
Ann. Henri Poincaré 19 (2018), 237–247
c© 2017 Springer International Publishing AG,
part of Springer Nature
1424-0637/18/010237-11
published online November 15, 2017

https://doi.org/10.1007/s00023-017-0624-8 Annales Henri Poincaré
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Abstract. We study continuum Schrödinger operators on the real line
whose potentials are comprised of two compactly supported square-
integrable functions concatenated according to an element of the Fibonacci
substitution subshift over two letters. We show that the Hausdorff dimen-
sion of the spectrum tends to one in the small coupling and high-energy
regimes, regardless of the shape of the potential pieces.

1. Introduction

1.1. Background

Quasicrystals were discovered in the early 1980s by Schechtman et al. [28] and
have attracted a substantial amount of attention from researchers in mathe-
matics and science. Broadly speaking, quasicrystals are solids characterized by
the coexistence of two characteristics: aperiodicity (i.e., the absence of trans-
lation symmetries) and long-range order.

Thus, objects generated by or associated with strictly ergodic aperiodic
subshifts over finite alphabets furnish concrete mathematical models of qua-
sicrystals. Researchers in mathematics have studied such operators from vari-
ous points of view including diffraction theory (see [1] and references therein)
and spectral theory (see [4,5] and references therein). In particular, self-adjoint
operators (and more recently, unitary operators) generated by such subshifts
have been studied fairly heavily since the 1980s. Until somewhat recently,
most of the effort was devoted to discrete Schrödinger operators arising in this
manner. On the other hand, there have been several recent investigations con-
cerning continuum Schrödinger operators [6,18,21], Jacobi matrices [14,22,31],
and CMV matrices [7,8,10–13,23].
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The (discrete) Fibonacci Hamiltonian is the central model of a one-
dimensional quasicrystal in the discrete Schrödinger setting. This model
was proposed in the physics literature by Kohmoto–Kadanoff–Tang [19] and
Ostlund et al. [24]. Casdagli [3] and Sütő [26,27] wrote the seminal mathe-
matics papers on this model, proving that it enjoys purely singular continuous
spectrum supported on a Cantor set of zero Lebesgue measure. This spectral
type is regarded as characteristic for this class of models. Our understanding
of the discrete Fibonacci Hamiltonian is quite advanced; see [9] and references
therein. However, our knowledge about the continuum Fibonacci Hamilton-
ian is substantially more rudimentary, owing to a proliferation of nontrivial
obstructions, such as unboundedness of the operator, non-constancy of the
Fricke–Vogt character on the spectrum, inability to explicitly compute trans-
fer matrices (and hence the Fricke–Vogt character) in all but the simplest cases,
inter alia.

Continuum versions of the Fibonacci Hamiltonian have been studied in
[2,6,15–17,20,29,30]. The general theory for such continuum operators was
established in the papers [6,21]. In the case of the Fibonacci subshift, [6]
also established asymptotic behavior of the local Hausdorff dimension of the
spectrum in the regimes of large energy and small potentials whenever the
potential pieces are given by characteristic functions of intervals of length
one. Their work relied on explicit formulae and calculations in an essential
fashion and hence could not be immediately generalized to other potentials.
Consequently, they posed the following question:

Question 6.8. Is it true that [these asymptotics] hold regardless of the shape of
the bump? That is, if we replace fa = λ · χ[0,1) and fb = 0 · χ[0,1) by general
fa ∈ L2(0, �a) and fb ∈ L2(0, �b), do [these asymptotics] continue to hold as
stated?

In this paper, we answer this question in the affirmative in the regimes
of small coupling and large energy. As of this moment, the regime of large
coupling is out of reach. For the remainder of Sect. 1, we provide background
on this class of operators and state our results at the end of the section.

1.2. Schrödinger Operators Associated with Subshifts Over Finite Alphabets

In this section, we will introduce the operators that we will study. First, we
define the notion of concatenation of real-valued functions defined on intervals.
Assume that for each n ∈ Z, we have �n ∈ R+

def= (0,∞) and a real-valued
function fn defined on [0, �n). Moreover, assume that

∑

n≥0

�n =
∑

n<0

�n = ∞. (1.1)

Condition (1.1) ensures that ensuing function will have domain R. We define
the concatenation of the sequence {fn}n∈Z as follows. Put

sn
def=

⎧
⎪⎨

⎪⎩

∑n−1
j=0 �j n ≥ 1

0 n = 0
−∑−1

j=n �j n ≤ −1,

(1.2)
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denote In = [sn, sn+1), and define

f(x) = fn(x − sn), for each x ∈ In. (1.3)

We will denote this concatenation

f =
(
· · · | f−2 | f−1 | f0 | f1 | f2 | · · ·

)
. (1.4)

We use a box to indicate the position of the origin. One can also concatenate
finite families of functions. Given m ≤ 0 ≤ n, and {fj , �j}n

j=m as above, we

define
(
fm| · · · | f0 | · · · |fn

)
on [sm, sn+1) via (1.2) and (1.3).

Let A be a finite set, called the alphabet. Equip A with the discrete
topology and endow AZ with the corresponding product topology. The left
shift

[Tω](n) def= ω(n + 1), ω ∈ AZ, n ∈ Z,

defines a homeomorphism from AZ to itself. A subset Ω ⊆ AZ is called T -
invariant if T−1(Ω) = Ω. Any compact T -invariant subset of AZ is called a
subshift.

We can use the concatenation construction above to associate potentials
(and hence Schrödinger operators) to elements of subshifts as follows. For each
α ∈ A, we pick �α > 0 and a real-valued function fα ∈ L2[0, �α). Then, for
any ω ∈ AZ, we define the action of the continuum Schrödinger operator Hω

in L2(R) by

Hω = − d2

dx2
+ Vω, (1.5)

where the potential Vω is given by

Vω = Vω,{fα}
def=

(
· · · fω−2 | fω−1 | fω0 | fω1 | fω2 · · ·

)
. (1.6)

These potentials belong to L2
loc,unif(R), and hence, each Hω defines a self-

adjoint operator on a dense subspace L2(R) in a canonical fashion.

1.3. The Fibonacci Subshift

In this paper, we study a special case of the foregoing construction, namely
potentials generated by elements of the Fibonacci subshift. In this case, the
alphabet contains two symbols, A def= {a, b}. The Fibonacci substitution is the
map

S(a) = ab, S(b) = a.

This map extends by concatenation to A∗, the free monoid over A (i.e., the set
of finite words over A), as well as to AN, the collection of (one-sided) infinite
words over A. There exists a unique element

u = abaababa . . . ∈ AN

with the property that u = S(u). It is straightforward to verify that for n ∈ N,
Sn(a) is a prefix of Sn+1(a). Thus, one obtains u as the limit (in the product
topology on AN) of the sequence of finite words {Sn(a)}n∈N. With this setup,
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the Fibonacci subshift is defined to be the collection of two-sided infinite words
with the same local factor structure as u, that is,

Ω def= {ω ∈ AZ : every finite subword of ω is also a subword of u}.

Given �a, �b ∈ R+ and real-valued functions fa ∈ L2[0, �a), fb ∈ L2[0, �b), we
consider the family of continuum Schrödinger operators {Hω}ω∈Ω defined by
(1.5) and (1.6). Since (Ω, T ) is a minimal dynamical system, one can verify
that there is a uniform closed set Σ = Σ(fa, fb) ⊂ R with the property that

σ(Hω) = Σ for every ω ∈ Ω.

Of course, one can choose fa and fb in such a way that every Vω is a
periodic potential (notice that as soon as Vω0 is periodic for a single ω0 ∈ Ω,
then every Vω is periodic by minimality). The main result of [6] is that this is
the only possible obstruction to Cantor spectrum. Thus, we adopt the following
assumption throughout the paper:

Assumption A. The potential pieces fa and fb are chosen so that Vω is aperi-
odic for one ω ∈ Ω (hence for every ω ∈ Ω by minimality).

Theorem 1.1 (Damanik et al. [6]). Let Ω denote the Fibonacci subshift over
A = {a, b}. If fa and fb satisfy Assumption A, then Σ is a Cantor set of zero
Lebesgue measure.

Remark 1.2. In [6], the authors also assumed a condition on {fα : α ∈ A}
that they called irreducibility. This condition is defined so that the potentials
satisfy the simple finite decomposition property (SFDP) from [18]. However,
since our alphabet only has two letters, SFDP follows from aperiodicity and
[18, Proposition 3.5].

Spectral properties of the family {Hω}ω∈Ω are encoded by dynamical
characteristics of an associated polynomial map T : R3 → R3. Concretely,
every energy E ∈ R corresponds to a point γ(E) ∈ R3 via a (model-dependent)
map, γ, called the curve of initial conditions. An energy E belongs to Σ if and
only if γ(E) has a bounded forward orbit under the action of T . We will
describe this correspondence (and precisely define γ and T ) in Sect. 2.

Throughout the remainder of the paper, we assume that �a, �b > 0, fa ∈
L2[0, �a), and fb ∈ L2[0, �b) are given so that Assumption A holds. It is quite
helpful to introduce a third pair (�ab, fab), defined by

�ab = �a + �b, fab(x) =

{
fa(x) 0 ≤ x < �a

fb(x − �a) �a ≤ x < �ab.

Equivalently, using the notation from (1.4), we could write fab = ( fa |fb).
We denote by Ã = {a, b, ab} the enlarged “alphabet.”

Our main results show that the local Hausdorff dimension of the spectrum
tends to one in the high-energy and small coupling regimes, regardless of the
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shapes of fa and fb; the local Hausdorff dimension of a set S at a point x ∈ S
is defined by

dimloc
H (S;x) = lim

ε↓0
dimH(S ∩ (x − ε, x + ε)),

where dimH denotes the Hausdorff dimension. This answers [6, Question 6.8]
in the affirmative in those two asymptotic regimes in full generality.

Theorem 1.3. The local Hausdorff dimension of Σ tends to 1 in the high-energy
region. That is,

lim
K→∞

inf
E∈Σ∩[K,∞)

dimloc
H (Σ;E) = 1.

More specifically, there exists a constant c = c(fa, fb) > 0 with the property
that

dimloc
H (Σ;E) ≥ max

(
1 − cE−1/4, 0

)
(1.7)

for all E ∈ Σ ∩ R+.

Theorem 1.4. With notation as above, let Σλ = Σ(λfa, λfb) for λ ∈ R. We
have

lim
λ↓0

inf
E∈Σλ∩R+

dimloc
H (Σλ;E) = 1.

The rest of the paper is laid out as follows. In Sect. 2, we describe some
background information, including the trace map formalism for the operator
family {Hω}ω∈Ω. We prove Theorem 1.3 in Sect. 3, and we prove Theorem 1.4
in Sect. 4.

2. Trace Map, Fricke–Vogt Invariant, and Local Hausdorff
Dimension of the Spectrum

The spectrum (and many spectral characteristics) of the continuum Fibonacci
model can be encoded in terms of an associated polynomial diffeomorphism of
R3, called the trace map. We will make this correspondence explicit, following
[6]. First, we consider the differential equation

− y′′(x) + fα(x)y(x) = Ey(x), α ∈ Ã, E ∈ R, x ∈ [0, �α]. (2.1)

Denote the solution of (2.1) obeying y(0) = 0, y′(0) = 1 (respectively, y(0) = 1,
y′(0) = 0) by ψα,D(·, E) (respectively, ψα,N(·, E)). The associated transfer
matrices are then given by

Mα(E) =
[
ψα,N(�α, E) ψα,D(�α, E)
ψ′

α,N(�α, E) ψ′
α,D(�α, E)

]
, α ∈ Ã, E ∈ R,

and

xα(E) =
1
2
tr(Mα(E)) =

1
2

(
ψα,N(�α, E) + ψ′

α,D(�α, E)
)
, α ∈ Ã, E ∈ R.

It is straightforward to verify that

Mab(E) = Mb(E)Ma(E).
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The map γ(E) def= (xab(E), xa(E), xb(E)) is known as the curve of initial con-
ditions. Then, the trace map is defined by

T (x, y, z) def= (2xy − z, x, y), x, y, z ∈ R.

This map is known to have a first integral given by the so-called Fricke–Vogt
invariant, defined by

I(x, y, z) def= x2 + y2 + z2 − 2xyz − 1, x, y, z ∈ R.

More precisely, the trace map T preserves I (in the sense that I ◦ T = I), and
hence, T preserves the level surfaces of I:

SV
def= {(x, y, z) ∈ R3 : I(x, y, z) = V }.

Consequently, every point of the form Tn(xab(E), xa(E), xb(E)) with n ∈ Z+

lies on the surface SI(γ(E)). For the sake of convenience, we put

I(E) def= I(γ(E)) = I(xab(E), xa(E), xb(E)),

with a minor abuse of notation.
The surfaces SV experience a transition at V = 0. When V < 0, SV has

one compact connected component which is homeomorphic to the 2-sphere S2,
and four unbounded connected components, each of which is homeomorphic to
the open unit disk. When V = 0, each of the four unbounded components meet
the compact component, forming four conical singularities. As soon as V > 0,
the singularities resolve; then, SV is smooth, connected, and homeomorphic to
S2 with four points removed.

The trace map is important in the study of operators of this type as its
dynamical spectrum encodes the operator-theoretic spectrum of H, where the
dynamical spectrum is defined by

B
def= {E ∈ R : {Tn(γ(E)) : n ∈ Z+} is bounded} .

Proposition 2.1 (Damanik et al. [6]). We have Σ = B.

There are several substantial differences between the continuum setting
and the discrete setting that we should point out. First, in the discrete case,
the Fricke–Vogt invariant is constant (viewed as a function of E). However,
the invariant may enjoy nontrivial dependence on E in the continuum set-
ting, which is demonstrated by examples in [6]. This dependence is related
to new phenomena that emerge in the continuum setting and make its study
worthwhile.

Second, the Fricke–Vogt invariant is always nonnegative in the discrete
setting, but one cannot a priori preclude negativity of I in the continuum
setting. However, it is proved in [6] that any energies for which I(E) < 0 must
lie in the resolvent set of the corresponding continuum Fibonacci Hamiltonian.

Proposition 2.2 (Damanik et al. [6]). For every E ∈ Σ, one has I(E) ≥ 0

In order to study the fractal dimension of the spectrum, we will use the
following theorem from [6], which relates local fractal characteristics near an
energy E in the spectrum to the value of the invariant at E.
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Theorem 2.3 (Damanik et al. [6]). There exists a continuous map D : [0,∞) →
(0, 1] that is real-analytic on R+ with the following properties:

(i) dimloc
H (Σ;E) = D(I(E)) for each E ∈ Σ.

(ii) We have D(0) = 1 and 1 − D(I) ∼ √
I as I ↓ 0.

(iii) As I → ∞, we have

lim
I→∞

D(I) · log I = 2 log(1 +
√

2)

Thus, to study the local fractal dimensions of the spectrum, it suffices to
understand the invariant I.

3. The High-Energy Region

Proof of Theorem 1.3. Clearly, it suffices to prove (1.7). In view of Theo-
rem 2.3, it suffices to show that

I(E) = O(E−1/2) (3.1)

as E → ∞. Here and in what follows, we use ‖ · ‖ to denote an L2 norm on an
appropriate interval, i.e.,

‖fα‖ =

(∫ �α

0

|fα(x)|2 dx

)1/2

, α ∈ Ã.

Now, put

Q
def= max (‖fab‖, 1) , C

def= Q exp
(
Q

√
�ab

)
.

For each energy E ≥ 0, we denote

κ = κ(E) =
√

E,

and we introduce functions

cκ(x) def= cos(κx), sκ(x) def=
sin(κx)

κ
, x ∈ R.

Then, by [25, Theorem 1.3], one has the following estimate for α ∈ Ã, E ∈ C,
x ∈ [0, �α]:

|ψα,N(x,E) − cκ(x)| ≤ 1√
E

exp
(∣∣∣Im

√
E

∣∣∣ x + ‖fα‖√
x
)

.

For E > 0, we get

|ψα,N(x,E) − cκ(x)| ≤ 1√
E

exp
(
‖fα‖

√
�α

)
≤ Cκ−1.

Similarly, we obtain
∣∣ψ′

α,D(x,E) − cκ(x)
∣∣ ≤ Cκ−1

for every α ∈ Ã, E > 0, and x ∈ [0, �α]. In particular, we have

xα(E) = cκ(�α) + O(κ−1)
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for α ∈ Ã and E > 0 large. Then, the asymptotics above yield

I(E) = I(xab(E), xa(E), xb(E))

= I(cκ(�ab), cκ(�a), cκ(�b)) + O (
κ−1

)
.

A straightforward calculation reveals that

I(cκ(�ab), cκ(�a), cκ(�b)) = 0,

so I(E) = O(E−1/2), which proves (3.1). �

4. The Small Coupling Regime

For the regime of small coupling, we fix fa and fb as before so that Assump-
tion A holds, fix a Fibonacci-type potential Vω, and ask about the behavior
of

Hω,λ = − d2

dx2
+ λVω

as λ → 0. We now view the relevant spectral data as functions of λ as well,
and we write Σλ for the common spectrum of Hω,λ. Similarly, we view the
Dirichlet and Neumann solutions as functions of λ, so we write ψα,B(·, E, λ)
for the solution of

−y′′ + λfαy = Ey

obeying the appropriate boundary condition for B ∈ {D,N}. Then, the transfer
matrices and invariant are also functions of λ, and we denote them by Mα(E, λ)
and I(E, λ) to reflect this dependence.

Proof of Theorem 1.4. By Theorem 2.3, it suffices to show that I(E, λ) goes
to zero uniformly in E > 0 as λ → 0. To that end, let ε > 0 be given. By the
estimates in the proof of Theorem 1.3, we may choose a compact set K ⊂ R
such that

|I(E, λ)| < ε

whenever |λ| ≤ 1 and E ∈ R+\K. By [25, Theorem 1.5], we have that

ψα,N(�α, E, λ) → cκ(�α)

as λ → 0, uniformly for α ∈ Ã, E ∈ K. Thus, we may choose λ0 > 0 so that

|ψα,N(�α, E, λ) − cκ(�α)| < ε (4.1)

for all α ∈ Ã and E ∈ K whenever |λ| < λ0.
Differentiating the integral equation from [25, Theorem 1.1] , we get that

ψ′
α,D(�α, E, λ) = cκ(�α) +

∫ �α

0

cos(κ(�α − t)) · λfα(t) · ψα,D(t, E, λ) dt.

Again by [25, Theorem 5], ψα,D(t, E, λ) → sκ(t) as λ → 0, uniformly for E ∈ K
and t ∈ [0, �α]. Consequently (possibly after shrinking λ0), we obtain

∣∣ψ′
α,D(�α, E, λ) − cκ(�α)

∣∣ < ε (4.2)
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for all α ∈ Ã and E ∈ K whenever |λ| < λ0. Therefore, by (4.1) and (4.2),

I(E, λ) = I(E, 0) + O(ε)

for E ∈ K and |λ| < λ0, with a uniform implicit constant. Since I(E, 0) = 0,
we have I(E, λ) = O(ε) for all |λ| < λ0, as desired. �
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[30] Würtz, D., Soerensen, M., Schneider, T.: Quasiperiodic Kronig-Penney model
on a Fibonacci superlattice. Helv. Phys. Acta 61, 345–362 (1988)

[31] Yessen, W.: Spectral analysis of tridiagonal Fibonacci Hamiltonians. J. Spectr.
Theory 3, 101–128 (2013)

Jake Fillman
Department of Mathematics
Virginia Tech
225 Stanger Street
Blacksburg VA 24061
USA

e-mail: fillman@vt.edu



Vol. 19 (2018) Spectral Properties of Continuum Fibonacci 247

May Mei
Department of Mathematics and Computer Science
Denison University
100 West College Street
Granville OH 43023
USA
e-mail: meim@denison.edu

Communicated by Jean Bellissard.

Received: February 16, 2017.

Accepted: October 3, 2017.


	Spectral Properties of Continuum Fibonacci Schrödinger Operators
	Abstract
	1. Introduction
	1.1. Background
	1.2. Schrödinger Operators Associated with Subshifts Over Finite Alphabets
	1.3. The Fibonacci Subshift

	2. Trace Map, Fricke–Vogt Invariant, and Local Hausdorff Dimension of the Spectrum
	3. The High-Energy Region
	4. The Small Coupling Regime
	References




