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On the Asymptotic Behavior of Static Perfect
Fluids

Lars Andersson and Annegret Y. Burtscher

Abstract. Static spherically symmetric solutions to the Einstein–Euler
equations with prescribed central densities are known to exist, be unique
and smooth for reasonable equations of state. Some criteria are also avail-
able to decide whether solutions have finite extent (stars with a vac-
uum exterior) or infinite extent. In the latter case, the matter extends
globally with the density approaching zero at infinity. The asymptotic
behavior largely depends on the equation of state of the fluid and is still
poorly understood. While a few such unbounded solutions are known
to be asymptotically flat with finite ADM mass, the vast majority are
not. We provide a full geometric description of the asymptotic behavior
of static spherically symmetric perfect fluid solutions with linear equa-
tions of state and polytropic-type equations of state with index n > 5. In
order to capture the asymptotic behavior, we introduce a notion of scaled
quasi-asymptotic flatness, which encompasses the notion of asymptotic
conicality. In particular, these spacetimes are asymptotically simple.

1. Introduction

Perfect fluids in general relativity are described by the Einstein–Euler equa-
tions, i.e.,

Gαβ = 8πTαβ , ∇αTαβ = 0, (1.1)

where Gαβ = Rαβ − 1
2 R gαβ is the Einstein tensor and Tαβ is the energy-

momentum tensor of the fluid. The latter is given by

Tαβ = (ρ + p)uαuβ + p gαβ ,

where ρ denotes the proper energy density, p the pressure and uα the velocity
vector normalized to uαuα = −1. The gravitational constant and the speed
of light are normalized, i.e., G = c = 1. The system (1.1) is underdetermined
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unless we prescribe a so-called equation of state, p = p(ρ), relating the pressure
and proper energy density.

1.1. Spherical Symmetry and Staticity

In the present context, we are primarily interested in static solutions of (1.1).
Such solutions can be viewed as idealized models of stars when they have
compact support. In this case, the interior region is described by a perfect fluid
and the exterior region is given by an asymptotically flat vacuum spacetime. A
fundamental result, previously known as the “fluid ball conjecture”, states that
static asymptotically flat spacetimes with perfect fluid sources are spherically
symmetric. This conjecture was verified for solutions with positive density
ρ > 0 satisfying dp

dρ ≥ 0 by Masood-ul-Alam [55], building upon work of
Lindblom and Masood-ul-Alam [46,47,53,54] and Beig and Simon [10,11]. It is
therefore natural to restrict our attention to not only static but also spherically
symmetric solutions of (1.1). We do, however, not limit our analysis to the
standard asymptotically flat situation because it turns out to be a very rigid
assumption when dealing with perfect fluids in general relativity. Instead, we
also allow solutions with a slower falloff rate and a conical angle at radial
infinity.

Let us recall the setup of (1.1) in the case of spherical symmetry and
staticity. The static and spherically symmetric situation amounts to looking
at metrics in polar coordinates (t, r, θ, φ) of the form

g = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2),

with unknown metric functions ν, λ. From the system (1.1), one obtains that
energy momentum conservation is described by the equation

dν

dr
= −dp

dr
(p + ρ)−1. (1.2)

On the other hand, integrating the field equations (1.1) gives e−2λ = 1 − 2m
r ,

where m = m(r) denotes the mass m = m(r) up to the radius r, i.e.,

m(r) = 4π

∫ r

0

s2ρ(s) ds. (1.3)

The Einstein–Euler system (1.1) in spherical symmetry therefore reduces to
two coupled nonlinear ordinary differential equations for the mass function
m = m(r) and pressure p = p(ρ(r)) of the form

dm

dr
= 4πr2ρ, (1.4a)

dp

dr
= −ρm

r2

(
1 +

p

ρ

)(
1 +

4πr3p

m

)(
1 − 2m

r

)−1

. (1.4b)

The second equation (1.4b) has been studied extensively and is referred to as
the Tolman–Oppenheimer–Volkoff equation. Note that (1.4b) is highly nonlin-
ear and singular at the center r = 0, which largely complicates the analysis of
the static system (1.4). Hardly any solutions in closed form are known, even for
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the simplest equations of state. Known analytic solutions with linear equation
of state are the flat dust solution, the singular Klein–Tolman solutions [83] rele-
vant for neutron stars, the Whittaker solution [87], a stiff solution by Buchdahl
and Land [16], and de Sitter space and the Einstein static universe as solutions
with a cosmological constant (see Ivanov [44] for a full overview and a new
exact solution). The problem of finding explicit solutions is related to the inte-
grability of Abel differential equations of the second kind [43]. Global existence
and uniqueness of smooth solutions as functions of r to (1.4) for reasonable
equations of state and given central density ρ0 > 0, on the other hand, were
already established in 1991 by Rendall and Schmidt [71]. Related results in
the relativistic and nonrelativistic case have been obtained in [8,17,50,69,74].

1.2. (In)finite Extent and the Role of the Equation of State

The global existence and uniqueness result of Rendall and Schmidt [71, Theo-
rem 2] holds for equation of state ρ = ρ(p) which are nonnegative and contin-
uous for p ≥ 0, and furthermore smooth and satisfy dρ

dp > 0 for p > 0. If the
matter has finite extent, then the fluid ball is joined to a (unique) Schwarzschild
exterior; hence, the solution is in particular asymptotically flat. If the matter
extends to infinity, then ρ tends to zero at infinity. In some borderline cases,
the ADM mass of the solution can still be finite (see Remark 1.7), but in gen-
eral it is not. In [71, Section 4] some criteria for (in)finite radii are discussed.
For example, the finiteness of the integral∫ p0

0

dp

ρ2(p)
< ∞, p0 = p(r = 0),

implies that the stellar model has finite extent, a condition that depends on
the low-pressure regime only. A similar criterion has been derived by Makino
in [48, Theorem 1]. There, a finite radius is tied to the condition

ρ

p

dp

dρ
= Γ + O(ρΓ−1), as ρ → 0+, Γ ∈ ( 4

3 , 2).

On the other hand, a star with finite radius must satisfy∫ p0

0

dp

ρ(p) + p
< ∞. (1.5)

These criteria, however, do not cover all equations of state, and further analysis
are often necessary (see, for example, [40,78]). In the following, we discuss some
important special cases. Whenever the pressure only depends on the density
but does not depend on the entropy, the fluid is called barotropic. In order to
be able to directly replace the pressure p in (1.4) by the energy density ρ, we
therefore focus on barotropic equations of state.

Linear Equation of State. We are particularly interested in the linear equation
of state, with sound speed

√
K normalized to be in [0, 1], so that

p = Kρ, 0 < ρ < ρ0. (1.6)
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Since ∫ p0

0

dp

ρ(p) + p
=

K

1 + K

∫ Kρ0

0

dp

p
= ∞,

the (in)finiteness criterion (1.5) shows that linear equations of state with K ∈
(0, 1] lead to solutions with infinitely extending fluid. The above criteria cannot
be applied to piecewise linear equations of state with a hard and a soft phase,
i.e., equations of state of the form

p(ρ) =

{
0 if ρ ≤ ρ0,

K(ρ − ρ0) if ρ > ρ0,

where the qualitative behavior changes at a critical density ρ0 > 0. The dynam-
ics of the two-phase model with sound speed

√
K = 1 in spherical symmetry,

which describes hard stars with a vacuum exterior, has been studied in the
work of Christodoulou [21–23] and recently by Fournodavlos and Schlue [33].

Polytropic Equations of State. In Newtonian theory, polytropes are given by
a power-law equation of state of the form

p = Kρ
n+1

n

N ,

where ρN is the Newtonian mass density. For special values of n, these poly-
tropes are also adiabates. In the limit n → ∞ we recover the linear equation
of state. In general relativity, however, these power-law equations of state are
unphysical because the speed of sound could exceed the speed of light (see [79,
p. 31f] for a brief discussion on physical equations of state). The corresponding
adiabates in general relativity are represented by an equation of state of the
form

p = KηΓ,

where η is the rest-mass density and 1 < Γ < 2 is the (constant) polytropic
exponent. The energy density ρ is then of the form

ρ = η +
1

Γ − 1
p = Cp

1
Γ +

1
Γ − 1

p. (1.7)

For C = K− 1
Γ , and n = 1

Γ−1 the corresponding polytropic index, (1.7) is the
polytropic equation of state

ρ = K
n+1

n p
n

n+1 + np. (1.8)

For C = 0 we recover the linear “gamma-law” equation of state, i.e., p =
KηΓ = (Γ−1)ρ. The polytropic equation of state (1.8) was already considered
by Tooper [85], who numerically observed instability for Γ ≥ 4

3 (n ≥ 3).
From an asymptotic point of view, solutions to (1.4) with (1.8) and power-law
polytropic-type equations of state of the form

p = Kρ
n+1

n (1.9)

essentially behave in the same way because the low-pressure regime dominates
(compare, for example, [84,85]). Solutions of (1.4) with polytropic-type equa-
tion of state (1.9) with small central densities ρ0 > 0 and 0 < n < 5 also have
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finite radii and finite masses as observed in [59,71,78]. However, for 3 < n < 5
solutions with infinite extent do occur for larger central densities (compare to
the Newtonian case, where finiteness is guaranteed for n < 5). For n > 5 the
fluid is always unbounded with infinite mass.

Despite the frequent use of the linear and polytropic-type equations of
state in astrophysics (see, for example, [20,30–32,77,80]) and evolutionary
problems (see, for example, [17,37,45] for the linear and [14,50,63,70] for the
polytropic case), the very basic fact that a large class of static solutions and
likewise many other solutions are not asymptotically flat has received little
attention. In particular, we are not aware of a geometric description that cap-
tures the asymptotic behavior of perfect fluids with infinite extent. The main
motivation of this paper is to provide such a general geometric framework. We
will focus on the linear equation of state (1.6) and the polytropic-type equa-
tion of state (1.9) with index n > 5. Although unphysical, the focus on (1.9)
is natural because it is known to lead to solutions with a similar asymptotic
behavior as (1.8) but is easier to handle analytically.

1.3. The Asymptotic Behavior

It was already observed by Chandrasekhar [19] in 1972 that spherically sym-
metric static solutions to (1.4) with a linear equation of state (1.6) exhibit an
interesting limiting behavior as they approach a singular solution with den-
sity function ρ∞(r) = constant · r−2 as r → ∞. Chandrasekhar computed the
asymptotic behavior for K = 1

3 (and K = 1) using a reformulation in terms of
Milne variables and observed a spiraling behavior to the singular solution in
these coordinates.

In the late 1990s, Makino reformulated (1.4) with linear equation of state
(1.6) as an autonomous system and used plane dynamical systems theory,
more precisely the Poincaré–Bendixson theorem, to obtain that for K = 1

3 the
singular solution is the only element in the ω-limit set and hence all regular
solutions converge to it [48, Appendix]. Thus, asymptotically the solutions
behave like ρ(r) ∼ 3

56π r−2 and m(r) ∼ 3
14r as r → ∞. He also studied the

spiral structure for more general equations of state in [49], and specifically
linear equations of state in [49, Section 2].

Around the same time Heinzle, Nilsson, Röhr and Uggla [41,42,58,59]
developed a different dynamical systems approach to study Newtonian as well
as relativistic stellar models. Nilsson and Uggla [59] numerically investigated
the asymptotic behavior of solutions with power-law equations of state of the
form (1.9) and revealed that static solutions with finite extent are the only ones
that occur for n � 3.339, but never occur if n > 5. The more general approach
of Heinzle, Röhr and Uggla in [42] applies to barotropic equations of state that
are asymptotically polytropic and linear at the low- and high-pressure regime,
respectively. They reformulate the spherically symmetric, static Einstein–Euler
system (1.4) by introducing certain dimensionless variables to obtain a regu-
lar dynamical system on a cube. This reformulation is very well suited for
numerical computations and visualization.
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While all of the above reformulations as dynamical systems lead to very
clear convergence results in the reformulated variables, they cannot be used to
derive a convergence rate in the original formulation. Lower-order terms are
crucial to understand the resulting geometric structures and determine their
asymptotic behavior. A big drawback is the fact that the radial parameter r is
removed in the system (1.4) by implicitly replacing it with a new parameter,
for example, in the work of Makino by

t(r) =
∫ r

δ

ds(
1 − 2m(s)

s

)
s
,

whose growth rate with respect to r cannot be controlled well enough a priori.
Such implicit reformulations prevent us from interpreting the results obtained
in the dynamical systems picture in the original variables, i.e., m, ρ, p, and
r. Nevertheless, the reformulation of (1.4) as a dynamical system is also the
major analytic tool employed in this paper.

1.4. A Geometric Interpretation: Our Results

In what follows, we provide a geometric description of the asymptotic behav-
ior of solutions to (1.4) with linear equation of state (1.6) and power-law
polytropic equation of state (1.9) with index n > 5. We show that spherically
symmetric static perfect fluids with linear equation of state are so-called quasi-
asymptotically flat, a concept developed by Nucamendi and Sudarsky [60]
which generalizes (and includes) the notion of asymptotic flatness and at the
same time admits conformal compactifications. The spatial Riemannian part
of the metrics is asymptotically conical.

Definition 1.1 (Quasi-asymptotically flat metrics (AFα) [60]). A spacetime
(M, g) with topology R × (R3 \ BR(0)), where BR(0) is a ball of radius R
around 0, is called quasi-asymptotically flat (AFα) if there exist α ∈ (0, 1) and
coordinates (τ, ξ, θ, φ) so that

g = gα + g̃, (1.10)

where gα is the so-called standard quasi-asymptotically flat metric (or SAFα
metric), given by

gα = −dτ2 + dξ2 + (1 − α)ξ2(dθ2 + sin2 θdφ2), (1.11)

and g̃ is of the form

g̃μνdxμdxν = aττdτ2 + aξξdξ2 + 2aξτdξdτ

+ ξ2[aθθdθ2 + aφφ sin2 θdφ2 + 2aθφ sin θdθdφ]

+ 2ξ[aτθdτdθ + aξθdξdθ] + 2ξ[aτφ sin θdτdφ + aξφ sin θdξdφ],

with aμν = o(ξ− 1
2 ) as ξ → ∞.

Note that the SAFα metrics gα play the same role as the Minkowski
metric does for asymptotically flat spacetimes.

Our result is formulated in this framework of quasi-asymptotic flatness.
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Theorem 1.2 (Linear equation of state). The unique global smooth solution
to the initial value problem of the static Einstein–Euler equations (1.4) in
spherical symmetric with linear equation of state p = Kρ, for fixed K ∈ (0, 1),
and central density ρ0 > 0, is quasi-asymptotically flat.

More precisely, in coordinates (τ = r
2K

1+K t, ξ = r√
1−α

, θ, φ), the solution
converges to the standard quasi-asymptotically flat metric

gα = −dτ2 + dξ2 + (1 − α)ξ2(dθ2 + sin2 θdφ2),

with α = 4K
(1+K)2+4K , with rate o(ξ− 1

2 ) as ξ → ∞.

The asymptotic behavior is different for solutions to (1.4) with power-
law polytropic-type equation of state (1.9). If n < 3 only solutions with finite
extent occur, if n > 5 only solutions with infinite extent occur [59]. Although
the latter solutions represent metrics that converge to the flat spacetime, they
are neither asymptotically nor quasi-asymptotically flat in the strict sense due
to a slower convergence rate than o(r− 1

2 ) and an infinite ADM mass. This
deviation from the standard (quasi-)asymptotically flat situation is captured
in our notion of scaled quasi-asymptotic flatness.

Definition 1.3 (Scaled quasi-asymptotically flat metrics (AFαβ)). A spacetime
(M, g) with topology R×(R3\BR(0)), where BR(0) is a ball of radius R around
0, is called scaled quasi-asymptotically flat (AFαβ), if there exist α ∈ [0, 1),
β > 0 and coordinates (τ, ξ, θ, φ) so that

g = g(α,β) + g̃, (1.12)

where g(α,β) is the so-called standard scaled quasi-asymptotically flat metric
(or SAFαβ metric), given by

g(α,β) = −dτ2 + ξ2β
(
dξ2 + (1 − α)ξ2(dθ2 + sin2 θdφ2)

)
, (1.13)

and g̃ is of the form

g̃μνdxμdxν = aττdτ2 + aξξξ
2βdξ2 + 2ξβaξτdξdτ

+ ξ2(1+β)[aθθdθ2 + aφφ sin2 θdφ2 + 2aθφ sin θdθdφ]

+ 2ξ1+β [aτθdτdθ + aτφ sin θdτdφ]

+ 2ξ1+2β [aξθdξdθ + aξφ sin θdξdφ],

with aμν = o(ξ− 1
2 ) as ξ → ∞.

Remark 1.4 (Relation to asymptotic flatness). If α = β = 0, then g(α,β) =
gα = g0 is the flat Minkowski metric. In fact, we can write the Minkowski
metric as g(α,β) for any choice of β ≥ 0 and fixed 1 − α = 1

(1+β)2 if we choose

a new radial coordinate ξ = 1+β
√

(1 + β)r, since then dr = ξβdξ. Thus, while
AFαβ metrics with 1 − α = 1

(1+β)2 are asymptotic to the flat spacetime, their
convergence rate is generally too slow to fall into the standard asymptotically
flat regime (the ADM mass is infinite). If, on the other hand, 1 − α < 1

(1+β)2
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the corresponding AFαβ metrics converge (slowly) to a spacetime metric gα

with a true conical angle.
Alternatively, we could have defined the SAFαβ metrics in (1.13) to be

of the form

g(α,β) = −dτ2 + (1 + β)ζ2β
(
dζ2 + (1 − α)ζ2(dθ2 + sin2 θdφ2)

)
,

to emphasize the transformation of the Minkowski metric via ζ = 1+β
√√

1 + βr

for any β ≥ 0 and fixed α = 0 (independent of β). For α > 0 we would obtain
the SAFα metrics in (1.11) with a true conical angle.

We formulate our result in this scaled quasi-asymptotically flat setting of
Definition 1.3.

Theorem 1.5 (Polytropic equation of state). The unique global smooth solu-
tion to the initial value problem of the static Einstein–Euler equations (1.4) in
spherical symmetry with power-law polytropic equation of state p = Kρ

n+1
n ,

for K ∈ (0, 1) and n > 5 fixed, and central density ρ0 > 0, is scaled
quasi-asymptotically flat. More precisely, in coordinates (τ = eν(r)t, ξ =
1+β
√

(1 + β)r, θ, φ), the solution is asymptotic to

g(α,β) = −dτ2 + ξ2β
(
dξ2 + (1 − α)ξ2(dθ2 + sin2 θdφ2)

)
,

where β > n−5
4 and 1 − α = 1

(1+β)2 < 16
(n−1)2 , with rate o(ξ− 1

2 ) as ξ → ∞.
In the original coordinates (t, r, θ, φ), the spatial part of these solutions is

asymptotic to the Euclidean metric

h0 = dr2 + r2(dθ2 + sin2 θdφ2),

with convergence rate O(r− 2
n−1 ) as r → ∞.

Remark 1.6. In view of the relation of g(α,β) to the Minkowski metric when
1 − α = 1

(1+β)2 , discussed in Remark 1.4, Theorem 1.5 shows that solutions
to (1.4) with power-law polytropic equation of state are in fact asymptotic
to the flat metric. However, the convergence rate of O(r− 2

n−1 ) as r → ∞ is
too slow to interpret this behavior in the standard asymptotically flat setting
which requires o(r− 1

2 ). It is conceivable that for related equations of state,
e.g., equations of state that are asymptotically linear/polytropic in the low-
pressure regime, also a nontrivial conical angle would occur, expressed by an
inequality 1 − α < 1

(1+β)2 .

Remark 1.7 (The borderline case). The asymptotic behavior of solutions to
(1.4) for equations of state that become polytropic of index n = 5 at the low-
pressure regime (recall that the low-pressure regime is critical for the behavior
at spatial infinity) is already known. It has been shown that the so-called
Buchdahl equation of state [15], given by

p =
1
6

ρ6/5

ρ
1/5
0 − ρ1/5

, 0 < ρ < ρ0,
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and generalizations thereof [9] yield asymptotically flat solutions with a fluid
extending to infinity. This essentially agrees with our observation in Theo-
rem 1.5 if we would consider the limit n → 5, because the necessary falloff rate
to obtain an asymptotically flat spacetime requires o(r− 1

2 ) [24]. As such the
index n = 5 is the borderline case between finite and infinite mass/extent.

In what follows, we briefly mention some of the properties of our geomet-
ric framework and discuss our results in the wider context of relativistic perfect
fluid models and of Einstein–matter equations in general. For further defini-
tions, properties and discussions related to the (scaled) quasi-asymptotically
flat metrics, we refer the reader to Sect. 2 of this paper.

Remark 1.8 (Generalized ADM mass). Since static perfect fluids with lin-
ear equations of state and polytropic equations of state with index n > 5
are not asymptotically flat, their ADM masses are infinite. In the framework
of quasi-asymptotic flatness, however, one can substitute the infinite ADM
mass by the use of a so-called ADMα mass introduced by Nucamendi and
Sudarsky [60]. This notion of mass coincides with the monopole mass used
in [6]. The standard quasi-asymptotically flat metric gα has vanishing ADMα
mass. The ADMα mass of a regular solutions described in Theorem 1.2, how-
ever, remains unknown and we argue in Remark 3.9 that it could be unbounded
below. Hence, also the concept of the ADMα mass is of little use in the analysis
of perfect fluids.

Based on our notion of scaled quasi-asymptotic flatness with reference
metrics g(α,β) as in Theorem 1.5, we consider a näıve definition of an ADMαβ
mass in Remark 2.14. For reference Riemannian metrics

h(α,β) = ξ2β
(
dξ2 + (1 − α)ξ2(dθ2 + sin2 θdϕ2)

)

and h a scaled quasi-asymptotically flat metric, we let

mADMαβ(h) =
1

16π(1 − α)
lim

ξ→∞
ξ−β

×
∫

Sξ(0)

(h(α,β)ikh(α,β)jl − h(α,β)ijh(α,β)kl)∇(α,β)
j (hkl) dSi,

(1.14)

where dSi is the i-th surface element and ∇(α,β) is the covariant derivative
with respect to h(α,β). We will see that, if α = β = 0, then (1.14) is just the
ADM mass, i.e.,

mADM00(h) = mADM(h).

The advantage of (1.14), however, is that it makes sense also for metrics that
are asymptotically flat in a nonstandard sense, namely for asymptotically con-
ical metrics and those with a slow converge rate as described in Definition 1.3.
The slower convergence rate is accounted for by multiplication by ξ−β , and
the deficit angle is accounted for by dividing by 1 − α.
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Since the solutions studied in Theorems 1.2 and 1.5 are of AFα and AFαβ
form, we obtain on a hypersurface Στ (τ is a rescaled time variable)

mADMαβ(hlin|Στ
) = O(1) + τ2O(1) < ∞,

for β > 1−K
1+3K and 1 − α < (1+3K)2

4((1+K)2+4K) , and

mADMαβ(hpoly|Στ
) = n−1

√
Kn

2π

(n − 3)(n + 1)n

(n − 1)2
∈ (0,∞),

for β = n−3
2 and 1 − α = 4

(n−1)2 . For further details, see Remarks 3.10 and
4.3. It remains to be checked whether any such notion of ADMαβ mass can
be derived in a coherent and coordinate-invariant fashion, and if and in what
sense such a mass could be preserved in time. A rigorous approach could be
based on related work on other masses [24,56,60].

Remark 1.9 (Dynamics). Knowledge about the asymptotic behavior of static
perfect fluids is also of use in the full dynamic picture when constructing local
solutions out of initial data sets. For example, recent results of LeFloch and
the second author [17] on the formation of trapped surfaces make use of initial
data that are constructed as large focused perturbations of static spherically
symmetric perfect fluids with linear equation of state. Local existence results
for solutions to the Einstein–Euler equations (1.1) with, in particular, power-
law polytropic equations of state (1.9) but compact support have been studied
in the smooth case by Rendall [70]. Using initial data with compact support
or satisfying certain falloff conditions, Brauer and Karp [12–14] constructed
solutions in a class of weighted Sobolev spaces with fractional order depend-
ing on the polytropic exponent Γ. However, already Makino [50,51] remarked
that general static solutions of (1.4) are actually excluded from the class of
density distributions allowed in the setting of Brauer and Karp, and proves
existence of smooth solutions near an equilibrium. Oliynyk [62,63] recently
also obtained local existence results in the realistic case of compact barotropic
fluid bodies with a free matter–vacuum boundary. For initial value formula-
tions that do admit smooth static solutions with infinite extent studied in
Theorems 1.2 and 1.5, we expect that our geometric interpretation applies to
other solutions studied in those frameworks as well. In fact, problems with
the common geometric paradigm of asymptotic flatness already occur when
one wants to consider rotating stars with a vacuum exterior. These stars are
modeled by stationary, axisymmetric perfect fluid spacetimes and one would
expect that they are—in analogy to the static case—glued to a Kerr vacuum
exterior. This is surprisingly not the case [18,52], but if a rotating star col-
lapses to a black hole, it is expected that the exterior region is approximately
Kerr [5,35,57,64,77,80].

Remark 1.10 (Other matter fields). The prototype for quasi-asymptotically
flat metrics is the global monopole spacetimes studied by Barriola and Vilenkin
[6], Nucamendi and Sudarsky [61] and others. Conical singularities (albeit in
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the center) also occur in electromagnetic fields, more precisely in asymptoti-
cally flat spherically symmetric static solutions of the Einstein–Maxwell equa-
tions as shown by Tahvildar-Zadeh [82]. Spherically symmetric static solutions
to the Einstein–Vlasov equations can also have infinite nonasymptotically flat
extent, and criteria for collisionless gas related to those in the perfect fluid
case which guarantee solutions with compact support have been discussed
by Andréasson, Fajman, Ramming, Rein and Thaller [2,3,69]. Moreover, in
a dynamical collapse scenario Rendall and Velázquez [72] obtained solutions
to the Einstein–Vlasov equations with naked-type singularities that are self-
similar and not asymptotically flat. Overall it is apparent that spacetimes
with matter extending to infinity that are not asymptotically flat are not
merely an artifact of these theories but in fact a common feature in gen-
eral relativity worth exploring. After all, asymptotic flatness is an idealiza-
tion that may simply not be suitable for many mathematical and physical
scenarios. The very basic vacuum solutions with positive and negative cos-
mological constant, de Sitter and anti-de Sitter spacetimes, respectively, are
prominent examples of asymptotically simple manifolds (in the sense of Pen-
rose [65–68]) that are not asymptotically flat. Spacetimes with an asymp-
totically hyperbolic (anti-de Sitter) behavior, in particular, became increas-
ingly important in the last few years [1,4,26,29,86]. We believe that, along
these lines, the geometric notion of scaled quasi-asymptotic flatness can
be verified and adopted in several other scenarios in general relativity as
well.

Outline This paper is structured as follows. Section 2 builds the geo-
metric core of this paper. The concept of (scaled) quasi-asymptotic flatness
is described in detail and related to the concept of asymptotic simplicity, i.e.,
conformal compactifications at null infinity. Furthermore, we recall the notions
of ADM mass and ADMα mass and extend it to include spacetimes that are
scaled quasi-asymptotically flat. Some simplifications for the spherically sym-
metric setting are also derived, which will be of use later. In Sect. 3 we see that
solutions to (1.4) with linear equation of state have infinite ADM mass but
converge to a standard quasi-asymptotically flat singular solution with van-
ishing ADMα mass. This proves Theorem 1.2. The analytical tool used here
is the reformulation of (1.4) as a dynamical system and a stability analysis
via linearization. A similar but slightly more involved procedure is applied in
Sect. 4 to analyze solutions with polytropic equations of state. This analysis
and a geometric reformulation yield Theorem 1.5.

Notations and conventions Throughout the manuscript, we use Greek
indices μ, ν, etc., to denote the components 0, 1, 2, 3 of a spacetime metric
g, and Latin indices i, j, k, etc., to denote the components 1, 2, 3 of the spa-
tial metric (often h). The signature of g is (−,+,+,+). We use the Einstein
summation convention.
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2. Beyond Asymptotic Flatness

2.1. Asymptotically and (Scaled) Quasi-Asymptotically Flat Metrics

We are primarily interested in spherically symmetric metrics. For polar coor-
dinates (t, r, θ, φ), we can write the metric tensor in the form

g = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2), (2.1)

where ν and λ are the unknown metric variables. Asymptotic flatness is tied
to the limiting behavior (with specific decay rates)

lim
r→∞ ν(r) = lim

r→∞ λ(r) = 0, (2.2)

which only holds for a very limited number of equations of state. In general,
we will not observe that λ(r) tends to 0 at infinity but to some positive value
Λ such that

lim
r→∞ e2λ(r) = e2Λ > 1. (2.3)

For example, in the specific situation of global monopole spacetimes the asymp-
totic behavior

e2ν(r) = e−2λ(r) = 1 − α − 2M

r
+ O(r−2)

has been studied by Barriola and Vilenkin [6] and later led Nucamendi and
Sudarsky [60] to introduce the concept of quasi-asymptotic flatness introduced
in Definition 1.1.

Metrics that are quasi-asymptotically flat are asymptotic to metrics of
the form

gα = −dτ2 + dξ2 + (1 − α)ξ2(dθ2 + sin2 θdφ2),

for some α ∈ (0, 1), as ξ → ∞.
These metrics gα play the same role as the Minkowski metric does for

asymptotically flat spacetimes. Note that we allow the slightly weaker falloff
condition o(ξ− 1

2 ) rather than O(ξ−1) which was used by Nucamendi and
Sudarsky in [60]. This is in accordance with the asymptotically flat situation
(see, for example, [24]) and the definition of a mass in Sect. 2.4.

Due to the occurrence of even slower convergence rates o(r− 1
2(1+β) ), for

some β > 0, in our analysis of solutions to the Einstein–Euler equations (1.1),
we further introduced the concept of scaled quasi-asymptotic flatness in Defi-
nition 1.3. The basic idea is to study metrics that are asymptotic to those of
the form

g(α,β) = −dt2 + (1 + β)r2β
(
dr2 + (1 − α)r2(dθ2 + sin2 θdφ2)

)
,

for α ≥ 0 and β ≥ 0 with convergence rate o(r− 1
2 ) as r → ∞.

In the sections to come, we will review general properties of (scaled)
quasi-asymptotically flat metric, such as the existence of conformal com-
pactifications, the spherically symmetric situation and notions of masses.
Since gα = g(α,0), we will only consider the general case of scaled quasi-
asymptotically flat metrics and remark on specific results if β = 0 separately.
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2.2. Asymptotic Simplicity

In [60, Section 3] it was shown that the SAFα spacetime (M, gα) can be con-
formally compactified in the sense of Penrose [65–67] and is therefore asymp-
totically simple. More precisely, the concepts of future null infinity I + and
past null infinity I − exist, but not spatial infinity ι0. We recall the precise
definition of (weakly) asymptotically simple spacetimes (see, for example, [68,
Section 9.6]) and provide a corresponding proof for the SAFαβ spacetime
(R1+3, g(α,β)).

Definition 2.1 ((Weakly) asymptotically simple spacetimes). A spacetime
(M, g) is called asymptotically simple if there exists a smooth spacetime (M̂, ĝ)
with boundary such that

(i) M is the interior of M̂ , and hence, M̂ = M ∪ I with ∂M̂ = I ,
(ii) the unphysical metric ĝ is conformal to the physical metric g, i.e., there

exists a smooth conformal factor Ω on M̂ such that
• ĝμν = Ω2gμν in M
• Ω > 0 on M , and Ω = 0, ∇μΩ �= 0 along I ,

(iii) every inextendible null geodesic in M has a future and past end point on
I .

A spacetime (M, g) is called weakly asymptotically simple if there exists an
asymptotically simple N such that for a neighborhood U of I in N̂ , U ∩ N is
isometric to a subset of M .

Note that (iii) requires that the spacetime is null geodesically complete
and hence rules out singularities, black holes, etc. Weakly asymptotically sim-
ple spacetimes, however, may possess further “infinities”.

In the sense of Penrose, a spacetime is asymptotically flat if it is weakly
asymptotically simple and asymptotically empty, i.e., the Ricci tensor vanishes
in a neighborhood of I .

Proposition 2.2. The SAFαβ spacetime (M, g(α,β)) is asymptotically simple
for any α ∈ [0, 1) and β ≥ 0. It is (asymptotically) empty if and only if α = 0.

Proof. We use standard conformal compactification of Minkowski space, to
show that (M, g(α,β)) is asymptotically simple. The transformation

u = t +
r1+β

1 + β
, v = t − r1+β

1 + β
,

immediately implies that −dt2 + r2βdr2 = −dudv and r2(1+β)

(1+β)2 = (u−v)2

4 . Next
we compactify u and v by choosing

T = arctan v + arctan u, R = arctan v − arctan u.

Therefore,

u = tan
(

T − R

2

)
, v = tan

(
T + R

2

)
,

The range of T and R is T + R, T − R ∈ (−π, π), R ∈ (0, π) and can be
extended to include future and past null infinity, i.e., T +R, T −R = ±π. The
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fact that −dudv = (1+u2)(1+v2)
4 (−dT 2 + dR2) suggests that we should use the

conformal factor

Ω2 :=
4

(1 + u2)(1 + v2)
= 4 cos2

(
T − R

2

)
cos2

(
T + R

2

)
.

We verify that Ω satisfies all conditions of Definition 2.1. It is clear that Ω2 > 0
on M given by T +R, T −R ∈ (−π, π), R ∈ (0, π) and Ω = 0 for T +R, T −R =
±π. Furthermore,

∇T Ω = −2(cos T + cos R) sinT, ∇RΩ = −2(cos T + cos R) sin R,

do not vanish at the boundary because R �= 0, π. The transformed SAFαβ
metric g(α,β) (1.13) reads

ĝ(α,β) := Ω2g(α,β)

= −dT 2 + dR2 +
(u − v)2

(1 + u2)(1 + v2)
(1 + β)2(1 − α)(dθ2 + sin2 θdφ2)

= −dT 2 + dR2 + sin2 R (1 + β)2(1 − α)(dθ2 + sin2 θdφ2).

Since the only nonvanishing terms of the Ricci curvature tensor are

R22 = (1 − (1 − α)(1 + β)2), R33 = (1 − (1 − α)(1 + β)2) sin2 θ,

the metric g(α,β) is in general not asymptotically empty. It is asymptotically
empty if and only if α = β = 0, i.e., if g(α,β) is the Minkowski metric. �

Remark 2.3. In general, we do not expect that (scaled) quasi-asymptotically
flat spacetimes as described in Definition 1.3 admit a smooth conformal com-
pactification. We can, however, show that the prescribed decay rate yields a
continuous conformal compactification and expect that further restrictions on
the decay rate of the derivatives yield more regular conformal compactifica-
tions in accordance with the asymptotically flat situation (for a discussion in
the latter framework see, for example, [34, Section 2.3] and [36, Section 3]).
To this end, one has to utilize the same embedding and unphysical spacetime

M̂ = {(T,R) |R ∈ (0, π), T ± R ∈ (−π, π)} ∪ {T + R = ±π} ∪ {T − R = ±π},

and the same conformal factor,

Ω = 2 cos
(

T − R

2

)
cos
(

T + R

2

)
,

as in the proof of Proposition 2.2.

2.3. (Scaled) Quasi-Asymptotic Flatness for Static Spherically Symmetric
Spacetimes

We show how the asymptotic behavior of spherically symmetric metrics (2.1)
that are not asymptotically flat can be analyzed in the setting of scaled quasi-
asymptotic flatness, depending on the limiting behavior of λ and ν as r → ∞.

In Sects. 3 and 4 we verify that perfect fluids with linear and polytropic
equation of state (for n > 5) satisfy these conditions.
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Proposition 2.4. Suppose g is a static spherically symmetric Lorentzian metric
of the form (2.1), i.e., in local coordinates (t, r, θ, φ) we can write

g = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2).

If for some Λ ≥ 0 and β ≥ 0 the functions λ and ν satisfy1

ν′(r) = o(r− 1
2(1+β) ),

e2λ(r)−2Λ − 1 = o(r− 1
2(1+β) ), (2.4)

as r → ∞, then there exists α ∈ [0, 1) and a coordinate system (τ, ξ, θ, φ) such
that g is of the form

g = g(α,β) + g̃,

with decay rates aμν = o(ξ− 1
2 ) as ξ → ∞ for the scaled components of g̃. In

particular, g is scaled quasi-asymptotically flat (AFαβ) in the sense of Defini-
tion 1.3 with scaling exponent β and deficit angle

(1 − α)π = (1 + β)−2e−2Λπ.

Proof. Set τ := eν(r)t and ξ := 1+β
√

(1 + β)eΛr. Since β ≥ 0,

dτ = ν′(r)τdr + eν(r)dt,

dξ =
1

1 + β

(
(1 + β)eΛr

) 1
1+β −1

(1 + β)eΛdr = eΛξ−βdr.

Hence,

e2ν(r)dt2 = (dτ − ν′(r)τdr)2

= (dτ − ν′((1 + β)−1e−Λξ1+β)e−Λτξβdξ)2

= dτ2 − 2e−Λν′((1 + β)−1e−Λξ1+β)τξβdτdξ

+ e−2Λν′((1 + β)−1e−Λξ1+β)2τ2ξ2βdξ2,

and

e2λ(r)dr2 = e2λ(r)−2Λe2Λdr2 = e2λ((1+β)−1e−Λξ1+β)−2Λξ2βdξ2.

The metric of the unit sphere, i.e., dΩ2 = dθ2 + sin2 θdφ2, remains unchanged
and we thus have that

g = − e2ν(r)dt2 + e2λ(r)dr2 + r2dΩ2

= − dτ2 + ξ2βdξ2 + (1 + β)−2e−2Λξ2(1+β)dΩ2

+ 2e−Λν′((1 + β)−1e−Λξ1+β)τξβdτdξ

+
[
−1 + e2λ((1+β)−1e−Λξ1+β)−2Λ − e−2Λν′((1 + β)−1e−Λξ1+β)2τ2

]
ξ2βdξ2.

For α ∈ (0, 1) defined by 1 − α = (1 + β)−2e−2Λ, g is therefore of the form

g = g(α,β) + g̃,

1Thus, in particular, limr→∞ λ(r) = Λ but ν(r) may diverge.
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and it remains to verify the decay rates for g̃. The nonzero components of g̃,
that is aτξ and aξξ as in Definition 1.3, satisfy

aτξ = 2e−Λν′((1 + β)−1e−Λξ1+β)τ = o(ξ− 1
2 ),

and

aξξ = −1 + e2λ((1+β)−1e−Λξ1+β)−2Λ − e−2Λν′((1 + β)−1e−Λξ1+β)2τ2

= o(ξ− 1
2 ) − o(ξ−1) = o(ξ− 1

2 ),

due to the assumptions (2.4). This verifies the conditions of Definition 1.3. �

Remark 2.5 (Higher decay rates). Suppose g is a spherically symmetric metric
with better decay rates, i.e., for a β > −1,

ν′(r) = O(r− 1
1+β ),

e2λ(r)−2Λ − 1 = O(r− 1
1+β ), (2.5)

as r → ∞, then g of course also satisfies (2.4) since − 1
2(1+β) > − 1

1+β . Hence,
by Proposition (2.4), g is AFαβ. However, the components aμν then satisfy a
better decay rate o(ξ−1) then if β would have been chosen optimally. This will
be useful later in the context of an ADMαβ mass in Remark 2.14.

In the case β = 0, Proposition 2.4 implies that the metric is quasi-
asymptotically flat in the sense of Definition 1.1.

Corollary 2.6. Suppose g is a static spherically symmetric Lorentzian metric
of the form (2.1), i.e., in local coordinates (t, r, θ, φ) we can write

g = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2).

If for some Λ ≥ 0 the functions λ and ν satisfy

ν′(r) = o(r− 1
2 ),

e2λ(r)−2Λ − 1 = o(r− 1
2 ), (2.6)

as r → ∞, then there exists a coordinate system (τ, ξ, θ, ϕ) such that g̃μν =
o(ξ− 1

2 ) as ξ → ∞. In particular, g is quasi-asymptotically flat in the sense of
Definition 1.1 with deficit angle

(1 − α)π = e−2Λπ.

2.4. Beyond the ADM Mass

Let us recall the definition of the ADM mass. For asymptotically flat metrics,
the spatial part should satisfy

hij = δij + o(r− 1
2 ), ∂khij = O(r− 3

2 ), as r → ∞.

The associated ADM mass can then be defined by the asymptotic behavior at
spatial infinity,

mADM(h) =
1

16π
lim

R→∞

∫
SR(0)

(∂lhi
l − ∂ihl

l) dSi, (2.7)
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where SR(0) is a 2-sphere with radius R and dSi are the Euclidean coordinate
surface elements, i.e., dSi = xi

r dx1∧· · ·∧ d̂xi ∧· · ·∧dxn. The ADM mass exists
and is finite if the scalar curvature R(h) is integrable [7,24]. Moreover, it is a
geometric invariant (i.e., coordinate invariant) that is always nonnegative and
zero only for the Minkowski metric [75,76,88].

For general spherically symmetric Riemannian metrics of the form

h = a(r)dr2 + b(r)r2(dθ2 + sin θ2dφ2),

with a, b differentiable and satisfying the above decay a − 1 = o(r− 1
2 ), b − 1 =

o(r− 1
2 ), ar = O(r− 3

2 ) and br = O(r− 3
2 ), one obtains (see, for example, [25, p.

12])

mADM(h) =
1
2

lim
r→∞

(
(a − b)r − brr

2
)
. (2.8)

In particular, the ADM mass of the Schwarzschild metric coincides with the
mass m of the black hole.

Let us consider the problem of convergence for the integral in (2.7) in
the case of quasi-asymptotically flat spacetimes. The asymptotic behavior of a
spherically symmetric, quasi-asymptotically flat metric g is dominated by the
corresponding SAFα metric gα (1.11). The spatial part hα of gα, i.e.,

hα = dξ2 + (1 − α)ξ2(dθ2 + sin2 θdφ2),

has scalar curvature

R(hα) =
2α

1 − α
ξ−2 > 0, ξ ∈ (0,∞).

Since R(hα) �∈ L1(R3\BR(0)) for any R > 0, the ADM mass of hα and thus h
is infinite [7].

One advantage of proving quasi-asymptotic flatness for a given spacetime
is the availability of another concept of mass, the so-called ADMα mass for the
spatial part of the spacetime metric g. This natural generalization of the ADM
mass for AFα slices can be defined using the background metric hα, again
following the work of Nucamendi and Sudarsky [60] with a slightly weaker
falloff rate. They introduced the ADMα mass in the framework of Einstein–
scalar theory.

Definition 2.7 (ADMα mass [60]). Suppose hα is the spatial SAFα metric
defined for the hypersurface Στ (i.e., such that τ = constant) of (1.11) and

h = hα + h̃

is a spatial AFα metric with h̃ij = o(ξ− 1
2 ) and ∂kh̃ij = O(ξ− 3

2 ) as ξ → ∞.
The ADMα mass of h is defined by

mADMα(h) =
1

16π(1 − α)
lim

ξ→∞

∫
Sξ(0)

(hαikhαjl − hαijhαkl)∇α
j (hkl) dSi, (2.9)

where ∇α denotes the covariant derivative associated with hα and dSi the i-th
coordinate surface element with respect to hα.
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Remark 2.8 (Relation to ADM mass). In the following sense, the ADMα mass
is an extension of the ADM mass. If α = 0, then h0ij = δij is just the reference
Euclidean metric and

(h0ikh0jl − h0ijh0kl)∇0
j (hkl) = δikδjl∂jhkl − δijδkl∂jhkl = ∂lhi

l − ∂ihl
l;

thus, (2.9) yields exactly (2.7).

Remark 2.9. The ADMα mass coincides with the parameter M of global mono-
pole spacetimes studied by Barriola and Vilenkin [6].

Remark 2.10 (The ADMα mass is a geometric invariant of (Σ, h).). Nuca-
mendi and Sudarsky proved in [60, Section 4] that the ADMα is coordi-
nate invariant given their slightly stricter setting with h̃ij = O(ξ−1) and
∂kh̃ij = O(ξ−2). To see that the proof extends to our Definition 2.7, it is
crucial to note that h in “Cartesian” coordinates xi, yi (which are assumed to
preserve the asymptotic behavior) reads

h
(x)
ij = (1 − α)δij + α

xixj

ξ2
+ Aij ,

h
(y)
ij = (1 − α)δij + α

yiyj

ξ2
+ Bij ,

now with

Aij = o(ξ− 1
2 ), Bij = o(ξ− 1

2 ), (2.10)

∂kAij = O(ξ− 3
2 ), ∂kBij = O(ξ− 3

2 ), (2.11)

as compared to O(ξ−1) and O(ξ−2) in [60, Eq. (39)]. This follows directly from
[24, Lemma 1] and the fact that the SAFα metric satisfies

hα
ij = (1 − α)δij + α

xixj

ξ2
.

Lemma 1 in [60, p. 1315] follows also from the decay assumptions (2.10). In
fact, |Aab| ≤ C

ξγ for some γ > 0 and sufficiently large ξ yields the same result.
Lemma 2 in [60, p. 1316] follows too, in fact it can be improved to only require
ηa = o(ξ

1
2 ) and ∂ηa(y)

∂yb = o(ξ− 1
2 ). The final result for our weaker decay rates

used in Definition 2.7 follows from the theorem in [60, p. 1319 ff], and it
remains to be checked whether all the same terms can still be eliminated.

Remark 2.11 (Nonpositivity of the ADMα mass). Unlike the ADM mass for
asymptotically flat spacetimes, the ADMα mass is not nonnegative. Indeed,
it can be negative, depending on the choice of the reference metric (which
corresponds to adding a constant). The more crucial point of whether the
ADMα is generally bounded from below is still open. We refer to [60,61] for a
discussion of these issues.

In what follows, we derive a simpler notion of the ADMα mass if the met-
ric is spherically symmetric, in analogy to the expression (2.8) in the asymp-
totically flat situation.
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Lemma 2.12. Suppose h is a spherically symmetric, quasi-asymptotically flat,
Riemannian 3-metric of the form

h = a(ξ) dξ2 + b(ξ) (1 − α)ξ2(dθ2 + sin2 θdφ2), α ∈ [0, 1).

Then the ADMα mass of h is

mADMα(h) = lim
ξ→∞

1
2
(
ξ(a − b) − ξ2∂ξb

)
. (2.12)

Therefore, if a − b = O(ξ−1) and ∂ξb = O(ξ−2), then mADMα(h) is finite.

Proof. Recall that the spatial part of the SAFα metric is

hα = dξ2 + (1 − α)ξ2(dθ2 + sin2 θdφ2).

In Cartesian coordinates,

x1 = ξ sin θ cos φ, x2 = ξ sin θ sin φ, x3 = ξ cos θ,

we have the metric components

hα
ij = (1 − α)δij + α

xixj

ξ2
, (2.13)

since dξ2 = xixj

ξ2 dxidxj . The components of the inverse metric h−1 are

hαij =
1

1 − α

(
δij − α

xixj

ξ2

)
; (2.14)

thus, we can already compute the first term, hαikhαjl−hαijhαkl, in the integral
of (2.9).

It remains to compute the covariant derivative of h. Since ∇α is the
Levi-Civita connection with respect to hα, by definition, ∇α

k hα
ij = 0 for all

i, j, k. Therefore, we prefer to write h as a perturbation of hα, that is,

h = bhα + (a − b)dξ2.

Hence,

∇αh = (∇αb)hα + ∇α((a − b)dr2)

= (∇αb)(hα − dξ2) + (∇αa)dξ2 + (a − b)(∇αdξ2)

= (1 − α)(∇αb)(δ − dξ2) + (∇αa)dr2 + (a − b)(∇αdr2)

= (1 − α)(∇αb)δ + (∇αa − (1 − α)∇αb)dξ2 + (a − b)(∇αdξ2), (2.15)

where δ is the standard Euclidean metric δ = dx2 + dy2 + dz2. Since b is just
a function,

∇α
j b = ∂jb =

db

dξ

∂ξ

∂xj
= ∂ξb

xj

ξ
,

and similarly for a. For any (0, 2)-tensor field, ∇α
j hkl = ∂jhkl − αΓm

jkhml −
αΓm

jlhmk, with Christoffel symbols

αΓm
jk =

α

ξ2

(
δjkxm − xmxjxk

r2

)
. (2.16)
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In particular, for dξ2 = xkxl

ξ2 dxkdxl,

∇α
j (dξ2)kl

= ∂j(dξ2)kl − αΓm
jk(dξ2)ml − αΓm

jl (dξ2)mk

= δkj
xl

ξ2
+ δlj

xk

ξ2
− 2

xjxkxl

ξ4
− α

ξ2

(
δjkxl−xjxkxl

ξ2

)
− α

ξ2

(
δjlxk − xjxkxl

ξ2

)

=
1 − α

ξ2

(
δjkxl + δjlxk − 2

xjxkxl

ξ2

)
.

Thus, by (2.15),

∇α
j hkl =(1 − α)∂ξb

xj

ξ
δkl + (∂ξa − (1 − α)∂ξb)

xjxkxl

ξ3

+
1 − α

ξ2
(a − b)

(
δjkxl + δjlxk − 2

xjxkxl

ξ2

)
. (2.17)

Together with (2.14), we can now compute the i-th component of the integrand
in (2.9),

T i := (hαikhαjl − hαijhαkl)∇α
j (hkl).

For the first term in (2.17), we obtain

T i
(1) = (hαikhαjl − hαijhαkl)(1 − α)br

xj

ξ
δkl

= (1 − α)
∂ξb

ξ

(
hαikxk − hαijxj

3 − α

1 − α

)
= −2∂ξb

xi

ξ
,

and for the second one

T i
(2) = (∂ξa − (1 − α)∂ξb)(hαikhαjl − hαijhαkl)

xjxkxl

ξ3
= 0,

since hαijxj = xi, hαkl xkxl

ξ2 = 1 and hαklδkl = 3−α
1−α . Finally, the third term of

the i-th component of the integrand is

T i
(3) =

1 − α

ξ2
(a − b)(hαikhαjl − hαijhαkl)

(
δjkxl + δjlxk − 2

xjxkxl

ξ2

)

=
1 − α

ξ2
(a − b)

(
0 + xi 2

1 − α
− 0
)

= 2(a − b)
xi

ξ2

Since
√

det hα = (1 − α), the i-th coordinate surface element reads

dSi =
xi

ξ

√
det(hα)dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

= (1 − α)
xi

ξ
dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn,

where the notation d̂xi means that dxi is missing. Therefore, including the
component xi

ξ of the i-th coordinate surface element,

T i xi

ξ
= −2∂ξb + 2

a − b

ξ
, (2.18)
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and we obtain (2.12) from (2.9) and (2.18),

mADMα =
1

16π(1 − α)
lim

ξ→∞

∫
Sξ(0)

(
2
a − b

ξ
− 2∂ξb

)
(1 − α)dS

=
1

8π(1 − α)
lim

ξ→∞

∫ π

0

∫ 2π

0

(
a − b

ξ
− ∂ξb

)
(1 − α)ξ2 sin θ dθdφ

=
1
2

lim
ξ→∞

(
ξ(a − b) − ξ2∂ξb

)
. �

A more special case is the following, where the ADMα is already built
in the construction of the metric, just like the ADM mass of the black hole
is built in the standard expression of the Schwarzschild metric (cf. also [61,
Section 2]).

Corollary 2.13. Suppose a(ξ) =
(
1 − 2M(ξ)

r

)−1

with M(ξ) = o(ξ) as r → ∞
and b(ξ) = 1, then Lemma 2.12 implies that the metric

h =
(

1 − 2M(ξ)
ξ

)−1

dξ2 + (1 − α)ξ2(dθ2 + sin2 θdφ2)

has ADMα mass

mADMα(h) = lim
ξ→∞

M(ξ).

Proof. By the assumption M(ξ) = o(ξ), for each n ∈ N exists ξn > 0 such
that

1 − 1
n

≤ 1 − 2M(ξ)
r

≤ 1 +
1
n

for all ξ ≥ ξn. Therefore, by Lemma 2.12, for all n ∈ N,

mADMα(h) =
1
2

lim
ξ→∞

(a − b)ξ = lim
ξ→∞

M(ξ)

1 − 2M(ξ)
ξ

≤ n

n − 1
lim

ξ→∞
M(ξ),

and similarly

mADMα(h) ≥ n

n + 1
lim

ξ→∞
M(ξ),

which yields the desired result by the Squeeze Theorem. �

Remark 2.14 (ADMαβ mass). As in the quasi-asymptotically flat case, one
should have a geometrically invariant ADMαβ mass, that takes the slower
convergence rate into account. One expects to obtain a mass that measures
the deviation to

h(α,β) = ξ2β
(
dξ2 + (1 − α)ξ2(dθ2 + sin2 θdφ2)

)
.

An ad hoc candidate would be
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mADMαβ(h) =
1

16π(1 − α)
lim

ξ→∞
ξ−β

×
∫

Sξ(0)

(h(α,β)ikh(α,β)jl − h(α,β)ijh(α,β)kl)∇(α,β)
j (hkl) dSi,

(2.19)

where dSi is the i-th coordinate surface element with respect to h(α,β). Clearly,
if β = 0 (2.19) is just the ADMα mass of h, and if α = β = 0 it is the
ADM mass. In fact, we expect an even more direct relation as appears in the
spherically symmetric case in Remark 2.16.

To obtain a rigorous geometrically invariant definition of such an ADMαβ
mass for scaled quasi-asymptotically flat metrics, one may follow the steps
outlined by Michel [56]. We will not pursue such a rigorous definition further
in this paper, but rather provide arguments for why an investigation of such
slowly converging spacetimes is useful in the first place, and how a notion of
generalized ADM mass helps to control their asymptotic behavior.

Remark 2.15 (ADMαβ mass for the Minkowski metric). In Introduction, in
Remark 1.4, we mentioned that the Minkowski metric can be rewritten as a
SAFαβ metric g(1−1/(1+β)2),β) for any β ≥ 0 if we choose a radial coordinate
ξ = 1+β

√
(1 + β)r. For arbitrary α and β, we obtain that

(h(α,β)ikh(α,β)jl − h(α,β)ijh(α,β)kl)∇(α,β)
j (h0

kl) =
2((1 − α)(1 + β)2 − 1)
ξ1+2β(1 − α)(1 + β)

,

for the integrand of the ADMαβ mass of h0, which in general may not be
integrable. If, however, 1 − α = 1

(1+β)2 then the integrand vanishes since h0 is
then the SAFαβ metric h(α,β) and

mADMαβ(h0) = 0.

Remark 2.16 (ADMαβ mass in spherical symmetry). A comparison to hα

helps to simplify the formula (2.19). Although ξ is not the area radius (but a
scaled version thereof, see Remark 1.4), we consider the same “scaled” Carte-
sian coordinates given by

y1 = ξ sin θ cos φ, y2 = ξ sin θ sin φ, y3 = ξ cos θ.

The metric and inverse metric components are therefore

h
(α,β)
ij = ξ2βhα

ij = ξ2β
(
(1 − α)δij + α

yiyj

r2

)
,

and

h(α,β)ij = ξ−2βhαij =
1

ξ2β(1 − α)

(
δij − α

yiyj

ξ2

)
,

where we used the already derived expressions (2.13) and (2.14) for the spatial
components of the SAFα metric gα read we can simplify the first factor in the
integrand of (2.19) to
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h(α,β)ikh(α,β)jl − h(α,β)ijh(α,β)kl

= ξ−4β(hαikhαjl − hαijhαkl)

=
1

ξ4β(1 − α)2
(
δikδjl − δijδkl

)

− α

ξ2(1+2β)(1 − α)2
(
δikyjyl + δjlyiyk − δijykyl − δklyiyj

)

(2.20)

Similarly, to simplify the term

∇(α,β)
j hkl = ∂jhkl − (α,β)Γm

jkhml − (α,β)Γm
jlhmk

we utilize the relation of the Christoffel symbols of h(α,β) and hα and the
formula for αΓm

jk obtained in (2.16), i.e.,

(α,β)Γm
jk = (1 + β) αΓm

jk +
β

ξ2

(
ykδm

j + yjδ
m
k − ymδjk

)

= (1 + β)
α

ξ2

(
δjkym − ymyjyk

ξ2

)
+

β

ξ2

(
ykδm

j + yjδ
m
k − ymδjk

)
,

or also written as

(α,β)Γm
jk = αΓm

jk +
β

ξ2

(
ykδm

j + yjδ
m
k − (1 − α)ymδjk − α

ymyjyk

ξ2

)
.

Hence, ∇(α,β)
j hkl can be written as

∇(α,β)
j hkl = (1 + β)∇α

j hkl

−β
(
∂jhkl − 1

ξ2
(ykhjl + ylhjk + 2yjhkl − δjkymhml − δjly

mhmk)
)

or, alternatively, as
∇(α,β)

j hkl

= ∇α
j hkl − β

ξ2

((
ykδ

m
j + yjδ

m
k − (1 − α)y

m
δjk − α

ymyjyk

ξ2

)
hml

+
(
ylδ

m
j + yjδ

m
l − (1 − α)y

m
δjl − α

ymyjyl

r2

)
hmk

)

= ∇α
j hkl − β

r2

×
(

2yjhkl + ykhjl + ylhjk − (1 − α)y
m

(δjkhml + δjlhmk) − α
ymyj

r2
(ykhml + ylhmk)

)

︸ ︷︷ ︸
=:G(α,β)(h)jkl

.

The above manipulations hold for any Riemannian metric h. For a spher-
ically symmetric AFαβ metric h̃ of the form

h̃ = ξ2β
(
a(ξ)dξ2 + b(ξ)(1 − α)ξ2(dθ2 + sin2 θdφ2)

)
= bh(α,β) + (a − b)ξ2βdξ2, (2.21)

we can therefore directly use the computations of Lemma 2.12 to simplify
(2.19), since h̃ = ξ2βh with h as in Lemma 2.12. It follows that
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∇(α,β)h̃ = (1 − α)ξ2β(∇(α,β)b)δ + ξ2β(∇(α,β)a − (1 − α)∇(α,β)b)dξ2

+ (a − b)(∇(α,β)ξ2βdξ2)

= ξ2β∇αh + (∇ξ2β)(a − b)dξ2 + ξ2β(a − b)(∇(α,β)dξ2 − ∇αdξ2),
(2.22)

where ∇jξ
2β = ∂jξ

2β = 2βξ2β xj

ξ2 and ∇(α,β)dξ2−∇αdξ2 = − β
ξ2 G(α,β)(dξ2)jkl.

We consider the integrand

T̃ i = (h(α,β)ikh(α,β)jl − h(α,β)ijh(α,β)kl)∇(α,β)
j h̃kl

= ξ−2β(hαikhαjl − hαijhαkl)

×
(

∇α
j hkl + 2β(a − b)

yjykyl

ξ4
− (a − b)

β

ξ2
G(α,β)(dξ2)jkl

)

By (2.17) in the proof of Lemma 2.12, the first term in this product is known
to be

T̃ i
(1) = ξ−2βT i = ξ−2β

(
−2∂ξb

yi

ξ
+ 2(a − b)

yi

ξ2

)
,

and the second term vanishes similar to T i
(2). To compute the last term, we

note that (dξ2)kl = ykyl

ξ2 and

G(α,β)(dξ2)jkl = −2
yjykyl

ξ2
+ (1 − α)(δjkyl + δjlyk − 2

yjykyl

ξ2
),

of which the first term disappears in the product T̃i (similar to T i
(2)) and the

second one simplifies as in T i
(3). Thus, the last term in T̃i reads

T̃ i
(3) = ξ−2β(a − b)

β

ξ2
(hαikhαjl − hαijhαkl)(1 − α)δjlxk = ξ−2β2β(a − b)

yi

ξ2
.

We combine all the terms and thus arrive at

T̃ i = ξ−2β

(
−2(∂ξb)

yi

ξ
+ 2(1 + β)(a − b)

yi

ξ2

)
,

and thus,

T̃ i yi

ξ
= r−2β

(
2(1 + β)

a − b

ξ
− 2∂ξb

)
. (2.23)

Finally, note that the components of the i-th coordinate surface element
dSi with respect to h(α,β) are

dSi =
yi

ξ

√
det(h(α,β))dy1 ∧ · · · ∧ d̂yi ∧ · · · ∧ dyd

= (1 − α)ξdβ yi

ξ
dy1 ∧ · · · ∧ d̂yi ∧ · · · ∧ dyd,

where d = 3 is the dimension. The normal vectors coincide, and hence,

dSi = (1 − α)ξ3βdS̃i, (2.24)
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where dS̃i is the i-th coordinate surface element of the Euclidean space (with
r replaced by ξ, and xi replaced by yi).

Thus, combining (2.23) with (2.24) yields
mADMαβ(h̃)

=
1

16π(1 − α)
lim

ξ→∞
ξ−3β

∫
Sξ(0)

(
2(1 + β)

a − b

ξ
− 2∂ξb

)
dSi

=
1

8π(1 − α)
lim

ξ→∞
ξ−3β

∫ π

0

∫ 2π

0

(
2(1 + β)

a − b

ξ
− 2∂ξb

)
(1 − α)ξ3βξ2 sin θdθdφ

=
1

2
lim

ξ→∞
(
ξ(1 + β)(a − b) − ξ2∂ξb

)
, (2.25)

a formula for the ADMαβ for spherically symmetric AFαβ metrics of the form
(2.21).

3. Perfect Fluids with Linear Equation of State

The linear relation p = Kρ, K ∈ [0, 1] between the pressure p and the mass–
energy density ρ immediately implies that the static Einstein–Euler equations
(1.4a)–(1.4b) in spherical symmetry can be reformulated as system of ordinary
differential equations in m and ρ,

mr = 4πr2ρ, (3.1a)

ρr = − (1 + K)ρ
r − 2m

(
4πr2ρ +

m

rK

)
. (3.1b)

Even in this simplest setting, only very exceptional exact solutions are known
[43]. More can be said about the asymptotic behavior of solutions. A geo-
metric understanding of the asymptotic behavior of the resulting spherically
symmetric, static spacetime metric

g = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2), (3.2)

is the main goal of this section. The metric components λ, ν can be derived by
integrating (1.2)–(1.3) and yield (for ν(0) := 0)

e2ν(r) =
(

ρ0

ρ(r)

) 2K
1+K

, e2λ(r) =
(

1 − 2m

r

)−1

. (3.3)

3.1. The Initial Value Problem

Suppose we prescribe an central density ρ0 > 0 and K ∈ (0, 1]. According to
Rendall and Schmidt [71, Theorem 2] and LeFloch and the second author [17,
Theorem 4.3], there exists a unique, smooth and positive global solution (m, ρ)
of (3.1) such that

lim
r→0

m(r) = 0, lim
r→0

ρ(r) = ρ0.

The solution must have infinite extent since condition (1.5) is violated, i.e., for
any p0 > 0, ∫ p0

0

dp

ρ(p) + p
=
∫ p0

0

dp

(1 + 1
K )p

= ∞.
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Early observations by Chandrasekhar [19] and others [20,48] reveal that the
mass function m(r) =

∫ r

0
s2ρ(s) ds grows with r3 near the center and linearly

in r near infinity. The asymptotic behavior for r → 0 is

m(r) =
4π

3
ρ0r

3 − 4π2 (1 + K)(1 + 3K)
9K

ρ2
0r

5 + O(r7),

ρ(r) = ρ0 − 2π
(1 + K)(1 + 3K)

3K
ρ2
0r

2 + 8π2 (1 + K)(1 + 3K)
9K2

ρ3
0r

4 − O(r6),

according to the Taylor series expansion derived by differentiating (3.1) at the
origin [17]. It helps to observe that ρ is an even function and m is an odd
function if we would consider solutions on the whole real line. See also [38] for
higher-order terms of the mass function and linear barotropic and polytropic
equations of state.

3.2. The Asymptotic Behavior at Infinity

In contrast to the initial behavior, less is known about the behavior of m and ρ
as r tends to infinity. We already know that m is strictly increasing as r → ∞,
ρ is strictly decreasing with limr→∞ ρ(r) = 0 and r2ρ(r) remains bounded [17,
Theorem 4.3]. However, the solution is not asymptotically flat due to formula
(2.8) for the ADM mass for spherically symmetric metrics, which yields that

mADM = lim
r→∞ m(r) = ∞.

In order to still be able to say something about the behavior of the solution at
radial infinity, we therefore need to have a better understanding of the growth
rate of m for large r.

3.2.1. The Singular Solution. Näıvely, in order to derive some asymptotics as
r → ∞, we make the Ansatz

m(r) = c1r
α, ρ(r) = c2r

β ,

for some α, β, c1, c2 ∈ R. Plugged into the system (3.1), this yields the exact
solution

m∞(r) :=
2K

(1 + K)2 + 4K
r, ρ∞(r) =

K

2π((1 + K)2 + 4K)
r−2. (3.4)

Obviously, this solution is special and somewhat unphysical since the density
blows up at the center. Because the trajectories of solutions cannot intersect,
this singular solution is an upper bound for all regular solutions of (3.1) with
central density ρ0 ∈ (0,∞).

Setting ν(1) := 0, integrating (1.2) yields

e2ν(r) = r
4K

1+K ,

and (1.3) yields

e2λ(r) =
(

1 − 2m∞(r)
r

)−1

=
(1 + K)2 + 4K

(1 + K)2
.
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We write g∞ = g∞(K) for the singular metric (3.2) with sound speed
√

K ∈
(0, 1] corresponding to (m∞, ρ∞), i.e.,

g∞ = −r
4K

1+K dt2 +
(1 + K)2 + 4K

(1 + K)2
dr2 + r2(dθ2 + sin2 θdφ2).

Although unphysical, these singular solutions play an important role from the
geometric point of view.

Proposition 3.1. Fix K ∈ (0, 1]. The singular solution (3.4) of the Einstein–
Euler system (3.1) with linear equation of state p = Kρ is quasi- asymptotically
flat. More precisely, up to a coordinate transformation it is the AFα metric

g∞ = −dτ2+dξ2+(1−α)ξ2(dθ2+sin2 θdφ2)+
4K

1 + K

τ

ξ
dτdξ−

(
2K

1 + K

τ

ξ

)2

dξ2,

(3.5)
with deficit angle

α =
4K

(1 + K)2 + 4K
.

The ADMα mass of each spatial slice Στ vanishes.

Note that the deficit angle (1−α)π remains within the interval
[

π
2 , π
]

for
all K, and hence is bounded away from 0 uniformly for all linear equations of
state.

Proof. Since ν′(r) = O(r−1) and λ(r) = Λ, it follows immediately from Corol-
lary 2.6, and the coordinate transformations τ = r

2K
1+K t and ξ = eΛr used in

the proof, that g∞ is quasi-asymptotically flat of the form (3.5). The deficit
angle is given by

1 − α = e−2Λ = lim
r→∞ e−2λ(r) = lim

r→∞

(
1 − 2m(r)

r

)

= 1 − 4K

(1 + K)2 + 4K
=

(1 + K)2

(1 + K)2 + 4K
.

By Lemma 2.13, since a(ξ) = 1 −
(

2K
1+K

τ
ξ

)
and b = 1, the ADMα mass of

h∞(τ) = g∞|Στ
= a(ξ)dξ2 + (1 − α)ξ2(dθ2 + sin2 θdφ2)

at each spatial slice Στ is

mADMα(h∞(τ)) = lim
ξ→∞

a(ξ) − b(ξ)
2ξ

= − lim
ξ→∞

4K2

(1 + K)2
τ2

ξ
= 0. �

Remark 3.2. Dadhich [27,28] recovered the above family of singular solutions
as those spherically symmetric isothermal perfect fluids without boundary that
are conformal to a Kerr–Schild metric. In this case, the latter is given by
components

gμν = ημν + 2Hlμlν ,
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where η denotes the flat Minkowski metric, H a constant nonzero scalar field
and lμ represents a null vector relative to g and η. He called this geometric
behavior “minimally curved”.

3.2.2. Reformulation as a Dynamical System. In 1972 Chandrasekhar [19]
studied the asymptotic behavior of the system (3.1) by reformulating the sys-
tem using Milne variables. In the late 1990s, Makino reformulated (3.1) as
an autonomous system and used plane dynamical systems theory, more pre-
cisely the Poincaré–Bendixson theorem, to obtain that for K = 1

3 the singular
solution is the only element in the ω-limit set and hence all regular solu-
tions converge to it [48,49]. While the case of the linear equation of state is
not directly included in the dynamical systems analysis of Heinzle, Röhr and
Uggla [42], it can be seen as the limiting case n → ∞ of relativistic polytropes
(1.9). The convergence to the only ω-limit and fixed point, i.e., the singular
solution, thus would also follow from their approach. As already mentioned
in Sect. 1.3 of Introduction, however, the existing implicit reformulations as
dynamical system cannot be applied directly, because they do not allow for a
translation of a convergence rate in the original radial variable. Instead, while
otherwise using a similar approach as in [49, Section 2], we utilize an explicit
reformulation.

Lemma 3.3. Fix K ∈ (0, 1]. The spherically symmetric Einstein–Euler system
(3.1) is equivalent to the autonomous system

ȧ = 1 − ea + 2eb, (3.6a)

ḃ =
1 + 7K

2K
− 1 + 3K

2K
ea + (1 − K)eb, (3.6b)

where t(r) = log r and

a(t) = − log
(

1 − 2m(r(t))
r(t)

)
, b(t) = log

(
4πr(t)2ρ(r(t))

)
+ a(t). (3.7)

3.2.3. Asymptotic Stability and Convergence to the Singular Solution. The
singular solution (3.4) transforms in the formulation of Lemma 3.3 to the
constant singular solution (a∞, b∞) with

a∞(t) = log
(1 + K)2 + 4K

(1 + K)2
, b∞(t) = log

2K

(1 + K)2
. (3.8)

It plays the special role of the single ω-limit point of the plane dynamical
system (3.6). In fact, it is a hyperbolic fixed point and we can analyze the
stability of the nonlinear flow by linearizing the system around (a∞, b∞).

Lemma 3.4. Fix K ∈ (0, 1]. The singular solution (3.8) is a fixed point and the
only ω-limit point of the plane dynamical system (3.6), i.e., all solutions (a, b)
converge to (a∞, b∞) as t → ∞. It is a nonlinear hyperbolic sink for (3.6),
and the eigenvalues λ± of the linearized equation are

λ± = − 1 + 3K

2(1 + K)
± i

√
7 + 42K − K2

2(1 + K)
,

with −1 ≤ �λ± < − 1
2 .
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Proof. The fact that (a∞, b∞) is the single ω-limit point follows from the
Poincaré–Bendixson theorem by excluding the possibilities of orbits and other
fixed points as in [49, Section 2].

To compute the eigenvalues, let us write x = (a, b) and ẋ = F (x) for
the dynamical system (3.6). The linearization around x∞ = (a∞, b∞) is of the
form

dx(t)
dt

= A∞x(t) + c∞,

where

A∞ := DF |(a∞,b∞) =
( −ea∞ 2eb∞

− 1+3K
2K ea∞ (1 − K)eb∞

)

=

(
− (1+K)2+4K

(1+K)2
4K

(1+K)2

− 1+3K
2K

(1+K)2+4K
(1+K)2

2K(1−K)
(1+K)2

)
, (3.9)

and

c∞ := −A∞x∞ =

⎛
⎜⎜⎜⎜⎝

log (1+K)2(2K)
4K

(1+K)2

((1+K)2+4K)
(1+K)2+4K

(1+K)2

log (1+K)
1+7K

K (2K)
2K(1−K)
(1+K)2

((1+K)2+4K)
1+3K
2K

(1+K)2+4K

(1+K)2

⎞
⎟⎟⎟⎟⎠ .

The eigenvalues of A∞ are

λ± = − 1 + 3K

2(1 + K)
± i

√
7 + 42K − K2

2(1 + K)
,

and the corresponding eigenvectors are

u± =
(

K(1 + 8K − K2) ∓ iK(1 + K)
√

7 + 42K − K2

(1 + 3K)((1 + K)2 + 4K)

)
.

Because the eigenvalues have negative real part − 1+3K
2(1+K) < − 1

2 (since K > 0
the inequality is also strict), the singular solution (a∞, b∞) is a hyperbolic
sink. �

We denote by ϕt the nonlinear flow of ẋ = F (x), i.e., ϕt(x0) is the solution
x(t) of ẋ = F (x) with initial condition x(0) = x0. Standard dynamical systems
theory provides a control of the asymptotic behavior in the vicinity of the
singular solution (3.8).

Theorem 3.5 (Asymptotic stability in terms of (a, b)). Fix K ∈ (0, 1]. For
every norm |.| on R

2 there exists a constant C ≥ 1 and a neighborhood U of
the singular solution x∞ = (a∞, b∞) such that for any initial condition x ∈ U ,
the solution is defined for all s ≥ 0 and for any ε > 0,

|ϕs(x) − x∞| ≤ Ce−( 1+3K
2(1+K) −ε)s|x − x∞|, s ≥ 0. (3.10)

Thus, in particular, the singular solution is asymptotically stable.
Moreover, there is a neighborhood U around x∞ = (a∞, b∞) such that the

flow ϕs of F is C1-conjugate to the affine flow s �→ x∞ +eA∞s(x−x∞), where
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A∞ = DF |x∞ (3.9). That is, there exists a C1-diffeomorphism h : U → U such
for x, x∞ + eA∞s(x − x∞) ∈ U we have

ϕs(h(x)) = h(x∞ + eA∞s(x − x∞)).

Note that, instead of employing ε > 0 in (3.10), we can write more rigidly

|ϕs(x) − x∞| ≤ Ce− s
2 |x − x∞|, s ≥ 0,

to obtain an estimate independent of K ∈ (0, 1].

Proof. Since �λ± = − 1+3K
2(1+K) < − 1

2 < 0 by Lemma 3.4, the first part of
the statement is due to the exponential contraction of the linear flow and the
Gronwall inequality (see, for example, [73, Theorem 5.1]).

The conjugacy statement follows from the Hartman–Grobman theorem,
or can also be proven directly since (a∞, b∞) is a hyperbolic sink (see, for
example, [73, Theorem 5.2]). The fact that we obtain a C1-diffeomorphism and
not merely a homeomorphism h follows from the smoothness of F [39,81]. �

Corollary 3.6 (Asymptotic stability in terms of (m, ρ)). Fix K ∈ (0, 1]. The
asymptotic behavior of solutions (m, ρ) to the system (3.1) with initial data
ρ0 > 0 for r → ∞ is

m(r) =
2K

(1 + K)2 + 4K
r + O

(
r

1−K
2(1+K)+ε

)
,

ρ(r) =
K

2π((1 + K)2 + 4K)
r−2 + O

(
r− 5+7K

2(1+K)+ε
)

.

Proof. Step 1. Estimate a(t)−a∞. Let us fix an initial density ρ0 > 0. For every
such ρ0 there exists a unique global smooth solution (m, ρ) to the system (3.1)
with infinite extent (see discussion in Sect. 3.1). In particular, we obtain the
corresponding initial value x0 = (a0, b0) through

a0 := − log (1 − 2m(1)) , b0 := log(4πρ(1)) + a0,

for the reformulated system (3.6) and a corresponding solution (a, b) with
a(0) = a0 and b(0) = b0. By Lemma 3.3,

x(t) = (a(t), b(t)) → x∞ = (a∞, b∞) as t → ∞.

Thus, there exists a t0 = t0(K, ρ0) > 0 such that for all t ≥ t0 the remaining
solution x(t) is in the neighborhood U of x∞ obtained in Theorem 3.5. By
(3.10), since the flow satisfies ϕt = ϕt0+s = ϕs ◦ ϕt0 for s = t − t0,

|ϕt(x0) − x∞| = |ϕs(x(t0)) − x∞| ≤ Ce−( 1+3K
2(1+K) −ε)s|x(t0) − x∞|.

If we replace the constant C = C(K) by a constant C̃ = C̃(K, ρ0) and assume
without loss of generality that all elements y in U satisfy |x∞ − y| ≤ 1, then

|ϕt(x0) − x∞| ≤ Ce−( 1+3K
2(1+K) −ε)te(

1+3K
2(1+K) −ε)t0 ≤ C̃e−( 1+3K

2(1+K) −ε)t

In particular, if we think of |.| as the maximum norm in R
2, then for all ε > 0,
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|a(t) − a∞| ≤ C̃e−( 1+3K
2(1+K) −ε)t, (3.11a)

|b(t) − b∞| ≤ C̃e−( 1+3K
2(1+K) −ε)t. (3.11b)

Step 2. Estimate m(r) − m∞. By Definition (3.7) of a,

m(r) =
r

2

(
1 − e−a(t(r))

)
=

r

2

(
1 − (1 + K)2

(1 + K)2 + 4K
ea∞−a(t(r))

)

=
r

2

(
1 − (1 + K)2

(1 + K)2 + 4K
− (1 + K)2

(1 + K)2 + 4K
(ea∞−a(t(r)) − 1)

)

=
2K

(1 + K)2 + 4K
r − (1 + K)2

2((1 + K)2 + 4K)
r(ea∞−a(t(r)) − 1)

= m∞(r) + O
(
r1− 1+3K

2(1+K)+ε
)

,

since for r (and hence t(r)) sufficiently large

∣∣∣ea∞−a(t(r)) − 1
∣∣∣ =
∣∣∣∣∣

∞∑
n=1

(a∞ − a(t(r)))n

n!

∣∣∣∣∣
= |a∞ − a(t(r))|

∞∑
n=0

|a∞ − a(t(r))|n
(n + 1)!

≤ |a∞ − a(t(r))|e,

and thus, by (3.11a) of Step 1 there is a constant C > 0 such that∣∣∣ea∞−a(t(r)) − 1
∣∣∣ ≤ Ce−( 1+3K

2(1+K) −ε)t(r) = Cr−( 1+3K
2(1+K) −ε). (3.12)

Step 3. Estimate ρ(r) − ρ∞. This follows from (3.11b) in Step 1, Step 2 and
Definition (3.7) of b. We have that

ρ(r) =
1

4πr2
eb(t(r))−a(t(r)) =

1
4πr2

eb(t(r))−b∞ea∞−a(t(r))eb∞−a∞

=
K

2π((1 + K)2 + 4K)
r−2eb(t(r))−b∞ea∞−a(t(r))

=
K

2π((1 + K)2 + 4K)
r−2
(
(eb(t(r))−b∞ − 1) + 1

)(
(ea∞−a(t(r)) − 1) + 1

)

= ρ∞(r) + O
(
r−2− 1+3K

2(1+K)+ε
)

,

by (3.12) and the same estimate for the b-term. �

3.3. Quasi-Asymptotic Flatness and ADMα Mass

In Proposition 3.1 we have observed that the singular solution (m∞, ρ∞) to
the system (3.1) is the SAFα metric with α = 4K

(1+K)2+4K . The ADMα mass of
this singular solution vanishes. Since by Corollary 3.6 every solution (m, ρ) to
the initial value problem (3.1) with ρ0 > 0 converges to (m∞, ρ∞), it is natural
to expect that these solutions are also quasi-asymptotically flat. However, due
to the slow convergence rate obtained in Corollary 3.6 we cannot say whether
the ADMα mass is even finite.
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We first derive conditions on the mass function m and density ρ that
imply that we are dealing with an quasi-asymptotically flat spacetime in the
sense of Definition 1.1.

Lemma 3.7. Suppose for the function m : [0,∞) → R
+
0 exists α ∈ [0, 1) such

that
2m

r
− α = o(r− 1

2 ), as r → ∞, (3.13)

and ρ satisfies

ρ′(r)
ρ(r)

= o(r− 1
2 ), as r → ∞. (3.14)

Then the solution of the Einstein–Euler system (1.4) is quasi-asymptotically
flat with deficit angle (1 − α)π.

Proof. We verify the conditions (2.6) of Corollary 2.6. Since eν(r) =
(

ρ0
ρ(r)

) K
1+K

,
the assumption (3.14) implies

ν′(r) = − K

1 + K

ρ′(r)
ρ(r)

= o(r− 1
2 ).

The decay assumption (3.13) implies that e2Λ := limr→∞ e2λ(r) = 1
1−α ≥

1 exists. Moreover, by the precise definition of little-o, for all C > 0 there
exists r0 > 0 such that |2m

r − α| ≤ Cr− 1
2 for r ≥ r0. For r sufficiently large,

we also have that |1 − 2m
r | ≥ 1 − α − |α − 2m

r | ≥ 1−α
2 . Thus, eventually for all

r sufficiently large,
∣∣∣e2λ(r)−2Λ − 1

∣∣∣ =
∣∣∣∣

2m
r − α

1 − 2m
r

∣∣∣∣ ≤ Cr− 1
2

1−α
2

=
2C

1 − α
r− 1

2 ,

which means that e2λ(r)−2Λ − 1 = o(r− 1
2 ). Since α = 1− e−2Λ the claim about

the deficit angle follows immediately. �

We are now in a position to prove the first main Theorem 1.2 for the
linear equation of state.

Proof of Theorem 1.2. By Corollary 3.6, for every ε > 0,

m(r) =
2K

(1 + K)2 + 4K
r + O

(
r

1−K
2(1+K)+ε

)
.

Therefore, since − 1+3K
2(1+K) + ε < − 1

2 for ε > 0 sufficiently small, as r → ∞,

2m

r
− α = O

(
r− 1+3K

2(1+K)+ε
)

= o(r− 1
2 ).

Similarly, by Corollary 3.6 and (3.1b),

ρ′(r)
ρ(r)

= − 1 + K

r − 2m

(
4πr2ρ +

m

rK

)

= O(r− 1+3K
2(1+K)+ε) = o(r− 1

2 ).
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Lemma 3.7 thus implies quasi-asymptotic flatness, and in particular conver-
gence to gα as r → ∞. �

Remark 3.8 (ADMα mass for the Einstein–Euler system). In terms of the
mass function of the Einstein–Euler system (1.4), the mass function M in
Corollary 2.13 is derived by a transformation of the expression(

1 − 2M

ξ

)−1

= e2λ(r)−2Λ − (ν′(r)τe−Λ)2

= (1 − α)
(

1 − 2m

r

)−1

− (ν′(r)τe−Λ)2

≤ (1 − α)
(

1 − 2m

r

)−1

Thus, by Corollary 2.13, provided we could prove sufficient decay rates to
verify coordinate invariance, we would have that

mADMα(g|Στ
) = lim

ξ→∞
M(ξ) ≤ lim

ξ→∞
ξ

2

(
1 − 1

1 − α

(
1 − 2m(r)

r

))

=
1

1 − α
lim

ξ→∞

(
m

ξ

r
− αξ

2

)
. (3.15)

Remark 3.9 (ADMα mass for a linear equation of state). Since by Corol-
lary 3.6

m(r) − α

2
r = O(r

1−K
2(1+K)+ε),

the estimate (3.15) would suggest that the ADMα mass of regular perfect fluid
solutions to (3.1) is in fact infinite, just like the ADM mass. A more detailed
calculation, taking into account the negative term with ν′ and that ξ = eΛr,
indeed reveals that

M(ξ) =
ξ

2

[
1 −

(
1 − 2m(e−Λξ)

e−Λξ

)(
1 − α − (ν′(e−Λξ)τe−Λ)2

(
1 − 2m(e−Λξ)

e−Λξ

))−1
]

=
ξ

2

[
1 −

(
1 − α + o(ξ− 1

2 )
)(

1 − α − (1 − α)τ2o(ξ−1)
(
1 − α + (ξ− 1

2 )
))−1

]

=
ξ

2

[
1 −

(
1 − α + o(ξ− 1

2 )
) (

1 − α + o(ξ−1)
)−1

]

=
ξ

2

[
1 − 1 + o(ξ− 1

2 )
]

= o(ξ
1
2 ),

and therefore that

mADMα(g|Στ
) = lim

ξ→∞
M(ξ) = +∞ or − ∞.

In Sect. 3.2.1, we have already observed that m(r) < m∞(r) for all regular
solutions. Therefore, also M(r) < M∞(r) = 0 for all r > 0, and the ADMα
mass is therefore not only negative but likely also unbounded below. This sug-
gests a negative answer for the question raised in [60] whether the ADMα mass
of quasi-asymptotically flat metrics is always bounded from below, at least for
quasi-asymptotically flat metrics in the sense of Definition 1.1. However, since
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we cannot prove that sufficient decay estimates hold, we do in fact not know if
we are still in the meaningful situation of Remark 2.10, where it is guaranteed
that the ADMα mass is a geometric invariant.

Remark 3.10 (Scaled quasi-asymptotic flatness and a ADMαβ mass). In the
optimal quasi-asymptotically flat setting, we would set β = 0 even independent
of K. However, it may be useful to interpret the solutions also in the context
of scaled quasi-asymptotic flatness. In the proof of Lemma 3.7 and the proof
of Theorem 1.2, we have observed that, in fact,

ν′(r) = O(r− 1+3K
2(1+K)+ε), and e2λ(r)−2Λ − 1 = O(r− 1+3K

2(1+K)+ε),

as r → ∞. Therefore, if β > 2(1+K)
1+3K − 1 = 1−K

1+3K , then spherically symmetric
and static perfect fluid solutions with linear equation of state could also con-
sidered to be scaled quasi-asymptotically flat as described in Remark 2.5. The
ADMαβ satisfies

mADMαβ(g|Στ
) =

1
2

lim
ξ→∞

(1 + β)(1 + O(ξ−1) + τ2O(ξ−1) − 1)ξ

= O(1) + τ2O(1) < ∞
according to (2.25) for an optimal β (which we indeed expect to be 1−K

1+3K ).
Here, we also have to change α, which is then given by

1 − α = (1 + β)−2e−2Λ <
(1 + 3K)2

4(1 + K)2
(1 + K)2

(1 + K)2 + 4K
=

(1 + 3K)2

4((1 + K)2 + 4K)
.

Since K ∈ (0, 1) implies 5K2 < 6K, the denominator is larger than the numer-
ator, and hence, also the rescaled α = 1 − (1 + β)−2e−2Λ > 3+6K−5K2

4((1+K)2+4K) is
contained in the interval (0, 1).

4. Perfect Fluids with Polytropic Equation of State

In their dynamical systems approach to the spherically symmetric static
Einstein–Euler system (1.4), Heinzle, Röhr and Uggla [42] made use of the
quantities

ΓN (p) :=
ρ

p

dp

dρ
, σ(p) :=

p

ρ
,

defined in terms of the equation of state p = p(ρ). In [42, Theorem 5.1] it was
shown that all regular solutions of (1.4) have infinite masses and infinite radii
if ΓN ≤ 6

5 and σ ≤ 1. The assumption on σ is related to the dominant energy
condition.

For polytropic equations of state (1.9), i.e., p = Kρ
n+1

n , we obtain that

Γpoly
N (p) =

n + 1
n

, σpoly(p) = Kρ
1
n = K

n
n+1 p

1
n+1 .

Clearly, for n ≥ 5, the condition Γpoly
N ≤ 6

5 is satisfied, while the second
condition σ ≤ 1 is not satisfied in the high-pressure regime. Heinzle, Röhr
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and Uggla [42] therefore considered equations of state that are linear for high
pressures, which leads to the analysis of so-called barotropic equations of state.

In a more detailed analysis, Nilsson and Uggla [59, Section 2] explain that
the spherically symmetric Einstein–Euler system with power-law polytropic
equations of state p = Kρ

n+1
n , i.e., the system

mr = 4πr2ρ, (4.1a)

ρr = − n

n + 1
(1 + Kρ

1
n )ρ

n−1
n

r − 2m

(
4πr2ρ

n+1
n +

m

rK

)
, (4.1b)

yields finite radius solutions if 0 < n < 5 and if the central density ρ0 is
small. See also [71, Theorem 4] where a result also for generalized power-law
polytropic equations of state was obtained for 1 < n < 5. In the case of
0 < n ≤ 3, there exists a global sink P2 where all orbits end (see also [48,
Theorem 1]). If 3 < n < 5, then the majority of orbits still end at P2, but
orbits ending at P1 (which have finite masses but infinite radii) and P4 (which
have infinite masses and radii) also occur. When n � 3.339, it was shown
numerically that there is at least one solution ending at P1. At n ≈ 3.357 and
n ≈ 4.414 Nilsson and Uggla obtained solutions with infinite masses and radii
corresponding to P4. The dynamical behavior turns out to be quite complicated
and is not yet fully understood from an analytical point of view. For more
details, see [59, Sections 2.5–2.7]. For n ≥ 5, all relativistic regular models
have infinite radii and masses, and spiral around the Tolman orbit P4, which
is associated with a special nonregular Newtonian solution that is not known
in exact form.

4.1. The Initial Value Problem

In what follows, we mainly restrict our attention to the power-law polytropic
equation of state (1.9) with polytropic index n > 5. Fix K ∈ (0, 1] and a central
density ρ0 > 0. By [71, Theorem 2] exists a unique, smooth and positive global
solution (m, ρ) of (4.1) such that

lim
r→0

m(r) = 0, lim
r→0

ρ(r) = ρ0.

The solution has infinite extent due to our discussion in Sect. 1.2, with ρ(r) → 0
as r → ∞. The asymptotic behavior as r → 0 is given by the Taylor series
expansion which reads

m(r) =
4π

3
ρ0r

3 + O(r5),

ρ(r) = ρ0 − 2π
n

n + 1
(1 + Kρ

1
n
0 )(1 + 3Kρ

1
n
0 )

Kρ
1
n
0

ρ2
0r

2 + O(r4),

due to l’Hôpital’s rule.

4.2. The Asymptotic Behavior of Solutions

Due to the dynamical systems analysis [59], we know that, asymptotically for
r → ∞, some solutions of (4.1) with 3 < n < 5 and all solutions with n ≥ 5
converge to a fixed point P4 (which corresponds to B4 in [42]). In terms of m
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and ρ, this provides us with some control on the asymptotic behavior of (some)
solutions. We are primarily interested in polytropes with index n > 5, but some
results also hold for the (unstable) infinite solutions with index 3 < n < 5.

4.2.1. The Dynamical System and Its Fixed Points. The formulation of Nils-
son and Uggla [59] for the Einstein–Euler system in the case of the power-law
polytropic equation of state makes use of the transformation

U =
4πr2ρ

4πr2ρ + m
r

, V =
m
r

Kρ
1
n + m

r

, y =
Kρ

1
n

Kρ
1
n + 1

. (4.2)

which leads to the dynamical system

U̇ = U(1 − U)
[
(1 − y)(3 − 4U)F − n

n + 1
G

]
, (4.3a)

V̇ = V (1 − V )
[
(1 − y)(2U − 1)F +

1
n + 1

G

]
, (4.3b)

ẏ = − 1
n + 1

y(1 − y)G. (4.3c)

with

F = (1 − V )(1 − y) − 2yV, G = V [(1 − U)(1 − y) + yU ].

The differentiation in (4.3) is with respect to a new independent variable (indi-
rectly related to the geometry) and r2 is given by

r2 =
Kn

4π

U

1 − U

V

1 − V

(
1 − y

y

)n−1

.

According to the numerical analysis in [59, Section 2], if 3 < n � 3.339, all
regular orbits end at the fixed point P2 (which is the only hyperbolic sink in
this case and leads to solutions with finite masses and radii). For n � 3.339
isolated orbits also end at the equilibrium points P1 (solutions with finite
masses but infinite radii) and P4 (solutions with infinite masses and infinite
radii). The latter fixed point P4 is given by

U4 =
n − 3

2(n − 2)
, V4 =

2(n + 1)
3n + 1

, y4 = 0, for n > 3, (4.4)

with eigenvalues2

λ± = − (n − 1)(n − 5)
4(n − 2)(1 + 3n)

± i
n − 1

4(n − 2)(1 + 3n)

√
7n2

2
− 11n − 1

2
,

λ0 = − n − 1
(n − 2)(1 + 3n)

. (4.5)

We see that − 1
12 ≤ �λ± = − (n−1)(n−5)

4(n−2)(1+3n) < 0 if and only if n > 5, in which
case P4 becomes a hyperbolic sink and all orbits end at P4, leading to solutions
with infinite radii and masses [59].

2Note that the term 7n2

2
− 11n− 1

2
under

√
is nonnegative only for n ≥ 3.18767. Otherwise

the eigenvalues are, in fact, real.
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4.2.2. Asymptotic Stability for Solutions of (4.1) with Polytropic Index n >
5. The above properties and the Hartman–Grobman theorem (see, for exam-
ple, [73, Theorem 5.3]) imply that the behavior of the dynamical system (4.4)
near the fixed point P4 is qualitatively given by its linearization. The flow
of (4.4) is C1-conjugate to the affine flow s �→ P4 + eA4s(x − P4), where the
linearization around P4 is given by

A4 =

⎛
⎜⎝

− (n−3)(n−1)
2(n−2)(1+3n) − (n−3)(n−1)n(1+3n)

8(n−2)3(1+n) − 3(n−3)(n−1)n2

2(n−2)3(1+3n)
4(n−2)(n−1)(n+1)

(1+3n)3
n−1

(n−2)(1+3n)
12(n−1)(n+1)
(n−2)(1+3n)3

0 0 − n−1
(n−2)(1+3n)

⎞
⎟⎠ .

As observed in [59], on the subset {y = 0} the relativistic equa-
tions (4.3a)–(4.3b) and the corresponding two Newtonian equations and coin-
cide. Since, however, we cannot directly relate the new independent variable
to r, we cannot compute a convergence rate of m and ρ as r → ∞. We merely
compute the leading order term based on the results of Nilsson and Uggla [59].

Proposition 4.1 (Asymptotic stability in terms of (m, ρ)). Fix K ∈ (0, 1] and
n > 5. The asymptotic behavior of solutions (m, ρ) to the system (4.1) with
initial data ρ0 > 0 is

m(r) = n−1

√
2n−2Kn

π

(n − 3)(n + 1)n

(n − 1)n+1
r

n−3
n−1 + o

(
r

n−3
n−1
)
,

ρ(r) = n−1

√
Kn

2nπn

(n + 1)n(n − 3)n

(n − 1)2n
r− 2n

n−1 + o
(
r− 2n

n−1
)
,

as r → ∞.

Proof. This follows directly from the analysis of the dynamical system (4.3) in
[59], since in the case of n > 5 the variables (U, V, y) converge to (U4, V4, y4)
given in (4.4). By (4.2) we deduce that

ρ
n−1

n =
K

4πr2

U

1 − U

V

1 − V
,

hence, the leading order term of ρ is

ρ4 =
(

K

2π

(n + 1)(n − 3)
(n − 1)2

) n
n−1

r− 2n
n−1 .

Similarly, (4.2) implies that

m = 4πr3 U − 1
U

with leading order term

m4 =
2(n + 1)K

n − 1

(
K

2π

(n + 1)(n − 3)
(n − 1)2

) 1
n−1

r− 2
n−1+1

=
(

2n−2Kn

π

(n + 1)n(n − 3)
(n − 1)n+1

) 1
n−1

r
n−3
n−1 .

�
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Remark 4.2. Be aware that, unlike in the case of the linear equation of state
(cf. Sect. 3.2.1), the leading order terms of the variables (m, ρ), i.e.,

“m4(r)” = n−1

√
2n−2Kn

π

(n − 3)(n + 1)n

(n − 1)n+1
r

n−3
n−1 ,

“ρ4(r)” = n−1

√
Kn

2nπn

(n + 1)n(n − 3)n

(n − 1)2n
r− 2n

n−1 ,

do not yield a (singular) solution to the original system (4.1) itself, but merely
represents the asymptotic behavior of regular solutions as r → ∞. Due to
the third component of P4 only the behavior near y4 = 0, i.e., at r = ∞, is
described. One cannot apply Proposition 4.1 to the limit n → ∞ (correspond-
ing to the linear equation of state) since then y = p

p+ρ = K
1+K = const. > 0.

4.3. Scaled Quasi-Asymptotic Flatness and ADMαβ Mass

In Proposition 4.1 we have observed that, for static fluids with polytropic
index n > 5, the mass function behaves like m(r) ∼ Cr

n−3
n−1 for some constant

C = C(n,K) as r → ∞. The expression (2.8) would therefore yield an ADM
mass

mADM(g) = lim
r→∞ m(r) = ∞.

However, although

lim
r→∞ e2λ(r) = lim

r→∞

(
1 − 2m(r)

r

)−1

= lim
r→∞

1

1 − Cr− 2
n−1

= 1,

as in the asymptotically flat situation, we are in a situation where the ADM
mass is not coordinate invariant because a(r)−1 =

(
1 − 2m

r

)−1−1 = O(r− 2
n−1 )

rather than o(r− 1
2 ).

Is the solution quasi-asymptotically flat in the sense of Definition 1.1?
Because of the above, we would have to set α = 0, but then again violate
condition (3.13) in Lemma 3.7 which also requires that 2m

r −α = 2m
r = o(r− 1

2 ).
On the other hand, we immediately see from Corollary 4.1 that

2m

r
n−3
n−1

∼ n−1

√
2n−2Kn

π

(n − 3)(n + 1)n

(n − 1)n+1
as r → ∞.

This nonlinear scaling in the radial direction is different from the quasi-
asymptotically flat case for fluids with linear equation of state (although, as
n → ∞, n−3

n−1 approaches 1). To accommodate this behavior we introduced the
notion of scaled quasi-asymptotic flatness in Sect. 2. It remains to verify that
perfect fluids with polytropic equations of state with index n > 5 are indeed
scaled quasi-asymptotically flat in the sense of Definition 1.3. We prove our
second main Theorem 1.5 for the polytropic equation of state.
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Proof of Theorem 1.5. We verify the conditions (2.4) of Proposition 2.4. By
Proposition 4.1 the asymptotic behavior of m and ρ is

m(r) = n−1

√
2n−2Kn

π

(n − 3)(n + 1)n

(n − 1)n+1
r

n−3
n−1 + o

(
r

n−3
n−1
)
,

ρ(r) = n−1

√
Kn

2nπn

(n + 1)n(n − 3)n

(n − 1)2n
r− 2n

n−1 + o
(
r− 2n

n−1
)
.

Hence, the differential equations (4.1b) and (1.2) imply that

ν′(r) = − p′(r)
p(r) + ρ(r)

= − K n+1
n ρ

1
n ρr

ρ(Kρ
1
n + 1)

=
K

r(1 − 2m
r )

(
4πr2ρ

n+1
n +

m

rK

)

=
K

r(1 − O(r− 2
n−1 ))

(
O(r− 4n

n−1 ) + O(r− 2
n−1 )

)
= O(r− n+1

n−1 )

and

e2λ(r)−2Λ − 1 =
(

1 − 2m

r

)−1

− 1 =
1

1 − O(r− 2
n−1 )

− 1 = O(r− 2
n−1 ).

Since −n+1
n−1 ≤ − 2

n−1 , the solution is AFαβ with β > n−5
4 and α = 1− 1

(1+β)2 >

1 −
(

4
n−1

)2

> 0 according to Proposition 2.4. �

Remark 4.3 (ADMαβ mass). We believe that it is possible to set β = n−5
4

and 1 − α =
(

4
n−1

)2

in Theorem 1.5. However, in view of Remark 2.5, we

consider β = n−3
2 , which is negative for all values of n that definitely lead to

solutions with finite extent and is greater than 1 for solutions with definitely
infinite extent. The corresponding ADMαβ mass (2.25) from Remark 2.16 is
then

mADMαβ(g|Στ
) =

1
2

lim
ξ→∞

(1 + β) ((1 + aξξ(τ, ξ)) − 1) ξ,

where

aξξ = −1 + e2λ(r)−2Λ − e−2Λν′(r)2τ2 =
(

1 − 2m

r

)−1

− 1 + O(r− 2(n+1)
n−1 )

=
2C(n,K)

ξ − 2C(n,K) + o(ξ− 1
1+β )

+ O(ξ−2)

with leading order coefficient C(n,K) of m. Thus,

mADMαβ(g|Στ
) =

1
2

lim
ξ→∞

(1 + β)

(
2C(n,K)

ξ − 2C(n,K) + o(ξ− 1
1+β )

+ O(ξ−2)

)
ξ

= (1 + β)C(n,K)
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= (1 + β) n−1

√
2n−2Kn

π

(n − 3)(n + 1)n

(n − 1)n+1

= n−1

√
Kn

2π

(n − 3)(n + 1)n

(n − 1)2
.
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[2] Andréasson, H., Fajman, D., Thaller, M.: Models for self-gravitating photon
shells and geons. Ann. Henri Poincaré 18(2), 681–705 (2017)
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