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Abstract. We study the stability of the positive mass theorem (PMT) and
the Riemannian Penrose inequality (RPI) in the case where a region of
an asymptotically flat manifold M3 can be foliated by a smooth solution
of inverse mean curvature flow (IMCF) which is uniformly controlled. We
consider a sequence of regions of asymptotically flat manifolds U i

T ⊂ M3
i ,

foliated by a smooth solution to IMCF which is uniformly controlled, and
if ∂U i

T = Σi
0 ∪ Σi

T and mH(Σi
T ) → 0 then U i

T converges to a flat annulus
with respect to L2 metric convergence. If instead mH(Σi

T )−mH(Σi
0) → 0

and mH(Σi
T ) → m > 0 then we show that U i

T converges to a topological
annulus portion of the Schwarzschild metric with respect to L2 metric
convergence.

1. Introduction

If we consider a complete, asymptotically flat manifold with nonnegative scalar
curvature M3 then the positive mass theorem (PMT) says that M3 has positive
ADM mass. The rigidity statement says that if mADM(M) = 0 then M is
isometric to Euclidean space. Similarly, the Riemannian Penrose inequality
says that if ∂M consists of an outermost minimal surface Σ0 then

mADM(M) ≥
√

|Σ0|
16π

(1)

where |Σ0| is the area of Σ0. In the case of equality, i.e. mADM(M) =
√

|Σ0|
16π ,

then M is isometric to the Schwarzschild metric. In this paper we are concerned
with the stability of these two rigidity statements in the case where we can
foliate a region of M by a smooth solution of inverse mean curvature flow
(IMCF) that is uniformly controlled.

The stability problem for the PMT has been studied by Lee [14], Lee
and Sormani [16], Huang, Lee and Sormani [11], LeFloch and Sormani [17],
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Finster [7], Finster and Bray [3], Finster and Kath [8], and by Corvino [4]. In
the work of Lee [14], Lee considers a sequence of harmonically flat manifolds
with ADM mass converging to 0 and is able to show uniform convergence of the
metric outside a ball of a specified radius. In the work of Finster [7], Bray and
Finster [3], and Finster and Kath [8], spinors are used to obtain L2 estimates
of the curvature tensor outside of a set of measure zero. From these estimates
stability results are obtained in the sense that the curvature tensor is small in
the L2 norm if the mass is small.

The work presented here is closely related to the work of Lee and Sormani
[15,16], as well as LeFloch and Sormani [17], where stability of the PMT, sta-
bility of the RPI, and compactness properties for Hawking mass are obtained
for rotationally symmetric manifolds under intrinsic flat convergence (in fact
Lipschitz convergence in the case of [15]). In [16], Lee and Sormani conjecture
that the PMT should be stable with respect to intrinsic flat convergence for
a general class of sequences of asymptotically flat manifolds (See Conjecture
6.2 of [16] for details and discussion). In this paper we make an attempt at
the general case by showing stability of the PMT and the RPI, with respect
to L2 convergence, when our sequence of manifolds can by foliated by a uni-
formly controlled IMCF. It is still a problem of interest to extend the stability
results of this paper to intrinsic flat convergence in order to directly address
the conjecture stated in [16].

The main tool in this paper is IMCF which we remember is defined for
surfaces Σn ⊂ Mn+1 evolving through a one parameter family of embeddings
F : Σ × [0, T ] → M , F satisfying inverse mean curvature flow

{
∂F
∂t (p, t) = ν(p,t)

H(p,t) for (p, t) ∈ Σ × [0, T )

F (p, 0) = Σ0 for p ∈ Σ
(2)

where H is the mean curvature of Σt := Ft(Σ) and ν is the outward pointing
normal vector. The outward pointing normal vector will be well defined in our
case since we have in mind, M3, an asymptotically flat manifold with one end.

In [12], Huisken and Ilmanen show how to use weak solutions of IMCF
in order to prove the RPI in the case of a connected boundary and they note
that their techniques give another proof of the PMT for asymptotically flat
Riemannian manifolds when n = 3 (see Schoen and Yau [22], and Witten [24]
for more general proofs of the PMT as well as Bray [2] for a more general proof
of the RPI). The rigidity results of both the PMT and the RPI are also proved
in [12], and the present work builds off of these arguments by using IMCF
to provide a special coordinate system on each member of the sequence of
manifolds M3

i which is leveraged throughout the paper. For a glimpse of long-
time existence and asymptotic analysis results for smooth IMCF in various
ambient manifolds see [1,5,9,10,21,23].

If we have Σ2 a surface in a Riemannian manifold, M3, we will denote
the induced metric, mean curvature, second fundamental form, principal cur-
vatures, Gauss curvature, area, Hawking mass and Neumann isoperimetric
constant as g, H, A, λi, K, |Σ|, mH(Σ), IN1(Σ), respectively. We will denote
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the Ricci curvature, scalar curvature, sectional curvature tangent to Σ, and
ADM mass as Rc, R, K12, mADM(M), respectively.

Now the class of regions of manifolds to which we will be proving stability
of the PMT and RPI is defined.

Definition 1.1. Define the class of manifolds with boundary foliated by IMCF
as follows

MT,H1,A1
r0,H0,I0

:= {UT ⊂ M,R ≥ 0|∃Σ⊂ Mcompact, connected surface such that

IN1(Σ) ≥ I0,mH(Σ) ≥ 0,and |Σ| = 4πr2
0.

∃Σt smooth solution to IMCF, such that Σ0 = Σ,

H0 ≤ H(x, t) ≤ H1, |A|(x, t) ≤ A1 for t ∈ [0, T ],

and UT = {x ∈ Σt : t ∈ [0, T ]}}
where 0 < H0 < H1 < ∞, 0 < I0, A1, r0 < ∞ and 0 < T < ∞.

Note The upper bound on |A| implies an upper bound on H but we make
a distinction between these bounds for notational convenience.

Note One should imagine that M is asymptotically flat in the definition
above but we do not need to impose this condition directly since we will be
proving stability of compact regions of manifolds M i in terms of the Hawking
mass of the outermost boundary.

Before we state the stability theorems we define some metrics on Σ×[0, T ]
that will be used throughout this document.

δ =
r2
0

4
etdt2 + r2

0e
tσ (3)

gs =
r2
0

4

(
1 − 2

r0
me−t/2

)−1

etdt2 + r2
0e

tσ (4)

ĝi =
1

H(x, t)2
dt2 + gi(x, t) (5)

where σ is the round metric on Σ and gi(x, t) is the metric on Σi
t. The first

metric is the flat metric, the second is the Schwarzschild metric and the third
is the metric on U i

T with respect to the foliation.
Note These relationships can be observed if we define s = r0e

t/2 then
ds2 = r2

0
4 etdt2, δ = ds2 + s2dσ and gs = 1

1− 2m
s

ds2 + s2dσ.

Theorem 1.2. Let U i
T ⊂ M3

i be a sequence s.t. U i
T ⊂ MT,H1,A1

r0,H0,I0
and mH(Σi

T )
→ 0 as i → ∞. If we assume one of the following conditions,

1. ∃ I > 0 so that Ki
12 ≥ 0 and diam(Σi

0) ≤ D ∀ i ≥ I,
2. ∃ [a, b] ⊂ [0, T ] such that ‖Rci(ν, ν)‖W 1,2(Σ×[a,b]) ≤ C and diam(Σi

t) ≤ D

∀ i, t ∈ [a, b],where W 1,2(Σ × [a, b]) is defined with respect to δ,
then

ĝi → δ (6)

in L2 with respect to δ.
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Theorem 1.3. Let U i
T ⊂ M3

i be a sequence s.t. U i
T ⊂ MT,H1,A1

r0,H0,I0
, mH(Σi

T ) −
mH(Σi

0) → 0 and mH(Σi
T ) → m > 0 as i → ∞. If we assume that ∃ [a, b] ⊂

[0, T ] such that ‖Rci(ν, ν)‖W 1,2(Σ×[a,b]) ≤ C and diam(Σi
t) ≤ D ∀ i, t ∈ [a, b],

where W 1,2(Σ × [a, b]) is defined with respect to δ, then

ĝi → gs (7)

in L2 with respect to δ.

Now we would like to understand how the above theorems apply to se-
quences of asymptotically flat manifolds which are foliated by a long-time
solution of IMCF. For this we will define the special class of asymptotically
flat sequences of manifolds that we will be able to deal with in this paper.

Definition 1.4. We say a complete, Riemannian manifold (M3, g) is an
asymptotically flat manifold if there exists K ⊂ M , compact, so that M\K is
diffeomorphic to R

3\B(0, 1) and so that the metric satisfies

|gij − δij | ≤ C

|x| (8)

|gij,k| ≤ C

|x|2 (9)

|gij,kl| ≤ C |gij,klm| ≤ C (10)

as |x| → ∞ where the derivatives are taken with respect to δ. If ∂M �= ∅ then
we require ∂M to be an outermost, minimal surface.

We say a sequence of asymptotically flat manifolds Mj = (M, gj) is uni-
formly asymptotically flat if the constants in (8), (9) and (10) can be chosen
uniformly for the sequence.

Note Condition (10) is not typically included in the definition of asymp-
totic flatness and is only used to gain control on derivatives of the Ricci tensor
in order to apply Theorems 1.2 and 1.3 to prove Corollaries 1.5 and 1.6 below.

As a consequence of Theorems 1.2 and 1.3 we have the following results
when a long-time solution exists on a sequence of uniformly asymptotically
flat manifolds.

Corollary 1.5. Assume for all Mi the smooth solution of IMCF starting at Σ0

exists for all time, so that for all T ∈ (0,∞), UT,i ⊂ MT,H1,A1

r0,HT
0 ,I0

, where HT
0 → 0

as T → ∞. In addition, we define mH(Σi
∞) = limT→∞ mH(Σi

T ) and assume
that mH(Σi

∞) → 0 as i → ∞ and that Mi are uniformly asymptotically flat
with respect to the IMCF coordinates then

ĝi → δ (11)

on Σ × [0, T ] in L2 with respect to δ.

Corollary 1.6. Assume that for all Mi the smooth solution of IMCF starting
at Σ0 exists for all time, so that UT,i ⊂ MT,H1,A1

r0,HT
0 ,I0

for all T ∈ (0,∞), where

HT
0 → 0 as T → ∞. In addition, we define mH(Σ∞) = limT→∞ mH(ΣT ) and
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assume that mH(Σi
∞) − mH(Σi

0) → 0, mH(Σi
∞) → m > 0 as i → ∞, and Mi

are uniformly asymptotically flat with respect to the IMCF coordinates then

ĝi → gs (12)

on Σ × [0, T ] in L2 with respect to δ.

Note If Σ0 is a minimizing hull, this theorem also applies to the regions between
jumps of the weak formulation of Huisken and Ilmanen if we stay away from the
jump times and condition 1 or 2 of Theorem 1.2 or condition 1 of Theorem 1.3
is satisfied. In order to see this it is important to remember three important
lemmas of Huisken and Ilmanen

• Smooth flows satisfy the weak formulation in the domain they foliate
(Lemma 2.3 [12]).

• The weak evolution of a smooth, H > 0, strictly minimizing hull is smooth
for a short time (Lemma 2.4 [12]).

• It can be shown that the weak solution remains smooth until the first
moment when either Σt �= Σ′

t, H ↘ 0 or |A| ↗ ∞ where Σ′
t is the outward

minimizing hull of Σt (Remark after Lemma 2.4 [12]). This follows since
if H(x, t) ≥ H0 > 0 and |A|(x, t) ≤ A1 < ∞ then we can apply regularity
results of Krylov [13] in order to achieve C2,α estimates which then imply
a continuation result. If Σt is outward minimizing then we know that the
smooth solution agrees with the weak solution.

In the future it would be desirable to extend the results of this paper to
weak solutions of IMCF as well as develop a method for dealing with the jump
regions which are not foliated by weak IMCF. We now give an outline of the
rest of the paper.

In Sect. 2 we will use IMCF to get important estimates of the metric ĝ
on the foliated region U i

T ⊂ Mi. The crucial estimates come from the calcu-
lation of the monotonicity of the hawking mass in Lemma 2.3 which lead to
Corollary 2.4. New estimates of length of geodesics and Neumann isoperimetric
constants under IMCF are obtained in Lemmas 2.7 and 2.8 which eventually
lead to showing that mean curvature of Σi

t converges to its average in L2.
In Sect. 3 we use the estimates of the previous section along with some

new estimates of the metric on Σt in Lemma 2.11 to show convergence of ĝ

to a warped product gi
3(x, t) = r2

0et

4 dt2 + r2
0e

tgi(x, 0). This is done by show-
ing convergence of ĝ to simpler metrics, successively, until we get to gi

3 and
combining this chain of estimates by the triangle inequality.

In Sect. 4 we complete the proofs of Theorems 1.2 and 1.3 by showing
convergence of gi

3 to δ. This will be done under a few different assumptions
on IMCF as well as the curvature of Mi. These results are combined with the
rigidity result of Petersen and Wei [20], Theorem 4.1, in order to improve from
L2 curvature convergence results to L2 metric convergence.
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2. Estimates for Manifolds Foliated by IMCF

We start by obtaining some useful estimates where it will be important to
remember the definition of the Hawking mass defined for a hypersurface Σ2 ⊂
M3,

mH(Σ) =

√
|Σ|

(16π)3

(
16π −

∫
Σ

H2dμ

)
(13)

Lemma 2.1. Let Σ2 ⊂ M3 be a hypersurface and Σt its corresponding solution
of IMCF. If m1 ≤ mH(Σt) ≤ m2 then

|Σt| = |Σ0|et (14)

16π

(
1 −

√
16π

|Σ0|m2e
−t/2

)
≤

∫
Σt

H2dμ ≤ 16π

(
1 −

√
16π

|Σ0|m1e
−t/2

)

(15)

16π

|Σ0|

(
1 −

√
16π

|Σ0|m2e
−t/2

)
e−t ≤ −

∫
Σt

H2dμ ≤ 16π

|Σ0|

(
1 −

√
16π

|Σ0|m1e
−t/2

)
e−t

(16)

where |Σt| is the n-dimensional area of Σ.
Hence if mH(Σi

T ) → 0 then

H̄2
i(t) := −

∫
Σi

t

H2
i dμ → 4

r0
e−t (17)

for every t ∈ [0, T ].
If mH(Σi

T ) − mH(Σi
0) → 0 and mH(Σi

T ) → m > 0 then

H̄2
i(t) := −

∫
Σi

t

H2
i dμ → 4

r2
0

(
1 − 2

r0
me−t/2

)
e−t (18)

for every t ∈ [0, T ].

Proof. Equations 15 and 16 follow directly from the definition of the Hawking
mass, and the first estimate is standard for IMCF. Equations 17 and 18 follow
from 16 and the assumption on the Hawking mass along the sequence. �

Lemma 2.2. For any solution of IMCF we have the following formula

d
dt

∫
Σt

H2dμ =
(16π)3/2

|Σt|1/2

(
1
2
mH(Σt) − d

dt
mH(Σt)

)
(19)

So if we assume that mH(Σi
T ) → 0 as i → ∞ then we have for a.e. t ∈ [0, T ]

that

d
dt

∫
Σi

t

H2dμ → 0 (20)
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If we assume that mH(Σi
T ) − mH(Σi

0) → 0 and mH(Σi
T ) → m > 0 as

i → ∞ then we have that

d
dt

∫
Σi

t

H2dμ → 16π

r0
me−t/2 (21)

Proof. By using the formula for the hawking mass we can compute that

d
dt

mH(Σt) =
1
2
mH(Σt) −

√
|Σt|

(16π)3
d
dt

∫
Σ

H2dμ (22)

Rearranging this equation by solving for d
dt

∫
Σ

H2dμ we find the first formula
in the statement of the lemma.

By Geroch monotonicity we know that d
dtmH(Σt) ≥ 0 and so if mH(Σi

t)
→ 0 as i → ∞ then we must have that d

dtmH(Σi
t) → 0 for almost every

t ∈ [0, T ]. Combining with (22) shows that d
dt

∫
Σi

t
H2

i dμ → 0 for almost every
t ∈ [0, T ].

If mH(Σi
T ) − mH(Σi

0) → 0 as i → ∞ then we have that
∫ T

0
d
dt

mH(Σt)dt

→ 0 and so by Geroch monotonicity we must have that d
dt

mH(Σt) → 0
for almost every t ∈ [0, T ]. Then by combining with the assumption that
mH(Σi

T ) → m as i → ∞ we get the desired result in this case. �

Lemma 2.3. Let Σ2 ⊂ M3 be a compact, connected surface with corresponding
solution to IMCF Σt. Then we find the crucial estimate

mH(Σt)
(

(16π)3/2

2|Σt|1/2

)
≥ d

dt

∫
Σt

H2dμ +
∫

Σt

2
|∇H|2

H2
+

1
2
(λ1 − λ2)2 + Rdμ

(23)

which can be rewritten and integrated to find

mH(ΣT ) − mH(Σ0) ≥
∫ T

0

|Σt|1/2

(16π)3/2

(∫
Σt

2
|∇H|2

H2
+

1
2
(λ1 − λ2)2 + Rdμ

)
dt

(24)

Proof. We will use the following facts in the derivation below where R is the
scalar curvature of M and K is the Gauss curvature of Σt.

R

2
= Rc(ν, ν) + K − 1

2
(H2 − |A|2) (25)

|A|2 =
1
2
H2 +

1
2
(λ1 − λ2)2 (26)∫

Σt

Kdμt = 2πχ(Σt) (27)

which follow from the Gauss equations, the definition of |A|2 and the Gauss–
Bonnet theorem.
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Now we compute the time derivative of
∫
Σt

H2dμ

d
dt

∫
Σt

H2dμt =
∫

Σt

2H
∂H

∂t
+ H2dμt (28)

=
∫

Σt

−2HΔ
(

1
H

)
− 2|A|2 − 2Rc(ν, ν) + H2dμt (29)

=
∫

Σt

−2
|∇H|2

H2
− |A|2 − R + 2Kdμt (30)

= 4πχ(Σt) +
∫

Σt

−2
|∇H|2

H2
− 1

2
(λ1 − λ2)2 − R − 1

2
H2dμt

(31)

≤ mH(Σt)
(16π)3/2

2|Σt|1/2
+

∫
Σt

−2
|∇H|2

H2
− 1

2
(λ1 − λ2)2 − Rdμt

(32)

where we are using that χ(Σt) ≤ 2 for compact, connected surfaces. Rearrang-
ing (32) we find that

mH(Σt)
(16π)3/2

|Σt|1/2
≥ d

dt

∫
Σt

H2dμ +
∫

Σt

2
|∇H|2

H2
+

1
2
(λ1 − λ2)2 + Rdμ (33)

Now by combining with Lemma 2.2 we find

d
dt

mH(Σt) ≥ |Σt|1/2

(16π)3/2

∫
Σt

2
|∇H|2

H2
+

1
2
(λ1 − λ2)2 + Rdμ (34)

and then by integrating both sides from 0 to T we find the desired estimate. �

By combining Lemma 2.3 with Lemma 2.2 we are able to deduce the
crucial estimates below which we will show leads to a stability of positive mass
theorem.

Corollary 2.4. Let Σi ⊂ M i be a compact, connected surface with corresponding
solution to IMCF Σi

t. If mH(Σ0) ≥ 0 and mH(Σi
T ) → 0 then for almost every

t ∈ [0, T ] we have that
∫

Σi
t

|∇Hi|2
H2

i

dμ → 0
∫

Σi
t

(λi
1 − λi

2)
2dμ → 0

∫
Σi

t

Ridμ → 0 (35)
∫

Σi
t

Rci(ν, ν)dμ → 0
∫

Σi
t

Ki
12dμ → 0

∫
Σi

t

H2
i dμ → 16π (36)

∫
Σi

t

|A|2i dμ → 8π

∫
Σi

t

λi
1λ

i
2dμ → 4π χ(Σi

t) → 2 (37)

as i → ∞ where K12 is the ambient sectional curvature tangent to Σt. Since
χ(Σi

t) is discrete we see by the last convergence that Σi
t must eventually become

topologically a sphere.
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If
(
mH(Σi

T ) − mH(Σi
0)

) → 0 where mH(ΣT ) → m > 0 then the first
three integrals listed above → 0 and for almost every t ∈ [0, T ] we have that

∫
Σi

t

H2
i dμ → 16π

(
1 −

√
16π

|Σ0|me−t/2

)∫
Σi

t

|A|2i dμ → 8π

(
1 −

√
16π

|Σ0|me−t/2

)

(38)
∫

Σi
t

λi
1λ

i
2dμ → 4π

(
1 −

√
16π

|Σ0|me−t/2

)∫
Σi

t

Rci(ν, ν)dμ → −8π

r0
me−t/2 (39)

∫
Σi

t

Ki
12dμ → 8π

r0
me−t/2 χ(Σi

t) → 2 (40)

Since χ(Σi
t) is discrete we see by the last convergence that Σi

t must eventually
become topologically a sphere.

Proof. The first three integrals converge to 0 by Lemma 2.3 (23) so now we
will show how to deduce the last three. Using the calculation in 2.3 we can
rewrite (29) as

d
dt

∫
Σi

t

H2
i dμt =

∫
Σi

t

−2
|∇Hi|2

H2
i

− (λi
1 − λi

2)
2 − 2Rci(ν, ν)dμt (41)

which implies that the integral of Rc(ν, ν) → 0 for almost every t ∈ [0, T ] since
every other integral in that expression → 0 for almost every t ∈ [0, T ]. Then
we can write ∫

Σi
t

Ki
12dμ =

∫
Σi

t

1
2

(
Ri − 2Rci(ν, ν)

)
dμ (42)

which implies that the integral of Ki
12 → 0 for almost every t ∈ [0, T ]. Then

going back to (29) we find

d
dt

∫
Σi

t

H2
i dμt =

∫
Σi

t

−2
|∇Hi|2

H2
i

− 2|A|2i + H2
i − 2Rci(ν, ν)dμt (43)

which implies that for almost every t ∈ [0, T ] we have that∫
Σi

t

1
2
H2

i − |A|2i dμt → 0 (44)

as i → ∞, which when combined with Lemma 2.1(15) implies the desired
result.

Lastly we notice∫
Σi

t

λi
1λ

i
2dμ =

∫
Σi

t

1
2

(
H2

i − |A|2i
) → 4π (45)

and so

2πχ(Σi
t) =

∫
Σi

t

Kidμ =
∫

Σi
t

λi
1λ

i
2 + Ki

12dμ → 4π (46)

The convergence results if we assume
(
mH(Σi

T ) − mH(Σi
0)

) → 0 follow simi-
larly using Lemma 2.1 in order to find specifically what

∫
Σi

t
|A|2i dμ or
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∫
Σi

t
λi

1λ
i
2dμ converge to. To find what Rci(ν, ν) and Ki

12 converge to we use
Lemma 2.2 (21) which tells us that for almost every t ∈ [0, T ] we have that
d
dt

∫
Σi

t
H2

i dμ → 16π
r0

me−t/2 and by combining this with (43) we find
∫

Σi
t

Rci(ν, ν)dμt =
∫

Σi
t

−|∇Hi|2
H2

i

− |A|2i +
1
2
H2

i dμt − 1
2

d
dt

∫
Σi

t

H2
i dμt (47)

Then since
∫
Σi

t
|A|2i dμdt → −8π − 8π

r0
me−t/2 we find that

∫
Σi

t
Rc(ν, ν)dμdt →

− 8π
r0

me−t/2 and hence
∫
Σi

t
Ki

12dμdt → 8π
r0

me−t/2 and so

2πχ(Σi
t) =

∫
Σi

t

Kidμ =
∫

Σi
t

λi
1λ

i
2 + Ki

12dμ → 4π (48)

�

In order for the integral quantities above to be useful to us we need to en-
sure that no collapsing of regions of Σi

t can occur as i → ∞. We will accomplish
this by proving lower bounds on the isoperimetric constant which we define
below. We will also use the Sobolev constant to deduce useful information from
the integral of the gradient of the mean curvature.

We start by defining the Neumann α−isoperimetric constant and the
Neumann α−Sobolev constant of a compact manifold without boundary which
can be found in Peter Li’s book [18].

Definition 2.5. The Neumann α−isoperimetric constant and the Neumann
α−Sobolev constant of a compact manifold without boundary are defined as

INα(Σ) = inf
∂S1=γ=∂S2
Σ=S1∪γ∪S2

L(γ)
min {|S1|, |S2|}1/α

(49)

SNα(Σ) = inf
f∈H1,1(Σ)

∫
Σ

|∇f |dμ(
infk∈R

∫
Σ

|f − k|α)1/α
(50)

where L(γ) represents the length of the curve γ which separates Σ into two
pieces S1 and S2.

Now one can show that the geometric constant and the analytic constant
are essentially equivalent. The proof of the following lemma can be found in
Peter Li’s Geometric Analysis book [18], Theorem 9.6 and Corollary 9.7.

Theorem 2.6. (Li [18]) Let Σ be a compact Riemannian manifold without
boundary then we have that

min{1, 21−1/α}SNα(Σ) ≤ INα(Σ) ≤ max{1, 21−1/α}SNα(Σ) (51)

Also, if we define λ1(Σ) to be the first nonzero Neumann eigenvalue for the
Laplacian then we find the following bound due to Cheeger

λ1(Σ) ≥ IN1(Σ)2

4
(52)
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Theorem 2.6 will be useful to us since we will be able to control the
isoperimetric constant of Σi

t using IMCF evolution equations which will then
imply control of the Sobolev constant of Σi

t. We start by calculating the evo-
lution of lengths of curves in Σi

t.

Lemma 2.7. If Σt is a solution of IMCF where 0 < H0 ≤ H(x, t) ≤ H1 < ∞
and |A|(x, t) ≤ A0 < ∞, and γ(s) ⊂ Σ is a smooth, simple, closed curve then

L0(γ(s))e− 2A0
H0

t ≤ Lt(γ(s)) ≤ L0(γ(s))e
2A0
H0

t (53)

where Lt(γ(s)) represents the length of γ with respect to the metric of Σt.

Proof. Let γ(s) ⊂ Σ be a smooth, simple, closed curve and define Lt(γ(s)) =∫
γ

√
gt(γ′, γ′)ds where gt is the metric on Σ induced from Σt ⊂ M . Then we

calculate the evolution
d
dt

Lt(γ(s)) =
∫

γ

∂

∂t

√
gt(γ′, γ′)ds (54)

=
∫

γ

∂gt

∂t√
gt(γ′, γ′)

ds (55)

=
∫

γ

2A(γ′, γ′)
H

√
gt(γ′, γ′)

ds (56)

≥ −
∫

γ

2A0g(γ′, γ′)
H0

√
gt(γ′, γ′)

ds = −2A0

H0
Lt(γ(s)) (57)

where the estimate then follows by integrating and the upper bound follows
similarly. �

We will now use Lemma 2.7 in order to control the isoperimetric constant
of Σi

t.

Lemma 2.8. If Σt is a solution of IMCF where 0 < H0 ≤ H(x, t) ≤ H1 < ∞
and |A|(x, t) ≤ A0 < ∞ then

INα(Σ0)e
(
− 2A0

H0
− 1

α

)
t ≤ INα(Σt) ≤ INα(Σ0)e

(
2A0
H0

− 1
α

)
t (58)

Proof. Let γ(s) ⊂ Σ be a smooth, simple, closed curve and define Lt(γ(s)) =∫
γ

√
gt(γ′, γ′)ds where gt is the metric on Σ induced from Σt ⊂ M . Then

consider S ⊂ Σ s.t. γ = ∂S of which there are two choices and the calculation
below will not depend on which choice one makes. We define St := Ft(S) and
by the fact that ∂

∂tdμt = dμt we find that |St| = |S0|et as we expect for |Σt|.
So we can compute

d
dt

Lt(γ(s))
|St|1/α

=
d
dt

Lt(γ(s))

|St|1/α
− 1

α

Lt(γ(s))
|St|1/α

≥ −
(

2A0

H0
+

1
α

)
Lt(γ(s))
|St|1/α

(59)

where the estimate
L0(γ(s))
|S0|1/α

e
−

(
2A0
H0

+ 1
α

)
t ≤ Lt(γ(s))

|St|1/α
≤ L0(γ(s))

|S0|1/α
e

(
2A0
H0

− 1
α

)
t (60)
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follows by integrating and the upper bound follows similarly. Since this is true
for all γ ⊂ Σ and all S1, S2 ⊂ Σ s.t. ∂S1 = γ = ∂S2 and so by taking the
min {|S1

t |, |S2
t |} and then taking the inf over all smooth γ ⊂ Σ we find the

desired result. �

We will now exploit the newly found control on the isoperimetric constant
and hence the Sobolev constant to extract useful information from the fact
that

∫
Σi

t

|∇H|2
H2 dμ → 0.

Proposition 2.9. If Σi
t is a sequence of IMCF solutions where

∫
Σi

t

|∇H|2
H2 dμ → 0

as i → ∞, 0 < H0 ≤ H(x, t) ≤ H1 < ∞ and |A|(x, t) ≤ A0 < ∞ then∫
Σi

t

(Hi − H̄i)2dμ → 0 (61)

as i → ∞ for almost every t ∈ [0, T ] where H̄i = −
∫
Σi

t
Hidμ.

Let dμi
t be the volume form on Σ w.r.t. gi(·, t) then we can find a param-

eterization of Σt so that

dμi
t = r2

0e
tdσ (62)

where dσ is the standard volume form on the unit sphere.
Then for almost every t ∈ [0, T ] and almost every x ∈ Σ, with respect to

dσ, we have that

Hi(x, t) − H̄i(t) → 0, (63)

along a subsequence.

Proof. By Lemma 2.8 we have uniform control on the isoperimetric constant
of Σi

t and so by Theorem 2.6 we know that the Sobolev constant of Σi
t is also

controlled and we can use the lower bound on λ1(Σ) to control the constant
in the Poincare inequality∫

Σ

|∇f |2 ≥ λ1(Σ)
∫

Σ

f2dμ (64)

for f ∈ H1,2(Σ) satisfying
∫
Σ

fdμ = 0.
Hence we can calculate∫

Σi
t

|∇Hi|2
H2

i

d ≥ 1
H2

1

∫
Σi

t

|∇Hi|2d (65)

≥ λ1(Σi
t)

H2
1

∫
Σi

t

(Hi − H̄i)2dμ (66)

≥ IN1(Σi
0)e

(
− 2A0

H0
−1

)
T

H2
1

∫
Σi

t

(Hi − H̄i)2dμ (67)

≥ I0e

(
− 2A0

H0
−1

)
T

H2
1

∫
Σi

t

(Hi − H̄i)2dμ (68)

which shows the desired result by applying Lemma 2.4.
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Since Σ is compact with two measures dμi
0, r

2
0dσ of the same area we can

use Moser’s Theorem [19] to find a diffeomorphism F i : Sr0
∼= Σ → Σ such

that for each open set U ⊂ Σ we have that r2
0dσ(U) = dμi

0(F
i(U)), i.e. area

preserving. Then since d
dt

dμi
t = dμi

t we have that dμi
t = etdμi

0 and if we let
F i

t be the solution of IMCF starting at F i then r2
0e

tdσ(U) = etdμi
0(F

i
t (U)) =

dμi
t(F

i
t (U)). This means the area-preserving diffeomorphism F i at time t = 0

induces an area-preserving diffeomorphism for all times t ∈ [0, T ].
Then this implies that

∫ T

0

∫
Σ
(Hi − H̄i)2r2

0e
tdσdt → 0 and hence the

pointwise convergence for a.e. t ∈ [0, T ] and for a.e. x ∈ Σ, with respect to dσ,
on a subsequence is a well-known fact relating L2 convergence to pointwise
convergence. �

Note From now on we will be using the area-preserving parameterization, F i
t ,

of the solution of IMCF, Σt, explained in the proof of 2.9, which is induced by
an area-preserving diffeomorphism between (Σ, r2

0σ) and (Σ, gi(x, 0)).
Now we obtain an estimate which gives us weak convergence of Rci(ν, ν)

which will be used in Sect. 4.

Lemma 2.10. Let Σi
0 ⊂ M3

i be a compact, connected surface with corresponding
solution to IMCF Σi

t. Then if φ ∈ C1
c (Σ × (a, b)) and 0 ≤ a < b ≤ T we can

compute the estimate∫ b

a

∫
Σi

t

2φRci(ν, ν)dμdt =
∫

Σi
a

φH2
i dμ −

∫
Σi

b

φH2
i dμ (69)

+
∫ b

a

∫
Σi

t

2φ
|∇Hi|2

H2
i

− 2
ĝj(∇φ,∇Hi)

Hi

+ φ(H2
i − 2|A|2i )dμ (70)

If mH(Σi
T ) → 0 and Σt satisfies the hypotheses of Proposition 2.9 then

the estimate above implies∫ b

a

∫
Σi

t

φRci(ν, ν)dμdt → 0 (71)

If mH(Σi
T ) − mH(Σi

0) → 0, mH(ΣT ) → m > 0 and Σt satisfies the hypotheses
of Proposition 2.9 then the estimate above implies∫ b

a

∫
Σt

2φRci(ν, ν)dμdt → 2
∫ b

a

∫
Σt

−8π

r0
me−t/2φdμdt (72)

Proof. Let φ ∈ C1
c (Σ × (a, b)) and compute

d

dt

∫
Σi

t

φH2
i dμt =

∫
Σi

t

2φHi
∂Hi

∂t
+ φH2

i +
∂φ

∂t
H2

i dμ (73)

=

∫
Σi

t

−2φHiΔ

(
1

Hi

)
− 2φ|A|2i − 2φRci(ν, ν) + φH2

i +
∂φ

∂t
H2

i dμ

(74)
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=

∫
Σi

t

−2φ
|∇Hi|2

H2
− 2

ĝi(∇φ, ∇Hi)

Hi
− 2φ|A|2i − 2φRci(ν, ν)

+ φH2
i +

∂φ

∂t
H2

i dμ (75)

Now by integrating from a to b, 0 ≤ a < b ≤ T , and rearranging (75) we find
that ∫ b

a

∫
Σt

2φRci(ν, ν)dμdt =
∫

Σa

φH2
i dμ −

∫
Σb

φH2
i dμ (76)

+
∫ b

a

∫
Σt

2φ
|∇Hi|2

H2
i

− 2
ĝi(∇φ,∇Hi)

Hi

+ φ(H2
i − 2|A|2i ) +

∂φ

∂t
H2

i dμ (77)

Notice if mH(Σi
t) → 0 then Proposition 16 combined with the assumptions on

φ implies
∫ b

a

∫
Σt

∂φ

∂t
H2

i dμdt → 16π

∫ b

a

∫
Σ

∂φ

∂t
dσdt = 16π

∫
Σ

φ(x, b) − φ(x, a)dσ = 0

(78)

So by using the results of Proposition 16 and Corollary 2.4 we find that
∫ b

a

∫
Σt

2φRci(ν, ν)dμdt → 0 (79)

Notice if mH(Σi
T ) − mH(Σi

0) → 0 then
∫ b

a

∫
Σt

∂φ

∂t
H2

i dμdt →
∫ b

a

∫
Σ

∂φ

∂t

(
16π − 32π

r0
me−t/2

)
dσdt (80)

=
∫ b

a

∫
Σ

∂

∂t

(
φ

(
16π − 32π

r0
me−t/2

))
− 16

r0
me−t/2φdσdt (81)

=
∫

Σ

φ(x, b)
(

16π − 32π

r0
me−b/2

)
− φ(x, a)

(
16π − 32π

r0
me−a/2

)
(82)

−
∫ b

a

∫
Σ

16π

r0
me−t/2φdσdt (83)

by assumption and the convergence of Proposition 16.
So by using the results of Proposition 16 and Corollary 2.4 we find that

∫ b

a

∫
Σt

2φRci(ν, ν)dμdt → 2
∫ b

a

∫
Σ

−8π

r0
me−t/2φdσdt (84)

�

We end this section with an estimate for the metric of Σi
t in terms of the

bounds on the mean curvature and the second fundamental form.
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Lemma 2.11. Assume that Σi
t is a solution to IMCF and let λi

1(x, t) ≤ λi
2(x, t)

be the eigenvalues of Ai(x, t) then we find

e
∫ t
0

2λi
1(x,s)

Hi(x,s)
ds

gi(x, 0) ≤ gi(x, t) ≤ e
∫ t
0

2λi
2(x,s)

Hi(x,s)
ds

gi(x, 0) (85)

Proof. We start with the time derivative of the metric

∂glm

∂t
=

2Ai
lm(x)

Hi(x)
≤ 2λi

2(x)
Hi

0(x)
glm ≤ 2A0

H0
glm (86)

∂glm

∂t
=

2Ai
lm(x)

Hi(x)
≥ 2λi

1(x)
Hi

0(x)
glm ≥ −2A0

H0
glm (87)

where we are fixing the coordinates on Σt from the time zero hypersurface
Σ0. By integrating this differential inequality we get the first set of desired
estimates. �

3. Convergence to a Warped Product

In this section we define the following metrics on Σ × [0, T ]

ĝi(x, t) =
1

Hi(x, t)2
dt2 + gi(x, t) (88)

gi
1(x, t) =

1
H̄i(t)2

dt2 + gi(x, t) (89)

gi
2(x, t) =

1
H̄i(t)2

dt2 + etgi(x, 0) (90)

gi
3(x, t) =

r2
0e

t

4
dt2 + etgi(x, 0) or (91)

gi
3(x, t) =

r2
0

4

(
1 − 2

r0
me−t/2

)−1

dt2 + etgi(x, 0) (92)

δ(x, t) =
r2
0e

t

4
dt2 + r2

0e
tσ(x) or (93)

gs(x, t) =
r2
0

4

(
1 − 2

r0
me−t/2

)−1

dt2 + r2
0e

tσ(x) (94)

and successively show the pairwise convergence of the metrics in L2 from
ĝi(x, t) to gi

3(x, t). By combining all the pairwise convergence results using the
triangle inequality we will find that ĝi − gi

3 → 0 in L2. In the next section we
will complete the desired results by showing the convergence to δ or gs.

We start by showing that ĝi converges to gi
1 by using Proposition 2.9.

Theorem 3.1. Let U i
T ⊂ M3

i be a sequence such that U i
T ⊂ MT,H1,A1

r0,H0,I0
and

mH(Σi
T ) → 0 as i → ∞ or mH(Σi

T ) − mH(Σi
0) → 0 and mH(Σi

T ) → m > 0.
If we define the metrics
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ĝi(x, t) =
1

Hi(x, t)2
dt2 + gi(x, t) (95)

gi
1(x, t) =

1
Hi(t)2

dt2 + gi(x, t) (96)

on U i
T then we have that ∫

Ui
T

|ĝi − gi
1|2dV → 0 (97)

where dV is the volume form on U i
T .

Proof. We compute∫
Ui

T

|ĝi − gi
1|2dV =

∫ T

0

∫
Σi

t

|ĝi − gi
1|2

H
dμdt (98)

=
∫ T

0

∫
Σi

t

1
Hi

∣∣∣∣ 1
H2

i

− 1
H̄2

i

∣∣∣∣
2

dμdt (99)

=
∫ T

0

∫
Σi

t

|H̄2
i − H2

i |2
H3

i H̄2
i

dμdt (100)

≤ 1
H5

0

∫ T

0

∫
Σi

t

|H̄2
i − H2

i |2dμdt → 0 (101)

where the convergence in (101) follows from the pointwise convergence for
almost every t ∈ [0, T ] and almost every x ∈ Σt, for a subsequence, from
Proposition 2.9 as well as the fact that Hi ≤ H1 and Lebesgue’s dominated
convergence theorem.

We can get rid of the need for a subsequence by assuming to the contrary
that for ε > 0 there exists a subsequence so that

∫
Uk

T
|ĝk −gk

1 |2dV ≥ ε, but this
subsequence satisfies the hypotheses of Theorem 3.1 and hence by what we have
just shown we know a subsequence must converge which is a contradiction. �

Now we show the convergence of gi
1 to gi

2.

Theorem 3.2. Let U i
T ⊂ M3

i be a sequence s.t. U i
T ⊂ MT,H1,A1

r0,H0,I0
and mH(Σi

T )
→ 0 as i → ∞ or mH(Σi

T )−mH(Σi
0) → 0 and mH(Σi

t) → m > 0. If we define
the metrics

gi
1(x, t) =

1
Hi(t)2

dt2 + gi(x, t) (102)

gi
2(x, t) =

1
Hi(t)2

dt2 + etgi(x, 0) (103)

on U i
T then we have that ∫

Ui
T

∣∣gi
1 − gi

2

∣∣2
gi
3
dV → 0 (104)

where dV is the volume form on U i
T and the norm is being calculated with

respect to the metric gi
3(x, t) = r2

0
4 etdt2 + etgi(x, 0).
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Similarly, if we define

gi
2′(x, t) =

1
Hi(t)2

dt2 + et−T gi(x, T ) (105)

on U i
T then we have that ∫

Ui
T

|gi
1 − gi

2′ |2gi
3
dV → 0 (106)

where dV is the volume form on U i
T .

Proof. We compute∫
Ui

T

|gi
1 − gi

2|2dV =

∫ T

0

∫
Σi

t

|gi
1 − gi

2|2
Hi

dµdt (107)

=

∫ T

0

∫
Σi

t

e−2t
|gi(x, t) − etgi(x, 0)|2gi(x,0)

Hi
dµdt (108)

≤
∫ T

0

∫
Σi

t

e−2t
|gi(x, 0)|2gi(x,0)

Hi
max

{
|e

∫ t
0

2λi
1(x,s)

Hi(x,s)
ds − et|2, |e

∫ t
0

2λi
2(x,s)

Hi(x,s)
ds − et|2

}
dµdt

(109)

≤ n2

H0

∫ T

0

∫
Σi

t

e−2t max

{
|e

∫ t
0

2λi
1(x,s)

Hi(x,s)
ds − et|2, |e

∫ t
0

2λi
2(x,s)

Hi(x,s)
ds − et|2

}
dµdt → 0

(110)

where the convergence in (110) follows from Proposition 2.9 since Hi → H̄ =
2
r0

e−t/2 and λi
1 → λi

2 pointwise almost everywhere with respect to dσ along
a subsequence. So we have that λi

p(x, t) → 1
r0

e−t/2, p = 1, 2, for almost every
x ∈ Σt and for almost every t ∈ [0, T ] along a subsequence. This implies that
2λi

p(x,t)

Hi(x,t) → 1 for almost every x ∈ Σt and for almost every t ∈ [0, T ] along

a subsequence. Combining this with the estimate 2λi
p

Hi
≤ A0

H0
and Lebesgue’s

dominated convergence theorem we find the desired convergence above.
We can get rid of the need for a subsequence by assuming to the contrary

that for ε > 0 there exists a subsequence so that
∫

Uk
T

|gk
1 − gk

2 |2
gi
3
dV ≥ ε,

but this subsequence satisfies the hypotheses of Theorem 3.2 and hence by
what we have just shown we know a subsequence must converge which is a
contradiction.

We can obtain the convergence result in the case where mH(Σi
T ) −

mH(Σi
0) → 0 and mH(Σi

t) → m in a similar fashion by using the estimates of
Proposition 2.9 as well as Lemma 2.4.

Using a similar argument, as well as the time T estimate from Lemma 2.11,
we can get the second convergence result for gi

2′ . �

Notice that in Theorem 3.1 we were able to leverage the results of Propo-
sition 2.9 in order to gain control of the radial portion of the metric ĝi as
i → ∞. We will further improve on this radial control in Theorem 3.3 by using
the knowledge that H̄i(t)2 → 4

r2
0
e−t as i → ∞ to complete the convergence to

the warped product gi
3.
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Theorem 3.3. Let U i
T ⊂ M3

i be a sequence s.t. U i
T ⊂ MT,H1,A1

r0,H0,I0
and mH(Σi

T )
→ 0 as i → ∞. If we define the metrics

gi
2(x, t) =

1
H̄i(t)2

dt2 + etgi(x, 0) (111)

gi
3(x, t) =

r2
0

4
etdt2 + etgi(x, 0) (112)

on U i
T then we have that ∫

Ui
T

|gi
2 − gi

3|2dV → 0 (113)

where dV is the volume form on U i
T .

Instead, if mH(Σi
T ) − mH(Σi

0) → 0 and mH(Σi
t) → m > 0 and we define

gi
3(x, t) =

r2
0

4

(
1 − 2

r0
me−t/2

)−1

etdt2 + etgi(x, 0) (114)

on U i
T then we have that ∫

Ui
T

|gi
2 − gi

3|2dV → 0 (115)

where dV is the volume form on U i
T .

Proof. We calculate∫
Ui

T

|ĝi
2 − gi

3|2dV =
∫ T

0

∫
Σi

t

|ĝi
2 − gi

3|2
H

dμdt (116)

=
∫ T

0

∫
Σi

t

1
H

∣∣∣∣ 1
H̄2

− r2
0

4
et

∣∣∣∣ dμdt (117)

=
∫ T

0

∫
Σi

t

r2
0

4
et

| 4
r2
0
e−t − H̄2|
HH̄2

dμdt (118)

≤ r2
0|Σ0|
H3

04

∫ T

0

e2t| 4
r2
0

e−t − H̄2|dt → 0 (119)

where the convergence in (119) follows from Lemma 2.1, (17).
Since this argument is solely concerned with the dt2 part of the metric

the argument does not change at all for the convergence of the metrics gi
2′ and

gi
3′ . Also, in the case where mH(Σt) → m the proof is very similar where we

use that H̄2 → 4
r2
0

(
1 − 2

r0
me−t/2

)
from Lemma 2.1. �

4. Convergence to Flat/Schwarzschild Metric

In this section we will complete the proofs of Theorems 1.2 and 1.3 under a few
different assumptions. One should note that the results of the last section are
enough to prove Theorems 1.2 and 1.3 in the rotationally symmetric case due
to the fact that in that case we know that (Σ, gi(x, t)) must be a round sphere
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by assumption. Of course, the stronger Sormani–Wenger intrinsic flat (SWIF)
convergence has already been shown in the rotationally symmetric case by Lee
and Sormani [16], and LeFloch and Sormani [17]. It is also interesting that the
extra assumptions of Theorems 1.2 and 1.3 are not needed for the results of
the last section giving L2 convergence to the warped product gi

3 without the
W 1,2 bound on the Ricci curvature.

In the more general case addressed by Theorems 1.2 and 1.3 we need
to show that (Σ, gi(x, t)) converges to a round sphere. In this section we will
be able to show that the Gauss curvature of Σi

t converges to that of a round
sphere and so in order to complete the proofs of Theorems 1.2 and 1.3 we
will need the following rigidity result of Petersen and Wei ([20], Corollary 1.5)
which allows us to go from, Gauss curvature of Σi

t converging to a constant,
to, gi(x, t) converging to r2

0e
tσ(x) in Cα.

Corollary 4.1. (Petersen and Wei [20]) Given any integer n ≥ 2, and numbers
p > n/2, λ ∈ R, v > 0, D < ∞, one can find ε = ε(n, p, λ,D) > 0 such that a
closed Riemannian n-manifold (Σ, g) with

vol(Σ) ≥ v (120)

diam(Σ) ≤ D (121)
1

|Σ|
∫

Σ

‖R − λg ◦ g‖pdμ ≤ ε(n, p, λ,D) (122)

is Cα, α < 2 − n
p close to a constant curvature metric on Σ.

In our case n = 2, p = 2, α < 1 and the Riemann curvature tensor is
R = Kg ◦ g, where g ◦ g represents the Kulkarni–Nomizu product, and so
‖R − λg ◦ g‖2 = ‖g ◦ g‖2|K − λ|2 = 24|K − λ|2. This shows that we need
to verify that the Gauss curvature of Σt is becoming constant in order to
satisfy (122) which is exactly what we will be able to show in Theorem 4.2
and Corollaries 4.4, 4.5, 4.6, 4.7, 4.3. Then by combining these results with
the rigidity result of Petersen and Wei, Theorem 4.1, we are able to complete
the proofs of Theorems 1.2 and 1.3.

We start with a theorem which says that if we knew that the warped
products gi

3 also had positive scalar curvature then they would have to converge
to δ as i → ∞ along a subsequence.

Theorem 4.2. Let g̃i(x, t) = r2
0
4 etdt2 + etgi(x) be a sequence of Riemannian

metrics defined on M = [0, T ] × Σ where Σ is topologically a sphere. If R̃i

denotes the scalar curvature with respect to g̃i(x) and we assume

R̃i ≥ 0 (123)

diam(Σ, gi) ≤ D (124)

mH(Σi
t) → 0 (125)

then

g̃i → δ (126)

in Cα, α < 1.
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Proof. By the assumption that R̃i ≥ 0 and mH(Σi
t) → 0 we can use Lemma 2.3

and Corollary 2.4 to conclude that
∫
Σt

R̃idμ → 0 and hence R̃i → 0 pointwise
a.e. along a subsequence. Now lets rewrite the metric above by performing the
change of coordinates s = r0e

t/2 which means g̃i(x, t) = ds2 + s2

r2
0
gi(x, 0). Now

we can use the warped product formula from the work of Dobarro and Lami
Dozo ([6], Theorem 2.1) to express R̃i in terms of the scalar curvature of Σt,
which is twice the Gauss curvature in this case 2Ki, and the warping function
as follows

R̃i = − 2
s2

+
2Kir2

0

s2
(127)

which by the fact that R̃j → 0 pointwise a.e. along a subsequence we find that
Kj → 1

r2
0

pointwise a.e. along a subsequence. Now we can apply Corollary 1.5
of [20] which implies that (Σ, gi) is Cα, α < 1, close to a round sphere and
hence g̃i is Cα close to δ.

Then we can get rid of the need for a subsequence by assuming to the
contrary that for ε > 0 there exists a subsequence so that |g̃k − δ|Cα ≥ ε
but this subsequence satisfies the hypotheses of Theorem 4.2 and hence by
what we have just shown we know a subsequence must converge which is a
contradiction. �

The issue with using the theorem above is that we don’t know that the
warped product gi

3 has positive scalar curvature just because ĝi has positive
scalar curvature. This turns out not to be the right approach here but could
prove to be useful in a case where one was assured that the warped product
gi
3 inherited the positive scalar curvature from ĝi.

Now we prove Theorems 1.2 under the assumption that Ki
12 ≥ 0, the

sectional curvature of Mi tangent to Σi
0, for all i which mimics the rotationally

symmetric case where the spheres have positive K12.

Corollary 4.3. Let UT,i ⊂ M3
i be a sequence s.t. UT,i ⊂ MT,H1,A1

r0,H0,I0
and mH(Σi

T )
→ 0 as i → ∞. If in addition we assume that Ki

12(x, 0) ≥ 0, the sectional
curvature of M3

i tangent to Σ0, then we have that the Gauss curvature of Σ0

w.r.t gi(x, 0) will converge to that of a round sphere of radius r0 and

ĝi → δ (128)

in L2 with respect to the metric δ.

Proof. By Lemma 2.4 we know that
∫
Σi

0
Ki

12dμ → 0 and if we know that Ki
12 ≥

0 then we know that Kj
12 → 0 pointwise a.e. on a subsequence. Combining this

with the fact that λj
1λ

j
2 → 2

r2
0

pointwise a.e. and the fact that Kj = Kj
12+λj

1λ
j
2

yields the desired result. Now we can apply the result of Petersen and Wei [20],
Corollary 4.1 which implies that (Σ, gi(x, 0)) is Cα, α < 1, close to a round
sphere of radius r0. So we can put everything together by noticing
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∫
UT

|ĝi − δ|2δdV ≤
∫

UT

|ĝi − δ|2gi
3
+ |(gi

3)
lm(gi

3)
pq − δlmδpq||ĝ − δ|lp|ĝ − δ|mqdV

(129)

where we can show the last term goes to 0 by using that |gi
3 − δ|Cα → 0 as

i → ∞ and noticing that
∫

UT
|ĝi − δ|2δdV ≤ C.

Then we can get rid of the need for a subsequence by assuming to the
contrary that for ε > 0 there exists a subsequence so that |g̃k − δ|Cα ≥ ε
but this subsequence satisfies the hypotheses of Theorem 4.2 and hence by
what we have just shown we know a subsequence must converge which is a
contradiction. �

Now we will prove Theorems 1.2 and 1.3 under the assumption of integral
Ricci curvature bounds. For this one should remember that the Sobolev space
W 1,2(Σ × [a, b]) is defined with respect to δ.

Corollary 4.4. Let UT,i ⊂ M3
i be a sequence such that UT,i ⊂ MT,H1,A1

r0,H0,I0
and

mH(Σi
T ) → 0 as i → ∞. If [a, b] ⊂ [0, T ] assume that

‖Rci(ν, ν)‖W 1,2(Σ×[a,b]) ≤ C (130)

and diam(Σi
t) ≤ D ∀ i, t ∈ [a, b] then

ĝi → δ (131)

in L2 with respect to the metric δ.

Proof. By the assumption that ‖Rci(ν, ν)‖W 1,2(Σ×[a,b]) ≤ C we know by
Sobolev embedding that a subsequence converges strongly in L2(Σ × [a, b])
to a function k(x, t) ∈ L2(Σ × [a, b]), i.e.∫ b

a

∫
Σ

|Rcj(ν, ν) − k(x, t)|2r2
0e

tdσdt → 0 (132)

By uniqueness of weak limits, combined with Lemma (2.10), we know that∫ b

a

∫
Σ

|Rcj(ν, ν)|2r2
0e

tdσdt → 0 (133)

and hence a subsequence of
∫
Σ

|Rcj(ν, ν)|2r2
0e

tdσ → 0 for a.e. t ∈ [a, b]. If we
choose some t0 ∈ [a, b] where the pointwise convergence holds then we have
that

∫
Σ
(Ki

12)
2r2

0dσ → 0 and hence
∫

Σ

(
Ki − 1

r2
0

)2

r2
0e

t0dσ =
∫

Σ

(
Ki

12 + λi
1λ

i
2 − 1

r2
0

)2

r2
0e

t0dσ (134)

≤ 2
∫

Σ

(
Ki

12

)2
+

(
λi

1λ
i
2 − 1

r2
0

)2

r2
0e

t0dσ → 0 (135)

This shows that
∫
Σ
(Ki − 1

r2
0
)2r2

0e
t0dσ → 0 and hence by combining with

the diameter bound diam(Σi
0) ≤ D we can apply the rigidity result of Pe-

tersen and Wei [20], Corollary 4.1, with p = 2 which implies that |gi(x, 0) −
r2
0σ(x)|Cα → 0 as i → ∞ where α < 1. This shows that |gi

3 − δ|Cα → 0 as
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i → ∞ where α < 1 which also implies
∫

UT
|ĝ − δ|gi

3
dV → 0 as i → ∞. So we

can put everything together by noticing∫
UT

|ĝi − δ|2δdV ≤
∫

UT

|ĝi − δ|2gi
3
+ |(gi

3)
lm(gi

3)
pq − δlmδpq||ĝ − δ|lp|ĝ − δ|mqdV

(136)

where we can show the last term of (136) goes to 0 by using that |gi
3−δ|Cα → 0

as i → ∞ and noticing that
∫

UT
|ĝi − δ|2δdV ≤ C.

Then we can get rid of the need for a subsequence by assuming to the
contrary that for ε > 0 there exists a subsequence so that

∫
UT

|ĝk − δ|2δdV ≥ ε,
but this subsequence satisfies the hypotheses of Theorem 4.4 and hence by
what we have just shown we know a further subsequence must converge which
is a contradiction. �

Now we finish up by proving a similar theorem in the Riemannian Penrose
inequality case.

Corollary 4.5. Let UT,i ⊂ M3
i be a sequence s.t. UT,i ⊂ MT,H1,A1

r0,H0,I0
, mH(Σi

T ) −
mH(Σi

0) → 0, and mH(ΣT ) → m > 0 as i → ∞. If [a, b] ⊂ [0, T ] assume that

‖Rci(ν, ν)‖W 1,2(Σ×[a,b]) ≤ C (137)

and diam(Σi
t) ≤ D ∀ i, t ∈ [a, b] then

ĝi → gs (138)

in L2 with respect to the metric gs.

Proof. Now one can repeat the proof of Corollary 4.4 in order to finish the
proof of the results for Corollary 4.5. �

Note If Rc(ν, ν) = − 2
r3
0
e−3t/2m and we let s = r0e

t/2 then we see that
Rc(ν, ν) = − 2

s3 m which is what we expect for the Schwarzschild metric.

Note We could have assumed W 1,2 bounds on K12 on Σ × [a, b], instead of on
Rc(ν, ν), in order to prove the same results as Corollaries 4.4 and 4.5.

Next we will prove Corollaries 1.5 and 1.6 under the assumption of long-
time existence by applying Corollaries 4.4 and 4.5, respectively.

Corollary 4.6. Let U∞,i =
⋃

T∈(0,∞)
UT,i ⊂ M3

i be a sequence of asymptot-

ically flat manifolds such that UT,i ⊂ MT,H1,A1

r0,HT
0 ,I0

for all T ∈ (0,∞) where

HT
0 → 0 as T → ∞. Assume that mH(Σi

∞) = limT→∞ mH(Σi
T ) → 0 as

i → ∞ and that Mi are uniformly asymptotically flat with respect to the IMCF
coordinates. Then there exists a T∗ < ∞ so that for all T ≥ T∗ we have

ĝi → δ (139)

on Σ × [0, T ] in L2 with respect to the metric δ.
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Proof. By the assumption that Mj are uniformly asymptotically flat with re-
spect to the IMCF coordinates we immediately find that diam(Σi

T ) ≤ C
and we can use (10) to show that there exists a ε > 0 so that
‖Rci(ν, ν)‖W 1,2(Σ×[T−ε,T ]) ≤ C for all T ≥ T∗. Then we can apply the re-
sults of Corollary 4.4 for each fixed T ≥ T∗ to finish the proof. �

Corollary 4.7. Let U∞,i =
⋃

T∈(0,∞)
UT,i ⊂ M3

i be a sequence of asymptot-

ically flat manifolds such that UT,i ⊂ MT,H1,A1

r0,HT
0 ,I0

for all T ∈ (0,∞) where

HT
0 → 0 as T → ∞. Define mH(Σ∞) = limT→∞ mH(ΣT ) and assume that

mH(Σi
∞) − mH(Σi

0) → 0, mH(Σi
0) → m > 0 as i → ∞, and that Mi are uni-

formly asymptotically flat with respect to the IMCF coordinates. Then there
exists a T∗ < ∞ so that for all T ≥ T∗ we have

ĝi → gs (140)

on Σ × [0, T ] in L2 with respect to the metric δ.

Proof. Use the exact same argument as in the proof of Corollary 4.6. �
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