we have shown that the joint eigenvalue PDF
reduces asymptotically to the Muttalib–Borodin ensemble of Hermite type.
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On another front, we have shown that the local scaling limit near the
origin is described by a two-sided generalisation of the so-called Meijer G-
kernel [40]. This two-sided kernel reduces to the sine kernel in the simplest
case. We have also seen that the global density can be found explicitly and that
it is expressed in terms of the so-called Fuss–Catalan distribution in a simple
manner. Our result relies on an explicit double contour integral formulation
of the correlation kernel (Proposition 11). It is worth stressing that we could
make full use of this double contour integral formulation and give an analytical
proof of the global density. In fact, following almost exactly the same steps
introduced in [43], it can be proven that the sine-kernel arises in the bulk
and that Airy-kernel arises at the soft edge; cf. the proof of Theorems 1.1
and Theorem 1.3 as well as Remark 2 in [43]. The full details are beyond the
scope of this paper, so let us only mention that a basic starting point is to
approximate the integrand by elementary functions and rewrite the kernel, say
the even part, as

1
nρ̃(x0)

(√
2
n

)2M+1

Keven
2n

(
s(x), s(y)

)

∼
√

2
|x0|ρ̃(x0)

1
(2πi)2

∫
dt

∫
ds

en(g(s)−g(t))

s − t

×
∣∣∣1 +

√
2x

x0ρ̃(x0)n

∣∣∣
2ns∣∣∣1 +

√
2y

x0ρ̃(x0)n

∣∣∣
−2nt−1 hn(s)

hn(t)
(7.1)

with

s(x) =

(√
2
n

)2M+1(
x0√

2
+

x

ρ̃(x0)n

)
,

where the phase function is given by

g(z) = (2M +1)z −2(M +1)z log z + z log(z −1)− log(1− z)+ z log x2
0. (7.2)

Hence, the saddle point equation g′(z) = 0 is exactly expressed through the
equation (6.13). We stress that the above parametrisation representation plays
a key role in the proof of the sine kernel via the steepest decent method.

Finally, we emphasise that our construction of a Hermitised random prod-
uct ensemble is based on a matrix transformation, which maps the space of
polynomial ensembles onto itself (Theorem 1). This type of matrix transfor-
mation is important since it preserves exact solvability. Our proof of Theo-
rem 1 is applicable to the Hermitised product ensemble multiplied by a Gauss-
ian matrix, crucially with the help of the hyperbolic HCIZ integral over the
pseudo-unitary group. However, it would be interesting to see whether this
could be extended to the product ensemble multiplied by other types of ran-
dom matrices, say, truncated unitary matrices. For this, a possible way is to
first extend the matrix integral formula stated in [34, Theorem 2.3] from the
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unitary group to the pseudo-unitary case and then perform the same steps as
in Appendix A.3. This will be an interesting and challenging problem for us.
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A. Appendix: Three Different Proofs of Theorem 1

This appendix contains three separate proofs of Theorem 1. Each proof has its
own merits and provides a different perspective on the matrix transformation.

The first proof is based on the method of additive rank-one deformations.
A benefit of this method is that it avoids group integrals of HCIZ type and
therefore might be a more suitable starting point for generalisations to studies
of real or quaternion matrices. The second proof is based on a theorem by
Forrester and Rains [25] that gives the eigenvalue density of a Hermitised
matrix product by means of an inverse double-sided Laplace transform. This
idea is closely related to the spherical transforms used in the context of other
matrix transformations [33,38]. The third and final proof uses a generalisation
of the HCIZ integral previously studied by Fyodorov [27,28].

The three proofs will be given in the three subsections below. However,
before we start, it is worth noting the following reduction result related to
Theorem 1.

Remark 15. Suppose n = N , and consider the limit an0+1 → 0+. Recalling the
ordering (1.5), inspection of (1.4) shows that its leading contribution comes
from a Laplace expansion via the top-left entry of the second determinant.
This entry is in turn significant only for xn0+1 → 0+, telling us that to leading
order (1.4) with n = N and an0+1 → 0+ is equal to

e−xn0+1/an0+1

|an0+1|
N∏

l=1

1
(N − l)!

N∏

l=1
l 	=n0+1

|al|−2|xl|

×
∏

1≤j<k≤N
j,k 	=n0+1

xk − xj

ak − aj
det

[
e−xi/aj

]n0

i,j=1
det

[
e−xi+n0/aj+n0

]N−n0

i,j=2
. (A.1)

After relabelling, (A.1) is equivalent to (1.4) with n = N − 1 times a Dirac
delta function corresponding to an eigenvalue at zero. Repeating this limiting



Vol. 19 (2018) Matrix Product Ensembles of Hermite Type 1337

procedure, a total of N − n times shows that (1.4) in the case n = N reduces
to the general n case.

A.1. First Proof: Recursive Structure Using Additive Rank-One Deformations

In this section, we prove Theorem 1 by induction. The induction step will
be constructed using the method of rank-one deformations. For the reader’s
convenience, we start by providing an outline of the proof; details will follow
in the steps (i), (ii) and (iii) below.

We first need some additional notation. Let G(p) denote the p×N matrix
consisting of the first p rows of the n × N complex Gaussian matrix G, and
let A(p) = diag(a1, . . . , ap). Define

X(p) = (G(p))†A(p)G(p), p = 1, . . . , n. (A.2)

We see that X(p) is an N ×N matrix and that X(n) = X. Moreover, X(p) has
rank (less than or equal to) p and we therefore know that it has (at most) p

nonzero eigenvalues; we will denote these eigenvalues λ
(p)
k (k = 1, . . . , p). The

crucial observation is that X(p) is an additive rank-one deformation of X(p−1)

for p > 1. More precisely, we have

X(p) = X(p−1) + ap �x�x †, (A.3)

where �x is an N×1 column vector with standard complex Gaussian entries. We
will see below that if the eigenvalues of X(p−1) are known, then the rank-one
deformation (A.3) can be used to find the conditional PDF for the eigenvalues
of X(p). Let us denote this conditional PDF by

Qn0
p−1({aj}p

j=1; {λ
(p)
j } | {λ(p−1)

j }), p = 2, 3, . . . , n. (A.4)

It is clear that if the PDF Pn0
1 (a1;λ

(1)
1 ) is known, then Pn0

p ({aj}; {λ
(p)
j }) can

be constructed recursively using

Pn0
p ({aj}; {λ

(p)
j })

=
∫

D

∏

k

dλ
(p−1)
k Pn0

p−1({aj}; {λ
(p−1)
j })Qn0

p−1({aj}; {λ
(p)
j } | {λ(p−1)

j }) (A.5)

for p = 1, . . . , n and a suitable integration domain D. Thus, our proof can be
divided into three steps:

(i) Use the additive rank-one deformation (A.3) to find the conditional
PDF (A.4).

(ii) Use the conditional PDF (A.4) together with the recursion (A.5) to
show that if Pn0

p−1({aj}; {λ
(p−1)
j }) is given by (1.4) with n = p − 1, then

Pn0
p ({aj}; {λ

(p)
j }) is given by (1.4) with n = p.

(iii) Show that Pn0
p=1(a1;λ

(1)
1 ) is given by (1.4) with n = 1.

We will look at these three steps separately below.
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(i). We want to find the eigenvalues of X(p) using the rank-one deforma-
tion (A.3) assuming that the eigenvalues of X(p−1) are known. The matrix
X(p−1) has (at most) p − 1 nonzero eigenvalues. We assume that these eigen-
values are pairwise distinct and ordered as

− ∞ < λ
(p−1)
1 < · · · < λ(p−1)

n0
< 0 < λ

(p−1)
n0+1 < · · · < λ

(p−1)
p−1 < ∞, (A.6)

i.e. X(p−1) has p − n0 − 1 positive eigenvalues if p > n0 and no positive
eigenvalues if p ≤ n0.

If p < N , then the matrix X(p) must have an eigenvalue equal to zero
with multiplicity N−p (or higher). The remaining p eigenvalues will be random
variables, which are nonzero and have multiplicity one (almost surely), since
the deformation (A.3) includes a Gaussian vector x. Thus, we know from [25]
that the eigenvalues of X(p) are given as solutions to the secular equation

0 = 1 − ap

(
q0

λ
+

p−1∑

j=1

qj

λ − λ
(p−1)
j

)
, (A.7)

where, with Γ[α, β] denoting a gamma-distibuted variable with shape param-
eter α and rate parameter β, each qj is a random variable given by

q0
d= Γ[N − p + 1, 1] or qj

d= Γ[1, 1] for j = 1, . . . , p − 1. (A.8)

Furthermore, the eigenvalues of X(p) must be interlaced with the eigenvalues
X(p−1), i.e. interlaced with {0}∪{λ(p−1)

k }p−1
k=1. This interlacing may be verified

by sketching the plot of the secular equation (A.7) as a function of λ. Moreover,
we note that whether the interlacing starts from the left or from the right
depends on whether ap is negative or positive, or equivalently on whether
p ≤ n0 or p > n0, cf. (1.4). For p ≤ n0, we have the interlacing

−∞ < λ
(p)
1 < λ

(p−1)
1 < λ

(p)
2 < · · · < λ

(p)
p−1 < λ

(p−1)
p−1 < λ(p)

p < 0, (A.9)

while for p > n0, we have the interlacing

− ∞ < λ
(p−1)
1 < λ

(p)
1

< · · · < λ(p)
n0

< 0 < λ
(p)
n0+1 < · · · < λ

(p−1)
p−1 < λ(p)

p < ∞. (A.10)

Subject to these interlacings, we read off from [25, Cor. 3] that the correspond-
ing conditional PDF (A.4) is given by

Qn0
p−1({aj}; {λ

(p)
j } | {λ(p−1)

k })

=
1

|ap|N (N − p)!

∏
i(λ

(p)
i )N−p e−λ

(p)
i /ap

∏
k(λ(p−1)

k )N−p+1 e−λ
(p−1)
k /ap

∏
i<j(λ

(p)
j − λ

(p)
i )

∏
k<�(λ

(p−1)
� − λ

(p−1)
k )

(A.11)

with indices 1 ≤ i, j ≤ p and 1 ≤ k, 
 ≤ p − 1.
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(ii). We can now turn to the recursive formula (A.5). The probability den-
sity (1.4) with n = p − 1 is given by

Pn0
p−1({aj}; {λ

(p−1)
j }) =

p−1∏

l=1

1
|al|

(λ(p−1)
l /al)N−p+1

(N − l)!

∏

1≤j<k≤p−1

λ
(p−1)
k − λ

(p−1)
j

ak − aj

×det
[
e−λ

(p−1)
i /aj

]n0

i,j=1
det

[
e−λ

(p−1)
i /aj

]p−1

i,j=n0+1
.

(A.12)

Furthermore, we know from step (i) that the conditional PDF is given by
(A.11) and that the integration domain is given by either (A.9) or (A.10)
depending on whether p ≤ n0 or p > n0. Considering the case p ≤ n0, we have
the recursion∫ ∏

k

dλ
(p−1)
k Pn0

p−1({aj}; {λ
(p−1)
j })Qn0

p−1({aj}; {λ
(p)
j } | {λ(p−1)

j })

= a−p+1
p

p∏

l=1

1
|al|

(λ(p)
l /al)N−pe−λ

(p)
i /ap

(N − l)!

p−1∏

l=1

1
al

∏

1≤j<k≤p−1

1
ak − aj

×
∏

i<j

(λ(p)
j − λ

(p)
i )

∫ ∏

k

dλ
(p−1)
k det

[
e−λ

(p−1)
i (1/aj−1/ap)

]p−1

i,j=1
. (A.13)

We note that there is only one determinant since p < n0. Let us focus on the
integral on the last line in (A.13). We see that

∫ ∏

k

dλ
(p−1)
k det

[
e−λ

(p−1)
i (a−1

j −a−1
p )

]p−1

i,j=1

= det
[ ∫ λ

(p)
i+1

λ
(p)
i

e−x(a−1
j −a−1

p ) dx

]p−1

i,j=1

= det
[ ∫ λ

(p)
i+1

λ
(p)
1

e−x(a−1
j −a−1

p ) dx

]p−1

i,j=1

(A.14)

with integration domain on the right-hand side on the first line given by (A.9).
The first equality in (A.14) follows by shifting the integration inside the deter-
minant, while the second equality follows by a standard row manipulation.
Performing the integral within the determinant on the last line (A.14), we see
that

det
[ ∫ λ

(p)
i+1

λ
(p)
1

e−x(a−1
j −a−1

p ) dx

]p−1

i,j=1

= ap−1
p

p−1∏

j=1

aj

aj − ap
det

[
e−λ

(p)
i+1(a

−1
j −a−1

p ) − e−λ
(p)
1 (a−1

j −a−1
p )

]p−1

i,j=1

= ap−1
p

p−1∏

j=1

aj

aj − ap

p∏

�=1

eλ
(p)
� /ap det

[
e−λ

(p)
i /aj

]p
i,j=1

, (A.15)
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where the last inequality can be understood by applying elementary row oper-
ations of adding multiples of the first row to the rows below so as to get zero
entries in the final column, expect for the first entry, then Laplace expanding
by that entry.

Finally, using this evaluation of the integral from (A.13) verifies the recur-
sion for p ≤ n0. The verification for p > n0 follows the same lines.

(iii). It only remains to show that Pn0
p=1(a1;λ

(1)
1 ) is given by (1.4) with n = 1.

There are two cases n0 = 0 and n0 = 1, but they are both immediate since we
are considering scalars.

A.2. Second Proof: Limit of Inverse Laplace Transform Expression

This second proof of our main theorem starts by looking at the eigenvalues of
a more general matrix

G†AG + B, (A.16)

where G be an n × N complex Gaussian random matrix, while A and B are
Hermitian matrices. Due to unitary invariance, we can in fact choose A and
B to be diagonal, say A = diag(a1, . . . , an) and B = diag(b1, . . . , bN ), without
loss of generality.

It is evident that this eigenvalue problem reduces to that of Theorem 1,
when

b1, . . . , bN → 0, (A.17)

This observation is crucial, since it was shown by Forrester and Rains [25,
Thm. 6] that (assuming the eigenvalues of A and B are pairwise distinct) the
eigenvalue PDF for the matrix (A.16) can be written as

ePDF(G†AG+B) =
1

N !
det[xj−1

i ]Ni,j=1

det[bj−1
i ]Ni,j=1

det
[
L−1[det(I+As)−1](xi − bj)

]N

i,j=1
.

(A.18)
where ePDF(M) is a short-hand notation for the eigenvalue density for a
random matrix M and L−1 denotes the inverse two-sided Laplace transform,

L−1[f(s)](x) := lim
τ→0+

∫ +i∞

−i∞

ds

2πi
esx+τs2/2f(s). (A.19)

In some sense, this result is more general than the one we are trying to prove,
but it is also far less explicit and therefore less useful for our purposes. Thus,
the strategy to prove Theorem 1 presented in this subsection is to show that
given (1.3) then (A.18) reduces to (1.4) in the limit (A.17). Here, (1.4) refers to
the PDF with the N nonzero eigenvalues. However, we know from Remark 15
that the n = N case of (1.4) implies the general n case. It is therefore sufficient
for us to set n = N in (A.18) and to show that in the limit (A.17) the case
n = N of (1.4) appears.

For this purpose, we begin by noting that with f(s) = det(I+As)−1, the
limit τ → 0+ in (A.19) can be taken inside the integral, telling us that
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L−1[det(I + As)−1](xi − bj) =
∫ +i∞

−i∞

ds

2πi

es(xi−bj)

∏N
k=1(1 + aks)

. (A.20)

Our evaluation of this contour integral follows the standard procedure of first
closing the contour and then using the residue theorem. Due to the inequali-
ties (1.5), we see that the contour must be closed in the positive half plane for
i = 1, . . . , n0, which according to the inequalities (1.4) picks up contributions
from n0 simple poles located at −1/a1, . . . ,−1/an0 . For i = n0 + 1, . . . , N the
contour must be closed in the negative half plane picking up contributions
from the remaining N − n0 poles located at −1/an0+1, . . . ,−1/aN . After sub-
stituting this straightforward evaluation of the contour integral into the last
determinant in (A.18), the limit (A.17) may be found by successive use of
L’Hôpital’s rule. This yields

ePDF(G†AG) =
N∏

k=0

1
k!

det[xj−1
i ]Ni,j=1

×
∑

1≤k1,...,kn0≤n0
n0+1≤kn0+1,...,kN ≤N

det
[

1
|aki

|
aN−j

ki
e−xi/aki

∏N
l=1, l 	=k(aki

− al)

]N

i,j=1

.

(A.21)

The latter determinant in this expression may be simplified considerably by
noting that the only factor inside determinant which depends on both index i

(through ki) and index j is aN−j
ki

, while the only factor depending on both index
i and index ki is e−xi/aki . Thus, upon expansion and reordering of products,
we see that

det
[

1
|aki

|
aN−j

ki
e−xi/aki

∏N
l=1, l 	=ki

(aki
− al)

]N

i,j=1

=
N∏

i=1

e−xi/aki

|ai|
∏

1≤i<j≤N

1
(aj − ai)2

det
[
aj−1

ki

]N
i,j=1

. (A.22)

Thus, the eigenvalue PDF becomes

ePDF(G†AG)

=
N∏

k=0

1
k!

det[xj−1
i ]Ni,j=1

N∏

i=1

1
|ai|

∏

1≤i<j≤N

1
(aj − ai)2

×
∑

1≤k1,...,kn0≤n0
n0+1≤kn0+1,...,kN ≤N

N∏

i=1

e−xi/aki det
[
aj−1

ki

]N
i,j=1

. (A.23)
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In order to evaluate the sums on the second line in (A.23), we note that the
indices satisfy k1, . . . , kn0 < kn0+1, . . . , kN and that the determinant is anti-
symmetric in both {k1, . . . , kn0} and {kn0+1, . . . , kN}. This allows us to write

∑

1≤k1,...,kn0≤n0
n0+1≤kn0+1,...,kN ≤N

N∏

i=1

e−xi/aki det
[
aj−1

ki

]N
i,j=1

= det
[
aj−1

i

]N
i,j=1

det[e−xi/aj ]n0
i,j=1 det[e−xi/aj ]Ni,j=n0+1. (A.24)

The first determinant on the right-hand side in (A.24) and the first determinant
in (A.23) are both Vandermonde determinants, so the eigenvalue PDF (A.23)
becomes

ePDF(G†AG)

=
N∏

k=0

1
k!

N∏

i=1

1
|ai|

∏

1≤i<j≤N

xj − xi

aj − ai
det[e−xi/aj ]n0

i,j=1 det[e−xi/aj ]Ni,j=n0+1,

(A.25)

which we recognise as the desired statement (1.3) with n = N .

A.3. Third Proof: Matrix Integral Over the Pseudo-unitary Group

For this third proof of Theorem 1, we will again restrict our attention to the
case n = N . The Gaussian matrix G specified in Theorem 1 has distribution

( 1
π

)N2

e− Tr G†G(dG), (A.26)

where (dG) is the Lebesgue measure on the space of complex N×N matrices. It
is a standard result from random matrix theory that the positive semi-definite
Hermitian matrix W̃ = GG† is distributed according to

N−1∏

k=0

1
πkk!

e− Tr W̃ (dW̃ ), (A.27)

where (dW̃ ) is the Lebesgue measure on the space of Hermitian matrices sub-
ject to the constraint that W̃ is positive semi-definite. This may be seen by
decomposing the matrix G using a polar decomposition, i.e. G = UW̃ 1/2 with
U unitary. Making this change of variables and integrating over the unitary
degrees of freedom contribute an extra factor, 2−Nvol U(N), to the normali-
sation; see, for example, [19].

The proof presented in this section is based on an integration formula for
the pseudo-unitary group with a pseudo-metric tensor η determined accord-
ing to the number of positive (negative) eigenvalues of the matrix A. More
precisely, with A as specified in Theorem 1, we define

A+ = diag(|a1|, . . . , |aN |) and η = ηN
n0

= diag(−1, . . . ,−1︸ ︷︷ ︸
n0

,+1, . . . ,+1︸ ︷︷ ︸
N−n0

),

(A.28)
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such that A = A+η = ηA+. In fact, we have the more general relation A =
Ap

+ηAq
+ with p + q = 1, since the matrix A is assumed to be non-singular.

Next, introduce the matrix Z = A
1/2
+ W̃A

1/2
+ where W̃ is an N × N

matrix distributed according to (A.27). Since both Z and W̃ are complex
Hermitian random matrices, we have (dZ) = (detA+)N (dW̃ ), see for example,
[19, Eq. (1.35)]. Thus, using that A+ is invertible, we know from (A.27) that
the distribution of Z is equal to

N−1∏

k=0

1
πkk!

e− Tr A−1
+ Z

(det A+)N
(dZ). (A.29)

In terms of Z, we may define Z̃ = ηZ = ηA
1/2
+ GG†A1/2

+ . This matrix is
important, since its eigenvalues are identical to those of

G†A1/2
+ ηA

1/2
+ G = G†AG. (A.30)

Here, the right-hand side is the matrix of interest for Theorem 1 and the
equality is a simple consequence of the definition (A.28). Moreover, since
(dZ̃) = (dZ) (the action of η on Z is only to change the sign of some of
the entries of Z), we read off from (A.29) that the distribution of Z̃ is equal
to

N−1∏

k=0

1
πkk!

e− Tr A−1Z̃

(det A+)N
(dZ̃), (A.31)

where it is further required that ηZ̃ is positive semi-definite.
It is a known result that if Z is a positive definite matrix, then the matrix

ηZ has exactly n0 negative eigenvalues and N − n0 positive eigenvalues [51].
Furthermore, the matrix Z̃ can be diagonalised using a pseudo-unitary simi-
larity transformation, i.e. there exists a matrix V ∈ U(η) such that

Z̃ = V LV −1, (A.32)

where L = diag(x1, . . . , xN ) is a real diagonal matrix. We recall that the
pseudo-unitary group is defined as

U(η) = {V ∈ GL(N,C) |V †ηV = V ηV † = η}.

The Jacobian associated with the change of variables (A.32) is [51]

(dZ̃) = (V −1dV )
∏

1≤i<j≤N

(xj − xi)2
N∏

l=1

dxl, (A.33)

where (V −1dV ) is the Haar measure on the pseudo-unitary group. For
the measures (A.33) to be in one-to-one correspondence, it is necessary to
restrict the overall phase of each eigenvector, or equivalently require that
V ∈ U(η)/U(1)N .

Substituting (A.33) into (A.31) shows that the eigenvalue PDF of Z̃ (or
equivalently of G†AG) is equal to
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Pn0,n({aj}N
j=1; {xj}N

j=1)

=
N−1∏

k=0

1
πkk!

∏

1≤i<j≤N

(xj − xi)2
∫

e− Tr A−1V LV −1 (V −1dV )
det(A+)N

. (A.34)

We note that for n0 = 0 and n0 = N , the signature η becomes proportional to
the identity and the group integral in (A.34) reduces to the well-known HCIZ
integral (1.14). The generalisation of the HCIZ integral from an integral over
the unitary group to an integral over the pseudo-unitary group (i.e. 0 < n0 <
N) has been studied by Fyodorov [27,28], who showed that

∫

U(η)/U(1)N

e− Tr AV BV −1
(V −1dV )

= KN,n0

det[e−aibj ]n0
i,j=1 det[e−ai+n0bj+n0 ]N−n0

i,j=1∏
1≤i<j≤N (aj − ai)(bj − bi)

(A.35)

with KN,n0 denoting an undetermined proportionality constant, and A =
diag(a1, . . . , aN ) and B = diag(b1, . . . , bN ) denoting diagonal matrices sub-
ject to the constraints

a1 < · · · < an0 < 0 < an0+1 < · · · < aN ,

b1 < · · · < bn0 < 0 < bn0+1 < · · · < bN . (A.36)

The constraints (A.36) must be included to ensure convergence of the group
integral on the right-hand side in (A.35) for an 0 < n0 < N . This is necessary
since the pseudo-unitary group is non-compact except for n0 = 0 or n0 = N
in which case the aforementioned constraints may be ignored.

Now, using the integration formula (A.35) to evaluate the group integral
in (A.34), we see that

Pn0,n({aj}N
j=1; {xj}N

j=1) = KN,n0

N−1∏

k=0

1
πkk! |ak+1|

∏

1≤i<j≤N

xj − xi

aj − ai

×det[e−xi/aj ]n0
i,j=1 det[e−xi+n0/aj+n0 ]N−n0

i,j=1 ,

(A.37)

which agrees with the n = N case of (1.4) provided that KN,n0 = πN(N−1)/2.
We note that the proportionality constant is independent of n0. Moreover, the
cases n0 = 0 and n0 = N (where the group integral is over U(N)/U(1)N ) are
consistent with the known proportionality constant from the HCIZ integral;
recall that our choice of measure is not normalised to unity; rather, we have
vol U(N)/U(1)N = πN(N−1)/2/

∏N
j=1 Γ(j).
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