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Abstract. We reformulate super-quantum mechanics in the context of inte-
gral forms. This framework allows to interpolate between different actions
for the same theory, connected by different choices of picture changing
operators (PCO). In this way we retrieve component and superspace ac-
tions and prove their equivalence. The PCO are closed integral forms
and can be interpreted as super-Poincaré duals of bosonic submanifolds
embedded into a supermanifold. We use them to construct Lagrangians
that are top integral forms, and therefore can be integrated on the whole
supermanifold. The D = 1, N = 1 and the D = 1, N = 2 cases are stud-
ied, in a flat and in a curved supermanifold. In this formalism, we also
consider coupling with gauge fields, Hilbert space of quantum states, and
observables.

1. Introduction

Since the invention of supersymmetry, several authors provided useful math-
ematical tools for its geometrical formulation, based essentially on the inter-
pretation of supersymmetry as a coordinate transformation in fermionic di-
rections, described by Grassmann coordinates θ. Still, there remained several
problems, mostly related to integration theory on supermanifolds.

The first formulations of supersymmetric models were given in terms of a
component action, containing bosonic and fermionic fields, and invariant under
supersymmetry transformations mixing bosons and fermions.

The same dynamics can be derived in a more efficient way from an action
which is manifestly invariant under supersymmetry. This framework is known
as superspace approach, and various fields of the spectrum are contained in
some superfields (or superforms). The action is obtained as an integral of prod-
ucts of superfields and their derivatives. In this approach, the set of coordinates
x of the worldvolume is augmented by a set of fermionic coordinates θ, and
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a superfield is a function of x and θ. These coordinates parametrize an open
set of a supermanifold (which locally is denoted by R

(n|m)) which is a gener-
alization of a differential manifold. In the Sect. 2 we summarize the theory of
supermanifolds, on which a vast literature exists (see for ex. [1–5]). Fermionic
derivatives are needed in this context, and they form an algebra represent-
ing the supersymmetry algebra. A supersymmetry variation of a superfield
is obtained by means of a differential operator, representing the supersym-
metry generators on the ring of superfunctions on the supermanifold. In this
framework, the action is manifestly supersymmetric since the supersymmetry
variation of the Lagrangian is a total derivative on superspace, and its integral
vanishes. Although the superspace framework has several advantages w.r.t. to
the component formalism, the geometry behind it still needs some clarification.

Motivated by string theory (both in RNS formalism [6,7] and in Pure
Spinor formalism [8]) new geometrical elements, known as integral forms, were
introduced. They are essential to provide a sensible theory of geometric integra-
tion for supermanifolds and they are the natural generalizations of differential
forms of a conventional manifold. Their properties and their integration theory
are briefly described in the text, and we refer to the literature [6,9–11] and
the book by Voronov [12] for more details.

Once integration on supermanifolds has been established on a sound ge-
ometrical basis, we can finally rewrite the action in the component formalism
and the action in superspace as different representations of the same geometri-
cal action. This is achieved by constructing an interpolating action, known in
the literature as a rheonomic action (see the main reference [13]). The picture
changing operators can be interpreted as integral forms Y representing the
super-Poincaré dual of the embedding of a bosonic submanifold into a super-
manifold, and are used to construct a Lagrangian (a n-superform multiplied
by a PCO Y to give a top integral form) that can be integrated on the whole
supermanifold. It turns out that by choosing different Poincaré duals Y one
can interpolate between different equivalent actions.

To illustrate these features, we consider in this paper the simple example
of Super-Quantum Mechanics, viewed as a D = 1 quantum field theory. The
application of the formalism of integral forms to theories in higher dimensions
will be the subject of a forthcoming paper. The case of D = 3 N = 1 super-
gravity was analyzed in [14]. We consider both N = 1 and the N = 2 cases,
since they have different characteristics worth to be described. First, we build
the rheonomic action (which was not present in the literature), then we show
how the different choices of Y interpolate between the different realisations
(component action or superspace action). In the case of SQM, everything is
clear and easy to compute and provides a perfect introductory example for the
use of these techniques. In the last section, we also argue that the observables
of the theory share the same properties of the action and that also for them
one can use different representations corresponding to suitable Y.

The paper is structured as follows: In Sect. 2, we collect some introductory
material about supermanifold theory, and we give also a few mathematical
details about the super-particle model. This section can be skipped by experts
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on supermanifold theory. In Sect. 3, we review the most important points of
the integration theory of integral forms. In Sect. 4 we discuss some of the
properties of the picture changing operators. In Sect. 5 we study the model of
SQM N = 1 and in Sect. 6 the model N = 2. In Sect. 7 we discuss the Hilbert
space and in Sect. 8 the observables.

2. Supermanifolds and the Supersymmetric Point Particle

We give in this introductory section a very short review of the definitions and
the concepts of the theory of supermanifolds. The definitions and the notations
are mainly taken from [1,2] to which we refer for a more complete treatment.

This section also contains some comments and some examples that might
help to gain intuition on the topic.

A supercommutative ring is a Z2-graded ring A = A0 ⊕ A1 such that if
i, j ∈ Z2, then aiaj ∈ Ai+j and aiaj = (−1)i+jajai, where ak ∈ Ak. Elements
in A0 (resp. A1) are called even (resp. odd).

A super-ringed space is a topological space X together with a sheaf OX

of supercommutative rings. If the stalks are local1 rings, the super-ringed
space is called a superspace.

A superdomain Un|m is the superspace
(
Un, C∞n|m)

, where Un ⊆ R
n is

open and C∞n|m is the sheaf of supercommutative rings given by:

V �→ C∞ (V )
[
θ1, θ2, . . . , θm

]
,

where V ⊆ Un is open and θ1, θ2, . . . , θm are the generators of a Grassmann
algebra. The grading is the natural Z2 grading in even and odd elements.

Every element of C∞n|m (V ) is called a superfunction and may be written
as

∑
I fIθ

I , where I is a multi-index and fI ∈ C∞ (V ) is an ordinary function.
A smooth supermanifold M of dimension n|m is a superspace locally

isomorphic to the superspace Un|m. In this section we will denote by M ≡
(M,OM ) the supermanifold whose underlying topological space is M and
whose sheaf of supercommutative rings is OM . In the following sections, the
supermanifold will be denoted by M(n|m).

This definition means that given a point x ∈ M (the underlying topo-
logical space) there is an open set U ⊂ M such that U is homeomorphic to
U0 ⊂ R

n and OM |U is isomorphic to C∞n|m|U0 . The coordinates xi of Un are
called even (or bosonic) coordinates, while the elements θα are called odd (or
fermionic) coordinates.

This definition has a difficulty that arises because, in order to use super-
manifolds in physical applications, we would like to think in terms of points
and functions, but ordinary (topological) points here are only the points of the
topological space M , and the (super)functions are really sections of the sheaf.

To a section s of OM on an open set U of M containing x :

s : U → OM |U

1 A ring is called local if it has a unique maximal ideal.
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one can associate its value in x as the unique real number s∼ (x) such that
s − s∼ (x) is not invertible on every neighborhood of x contained in U .

The sheaf of algebras O∼, whose sections are the functions s∼, defines
the structural sheaf of an ordinary differentiable manifold on the space M .
This manifold is called the reduced manifold Mred of the supermanifold M.
The points of M are just the ordinary points of Mred.

For example, in the simple case of the supermanifold R
1|1 = (R, C∞(R)

[θ]), the points are the ordinary points of R. The global section s = xθ is
nilpotent and for any real number a 	= 0 , xθ −a is invertible (its inverse being
−a−2xθ − a−1) and hence the value of s is zero at any point x ∈ R

1|1
red = R.

In other terms the value at the point x of a generic section σ = f + gθ is
simply f(x), the value in x of the ordinary real function f. This means that
the topological points cannot see the nilpotent objects because we cannot
reconstruct a section from its values at the topological points, and this is not
what is needed to support the intuition in physical applications, because we
would like to give a meaning to odd functions.

We can consider also the case of the purely odd supermanifold R
0|1 =(

R
0, C∞ (

R
0
)
[θ]

)
. The ring of “smooth” functions is simply R [θ] /θ2. The re-

duced manifold is just a single point.2 If we want to analyze “geometrically”
R

0|1, we must study the maps from R
0|1 to an ordinary manifold M. These

maps can be represented by ring omomorphisms going in the opposite direc-
tion:

C∞ (M) → R [θ] /θ2.

A generic homomorphism is given by f → A(f) + B(f)θ. This gives two
equations, the first one is A(fg) = A(f)A(g) from which we conclude that
A(f) = f(m) with m a point of M. The second one is B(fg) = B(f)g(m) +
B(g)f(m) which states that B(f) is a derivation over functions and hence is
given by a tangent vector at m: B(f) = ξm(f). We can describe R

0|1 in M
as a point with a set of tangent vectors or, more abstractly, as a “nilpotent
cloud” surrounding a single abstract point.

Maps in the opposite direction, from an ordinary manifold M to R
0|1 are

given by homomorphisms:

R [θ] /θ2 → C∞ (M)

We have that θ must go to zero (because C∞ (M) has no nilpotents) and hence
any such map simply maps the manifold M to the single point in R

0|1 and we
see again that we cannot give a meaning to odd functions. The same argument
holds true also in the general case of R

0|m.

This problem can be solved using the idea of the functor of points which
is the formalization of the concept of auxiliary fermionic parameters often used
in physical applications.

2 The ring R [θ] /θ2 has only one prime (and maximal) ideal (the ideal generated by θ ), and

hence we verify that the set of points of R0|1 is the spectrum of the ring of smooth functions.
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This functor can be used for giving a definite meaning to the elusive
concept of odd functions, i.e., “classical fermions” (following the terminology
of [3]).

We now wish to explain how the intuitive geometrical interpretation of
the xi’s as “even coordinates”and the θα’s as “odd coordinates”can be obtained
from the super-ringed space definition of supermanifolds through the concept
of functor of points.

Given two supermanifolds M and S, the S-points of M (or the points of
M parametrized by S) are given by the set

M(S) = Hom(S,M) = {set of morphisms S → M}.

M is the supermanifold we want to describe and S is the model on which
we base the description of M. Changing S modifies the description of M.
The functor which associates S to M(S) is a functor between the category of
supermanifolds and the category of sets.

The set of morphisms S → M is, in this construction, the set of “points”of
the supermanifolds. See also [4] for more details.

Let us recall now some fundamental properties of morphisms. A mor-
phism f between two superdomains Up|q and V r|s is given by a smooth map
f∼ : Up → V r and a homomorphism f∗ of super-algebras that respects the
parity:

f∗ : C∞ r|s(V r) → C∞ p|q(Up).

It must satisfy the following properties:

• If t = (x1, . . . , xr) are coordinates on V r, each component xi can also be
interpreted as a section of C∞ r|s(V r). If f i = f∗(xi), then f i is an even
element of the algebra C∞ p|q(Up).

• If θα is a generator of C∞ r|s(V r), then gα = f∗(θα) is an odd element
of the algebra C∞ p|q(Up).

• The smooth map f∼ : Up → V r is f∼ = (f1∼, . . . , fr∼), where the f i∼

are the values of the even elements f i.

The following fundamental result (see for example [1]) gives the local
characterizations of morphisms:

If φ : Up → V r is a smooth map and f i, gα, with i = 1, . . . , r, α =
1, . . . , s, are given elements of C∞ p|q(Up), with f i even, gα odd, and satisfying
φ = (f1∼, . . . , fr∼), there exists a unique morphism f : Up|q → V r|s with
f∼ = φ , f∗(xi) = f i and f∗(θα) = gα.

A morphism f ∈ Hom(Up|q, V r|s) is then uniquely determined by a choice
of r even sections and s odd sections of C∞ p|q(Up), i.e., morphisms are in one
to one correspondence with (r+s)-tuples (f1, . . . , fr, g1, . . . , gs), where the f i’s
are even and the gα’s are odd in the algebra C∞ p|q(Up). If we denote by Γ 0

q (Up)
and Γ 1

q (Up), respectively, the set of even and odd sections of C∞ p|q(Up), then
the above fact is expressed as

Hom(Up|q, V r|s) = (Γ 0
q (Up|q))r × (Γ 1

q (Up|q))s.
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Where q denotes the number of odd generators of the algebra we are consid-
ering.

In particular, if S = R
0|q, then

Hom(R0|q, V r|s) = (Γ 0
q )r × (Γ 1

q )s

where Γ 0
q and Γ 1

q represent, respectively, the even and the odd components
of a Grassmann algebra with q generators, and their Cartesian powers the r
“bosonic coordinates” and the s “fermionic coordinates” of V r|s.

One could say that the super-ringed space structure of M encodes the
information of how the even and odd coordinates (xi, θα) glue together, but
independently on the number of generators of the underlying super-algebra.
The number of generators (q in the above case) can be fixed by taking a super-
manifold S and constructing Hom(S,M). This procedure is the formalization
of the concept of “auxiliary fermionic parameters” often used in physical ap-
plications.

2.1. The Supersymmetric Point Particle

We now describe the “supersymmetric point particle” as an example of the
general theory. This one-dimensional model is simple with respect to compu-
tations, but it is not at all simple from the mathematical point of view because
the naive interpretation of the supermanifold R

(1|1) as a space in which there
are “points” with commuting and anticommuting coordinates (x, θ) is not ad-
equate. The main reason is that in the naive interpretation of R

(1|1) there is
only one real coordinate x and only one fermionic coordinate θ, so for su-
persymmetry we are forced to write down equations that apparently are not
allowed or meaningful.

A supersymmetric particle is described by a map R → V. The space V
is a real Z2-graded vector space V = V 0 ⊕ V 1. We will consider the simple
case in which V 0 ⊕ V 1 = R ⊕ R

0|1. The bosonic part is an ordinary function
ϕ(t) ∈ R, the fermionic part ν(t) must be defined using the functor of points.

Let us consider again the example of R
0|1 =

(
R

0, C∞ (
R

0
)
[θ]

)
; we have

seen that there are no odd functions from an ordinary manifold to R
0|1 (or

R
0|m), so we must consider instead maps from a supermanifold to R

0|1. We
take3 the supermanifold R

1|2 =
(
R, C∞ (R)

[
η1, η2

])
. In terms of the functor

of points description the “R
1|2− points” of R

0|1 will be labeled by zero even
sections and one odd section of C∞ (

R
1|2). A map R

1|2 → R
0|1 is represented

by a morphism

C∞ (
R

0
)
[θ] → C∞ (R)

[
η1, η2

]

given by: θ →
∑

fiη
i for some functions fi ∈ C∞ (R) . For any t ∈ R we can

consider the family of sections νt of C∞ (R)
[
η1, η2

]
that we can now write:

νt = ν(t) =
∑

fi(t)ηi (2.1)

3 Note that R
1|2 is just the minimal choice, we could have taken R

1|m with m ≥ 2.
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ν(t) can be interpreted as an odd function that can be used like an ordinary
function and might be called a classical fermion.

The Lagrangian of the model is the sum of a “bosonic part” and a
“fermionic” one:

L =
(

dϕ(t)
dt

)2

+ ν(t)
d
dt

ν(t), (2.2)

Note that ν2 = 0 and hence ν(t) d
dtν(t) is not a total derivative. This term is

bosonic and 	= 0.

The supersymmetry transformations are defined as:

δεϕ(t) = εν(t), δεν(t) = −ε
dϕ(t)

dt
, (2.3)

where ε is the constant anticommuting parameter of the supersymmetry inter-
preted now as a linear combination of η1 and η2. The Lagrangian transforms
as:

δεL = ε
d
dt

(
dϕ(t)

dt
ν(t)

)
. (2.4)

We see that the action S is invariant (with suitable boundary conditions):

δεS =
∫

R

δεLdt = 0. (2.5)

3. Integral Forms, Integration Theory, and Poincaré Duals

The integral forms are the crucial ingredients to define a geometric integration
theory for supermanifolds inheriting all good properties of differential forms
integration theory in conventional (purely bosonic) geometry. In this section,
we briefly describe the notations and the most relevant definitions (see [6], [12]
and also [9,15,16]).

We consider a supermanifold with n bosonic dimensions and m fermionic
dimensions, denoted here and in the following by M(n|m) , locally isomorphic
to the superspace R

(n|m). The local coordinates in an open set are denoted by
(xa, θα). A (p|q) pseudoform ω(p|q) has the following structure:

ω(p|q) = ω(x, θ)dxa1 . . . dxardθα1 . . . dθαsδ(b1)(dθβ1) . . . δ(bq)(dθβq ) (3.1)

where, in a given monomial, the dθa appearing in the product are different
from those appearing in the delta’s δ(dθ) and ω(x, θ) is a set of superfields
with index structure ω[a1...ar ](α1...αs)[β1...βq ](x, θ).

The two integer numbers p and q correspond respectively to the form
number and the picture number, and they range from −∞ to +∞ for p and
0 ≤ q ≤ m. The index b on the delta δ(b)(dθα) denotes the degree of the
derivative of the delta function with respect to its argument. The total picture
of ω(p|q) corresponds to the total number of delta functions and its derivatives.
We call ω(p|q) a superform if q = 0 and an integral form if q = m; otherwise,
it is called pseudoform. The total form degree is given by p = r + s −

∑i=q
i=1 bi
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since the derivatives act effectively as negative forms and the delta functions
carry zero form degree. We recall the following properties:

dθαδ(dθα) = 0, dδ(b)(dθα) = 0, dθαδ(b)(dθα) = −bδ(b−1)(dθα), b > 0.
(3.2)

The index α is not summed. The indices a1 . . . ar and β1 . . . βq are anti-
symmetrized, and the indices α1 . . . αs are symmetrized because of the rules
of the graded wedge product:

dxadxb = − dxbdxa, dxadθα = dθαdxa, dθαdθβ = dθβdθα, (3.3)

δ(dθα)δ(dθβ) = − δ(dθβ)δ(dθα), (3.4)

dxaδ(dθα) = − δ(dθα)dxa, dθαδ(dθβ) = δ(dθβ)dθα. (3.5)

As usual the module of (p|q) pseudoforms is denoted by Ω(p|q); if q = 0
or q = m, it is finitely generated.

It is possible to define the integral over the superspace R
(n|m) of an

integral top form ω(n|m) that can be written locally as:

ω(n|m) = f(x, θ)dx1 . . . dxnδ(dθ1) . . . δ(dθm) (3.6)

where f(x, θ) is a superfield. By changing the 1-forms dxa, dθα as dxa → Ea =
Ea

mdxm + Ea
μdθμ and dθα → Eα = Eα

mdxm + Eα
μ dθμ, we get

ω → sdet(E) f(x, θ)dx1 . . . dxnδ(dθ1) . . . δ(dθm) (3.7)

where sdet(E) is the superdeterminant of the supervielbein (Ea, Ea).
The integral form ω(n|m) can be also viewed as a superfunction ω(x, θ, dx,

dθ) on the odd dual4 T ∗(R(n|m)) acting superlinearly on the parity reversed
tangent bundle ΠT (R(n|m)), and its integral is defined as follows:

I[ω] ≡
∫

R(n|m)
ω(n|m) ≡

∫

T ∗(R(n|m))=R(n+m|m+n)
ω(x, θ, dx, dθ)[dxdθ d(dx)d(dθ)]

(3.8)
where the order of the integration variables is kept fixed. The symbol—[dxdθ
d(dx)d(dθ)] denotes the Berezin integration “measure,” and it is invariant un-
der any coordinate transformation on R

(n|m). It is a section of the Berezinian
bundle of T ∗(R(n|m)) (a superline bundle that generalizes the determinant
bundle of a purely bosonic manifold). The sections of the determinant bun-
dle transform with the determinant of the Jacobian and the sections of the
Berezinian with the superdeterminant of the super-Jacobian. The integra-
tions over the fermionic variables θ and dx are Berezin integrals,5 and those

4 In order to make contact with the standard physics literature, we adopt the conventions
that d is an odd operator and dx (an odd form) is dual to the even vector ∂

∂x
. The same

holds for the even form dθ dual to the odd vector ∂
∂θ

. As clearly explained for example in the

appendix of the paper [17], if one introduces also the natural concept of even differential (in
order to make contact with the standard definition of cotangent bundle of a manifold), our
cotangent bundle (that we consider as the bundle of one-forms) should, more appropriately,
be denoted by ΠT ∗.
5 In the following, for a given set {ξi}n

i=1 of Grassmann variables, our definition of the

Berezin integral is
∫

ξ1 . . . ξn [dnξ] = 1 and not
∫

ξ1 . . . ξn [dnξ] = (−1)
n(n−1)

2 . Moreover,
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over the bosonic variables x and dθ are Lebesgue integrals (we assume that
ω(x, θ, dx, dθ) has compact support in the variables x, and it is a product of
Dirac’s delta distributions in the dθ variables). A similar approach for a su-
perform would not be possible because the polynomial dependence on the dθ
leads to a divergent integral.

As usual, this definition can be extended to supermanifolds M(n|m) by
using bosonic partitions of unity.

Note that this definition of integration is a simple generalization of the
integration of differential forms. For example, if ω = f(x)dx is an integrable
one form, its integral over R can be interpreted as a Berezin integral of the
superfunction ω(x, dx) = f(x)dx on T ∗(R) (considered as a supermanifold)
with respect to the bosonic variable x and the fermionic variable dx :

I[ω] ≡
∫

R

ω ≡
∫

R

f(x)dx =
∫

T ∗(R(1|0))=R(1|1)
ω(x, dx)[dxd(dx)]. (3.9)

The symbol [dxd(dx)] denotes the integration “measure,” and it is invariant
under any coordinate transformations on R: For a change of coordinates in R

given by x = x(y), the super-Jacobian matrix is

(
∂x
∂y 0
0 ∂dx

∂dy

)

whose superdeter-

minant is 1
(

using sdet
(

A 0
0 B

)
= detA

detB

)
.

See again Witten [6] for a more detailed discussion on the symbol [dxdθ
d(dx)d(dθ)] and many other important aspects of the integration theory of
integral forms.

According to the previous discussion, if a superform ω(n|0) with form
degree n (equal to the bosonic dimension of the reduced bosonic submanifold6

M(n) ↪→ M(n|m)) and picture number zero is multiplied by a (0|m) integral
form γ(0|m) , we can define the integral on the supermanifold of the product:

∫

M(n|m)
ω(n|0) ∧ γ(0|m). (3.10)

This type of integrals can be given a geometrical interpretation in terms of the
reduced bosonic submanifold M(n) of the supermanifold and the corresponding
Poincaré dual.

Footnote 5 continued
if α is a monomial expression of some anticommuting variables αk not depending on the
ξi, we define:

∫
αξ1 . . . ξn [dnξ] = α, where the product between α and the ξi is the usual

Z2− graded wedge product in the super-algebra generated by the graded tensor product of
the Grassmann algebra generated by the ξi and that generated by the αk : if A and B are
two Z2-graded algebras with products ·Aand ·B, the Z2-graded tensor product A ⊗ B is a
Z2-graded algebra with the product (for homogeneous elements) given by :

(a ⊗ b) ·A⊗B (a′ ⊗ b′) = (−1)|a′||b|a ·A a′ ⊗ b ·B b′

In our case, the algebras are Grassmann algebras and the products · are wedge products.
The symbols ⊗ and ∧ will be, in general, omitted.
6 See Sect. 2.
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We start with a submanifold S of dimension s of a differentiable manifold
M of dimension n. We take an embedding i :

i : S → M
and a compact support s−form ω ∈ Ωs(M). The Poincaré dual of S is a closed
form ηS ∈ Ωn−s(M) such that:

I[ω,S] =
∫

S
i∗ω =

∫

M
ω ∧ ηS (3.11)

where i∗ is the pullback of forms.
If we suppose that the submanifold S is described locally by the vanishing

of n − s coordinates t1, . . . , tn−s, its Poincaré dual can also be described as a
singular closed localization form:

ηS = δ(t1) . . . δ(tn−s)dt1 ∧ · · · ∧ dtn−s. (3.12)

This distribution-valued form is clearly closed (from the properties of the delta
distributions d δ(t) = δ′(t)dt and from dti ∧ dti = 0). This form belongs to
Ωn−s(M) and is constructed in such a way that it projects on the submanifold
t1 = · · · = tn−s = 0. Thus, by multiplying a given form ω ∈ Ωs(M) by ηS ,
the former is restricted to those components which are not proportional to the
differentials dti.

Observing that the Dirac δ-function of an odd variable (dt is odd if t is
even) coincides with the variable itself, we rewrite ηS in a form that will turn
out to be useful for the generalization to supermanifolds (omitting as usual
wedge symbols):

ηS = δ(t1) . . . δ(tn−s)δ(dt1) . . . δ(dtn−s) (3.13)

which heuristically corresponds to the localization to t1 = · · · = tn−s = 0
and dt1 = · · · = dtn−s = 0. Note that if a submanifold S is described by
the vanishing of n − s functions f1(t) = · · · = fn−s(t) = 0 the corresponding
Poincaré dual ηS is:

ηS = δ(f1) . . . δ(fn−s)δ(df1) . . . δ(dfn−s) (3.14)

If we change (in the same homology class) the submanifold S to S ′,
which is equivalent to change continuously the embedding, the corresponding
Poincaré duals ηS and ηS′ differ by an exact form. This can be easily proved
by recalling that the Poincaré duals are closed dηS = 0 and any variation
(denoted by Δ) of ηS is exact:

ΔηS = d (Δfδ(f)) . (3.15)

Given the explicit expression of ηS , it is easy to check Eq. (3.15) by expanding
both members assuming that the derivation Δ follows the Leibniz rule, and
using also the commutation relation dΔ = Δd. For example, in the simple case
ηS = δ(f)df of a single bosonic function f , we have Δ [δ(f)df ] = δ′(f)Δfdf +
δ(f)Δdf , which is also equal to d

(
Δfδ(f)

)
= Δdfδ(f) + Δfδ′(f)df.

Using this property, we can show that, if dω = 0 (in M since dS (i∗ω) = 0
trivially in S ), then the integral does not depend on the embedding of the
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submanifold. Indeed varying the embedding amounts to vary the Poincaré
dual, so that the variation of the integral reads

ΔI[ω,S] = I[ω,ΔS] =
∫

M
ω ∧ ΔηS =

∫

M
ω ∧ dξS = (−)s

∫

M
dω ∧ ξS

(3.16)

where ΔηS = dξS .
The same arguments apply in the case of supermanifolds. Consider a

submanifold S(s|q) of a supermanifold M(n|m). We take an embedding i :

i : S(s|q) → M(n|m)

and an integral form ω ∈ Ωs|q(M(n|m)) (integrable in the sense of superinte-
gration when pulled back on S(s|q)). The Poincaré dual of S(s|q) is a d-closed
form ηS ∈ Ωn−s|m−q(M(n|m)) such that:

∫

S(s|q)
i∗ω =

∫

M(n|m)
ω ∧ ηS . (3.17)

Again we can write:

ηS = δ(f1) . . . δ(f ...)δ(df1) . . . δ(df ...) (3.18)

where the f ’s are the functions defining (at least locally) the submanifold
S(s|q). Here some of them are even functions and some of them are odd func-
tions. The Poincaré dual is a closed integral form that, in general, if written
explicitly in the coordinates (x, θ), contains delta forms and their derivatives.7

Again it is easy to check, for example in the simple case of a single f
fermionic, that any variation of ηS is d-exact:

ΔηS = d
(
(Δf)fδ′(df)

)
. (3.19)

Note that the two formulae (3.15) and (3.19) for the variation of ηS can be
combined in a formula that holds true in both cases:

ΔηS = d
(
Δfδ(f)δ′(df)

)
(3.20)

Indeed, one has δ′(df) = 1 or δ(f) = f when f is respectively bosonic or
fermionic.

If we take now an embedding i of the reduced bosonic submanifold
M(n) i

↪→ M(n|m) and a representative of its Poincaré dual Y
(0|m), we have:

∫

M(n|m)
ω(n|0) ∧ Y

(0|m) =
∫

M(n)
i∗ω(n|0) (3.21)

The “standard” embedding is given by θα = 0 for all α. The correspond-
ing standard Poincaré dual is Y

(0|m)
st = θ1 . . . θmδ(dθ1) . . . δ(dθm).

7 We recall that the modules of integral forms are constructed in terms of compact-support
distributions of dθ’s and its derivatives. Therefore a PCO could in principle contain also

the derivatives of Dirac delta forms δ(dθ). In the forthcoming sections, we will illustrate
this point with explicit examples of PCO’s built with derivatives of delta forms. Note that,
instead, the Heaviside (step) function Θ(dθ) is not an admissible distribution for an integral
form.
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If ω(n|0) is a closed form, this integral is unchanged if we modify the
embedding by adding an exact term to Y

(0|m). This fact will be used to change
the standard Poincaré dual into another with manifest supersymmetry.

For rigid supersymmetric models, the closed-form ω(n|0) is the Lagrangian
of the model L(n|0)(Φ, V, ψ) built using the rheonomic rules (see [13]), and
it contains the dynamical fields Φ (each dynamical field is promoted to a
superfield), and the rigid supervielbeins V a = dxa+θγadθ, ψa = dθa satisfying
the Maurer–Cartan equations

dV a = ψγaψ, dψa = 0. (3.22)

In the present formula, we have used real Majorana spinors.
On the other side, the Poincaré dual forms Y

(0|m), called picture changing
operators (PCO’s) in string theory literature (see [10] for details), contains only
geometric data (for instance the supervielbeins or the coordinates themselves).

For rigid supersymmetric models, we have

Srig =
∫

M(n|m)
L(n|0)(Φ, V, ψ) ∧ Y

(0|m)(V, ψ) (3.23)

with dL(n|0)(Φ, V, ψ) = 0 in order to be able to freely change the PCO by exact
terms, without changing Srig.

In the case of supergravity, the supervielbeins V a and ψα are promoted
to dynamical fields (Ea, Eα) and therefore the action becomes

Ssugra =
∫

M(n|m)
L(n|0)(Φ,E) ∧ Y

(0|m)(E). (3.24)

The closure of the action and of the PCO’s implies the conventional constraints
for supergravity, reducing the independent fields to the physical fields.

4. PCO’s and Their Algebraic Properties

In this section we recall a few definitions and useful computations about the
PCO’s in our notations. For more details see [10,11].

We start with the Picture Lowering Operators that map cohomology
classes in picture q to cohomology classes in picture r < q.

Given an integral form, we can obtain a superform by acting on it with
operators decreasing the picture number. Consider the following operator:

δ(ιD) =
∫ ∞

−∞
exp

(
itιD

)
dt (4.1)

where D is an odd vector field on T (SM) with {D,D} 	= 08 and ιD is the
contraction along the vector D. The contraction ιD is an even operator.

For example, if we decompose D on a basis D = Dα∂θα , where the Dα

are even coefficients and {∂θα} is a basis of the odd vector fields, and take
ω = ωβdθβ ∈ Ω(1|0), we have

8 Here and in the following {, } is the anticommutator (i.e., the graded commutator).
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ιDω = Dαωα = Dα ∂ω

∂dθα
∈ Ω(0|0). (4.2)

In addition, due to {D,D} 	= 0, we have also that ι2D 	= 0. The differential
operator δ(ια) ≡ δ (ιD)—with D = ∂θα—acts on the space of integral forms
as follows (we neglect the possible introduction of derivatives of delta forms,
but that generalization can be easily done):

δ(ια)
m∏

β=1

δ(dθβ) = ±
∫ ∞

−∞
exp

(
itια

)
δ(dθα)

m∏

β=1 �=α

δ(dθβ)dt

= ±
∫ ∞

−∞
δ(dθα + it)

m∏

β=1 �=α

δ(dθβ)dt = ∓i
m∏

β=1 �=α

δ(dθβ)

(4.3)

where the sign ± is due to the anticommutativity of the delta forms, and it
depends on the index α. We have used also the fact that exp

(
itια

)
represents

a finite translation of dθα. The result contains m−1 delta forms, and therefore
it has picture m − 1. It follows that δ(ια) is an odd operator.

We can define also the Heaviside step operator Θ (ιD) :

Θ (ιD) = lim
ε→0+

−i

∫ ∞

−∞

1
t − iε

exp
(
itιD

)
dt (4.4)

The operators δ (ιD) and Θ (ιD) have the usual formal distributional proper-
ties: ιDδ(ιD) = 0 , ιDδ′(ιD) = −δ(ιD) and ιDΘ (ιD) = δ(ιD).

In order to map cohomology classes into cohomology classes decreasing
the picture number, we introduce the operator (see [10]):

ZD = [d,Θ (ιD)] (4.5)

In the simplest case D = ∂θα we have:

Z∂θα = iδ(ια)∂θα ≡ Zα (4.6)

The operator Zα is the composition of two operators acting on different quan-
tities: ∂θα acts only on functions, and δ(ια) acts only on delta forms.

In order to further reduce the picture, we simply iterate operators of type
Z.

In the simple case of R
(1|1), the operator Z1 ≡ Z acts on the spaces Ω(0|1)

and Ω(1|1) producing elements of Ω(0|0) and Ω(1|0), respectively.
A generic form ω ∈ Ω(0|1) ⊕ Ω(1|1) but /∈ ker Z can be written as:

ω(x, dx, θ, dθ) = f(x)θδ(dθ) + g(x)θdxδ(dθ) (4.7)

because Z
(
δ(dθ)

)
= Z

(
dxδ′(dθ)

)
= Z

(
θdxδ′(dθ)

)
= 0

The action of the operator Z is:

Z(ω) = f(x) − g(x)dx ∈ Ω(0|0) ⊕ Ω(1|0). (4.8)

As explained in [6], the operator Z can be defined also in terms of “in-
tegration along the fibers”. Intuitively, to remove a Dirac delta of a given dθ
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from an integral form, changing its picture number, it is sufficient to integrate
along that coordinate.

For example, again in the simple case of R
(1|1), the transformation of

coordinates generated by the vector ∂θ is given by:

x → x (4.9)

θ → θ + ε (4.10)

where ε is an auxiliary fermionic parameter (see Sect. 2 for a rigorous treatment
in terms of the functor of points).

This change of coordinates maps ω to

ω∗ = f(x) (θ + ε) δ(dθ + dε) + g(x) (θ + ε) dxδ(dθ + dε). (4.11)

The picture changing can be obtained integrating with respect to the variables
dε and ε :

Z(ω) =
∫

ω∗ [d (dε) dε] (4.12)

A similar description in terms of the Voronov integral transform can be found
in [11].

The Z operator is in general not invertible but it is possible to find a non
unique operator Y such that Z◦Y is an isomorphism in the cohomology. These
operators are the called Picture Raising Operators. The operators of type Y
are non trivial elements of the de Rham cohomology.

We apply a PCO of type Y on a given form by taking the graded wedge
product; given ω in Ω(p|q), we have:

ω
Y−→ ω ∧ Y ∈ Ω(p|q+1), (4.13)

Notice that if q = m, then ω ∧Y = 0. In addition, if dω = 0 then d(ω ∧Y ) = 0
(by applying the Leibniz rule), and if ω 	= dK then it follows that also ω∧Y 	=
dU where U is a form in Ω(p−1|q+1). So, given an element of the cohomogy
H(p|q), the new form ω ∧ Y is an element of H(p|q+1).

For a simple example in R
(1|1) we can consider the PCO Y = θδ (dθ),

corresponding to the vector ∂θ; we have Z ◦ Y = Y ◦ Z = 1
More general forms for Z and Y can be constructed, for example starting

with the vector Q = ∂θ + θ∂x.
The corresponding PCO of type Z can be computed observing that the

transformation of coordinates generated by the vector Q = ∂θ + θ∂x is:

x → x + εθ (4.14)

θ → θ + ε (4.15)

If, as usual, we want to consider δεθ = ε as a translation in the (unique)
fermionic direction θ, we must conclude that εθ = 0. So, if we want to give the
geometrical meaning of a translation to the transformation δεx = εθ, we should
introduce an auxiliary Grassmann algebra with two nilpotents generators ε1
and ε2. In this way ε and θ are both interpreted, using the functor of points, as
linear combinations of ε1 and ε2, and hence ε and θ are as usual anticommuting
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and nilpotent; moreover εθ is not a real number, but it is bosonic and different
from zero.
This change of coordinates maps the generic integral form ϕ = g(x)θdxδ(dθ) ∈
Ω(1|1) to

ϕ∗ = g(x + εθ) (θ + ε) (dx + dεθ − εdθ) δ(dθ + dε) (4.16)
The picture changing operation can be obtained integrating over the variables
dε and ε :

ZQ(ϕ) =
∫

ϕ∗ [d (dε) dε] = − g(x)dx (4.17)

The explicit computation using instead the formula Z = [d,Θ(ιQ)] is:

ZQ[ϕ] = d[Θ(ιQ)ϕ] = d
[
Θ(ιQ)g(x)θdxδ(dθ)

]

= d

[
lim

ε→0+
−i

∫ ∞

−∞

1
t − iε

g(x)θdxδ(dθ + it)dt

]

= d

[
−g(x)θdx

dθ

]
= −g(x)dx. (4.18)

The last expression is clearly closed. Note that in the above computations
(4.18) we have introduced formally the inverse of the (commuting) superform
dθ. Using a terminology borrowed from superstring theory we can say that,
even though in a computation we need an object that lives in the Large Hilbert
Space, the result is still in the Small Hilbert Space.

Note that the negative powers of the superform dθ are well defined only
in the complexes of superforms (i.e., in picture 0). In this case the inverse of
the dθ and its powers are closed and exact and behave with respect to the
graded wedge product as negative degree superforms of picture 0. In picture
	= 0 negative powers are not defined because of the distributional relation
dθδ (dθ) = 0.

An “inverse” PCO of type Y invariant under the rigid supersymmetry
transformations (generated by the vector Q) δεx = εθ and δεθ = ε is, for
example, given by:

YQ = (dx + θdθ)δ′(dθ) (4.19)
We have:

YQZQ[ϕ] = −g(x)dx ∧ (dx + θdθ)δ′(dθ) = g(x)θdxδ(dθ) = ϕ. (4.20)

5. Super-Quantum Mechanics

5.1. D = 1, N = 1
In the present section, we present a very special model in the lowest possible
dimension D = 1 and N = 1, namely N = 1 super-quantum mechanics.9 This
model is very useful to understand several details in more complicate theories
and provides a simple and calculable example. We list all ingredients and we
discuss some implications.

9 See Sect. 2.1 for a mathematical introduction to the “supersymmentric point particle” and
the related formalism and concepts.
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1. The local coordinates of the superspace R
(1|1) are denoted by (x, θ), the

flat supervielbeins are given by V = dx + θdθ, ψ = dθ, satisfying the
usual Maurer–Cartan algebra

dV = ψ2, dψ = 0. (5.1)

The covariant derivative D and the supersymmetry generator Q are

D = ∂θ − θ∂x, Q = ∂θ + θ∂x, (5.2)

with the algebra

D2 =
1
2
{D,D} = −∂x, Q2 =

1
2
{Q,Q} = ∂x, {Q,D} = 0. (5.3)

2. To construct a Lagrangian, we need superfields. The supermultiplet in
this simplified framework is composed by a single boson and a single
fermion. Then, we can easily arrange them into a single scalar superfield
Φ. If we denote by (φ, λ) its component fields, we have

Φ(x, θ) = φ(x) + θλ(x), (5.4)

W (x, θ) = DΦ = λ(x) − θ∂xφ(x), (5.5)

F (x, θ) = D W (x, θ) = D2Φ = − ∂xΦ = − ∂xφ(x) − θ∂xλ(x). (5.6)

Together with the superfield Φ we have also some derived superfields such
as W and F . W plays the rôle of a fermionic superfield (the superfield
whose first component is the physical fermion λ).

3. Supersymmetry. If we denote by ε the constant anticommuting parameter
of supersymmetry, we have

δεΦ = εQΦ = ε(λ + θ∂xφ), (5.7)

from which we deduce the supersymmetry variations of the component
fields

δεφ = ελ, δελ = −∂xφε. (5.8)
These transformations will be used to check the invariance of the action
and the covariance of the equations of motion.

4. Supersymmetric action and the equations of motion. We write the ac-
tion10 in the superspace version, and then we compute the component
action explicitly (the integrals are usual Berezin integrals):

S =
1
2

∫
∂xΦDΦ[dx dθ] =

1
2

∫ (
(∂xφ + θ∂xλ)(λ − θ∂xφ)

)
[dx dθ]

=
1
2

∫ (
∂xφλ + θ(∂xλλ − (∂xφ)2)

)
[dx dθ] = −1

2

∫

R

[
λ∂xλ + (∂xφ)2

]
dx,

(5.9)

and the equations of motion are:

∂xDΦ = 0, =⇒ ∂2
xφ = 0, ∂xλ = 0, (5.10)

10 The action S = 1
2

∫
∂xΦDΦ[dx dθ] is manifestly invariant under the supersymmetry trans-

formation 4.14 and 4.15.
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i.e., the Klein–Gordon and the Dirac equation. The model is very simple
and there is a complete match of degrees of freedom both off-shell and
on-shell. Thus we do not need auxiliary fields.

5. Let us move to the geometrical construction. For that, we extend all
physical fields to superfields. In our case the field φ is promoted to Φ
and the fermion λ is promoted to W (we adopt the same letters as above
because it will turn out that they do coincide). Promoting the fields to
superfields introduces more degrees of freedom, and we reduce them by
imposing the differential conditions

dΦ = V ∂xΦ + ψW, dW = V ∂xW − ψ∂xΦ, (5.11)

Being d nilpotent, the equation for W is obtained by imposing the Bianchi
identities. From these equations, we immediately see that

DΦ = W, DW = D2Φ = − ∂xΦ. (5.12)

6 Now, we are in a position to construct the geometric Lagrangian L(1|0). It
is built in terms of superforms, their differentials and geometrical data of
the supermanifold parametrized by V, ψ. Using the Hodge dual in super-
manifolds, one could construct a supersymmentric action in the super-
manifold using a Lagrangian in picture 1 of type L(1|1) (see section 3.2.2
of the paper [16]). For constructing instead a geometrical Lagrangian
in picture 0, we need an additional (0|0)-form superfield ξ (first order
formalism) and we have

L(1|0) =
1
2
ξ2V + ξ(dΦ − ψW ) +

1
2
WdW, (5.13)

from which we compute the equations of motion

ξV + dΦ − ψW = 0, dξ = 0, −ξψ + dW = 0. (5.14)

The rheonomic action is built according to the rules presented in [13] :
inspired by the kinetic terms of the component action, promoting all fields
to superfields and adding those terms allowed by scaling dimensions, form
degree and other quantum numbers. Then, imposing the d-closure one
fixes the coefficients. The equations stemming from that action should
reproduce both the differential conditions (5.11) and the equations of
motion (5.10).

By expanding dΦ = V ∂xΦ + ψDΦ and dW = V ∂xW + ψD∂xW , we
have

ξ = −∂xΦ, DΦ = W, ∂xξ = 0, ∂xW = 0, DW = ξ. (5.15)

so that by consistency

∂2
xΦ = 0, DW = −∂xΦ.

These equations are the complete set of conditions and equations of mo-
tion. For the convenience of reader, we also decompose the action into
the V -dependent part and the ψ-dependent part
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L(1|0) =
(

1
2
ξ2 + ξ∂xΦ − 1

2
W∂xW

)
V +

(
ξ(DΦ − W ) +

1
2
WDW

)
ψ.

(5.16)
7. Closure of the action. As discussed in Sect. 3, in order to be able to choose

freely the appropriate PCO, the action must be closed under d. Notice
that in a supermanifold this statement is not trivial. We have

dL(1|0) = dξ ∧ (ξV + dΦ − ψW ) +
1
2
ξ2ψ ∧ ψ − ξdW ∧ ψ +

1
2
dW ∧ dW

= dξ ∧ (ξV + dΦ − ψW ) +
1
2

(
ξψ − dW

)
∧

(
ξψ − dW

)
. (5.17)

Using the first equation of motion, namely ξV + dΦ − ψW = 0, we get
that the first term vanishes. To prove the vanishing of the second term,
one needs the last equation in (5.14). Since these equations of motion are
algebraic, we can use them at the level of the action. This proves that
the action is closed without using the auxiliary fields.

8. PCO’s. As described in Sect. 3, we construct the action integral for the
supermanifold by the formula

Sgeo =
∫

R(1|1)
L(1|0) ∧ Y

(0|1), (5.18)

where Y
(0|1) is a PCO. We consider here two possible choices (where st

means standard and ss means supersymmetric)

Y
(0|1)
st = θδ(ψ), Y

(0|1)
ss = −V δ′(ψ), (5.19)

which are both closed and not exact. The first one is not manifestly
supersymmetric, but its variation under a supersymmetry transformation
is d-exact. The second one is supersymmetric invariant. The two PCO’s
are cohomologous:

Y
(0|1)
st − Y

(0|1)
ss = d (xδ′(ψ)) (5.20)

9. Component action. Choosing Y
(0|1)
st we have:

S =
∫

R(1|1)
L(1|0) ∧ Y

(0|1)
st

=
∫

T ∗R(1|1)

(
1
2
ξ2 + ξ∂xΦ − 1

2
W∂xW

)
V θδ(ψ)[dxdθd(dx)dψ]

=
∫

T ∗R(1|1)

(
1
2
ξ20 + ξ0∂xφ − 1

2
λ∂xλ

)
dxθδ(ψ)[dxdθd(dx)dψ] (5.21)

where ξ0 = ξ(x, 0) (namely the first component of superfield ξ). Now, we
can integrate over θ, dx and ψ to get the final component action (5.9).

10. Superspace action. Choosing Y
(0|1)
ss , we have to pick up the second term

in (5.16), because of the derivative of the Dirac delta function. Then, we
have
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S =
∫

R(1|1)
L(1|0) ∧ Y

(0|1)
ss

= −
∫

T ∗R(1|1)

(
ξ(DΦ − W ) +

1
2
WDW

)
ψV δ′(ψ)[dxdθd(dx)dψ]

=
∫

T ∗R(1|1)

(
ξ(DΦ − W ) +

1
2
WDW

)
V δ(ψ)[dxdθd(dx)dψ]. (5.22)

The equation of motion for ξ implies that W = DΦ and, being an alge-
braic equation, we can insert it back into the action and obtain

S =
1
2

∫

R(1|1)
∂xΦDΦ[dxdθ]. (5.23)

after Berezin integration over the variables dx and ψ.
We thus retrieve the superspace action.

11. Picture Lowering Operator. We use the PCO Z = [d,Θ(ιψ)] where Θ(ιψ)
is the Heavisde function (step function) of the contraction operator ιψ.
Notice that [d, ιψ]f = Lψf = Df . Then, we can write Z as Z = Dδ(ιψ) .
Let us check its action on Y

(0|1)
st , Y

(0|1)
ss and on the volume form Vol(1|1) =

dxδ(ψ):

Z
(
Y

(0|1)
st

)
= [d,Θ(ιψ)]Y(0|1)

st = d (Θ(ιψ)θδ(ψ)) = d

(
θ

ψ

)
= 1 (5.24)

Z
(
Y

(0|1)
ss

)
= [d,Θ(ιψ)]Y(0|1)

ss = −d (Θ(ιψ)V δ′(ψ)) = −d

(
V

ψ2

)
= −1 (5.25)

Z
(
Vol(1|1)

)
= [d,Θ(ιψ)]V δ(ψ)] = d (Θ(ιψ)V δ(ψ)) = d

(
V

ψ

)
= ψ. (5.26)

Notice that since the two PCO differ by an exact term, that difference
drops out acting with Z. Notice also that, again, even though we need
an object living in the Large Hilbert Space, the result of the computation
still is in the Small Hilbert Space. In addition, using the definition of the
super Hodge dual � proposed in the paper [16], it can be easily seen that
�ψ = Y

(1|0)
ss , or, equivalently:

ψ ∧ −V δ′(ψ) = Vol(1|1). (5.27)

5.2. D = 1, N = 1 Curved

We consider a curved N = 1 supermanifold M(1|1) locally parametrized by
the coordinates (x, θ). Its geometry is described by the supervielbein

Ev = Ev
xV + Ev

θ ψ, Eψ = Eψ
x V + Eψ

θ ψ (5.28)

where V and ψ are the flat superspace supervielbeins. We impose the super-
gravity constraints

dEv = Eψ ∧ Eψ, dEψ = 0, (5.29)

which are solved by

Ev = (Eψ
θ )2V, Eψ = Eψ

θ ψ + DEψ
θ V. (5.30)
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The geometrical properties of the supermanifold are encoded into the superfield
Eψ

θ (x, θ). Since a curved supermanifold M(1|1) is rather simple, the torsion
constraints (5.29) concentrate the entire geometrical information into a single
superfield [18]. This will happen also in the M(1|2) case as will be shown later.

Because of the equations (5.29), it is easy to show that

Y
(0|1) ≡ −Evδ′(Eψ) (5.31)

is a closed integral form. Using the solution (5.30), we have

Y
(0|1) = − (Eψ

θ )2V δ′(ψ)
(
Eψ

θ ψ+DEψ
θ V

)
= − (Eψ

θ )2V
1

(Eψ
θ )2

δ′(ψ) = −V δ′(ψ)

(5.32)
which coincides with the flat supersymmetric PCO Y

(0|1)
ss = −V δ′(ψ).

The volume form is in this case

Vol(1|1) = Evδ(Eψ) = (Eψ
θ )2V δ

(
Eψ

θ ψ + DEψ
θ V

)

= Eψ
θ V δ(ψ) = Eψ

θ Vol(1|1)
flat = Sdet(E)Vol(1|1)

flat (5.33)

where Vol(1|1)
flat = V δ(ψ) is the flat volume form. Note that:

Eψ ∧ Y
(0|1) = −Eψ ∧ Evδ′(Eψ) = Vol(1|1). (5.34)

As a check, we have also
(
Eψ

θ ψ + DEψ
θ V

)
∧ −V δ′(ψ) = Eψ

θ Vol(1|1)
flat = Vol(1|1).

A PCO for a generic (non-constrained) vielbein is given by:

Y
(0|1) =

(
Ev

xV + Ev
θ ψ

)
δ′(Eψ

x V + Eψ
θ ψ)

=
(
Ev

xV + Ev
θ (Eψ

θ )−1(ψ − Eψ
x V )

) 1

(Eψ
θ )2

δ′(ψ)

=
1

(Eψ
θ )2

(
Ev

x − Ev
θ (Eψ

θ )−1Eψ
x

)
V δ′(ψ) − Ev

θ

1

(Eψ
θ )3

δ(ψ) (5.35)

If we set
(
Ev

x − Ev
θ (Eψ

θ )−1Eψ
x

)
= 0, Ev

θ = θ and Eψ
θ = 1, we get the PCO

θδ(ψ). If we set
(
Ev

x − Ev
θ (Eψ

θ )−1Eψ
x

)
= −1 and Ev

θ = 0, we get instead the
supersymmetric PCO −V δ′(ψ).

6. Super-Quantum Mechanics N = 2

Here we formulate the SQM N = 2 in the language of integral forms. We follow
the same strategy as in the previous section. We first discuss the superfield for
the multiplet (in the present case, we need also the auxiliary field F to close
the algebra). Then we describe the action in superspace and the equations
of motion. We also give the action in components, and then we study the
rheonomic (geometric) action.

To describe the N = 2 model we recall that we have a scalar field φ, two
fermions λ and λ̄ and an auxiliary field f . Both on-shell and off-shell we get
a matching of the fermionic and bosonic degrees of freedom. The superspace
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is described by a bosonic coordinate x and two fermionic coordinates θ and θ̄.
The supersymmetric vielbeins are V = dx + i(θdθ̄ + dθθ̄), ψ = dθ and ψ̄ = dθ̄,
and they satisfy the MC equations

dV = 2iψ ∧ ψ̄, dψ = 0, dψ̄ = 0. (6.1)

Correspondently, the superderivatives are defined as

D = ∂θ + iθ̄∂x, D̄ = ∂θ̄ + iθ∂x, (6.2)

with the algebra

{D,D} = 0, {D̄, D̄} = 0, {D, D̄} = 2i∂x. (6.3)

The physical degrees of freedom are collectively encoded into a N = 2 super-
field Φ and its derivatives:

Φ(x, θ, θ̄) = φ(x) + λ(x)θ̄ + λ̄(x)θ + f(x)θθ̄, (6.4)

W (x, θ, θ̄) = DΦ = −λ + θ(i∂xφ − f) − iθθ̄∂xλ, (6.5)

W (x, θ, θ̄) = −D̄Φ = λ̄ + θ̄(i∂xφ + f) − iθθ̄∂xλ̄. (6.6)

From these equations, we can compute the product of DΦD̄Φ, and collecting
the term proportional to θθ̄, we get

DΦD̄Φ = · · · + θθ̄
[
(∂xφ)2 + i(λ̄∂xλ − ∂xλ̄λ) + f2

]
(6.7)

which implies that the superspace action and the component action are given
by

SN=2,kin =
1
2

∫
DΦD̄Φ[dxdθdθ̄] =

∫ [1
2
(∂xφ)2 + iλ̄∂xλ +

f2

2

]
dx (6.8)

To include the interaction terms, we consider the function W(Φ) and we add
the action

SN=2,int =
∫

W(Φ)[dxdθdθ̄]

=
∫

D̄
(
W ′(Φ)DΦ

)
dx =

∫ (
W ′′D̄ΦDΦ + W ′D̄DΦ

)
dx

=
∫ (

2W ′(φ)f − W ′′λλ̄
)
dx. (6.9)

Now, we consider the geometric approach. For that we start from the
differential of Φ:

dΦ = V ∂xΦ + ψW − ψ̄W, (6.10)

where W = −D̄Φ and W = DΦ. Then, we can apply the differential d on both
sides of (6.10) to derive the equations for W and W̄ . We get

dW = V ∂xW − iψ̄∂xΦ + ψ̄F, (6.11)

dW = V ∂xW + iψ∂xΦ + ψF, (6.12)
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where we have introduced the auxiliary superfield F to solve the consistency
condition for the first Bianchi identity. Then, applying again the differential,
we derive the condition on F :

dF = V ∂xF − i(ψ∂xW + ψ̄∂xW ). (6.13)

No additional superfield is needed to close the algebra. From these relations,
we can easily derive the equations relating the four superfields Φ,W,W,F :

W = −D̄Φ, W̄ = DΦ, (6.14)

DW̄ = 0, D̄W = 0, (6.15)

DW = F − i∂xΦ, DW = F + i∂xΦ. (6.16)

Again it is easy, by using the algebra of superderivatives, to check that all
the above equations are consistent. We can now construct the geometric La-
grangian LN=2 = LN=2,kin + LN=2,int as follows

LN=2,kin = ξ
(
dΦ − ψW + ψ̄W

)
− 1

2
(ξ2 + F 2)V +

i

2

(
WdW + dWW

)
,

(6.17)

LN=2,int =
(
W ′F − W ′′WW

)
V − iW ′

(
ψW + Wψ̄

)
. (6.18)

LN=2 is a closed (1|0) form (see equation 6.24 below). Notice that, again, the
Hodge dual operator has not been used and an additional superfield ξ is needed
in order to write the action in first order formalism. Note also that there are
only three quantities that carry the 1-form degree, namely V, ψ and ψ̄, and
that the action can be expanded into powers of them. In the present case, it
is rather easy since the action is linear in V, ψ and ψ̄.

From the Lagrangian, we can easily compute the equations of motion
which read (by setting the superpotential W = 0 to simplify the discussion)

dΦ − ψW + ψ̄W − ξV = 0, (6.19)

dξ = 0, (6.20)

F = 0, (6.21)

dW = − iψ̄ξ, (6.22)

dW = iξψ. (6.23)

It is an easy exercise to check the consistency of this set of equations. Then,
by computing the differential of LN=2,kin we get:

dLN=2,kin = dξ ∧ (dΦ − ψW + ψ̄W − ξV ) − FdF ∧ V

+ i(dW − iψ̄ξ) ∧ (dW + iξψ̄) = 0 (6.24)

The differential vanishes because of the algebraic equations of motion (6.19).
In the same way one can show that also the interaction term LN=2,int is
closed. The kinetic terms and the interaction terms are independent, hence
the closure property must be shown by taking the differential of LN=2,kin

and of LN=2,int separately.11 This is consistent with what is observed in the

11 One has to use the equations of motion with the interaction terms.
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component formalism: in the case N = 2, one can freely add a superpotential
to the action and its parameters are independent coupling constants. At the
level of the rheonomic action, we can add a combination of superfields with the
correct scaling dimensions, form degree and other quantum numbers, which is
independent of the kinetic terms.

Before constructing the PCO, we expand the action in powers of the
gravitinos ψ and ψ̄. We find:

LN=2,kin =
(
ξ∂xΦ − 1

2
(ξ2 + F 2) +

i

2
(W∂xW − W∂xW )

)
V

+
(
ξ(DΦ − W ) − i

2
(DWW − WDW )

)
ψ

+
(
ξ(D̄Φ + W ) − i

2
(D̄WW − WD̄W )

)
ψ̄. (6.25)

LN=2,int = (W ′F − W ′′WW )V − i(W ′W )ψ − i(W ′W )ψ̄. (6.26)

Each piece of this expansion encodes all information regarding the equations
of motion of the theory. Therefore, by choosing a suitable PCO, one can de-
rive various equivalent forms of the action with different amounts of manifest
supersymmetries. This would be interesting for applications where only some
partial supersymmetries can be manifestly realized (such as in D = 4 N = 4
SYM).

Now, we are in a position to construct the PCO’s. The PCO producing
the component action is the simplest (standard) choice:

Y
(0|2)
st = θθ̄δ(ψ)δ(ψ̄). (6.27)

Then the component action is obtained as

SN=2 =
∫

M(1|2)
L(1|0)

N=2 ∧ Y
(0|2)
st

=
∫ (

ξ∂xΦ − −1
2
(ξ2 + F 2) +

i

2
(W∂xW − W∂xW )

)
θθ̄[dxdθdθ̄]

+
∫ (

W ′F − W ′′WW
)
θθ̄[dxdθdθ̄]. (6.28)

The presence of the θθ̄ factor projects all superfields to their first components
and then to the component action.

To reproduce the superspace action, we need another PCO. For that we
see that the following expression

Y
(0|2) = −1

2
iV ∧ (θι − θ̄ῑ)δ(ψ)δ(ψ̄), (6.29)

has the correct properties. The symbols ι and ῑ denote the derivative with
respect to ψ and ψ̄. Let us compute its differential

dY
(0|2) = iψψ̄ ∧ (θι − θ̄ῑ)δ(ψ)δ(ψ̄) − iV ∧ (ψι − ψ̄ῑ)δ(ψ)δ(ψ̄) = 0. (6.30)

The first term vanishes because one of the two gravitinos (ψ and ψ̄) goes
through the derivatives ι and ῑ until it hits the corresponding Dirac delta. On
the other side, the two terms in the second piece are not vanishing separately:
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We have to perform an integration by parts for ι and ῑ yielding two identical
terms which cancel each other. To check that Y

(0|2) is not exact, we use the
formula

d
1
2

[
iV θθ̄ιῑδ(ψ)δ(ψ̄)

]
= −i

1
2
V ∧(θι−θ̄ῑ)δ(ψ)δ(ψ̄)−θθ̄δ(ψ)δ(ψ̄) = Y

(0|2)−Y
(0|2)
st

(6.31)
which shows that the two PCO’s in (6.27) and (6.29) are cohomologous. The
presence of θ and θ̄ in the expression is crucial to get the correct superspace
action:

SN=2 =
∫

M(1|2)
L(1|0)

N=2 ∧ Y
(0|2). (6.32)

The contribution to the superspace action comes from the two terms propor-
tional to the gravitinos ψ and ψ̄. The structure of the PCO (6.29) resembles
that in higher dimensions.12 The presence of the superspace coordinates θ and
θ̄ prevents it from being manifestly supersymmetric. However, as for Y

(0|2)
st , its

supersymmetry variation is d-exact.
Some final remarks are in order. In the previous section, we have seen

the r ôle of the PCO’s of type Z to reduce the picture of a given integral form.
Here we would like to apply the same technique to the N = 2 case.

We start with the simplest volume form:

ω(1|2) = V δ(ψ)δ(ψ̄). (6.33)

It is an integral form, and it is closed since it belongs to Ω(1|2), but is also
exact since it can be expressed as the differential of a (0|2)-form:

ω(1|2) = d

[
1
2
V (θι + θ̄ῑ)δ(ψ)δ(ψ̄)

]
(6.34)

where the sign in the square bracket is opposite w.r.t. the sign of the PCO in
(6.29).13 One can verify that the integral of ω(1|2) on the supermanifold M(1|2)

vanishes. To avoid this problem, we need to construct a different volume form
and the easiest is

Vol(1|2) = V θθ̄δ(ψ)δ(ψ̄). (6.35)
which is closed, but it is not exact. It is not manifestly supersymmetric, but
its supersymmetry variation is d-exact. Let us now apply a PCO of type Z to
decrease the picture of the volume form:

Zψ

(
Vol(1|2)

)
≡ [d,Θ(ιD)]

(
V θθ̄δ(ψ)δ(ψ̄)

)
= d

[
Θ(ιD)

(
V θθ̄δ(ψ)δ(ψ̄)

)]

= d

[
V θθ̄

1
ψ

δ(ψ̄)
]

=
[
2iψψ̄θθ̄

1
ψ

δ(ψ̄) − V θ̄δ(ψ̄)
]

= −V θ̄δ(ψ̄).

(6.36)

where ιD is the contraction operator along the odd vector field D = ∂
∂θ + iθ̄∂x.

The resulting pseudoform is closed, not exact, and it belongs to the space

12 The applications of the formalism of integral forms to theories in higher dimensions will
be the subject of a forthcoming paper. The case D = 3 N = 1 supergravity was analyzed in
[14].
13 Both terms in the r.h.s are necessary for ω to be real.
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Ω(1|1). Then, we act with a PCO denoted by Zψ̄ (putting now D = ∂
∂θ̄

) on the
result of ( 6.36), and we obtain:

Zψ̄Zψ

(
Vol(1|2)

)
= Zψ̄

(
−V θ̄δ(ψ̄)

)
= d

[
Θ(ιD̄)

(
−V θ̄δ(ψ̄)

)]

= d

[
−V θ̄

1
ψ̄

]
= −2iψψ̄θ̄

1
ψ̄

+ V ψ̄
1
ψ̄

= V − 2iψθ̄ = Ṽ (1|0)

(6.37)

where Ṽ (1|0) is a closed superform in Ω(1|0). We can finally check that this
superform is the dual of the PCO Y

(0|2):

Ṽ (1|0) ∧ Y
(0|2) =

(
V − 2iψθ̄

)
∧

[
−1

2
iV ∧ (θι − θ̄ῑ)δ(ψ)δ(ψ̄)

]

= V θθ̄δ(ψ)δ(ψ̄) = Vol(1|2). (6.38)

6.1. Coupling to Gauge Fields

In the case on N = 2 theory, there is an additional symmetry (R-symmetry)
rotating the fermions

W ′ = eiαW, W
′
= e−iαW, (6.39)

and the gravitinos
ψ′ = eiαψ, ψ̄′ = e−iαψ̄, (6.40)

To gauge this symmetry, we replace the differential d in the action L(1|0)
N=2 by

the covariant differential ∇ such that

∇W = dW + iAW, ∇W = dW − iAW, (6.41)

The modifications appear only in the kinetic terms (in the present section, we
neglect the interaction terms) and we get

i

2

(
W∇W + ∇WW

)
=

i

2

(
WdW + dWW

)
− AWW (6.42)

from which we derive the current J = WWV by taking the derivative with
respect the bosonic component of the gauge field.

We recall that a gauge field in the supermanifold M(1|2) is defined in
terms of a (1|0)-connection

A = AxV + Aψψ + Aψ̄ψ̄. (6.43)

As always, the components of the (1|0)-connection exceed the physical com-
ponents, therefore we impose some constraints as follows. First, we compute
the field strength

F = dA = (DAx − ∂xAψ)V ψ + (D̄Ax − ∂xĀψ)V ψ̄ + DAψψ2

+
(
DAψ̄ + D̄Aψ + 2iAx

)
ψψ̄ + D̄Aψ̄ψ̄2. (6.44)

Then we set
(
DAψ̄ + D̄Aψ + 2iAx

)
= 0, D̄Aψ̄ = 0, DAψ = 0. (6.45)
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The first equation can be easily solved in terms of Ax to get

Ax =
i

2

(
DAψ̄ + D̄Aψ

)
(6.46)

with the condition that Aψ is anti-chiral and Aψ̄ is chiral. As a consequence, by
computing the combinations DAx −∂Aψ and (D̄Ax −∂Aψ̄), we find that they
vanish. This implies that the full field strength F vanishes. The connection is
given by

A =
i

2

(
DAψ̄ + D̄Aψ

)
V + Aψψ + Aψ̄ψ̄. (6.47)

The gauge symmetry is δAψ = DΛ and δAψ̄ = D̄Λ where Λ is the superfield
gauge parameter. As a consequence, δAx = ∂xΛ. Given the supermanifold
M(1|2), we can integrate the gauge field directly. For that we need a (1|2)
integral form and therefore we multiply the gauge connection A by the PCO’s
discussed above. We have

A
(1|2)
st = A(1|0) ∧ Y

(0|2)
st =

i

2

(
DAψ̄ + D̄Aψ

)
V θθ̄δ(ψ)δ(ψ̄),

A(1|2) = A(1|0) ∧ Y
(0|2) = − i

2

(
Aψψ + Aψ̄ψ̄

)
V (θι − θ̄ῑ)δ(ψ)δ(ψ̄). (6.48)

and one can show that:
∫

M(1|2)
A

(1|2)
st =

∫

M(1|2)
A(1|2) =

i

2

∫
dx (DAψ̄ + D̄Aψ)

∣
∣
θ=θ̄=0

(6.49)

which is manifestly supersymmetric and gauge invariant if the supermanifold
has no boundary.

This approach can be followed to define a supersymmetric Wilson loop if
instead we choose a supermanifold M(1|2) whose reduced manifold is the circle
S1.

Notice that given a generic gauge connection A(1|0), there is no reason for
the two expressions

∫
A

(1|2)
st and

∫
A(1|2) to match. Indeed, as discussed above

the choice of the PCO is arbitrary when the superform O(1|0) to which it is
applied is d-closed. Otherwise, it turns out that:

O(1|0) ∧ Y
(0|2)
st = O(1|0) ∧ Y

(0|2) + d
(
O(1|0) ∧ η

)
− dO(1|0) ∧ η (6.50)

where η = iV θθ̄ιῑδ(ψ)δ(ψ̄) was computed in (6.31). Thus, if we integrate both
members of (6.50), the second term on r.h.s. drops out, but the third remains.
If O(1|0) is a connection form, the above equation can be written as:

A(1|0) ∧ Y
(0|2)
st = A(1|0) ∧ Y

(0|2) + d
(
A(1|0) ∧ η

)
− F (2|0) ∧ η (6.51)

where we see that the last term vanishes if the field strength vanishes.
The Lagrangian is finally given by

LN=2,kin gauge = ξ
(
dΦ − ψW + ψ̄W

)
− 1

2
(ξ2 + F 2)V +

i

2

(
W∇W + ∇WW

)

(6.52)
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which is gauge invariant. The equations of motion are

dΦ − ψW + ψ̄W − ξV = 0, (6.53)

∇W = − ξψ, (6.54)

∇W = iξψ̄, (6.55)

dξ = 0, (6.56)

F = 0. (6.57)

To check consistency of the equations, we act with ∇ on the r.h.s. on the
fermionic equations and we get

iFW = − idξ ∧ ψ − iξ∇ψ. (6.58)

The r.h.s. vanishes because dξ = 0 and ∇ψ = 0. The second equation is the
generalization of dψ = 0 to the gauged version. It follows from (6.58) that
the field strength F vanishes. This is consistent with the derivation outlined
above.

Finally, if we consider the expression J0 = −WW (the function appearing
in the current for the R-symmetry), and we compute its differential we obtain:

dJ0 = − iξ(ψW + Wψ̄). (6.59)

The expression for J0 is given in terms of superfields and belongs to a su-
permultiplet. The supersymmetry variations can be computed directly from
(6.59).

6.2. D = 1, N = 2 Curved

To conclude this section, we analyze the curved manifold case. We replace the
flat supervielbein V, ψ, ψ̄ with the curved ones Ev, Eψ, Eψ̄ and we require that
they satisfy the constraints

dEV = 2iEψ ∧ Eψ̄, dEψ = 0, dEψ̄ = 0.

To solve these constraints, we have to expand the superviebeins on a basis

EV = EV
x V + EV

θ ψ + EV
θ̄ ψ̄

Eψ = Eψ
x V + Eψ

θ ψ + Eψ

θ̄
ψ̄

Eψ̄ = Eψ̄
x V + Eψ̄

θ ψ + Eψ̄

θ̄
ψ̄. (6.60)

The various components can be cast into a supermatrix. If we insert them into
the constraints, we find the final result

EV = Eψ
θ Eψ̄

θ̄
V, Eψ = Eψ

θ ψ + D̄Eψ
θ V, Eψ̄ = Eψ̄

θ̄
ψ̄ + DEψ

θ V. (6.61)

that resembles the N = 1 case. All the equations can be solved in terms of the
two superfields Eψ

θ and Eψ̄

θ̄
, that are anti-chiral and chiral, respectively:

DEψ
θ = 0, D̄Eψ̄

θ̄
= 0. (6.62)
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As in the N = 1 case we have:

EV ∧ δ(Eψ)δ(Eψ̄) = Eψ
θ Eψ̄

θ̄
V ∧ δ

(
Eψ

θ ψ + D̄Eψ̄

θ̄
V

)
∧ δ

(
Eψ̄

θ̄
ψ̄ + DEψ

θ V
)

= Eψ
θ Eψ̄

θ̄
V ∧ 1

Eψ
θ

δ
(
ψ +

1

Eψ
θ

D̄Eψ
θ V

)

∧ 1

Eψ̄

θ̄

δ
(
Eψ̄

θ̄
ψ̄ + DEψ

θ V
)

= V ∧ δ
(
ψ +

1

Eψ
θ

D̄Eψ
θ V

)
∧ δ

(
Eψ̄

θ̄
ψ̄ + DEψ

θ V
)

= V δ(ψ)δ(ψ̄) (6.63)

Therefore also in the N = 2 case the volume form is not modified going from
a flat to a curved supermanifold.

Let us analyze the PCO Y
(0|2) = − 1

2 iV (θι− θ̄ῑ)δ(ψ)δ(ψ̄). We propose the
following curved version:

Y
(0|2) = − i

2
EV (Fι − F ῑ)δ(Eψ)δ(Eψ̄) (6.64)

where F and F are two scalar superfields. We impose that this integral form
is closed

dY
(0|2) = − i

2
EV (∇F − ∇̄F )δ(Eψ)δ(Eψ̄) = 0 (6.65)

which implies that ∇F = ∇̄F . To solve this equation, we note that we can use
the same procedure as for the volume form in (6.63) to get:

Y
(0|2) = − i

2
Eψ

θ Eψ̄

θ̄
V ∧

(
F

(Eψ
θ )2Eψ̄

θ̄

ιδ(ψ)δ(ψ̄) − F

Eψ
θ (Eψ̄

θ̄
)2

δ(ψ)ῑδ(ψ̄)

)

= − i

2
V

(
F

Eψ
θ

ιδ(ψ)δ(ψ̄) − F

Eψ̄

θ̄

δ(ψ)ῑδ(ψ̄)

)

(6.66)

from which it follows that:

F = θEψ
θ , F = θ̄Eψ̄

θ̄
(6.67)

They satisfy the condition DF = Eψ
θ and D̄F = Eψ̄

θ̄
. Therefore the PCO in

the curved case is the same as in the flat case.

7. Quantization

Quantization for these simple systems can be obtained very easily. We consider
here the case N = 2 with no superpotential (W = 0) for simplicity. Further-
more, we promote the superfields ΦI to be the components of a multiplet
I = 1, . . . , n describing a map

ΦI(x, θ, θ̄) : M(1|2) −→ M(n)

of the supermanifold into a n-dimensional Riemannian manifold M(n).
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From the equations of motion (6.53–6.57), we find that the solution is
given by the following zero modes

ΦI = φI
0 + ixpI

0 + λI
0θ̄ + λ̄I

0θ, W I = λI
0 + pI

0θ,

W
I

= −λ̄I − pI
0λ̄0, ξI = pI

0, F I = 0. (7.1)

where the zero modes φI
0, p

I
0, λ

I
0, λ̄

I
0 satisfy the commutation relations

[φI
0, p

J
0 ] = i� ηIJ , {λI

0, λ̄
J
0 } = � ηIJ . (7.2)

and the Hilbert space H is constructed as follows:

pI
0|0〉 = 0, λI

0|0〉 = 0, ∀I = 1, . . . , n

and a generic state is given by:

|χ〉 =
n∑

p=0

|χ, p〉 =
n∑

p=0

χ[I1...In](φ0)λ̄I1
0 . . . λ̄In

0 |0〉 (7.3)

where the functions χ[I1...In](φ0) are L2(M(n))-integrable functions. The in-
dices I1 . . . In are anti-symmetrized because of the Grassman variables λ̄I

0.
Let us project the Maurer–Cartan equations (6.10–6.12) on the ground

state.

dΦI |0〉 = (iV pI
0 − λI

0ψ̄ − λ̄I
0ψ) |0〉 = −ψλ̄I

0 |0〉 = ψW
I |0〉

dW
I |0〉 = − ψ̄pI

0|0〉 = 0, (7.4)

(by consistency dW I |0〉 = ψpI
0|0〉 = 0).

Let us consider now a differential form of Ω•(M(n)), written in local
coordinates, applied to the ground state |0〉 :

ω(p)|0〉 = ωI1...Ip
(Φ)dΦI1 ∧ . . . ∧ dΦIp |0〉

= ψpωI1...Ip
(φ0)λ̄I1

0 . . . λ̄
Ip

0 |0〉 = ψp|ω, p〉 (7.5)

We obtain a map between the exterior bundle Ω•(M(n)) and the Hilbert space.
The powers of the gravitinos (ψp) parametrize each state at a given fermion
number. The right-hand side of ( 7.5) must be interpreted as a superform on
M(1|2). That would be impossible in the case M(1) −→ M(n) of a pure bosonic
1-dimensional manifold because the pullback of any differential form on M(n)

gives always a 1-form on M(1).
In particular, we have a map:

Ω(p)(M(n)) −→ Ω(p|0)(M(1|2))

Let us compute the action of the differential d on a p-form:

dω(p)|0〉 = ∂KωI1...Ip
(Φ)dΦK ∧ dΦI1 ∧ · · · ∧ dΦIp |0〉

= ψpψ̄ ∂Kω[KI2...Ip](φ0)λ̄I2
0 . . . λ̄

Ip

0 |0〉

+ ψp+1∂[KωI1...Ip](φ0)λ̄K
0 λ̄I1

0 . . . λ̄
Ip

0 |0〉 (7.6)

The closure of ωp gives the equations:

∂Kω[KI2...Ip](φ0) = 0, ∂[KωI1...Ip](φ0) = 0, (7.7)
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(where ∂K = ∂/∂φK
0 ) that imply also ∂2ω[I1...Ip] = 0. Therefore, the states of

the present theory are represented by on-shell p-forms of M(p).
The closure and the co-closure of the differential form implies that ω(p)

is an harmonic form. We refer to [19] for further comments on this point.
We conclude the present section by studying two operators that share

some characteristics with the PCO’s and have an action on the Hilbert space.
We consider the following two (0|n)-pseudoforms

Y(0|n) =
n∏

I=1

W Iδ(dW I), Y(0|n)
=

n∏

I=1

W
I
δ(dW

I
). (7.8)

They are nontrivial elements of the cohomology H
(0|n)
d . We analyze them from

the quantum point of view, and we act with a single pseudoform W Iδ(dW I)
on the generic state |χ, q〉 as given in (7.3)

Y(0|n)|χ, q〉 = W I
0 δ(dW I

0 )|χ, q〉 = W I
0 δ(pI

0ψ)|χ, q〉

= λI
0δ(p

I
0ψ)

[
χI1...Iq

(φ0)λ̄I1
0 . . . λ̄

Iq

0

]
|0〉

= q
1
ψ

δ(pI
0)χII2...Iq

(φ0)λ̄I2
0 . . . λ̄

Iq

0

]
|0〉 (7.9)

The action of δ(pI
0) on the wave function χI1...Iq

(φ0) is computed using the
integral representation of the Dirac delta function:

δ(pI
0)χI1...Iq

(φ0) =
∫ ∞

−∞
du eiupI

0 χI1...Iq
(φ0) =

∫ ∞

−∞
du χI1...Iq

(φK
0 + δK

I u)

since the exponential operator eiupI
0 acts as a finite translation on the coordi-

nate φI
0. If the expression is integrable, we are left with a wave function with

a variable less. The operator δ(pI
0) projects the quantum state into a zero-

momentum state along the direction I. Notice the appearance of the inverse of
ψ. Note also that acting with this operator on (7.5), the inverse of ψ reduces
the power of ψ appearing in (7.5). In the same way, acting with Y(0|n)

increases
the power of λ̄I

0 (namely the degree form).

8. A Note on Observables

Since we are dealing with a quantum mechanical system, we are interested to
study the observables of the theory.

Let us suppose that the observables are identified by means of a nilpotent
charge Q anticommuting with the differential d. For example, one can consider
one of the two supercharges Q or Q̄ (associated to each supercharge there is
a unit of the R-charge discussed in Sect. 5.1, and we refer to that unit charge
(positive for Q and negative for Q̄) as ghost number, since usually the form
number and this number are identified in the literature (see [19]) with the
bigrading of the BRST complex.
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So, given O(0)
1 a ghost number 1 form, we have the sequence of descent

equations: [
Q,O(0)

1

]
= 0,

[
Q,O(1)

0

]
= dO(0)

1 (8.1)

where O(1)
0 has zero ghost number and 1 form degree, while O(0)

1 has ghost
number 1 and zero form degree. The operators O(0)

1 and O(1)
0 are written in

term of the superfields Φ and W of the supersymmetric model with N = 1.
We notice that the integral of O(1)

0

T =
∫

M(1|1)
O(1)

0 ∧ Y
(0|1), (8.2)

is invariant under the action of Q. Here we have introduced the PCO Y
(0|1)

to convert the observable O(1)
0 into an integral form of type (1|1). The ob-

servable O(1)
0 is closed (using the descent equations), and therefore one can

suitably change the PCO to a different (but cohomologous) one. Consequently,
by changing the PCO by an exact term we have:

O(1) ∧
(
Y

(0|1) + dη
)

= O(1) ∧ Y
(0|1) + d(O(1) ∧ η) (8.3)

which shows that a redefinition of the PCO amounts to a shift by exact terms
of the observables and this drops out from the integral in (8.2). Acting with
the PCO on the descent equations (8.1) we have:

[
Q,O(0)

1

]
∧ Y

(0|1) =
[
Q,

(
O(0)

1 ∧ Y
(0|1)

)]
= 0, (8.4)

[
Q,

(
O(1)

0 ∧ Y
(0|1)

)]
= d

(
O(0)

1 ∧ Y
(0|1)

)
(8.5)

where we assumed that [Q, Y(0|1)] = 0 (which implies that the PCO is super-
symmetric invariant). Notice that if the PCO is shifted by a d-exact term we
have

O(0)
1 ∧ (Y(0|1) + dη) = O(0)

1 ∧ Y
(0|1) + d

(
O(0)

1 ∧ η
)

− (dO(0)
1 ) ∧ η

= O(0)
1 ∧ Y

(0|1) + d
(
O(0)

1 ∧ η
)

−
[
Q,O(1)

0

]
∧ η

= O(0)
1 ∧ Y

(0|1) + d
(
O(0)

1 ∧ η
)

−
[
Q,O(1)

0 ∧ η
]

(8.6)

which shows that the variation of the PCO results into a d-exact term plus a
Q-exact term.

Associated to the complex 0 −→ Ω(0)
1 −→ Ω(1)

0 → 0, (here Ω(p)
q denotes

the space of the observables with quantum numbers p and q) we have the
complex of integral observables:

0 −→ Ω(0|1)
1 ≡ Ω(0)

1 ∧ Y
(0|1) −→ Ω(1|2)

0 ≡ Ω(1)
0 ∧ Y

(0|1) −→ 0

The choice of the PCO allows us to choose the representation most useful to
compute the correlators. The choice of a non-supersymmetric one reduces the
observable to the component fields, otherwise the choice of a supersymmetric
PCO produces observables in superspace.
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