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On the Construction of Wannier Functions
in Topological Insulators: the 3D Case

Horia D. Cornean and Domenico Monaco

Abstract. We investigate the possibility of constructing exponentially lo-
calized composite Wannier bases, or equivalently smooth periodic
Bloch frames, for three-dimensional time-reversal symmetric topological
insulators, both of bosonic and of fermionic type, so that the bases in
question are also compatible with time-reversal symmetry. This problem
is translated in the study (of independent interest) of homotopy classes
of continuous, periodic, and time-reversal symmetric families of unitary
matrices. We identify three Z2-valued complete invariants for these ho-
motopy classes. When these invariants vanish, we provide an algorithm
which constructs a “multi-step logarithm” that is employed to continu-
ously deform the given family into a constant one, identically equal to
the identity matrix. This algorithm leads to a constructive procedure to
produce the composite Wannier bases mentioned above.

1. Introduction

This paper is a follow-up to [3,4]. We study families of rank-m projections
{P (k)}k∈RD , P (k) = P (k)2 = P (k)∗, acting on some Hilbert space H, which
are subject to the following conditions:

1. the map P : RD → B(H), k �→ P (k), is smooth (at least of class C1);
2. the map P : RD → B(H), k �→ P (k), is Z

D-periodic, that is, P (k) =
P (k + n) for all n ∈ Z

D;
3. the family of projections is time-reversal symmetric, namely there exists

an antiunitary operator θ : H → H, θ2 = ±1, such that for all k ∈ R
D

θ P (k) θ−1 = P (−k).

We say that the time-reversal symmetry operator θ is of bosonic type if θ2 =
+1, while it is of fermionic type if instead θ2 = −1. Notice that the latter case
forces the rank m of the projections, as well as the dimension of the Hilbert
space H in case it is finite-dimensional, to be even.
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Such families of projections arise in condensed matter physics from the
Bloch-Floquet transform of a periodic, time-reversal symmetric Hamiltonian.
We refer the reader to [3,12] for more details. Interesting examples of such
physical systems come from the two- and three-dimensional time-reversal sym-
metric topological insulators introduced by Fu et al. [7,8].

We address the possibility to construct a Bloch frame for the family of
projections {P (k)}k∈RD , according to the following

Definition 1.1. A Bloch frame for the family of projections {P (k)}k∈RD is a
collection of maps Ξ = {ξa}m

a=1, with ξa : RD → H, such that the vectors
{ξa(k)}m

a=1 give an orthonormal basis of RanP (k) for all k ∈ R
D, that is,

P (k) =
∑m

a=1 |ξa(k)〉 〈ξa(k)|.
A Bloch frame Ξ is called

1. continuous if each map ξa : RD → H, a ∈ {1, . . . , m}, is continuous;
2. periodic if each map ξa : RD → H, a ∈ {1, . . . , m}, is Z

D-periodic, that
is, ξa(k) = ξa(k + n) for all n ∈ Z

D;
3. time-reversal symmetric if for all k ∈ R

D

ξb(−k) =
m∑

a=1

[θ ξa(k)] εab, b ∈ {1, . . . , m}

where ε = [εab] is the identity matrix 1 in the bosonic case, and the

standard symplectic matrix J =
(

0 1
−1 0

)

in the fermionic case.

Results concerning the existence of such Bloch frames when D ≤ 3 were
formulated in [1,18] for what concerns the bosonic case, and in [16] for the
fermionic case. These results establish that continuous and periodic Bloch
frames for time-reversal symmetric families of projections always exist, but the
proofs involve abstract methods from bundle theory. Computational physics
[19,21] motivated instead the need for more algorithmic proofs, which are
also able to explicitly exhibiting these Bloch frames; moreover, the question of
whether a time-reversal symmetry constraint can be imposed on the frames has
been raised. After the pioneering works [10,17] who gave the first constructive
proofs of the existence of smooth and periodic Bloch frames for the case m = 1
in any dimension, several proposals were put forward more recently [2–6], which
emphasized how a topological obstruction may arise in the fermionic case for
D = 2 and D = 3. This topological obstruction is encoded in certain Z2-valued
topological invariants, and is in compliance with the predictions of Fu et al.
[7,8].

1.1. Main Results

In this paper, we follow the approach already outlined in [4], where it was ap-
plied only to the case D ≤ 2, and extend it to D = 3. Our strategy to construct
a Bloch frame for the three-dimensional family of projections {P (k)}k∈R3 re-
lies on the solution of the same problem for its two-dimensional restriction on
the plane where the first coordinate k1 of k is fixed to zero (compare Sect. 2).
Notice that in the fermionic case, already the two-dimensional problem may be
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topologically obstructed by a nonzero Z2 invariant. If
{Ξ(0, k2, k3)}(k2,k3)∈R2 is a continuous, periodic and time-reversal symmetric
Bloch frame for {P (0, k2, k3)}(k2,k3)∈R2 , then we can consider its image under
the parallel transport induced by the Berry connection along one full period in
the k1-direction. The parallel-transported frame will differ from Ξ(0, k2, k3) by
the action of a unitary m×m matrix α(k2, k3). If it is possible to continuously
“rotate” this family of matrices back to the identity, then the combination of
parallel transport and this “rotation” will define a frame Ξ(k), k ∈ R

3, which
is continuous, Z3-periodic, and time-reversal symmetric (see Theorem 2.6 for
a precise statement).

The topological obstruction to the existence of {Ξ(k)}k∈R3 is thus en-
coded in the possibility to continuously deform α(k2, k3) into the identity,
without breaking its symmetries (periodicity and a time-reversal symmetry
constraint), which are induced by the ones of the frame{Ξ(0, k2, k3)}(k2,k3)∈R2 .
Thus, we are naturally led to the identification of the equivariant homotopy
classes of two-dimensional, continuous, periodic, and time-reversal symmetric
families of unitary matrices. The first main result of this paper (Theorem 2.10
and Corollary 2.11) establishes that, in the case of bosonic time-reversal sym-
metry, all such families are homotopically trivial (in the equivariant sense),
while the equivariant homotopy classes of fermionic families are characterized
by three Z2 invariants (leading to a total of 23 = 8 different classes). These
invariants can be obtained by considering the Z2 indices characterizing the
equivariant homotopy classes of any three of the four one-dimensional restric-
tions to the lines {k2 = 0}, {k2 = 1/2}, {k3 = 0} and {k3 = 1/2} [4]. If the
time-reversal symmetry constraint is relaxed, instead, all families of continu-
ous, periodic, and time-reversal symmetric unitary matrices are homotopic to
the identity, regardless of the nature of the time-reversal symmetry operator;
this in particular implies the existence of Bloch frames which are continuous
and periodic for any family of periodic, time-reversal symmetric projections in
D = 3, and we recover the results of [16,18].

A constructive algorithm for the Bloch frames requires however to ex-
hibit an explicit homotopy αt between the given family of unitary matrices α
and the identity. If α had a “good” logarithm, namely α(k2, k3) = eih(k2,k3)

for a continuous family of self-adjoint matrices {h(k2, k3)}(k2,k3)∈R2 satisfying
the appropriate symmetries (periodicity and possibly time-reversal symmetry),
then an homotopy would be simply given by setting αt(k2, k3) := ei t h(k2,k3).
However, it is easily realized that not all families of unitary matrices admit
such a logarithm: the intuitive idea is that, as the parameters (k2, k3) move, the
eigenvalues of α(k2, k3) could come together and degenerate, thus preventing
the possibility to choose a continuous branch cut in the resolvent of α(k2, k3)
that can then be used to compute the logarithm. The second main result of
this paper (Theorems 4.2 and 4.3) consists in showing, in a constructive man-
ner, that any family α as above is arbitrarily close to a family which does
admit a continuous and periodic logarithm, and that, when the Z2 invariants
which characterize the equivariant homotopy class of α vanish, this logarithm
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can be chosen to be time-reversal symmetric as well. This in particular implies
(Theorem 4.6) that α itself admits a two-step logarithm, namely one can write

α(k2, k3) = eih2(k2,k3)/2eih1(k2,k3)eih2(k2,k3)/2

for two continuous families h1, h2 of self-adjoint matrices satisfying the pre-
scribed symmetries. Again, this construction provides the required homotopy
between α and 1, from which one can build up the continuous, symmetric
three-dimensional Bloch frame.

We would like to comment here on the comparison with the existing liter-
ature. To the best of our knowledge, the only other constructive approaches to
the existence of Bloch frames which can be applied to three-dimensional time-
reversal symmetric families of projections have been proposed by Fiorenza,
Monaco and Panati [5,6] and by Winkler, Soluyanov and Troyer [21]. The main
advantage of the approach presented here with respect to the one by Fiorenza,
Monaco and Panati is that we are able to construct periodic frames also in
the topologically obstructed case, explicitly breaking time-reversal symmetry
in the fermionic setting. The technique developed by Winkler, Soluyanov and
Troyer, on the contrary, focuses on the unobstructed case and is not able to
enforce the time-reversal symmetry constraint on the frame. Moreover, it re-
quires mapping the given system to a topologically trivial one through a path
in some parameter space, which can be cumbersome in practice. Our method
is more “self-contained” in this respect, in that it does not require any data
other than the family of projections.

1.2. Relation with Wannier Functions and the Fu–Kane–Mele Invariants

In problems coming from condensed matter physics, modeled by a gapped, pe-
riodic, and time-reversal symmetric Hamiltonian H, the construction of Bloch
frames implies the construction of a Wannier basis for the occupied states
of H, by transforming the frame back from the k-space representation to the
position representation. The importance of Wannier functions [14] in compu-
tational solid state physics cannot be overstated: they are an essential tool,
for example, for the computation of tight-binding effective dynamics, or to
visualize chemical bonding and orbitals in solids.

The key feature of Wannier functions is their rate of decay at infinity.
It is by now well known that the existence of exponentially localized Wannier
functions is tantamount to the one of an analytic, periodic Bloch frame for
the projection {P (k)}k∈RD over the occupied Bloch states, in the momentum
representation (provided of course that k �→ P (k) is real analytic); if D ≤ 3,
time-reversal symmetry, of either bosonic or fermionic type, is then a sufficient
condition to guarantee that such an exponentially localized Wannier basis
exists [1]. On the other hand, the regularity of a Bloch frame can be always
enhanced to analyticity once there exists a continuous one [18], for example,
by convolution with an analytic (and even, in the time-reversal symmetric
setting) kernel [3,4].

Imposing a further symmetry, like time-reversal, on the Wannier func-
tions could potentially be of interest, so that, for example, the tight-binding
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description of the generating Hamiltonian preserves this symmetry. However,
enforcing a new symmetry can in general lead to new topological obstruc-
tions to the localization of Wannier functions [15], as illustrated by the case
of 2- and three-dimensional fermionic time-reversal symmetric topological in-
sulators. Our results in terms of Bloch frames then immediately translate in
the possibility to construct exponentially localized and time-reversal symmetric
Wannier functions in three-dimensional systems

• always, if the time-reversal symmetry is of bosonic nature;
• or provided four appropriately defined Z2 invariants vanish, in the

fermionic case.

To conclude this Introduction, we will compare the four Z2-valued topo-
logical obstructions that we recover from our construction with the Z2 indices
proposed by Fu et al. [8] in the context of three-dimensional time-reversal sym-
metric topological insulators. As was mentioned above, our construction of a
continuous and symmetric Bloch frame proceeds inductively on the dimension.
As proved, e.g., in [4], it is always possible to find such a Bloch frame for a
one-dimensional family of projections; hence, we can construct the frame on
the two lines {k1 = k2 = 0} and {k1 = k3 = 0}: denote them by Ξ(0, 0, k3) and
Ξ(0, k2, 0), respectively. By parallel transport of Ξ(0, 0, k3) over one period in
the k1- and k2-directions, we obtain two one-dimensional family of unitary ma-
trices which are continuous, periodic, and time-reversal symmetric; the same
is true when we parallel transport Ξ(0, k2, 0) in the k1-direction. Each of these
three families of matrices is characterized, up to equivariant homotopy, by one
Z2 invariant: the results in [4,6,9] allow to identify these invariants with the
two-dimensional Kane-Mele Z2 indices [7] associated to the faces {k1 = 0},
{k2 = 0} and {k3 = 0}, and hence with the so-called weak invariants proposed
by Fu et al. [8] for the three-dimensional topological insulators.

As was mentioned above, even if these three invariants vanish, there might
still be topological obstruction to finding a three-dimensional continuous and
symmetric Bloch frame. The fourth Z2 invariant to be computed is obtained
as follows: provided, for example, that it is possible to construct the Bloch
frame Ξ(0, k2, k3) on the plane {k1 = 0} (starting from example from the al-
ready constructed frame Ξ(0, 0, k3) moving in the k2-direction; this requires
the appropriate weak invariant computed above to vanish), one still needs to
compare it with its parallel-transported version along one full period in the
k1-direction. The two-dimensional unitary matrix α(k2, k3) resulting from this
comparison is characterized, up to equivariant homotopy, by its restriction
at {k2 = 0}, {k3 = 0} and {k2 = 1/2}. Now, we have already computed the
indices associated to the first two restrictions: these are the other two weak
invariants. The index associated to the restriction at {k2 = 1/2} is a new, in-
dependent Z2 index. The so-called strong invariant of Fu, Kane and Mele can
be obtained by multiplying in Z2 this index together with the one obtained at
{k2 = 0}.
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2. Construction of Bloch Frames: Induction on the Dimension

This section is devoted to the general problem of finding a continuous, ZD-
periodic and time-reversal symmetric Bloch frame for a family of projections
{P (k1,k)}(k1,k)∈RD . We single out the first coordinate, as our construction will
rely on the possibility to construct such a Bloch frame for the d-dimensional
family {P (0,k)}k∈Rd , where d = D − 1. In this sense, the construction of the
Bloch frame is by induction on the dimension.

We will relate the topological obstruction to the existence of the D-
dimensional frame to an homotopy classification of certain d-dimensional fam-
ilies of unitary matrices, which we call matching matrices. This classification
will be investigated in the next subsection. We will come back to Bloch frames
in Sect. 2.2.

2.1. Matching Matrices, Homotopy and Logarithms

Let ε denote either the identity matrix 1 (in the bosonic case) or the standard

symplectic matrix J =
(

0 1
−1 0

)

(in the fermionic case).

Definition 2.1. Let {α(k)}k∈Rd ⊂ Mm(C) be a family of m × m matrices. We
call it a family of matching matrices if the following hold:

1. the matrix α(k) is unitary for all k ∈ R
d;

2. the map α : Rd → U(m), k �→ α(k), is continuous;
3. the map α : Rd → U(m), k �→ α(k), is Z

d-periodic, that is, α(k) =
α(k + n) for all n ∈ Z

d;
4. the family is time-reversal symmetric, namely the relation

ε α(k) = α(−k)t ε (2.1)

holds for all k ∈ R
d.

Definition 2.2. Two families of matching matrices {α0(k)}k∈Rd and
{α1(k)}k∈Rd are called equivariantly homotopic if there exists a family of ma-
trices {αt(k)}t∈[0,1],k∈Rd which is continuous in t ∈ [0, 1], is a family of match-
ing matrices for fixed t ∈ [0, 1], and is such that αt=0 ≡ α0 and αt=1 ≡ α1.
Any family {α(k)}k∈Rd which is equivariantly homotopic to {α1(k) ≡ 1}k∈Rd

is called equivariantly null-homotopic.

The class of null-homotopic matching matrices plays an important role
in the construction of Bloch frames, as we will see in the next Subsection. In
the following Theorem, we provide several characterizations for this class in
arbitrary dimension d. In particular, the null-homotopic families of matching
matrices are exactly the ones admitting a multi-step logarithm, in the sense of
Definition (2.3) below. This result is well known in the framework of K-theory
of C∗-algebras (see, e.g., [20, Exercise 4D]), but we give here a proof adapted
to the present context for the reader’s convenience.

Definition 2.3. Let {α(k)}k∈Rd be a family of matching matrices. We say that α
admits a multi-step logarithm if there exist M families of matrices {h�(k)}k∈Rd

such that for all � ∈ {1, . . . , M}
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1. the matrix h�(k) is self-adjoint for all k ∈ R
d;

2. the map h� : Rd → Mm(C), k �→ h�(k), is continuous;
3. the map h� : Rd → Mm(C), k �→ h�(k), is Z

d-periodic, that is, h�(k) =
h�(k + n) for all n ∈ Z

d;
4. the family is time-reversal symmetric, namely the relation

ε h�(k) = h�(−k)t ε

holds for all k ∈ R
d;

5. for all k ∈ R
d

α(k) = ei hM (k)/2 · · · ei h2(k)/2 eih1(k) ei h2(k)/2 · · · ei hM (k)/2. (2.2)

Theorem 2.4. Let {α(k)}k∈Rd be a family of matching matrices. Then the
following are equivalent:

1. the family is equivariantly null-homotopic;
2. the family admits a multi-step logarithm;
3. there exists a family of matrices {β(k1,k)}(k1,k)∈RD , D = d+1, such that

(a) the matrix β(k1,k) is unitary for all (k1,k) ∈ R
D;

(b) the map β : RD → U(m), (k1,k) �→ β(k1,k), is continuous;
(c) for fixed k1 ∈ R, the map β(k1, ·) : Rd → U(m), k �→ β(k1,k), is

Z
d-periodic, that is, β(k1,k) = β(k1,k + n) for all n ∈ Z

d;
(d) the relation

β(−k1,−k) = ε−1 β(k1,k) ε

holds for all (k1,k) ∈ R
D;

(e) for all (k1,k) ∈ R
D

α(k) = β(k1,k)β(k1 + 1,k)−1. (2.3)

Proof. 1 =⇒ 2. Let {αt(k)}k∈Rd be a family of matching matrices depending
continuously on t ∈ [0, 1] and such that α0(k) = 1, α1(k) = α(k). Since [0, 1]
is a compact interval and αt is Zd-periodic, by uniform continuity there exists
δ > 0 such that

sup
k∈Rd

‖αs(k) − αt(k)‖ < 2 whenever |s − t| < δ. (2.4)

Let M ∈ N be such that 1/M < δ. Then in particular

sup
k∈Rd

∥
∥α1/M (k) − 1

∥
∥ < 2

so that the Cayley transform [4, Prop. 3.10] provides a logarithm for α1/M (k),
i.e., α1/M (k) = eihM (k), with hM satisfying (1), (2), (3), and (4) in Defini-
tion 2.3.

Using again (2.4) we have that

sup
k∈Rd

∥
∥
∥e−i hM (k)/2 α2/M (k) e−i hM (k)/2 − 1

∥
∥
∥ = sup

k∈Rd

∥
∥α2/M (k) − α1/M (k)

∥
∥ < 2

so that by the same argument

e−i hM (k)/2 α2/M (k) e−i hM (k)/2 = eihM−1(k),
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or

α2/M (k) = ei hM (k)/2 ei hM−1(k) ei hM (k)/2.

Repeating the same line of reasoning M times, we end up exactly with (2.2).

2 =⇒ 3. For k1 ∈ [− 1/2, 1/2], set

β(k1,k) := e−i k1 hM (k) · · · e−i k1 h1(k)

and extend this definition to k1 ∈ R via

β(k1,k) :=

{
α(k)−1 β(k1 − 1,k) if k1 > 1/2,

α(k)β(k1 + 1,k) if k1 < −1/2.
(2.5)

We just need to show that this definition yields a continuous function of k1.
Indeed, using (2.2),

β(1/2 + 0,k) = α(k)−1 β(−1/2 + 0,k) = α(k)−1 ei hM (k)/2 · · · ei h1(k)/2

= e−i hM (k)/2 · · · e−i h1(k)/2 = β(1/2 − 0,k).

3 =⇒ 1. The required homotopy αt between 1 and α is provided by setting

αt(k) := β(−t/2,k)β(t/2,k)−1, t ∈ [0, 1], k ∈ R
d. (2.6)

�
Remark 2.5. If the original family of matching matrices is more than con-
tinuous (say, smooth or even analytic), the families h� (multi-step logarithms)
constructed in Theorem 2.4(2) via the Cayley transform inherit the same regu-
larity. However, in general we cannot expect more than continuity at k1 = p/2,
p ∈ Z, for the family β constructed in Theorem 2.4(3).

Indeed, assume that M = 2 and β(k1,k) = e−ik1h2(k)e−ik1h1(k) if k1 ∈
[− 1/2, 1/2]. When we differentiate this expression at k1 = 1/2 − 0 we get

β′(1/2 − 0,k) = −ih2(k)β(1/2,k) − iβ(1/2,k)h1(k)

where ‘prime’ denotes derivative with respect to the first variable k1.
If 1/2 < k1 < 3/2 we have according to (2.5) that β(k1,k) = α(k)−1

β(k1 − 1,k), hence after differentiation at k1 = 1/2 + 0 we get

β′(1/2 + 0,k) = α(k)−1β′(−1/2 + 0,k)

= −iα(k)−1h2(k)β(−1/2,k) − iα(k)−1β(−1/2,k)h1(k).

Hence β′ is continuous at 1/2 if and only if

h2(k)β(1/2,k) = α(k)−1h2(k)β(−1/2,k)

or

α(k)h2(k) = h2(k)α(k).

Since α(k) = eih2(k)/2eih1(k)eih2(k)/2, it follows that eih1(k) must commute
with h2; hence, h1 commutes with h2. This implies that the original family of
matching matrices has a “standard” logarithm, which is known not to be true
in general.
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2.2. Consequence on Bloch Frames

Let {P (k1,k)}(k1,k)∈RD , D = d+1, be a D-dimensional family of rank-m pro-
jections which is smooth (at least C1), ZD-periodic, and time-reversal sym-
metric (either of bosonic or fermionic type). Assume that the d-dimensional
restriction {P (0,k)}k∈Rd admits a smooth, periodic and time-reversal sym-
metric Bloch frame Ξ(0,k) = {ξa(0,k)}1≤a≤m. Let also Tk(k1, 0) be the par-
allel transport unitary associated to the family {P (k1,k)}(k1,k)∈RD along the
straight line between the points (0,k) and (k1,k) (compare [4, Sec. 3.1]). Define
then the matrix α(k) through the relation

[α(k)]ab := 〈ξa(0,k), Tk(1, 0)ξb(0,k)〉 . (2.7)

Notice indeed that Tk(1, 0)Ξ(0,k) and Ξ(0,k) are orthonormal bases of the
same vector space Ran P (0,k) = Ran P (1,k). One easily verifies that
{α(k)}k∈Rd is indeed a family of matching matrices in the sense of Defini-
tion 2.1 (compare [4, Prop. 3.2]).

Theorem 2.6. For the family of matching matrices {α(k)}k∈Rd defined by (2.7),
any of the conditions in Theorem 2.4 is in turn equivalent to the following:

4. there exists a Bloch frame Ξ(k1,k) for {P (k1,k)}(k1,k)∈RD which is con-
tinuous, ZD-periodic, and time-reversal symmetric.

Proof. To show that condition (3) in Theorem 2.4 is equivalent to the one in
the present statement, it suffices to set

ξa(k1,k) :=
m∑

b=1

[Tk(k1, 0)ξb(0,k)] [β(k1,k)]ba

or equivalently

[β(k1,k)]ba := 〈Tk(k1, 0)ξb(0,k), ξa(k1,k)〉
(compare [4, Prop. 3.3]). �

Remark 2.7. From the proofs of Theorems 2.4 and 2.6, one can see that if one
drops the hypotheses of time-reversal symmetry (namely (4) in Definition 2.3
for the multi-step logarithm, (3d) in the statement of Theorem 2.4 for the
family {β(k1,k)}(k1,k)∈RD , and (3) in Definition 1.1 for the Bloch frame), then
one can still show that the following statements are equivalent:

1. the family {α(k)}k∈Rd in (2.7) is null-homotopic, namely there exists a
family of matrices {αt(k)}t∈[0,1],k∈Rd which is continuous in t ∈ [0, 1],
is continuous and Z

d-periodic in k for fixed t ∈ [0, 1], and is such that
αt=0 ≡ α and αt=1 ≡ 1 (no time-reversal symmetry is required for t ∈
(0, 1));

2. the family {α(k)}k∈Rd admits a continuous and Z
d-periodic multi-step

logarithm;
3. there exists a family {β(k1,k)}(k1,k)∈RD satisfying (3a), (3b), (3c) and

(2.3) in the statement of Theorem 2.4;
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4. there exists a Bloch frame Ξ(k1,k) for {P (k1,k)}(k1,k)∈RD which is con-
tinuous and Z

D-periodic.

2.3. Homotopies of Matching Matrices in d = 1 (D = 2) and d = 2 (D = 3)
As an illustration of the above concepts, we investigate the equivariant homo-
topy classes of families of matching matrices for d ∈ {1, 2} (corresponding to
D ∈ {2, 3}).

Remark 2.8. We recall here a few relevant properties of matching matrices.
We refer to [3,4] for the proofs of the following statements.

• If {α(k)}k∈Rd is a family of matching matrices, there exists a continuous,
Z

d-periodic, and even function φ : Rd → R such that det α(k) = eiφ(k)

for all k ∈ R
d. The family

α̃(k) := e−iφ(k)/mα(k)

is then again a family of matching matrices but takes values in the special
unitary group SU(m). At the level of frames, if Ξ(0,k) is a continuous, Zd-
periodic, and time-reversal symmetric Bloch frame for the d-dimensional
family of projections {P (0,k)}k∈Rd , define

ξ̃a(0,k) := e−iφ(k)/2m ξa(0,k), a ∈ {1, . . . , M} , k ∈ R
d.

It is easily verified that the above gives a Bloch frame with the same
properties. From (2.7) one then reads that the new family of matching
matrices α̃(k) equals e−iφ(k)/mα(k) and hence has unit determinant.

Notice that, if m = 1, the above considerations immediately imply
that α(k) = eiφ(k) is equivariantly null-homotopic in any dimension: the
function φ exhibits its (“one-step”) logarithm. This result was obtained
already in [17].

• Consider a family of fermionic time-reversal symmetric matching ma-
trices. Let also k� be a point such that k� ≡ −k� mod Z

d (so k� =
(k1, . . . , kd) where each kj is of the form pj/2 with pj ∈ Z). Then the
matrix α(k�) has Kramers degenerate spectrum, namely each of its eigen-
values has even degeneracy.

• Let d = 1 and consider a family of fermionic time-reversal symmetric
matching matrices {α(k)}k∈R

. Then there is a well-defined Z2-valued in-
dex

(−1)I(α) = p(0) p(1/2), where p(k�) :=

√
det α(k�)

Pf (εα(k�))
, k� ∈ {0, 1/2} , (2.8)

called the Graf–Porta index (or GP-index for short) [4,9]. Notice that
p(k�)2 = 1.

The next result gives a complete homotopy classification of
one-dimensional families of matching matrices, as well as a description of their
“generic” spectral properties.
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Theorem 2.9. Assume that d = 1.
1. Let ε = 1. Then any family of matching matrices {α(k)}k∈R

is equivari-
antly null-homotopic.

Moreover, there exists a sequence {αn(k)}k∈R
, n ∈ N, of families of

matching matrices such that
• supk∈R

‖αn(k) − α(k)‖ → 0 as n → ∞, and
• for any n ∈ N the spectrum of αn(k) is completely non-degenerate

for all k ∈ R.
2. Let ε = J . Then two families of matching matrices are equivariantly

homotopic if and only if their GP-indices are the same; in particular, a
family of matching matrices {α(k)}k∈R

is equivariantly null-homotopic if
and only if I(α) ∈ Z2 vanishes.

Moreover, there exists a sequence {αn(k)}k∈R
, n ∈ N, of families of

matching matrices such that
• supk∈R

‖αn(k) − α(k)‖ → 0 as n → ∞, and
• for any n ∈ N each eigenvalue of αn(k) is exactly doubly degenerate

for k = p/2, p ∈ Z, while the spectrum of αn(k) is completely non-
degenerate for k 
= p/2, p ∈ Z.

Proof. The statement on the equivariant homotopy classes in part 1 is a con-
sequence of [3, Prop. 2.16], while the existence of the required approximants
{αn(k)}k∈R

essentially follows from [3, Lemma 2.18].
Part 2 is instead the content of [4, Thm. 5.12 and Prop. 5.9(2)]. �

A first result of the present paper is the following generalization of the
above statement, giving a characterization of the homotopy classes of families
of matching matrices in dimension d = 2.

Theorem 2.10. Let d = 2. Then two families of matching matrices
{α0(k1, k2)}(k1,k2)∈R2 and {α1(k1, k2)}(k1,k2)∈R2 are equivariantly homotopic
if and only if the four pairs of one-dimensional families of matching matrices
given by

{α0(0, k2)}k2∈R
and {α1(0, k2)}k2∈R

,

{α0(1/2, k2)}k2∈R
and {α1(1/2, k2)}k2∈R

,

{α0(k1, 0)}k1∈R
and {α1(k1, 0)}k1∈R

,

{α0(k1, 1/2)}k1∈R
and {α1(k1, 1/2)}k1∈/R ,

are equivariantly homotopic.

Proof. If the two-dimensional families are equivariantly homotopic, then the
restriction of the homotopy to the appropriate line in R

2 will give an equivari-
ant homotopy between the above-mentioned one-dimensional families, so we
must only prove the converse statement.

For s ∈ [0, 1], let

{αs(0, k2)}k2∈R
, {αs(1/2, k2)}k2∈R

, {αs(k1, 0)}k1∈R
, {αs(k1, 1/2)}k1∈R

,

(2.9)
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be equivariant homotopies between the one-dimensional families mentioned in
the statement. The goal is to construct an equivariant homotopy
{αs(k1, k2)}(k1,k2)∈R2 , s ∈ [0, 1], which extends the above and modifies α0 into
α1. We notice that it suffices to construct this homotopy on a fundamental
domain

(s, k1, k2) ∈ F := [0, 1] × [0, 1/2] × [− 1/2, 1/2],

and then impose periodicity and time-reversal symmetry: Indeed, since the
homotopies in (2.9) are already equivariant, this extension will be continuous
on the whole [0, 1] × R

2.
We consider the datum in (2.9) as defining a continuous map α on ∂F

with values in U(m). Topologically, the boundary ∂F is a 2-sphere, and hence
the map α determines an element of the second homotopy group π2(U(m)) by
considering its homotopy class. Since the latter homotopy group is trivial [11,
Chap. 8, Sect. 12], α is null-homotopic, or equivalently it extends to the region
F which is enclosed by ∂F . This extension provides the required map leading
to an equivariant homotopy between α0 and α1, as detailed above. �

Combining the above two results, we obtain the following

Corollary 2.11. Assume that d = 2.
1. Let ε = 1. Then any family of matching matrices {α(k)}k∈R2 is equiv-

ariantly null-homotopic.
2. Let ε = J . Then two families of matching matrices {α0(k)}k∈R2 and

{α1(k)}k∈R2 are equivariantly homotopic if and only if

I(α0(0, ·)) = I(α1(0, ·)), I(α0(1/2, ·)) = I(α1(1/2, ·)),
I(α0(·, 0)) = I(α1(·, 0)), and I(α0(·, 1/2)) = I(α1(·, 1/2)).

In particular, a family of matching matrices {α(k)}k∈R
is equivariantly

null-homotopic if and only if the four GP-indices I(α(0, ·)), I(α(1/2, ·)),
I(α(·, 0)) and I(α(·, 1/2)) vanish in Z2.

Remark 2.12. Notice that the conditions listed in the above statement for a
family of fermionic matching matrices to be equivariantly null-homotopic are
not independent: if three of the above one-dimensional families have vanishing
GP-indices, then so does the fourth.

Indeed, let

k1 = (0, 0), k2 = (1/2, 0), k3 = (1/2, 1/2) and k4 = (1/2, 0). (2.10)

Then

(−1)I(α(·,0)) = p(k1) p(k2), (−1)I(α(1/2,·)) = p(k2) p(k3),

(−1)I(α(·,1/2)) = p(k3) p(k4), (−1)I(α(0,·)) = p(k1) p(k4),

where p(ki) is defined as in (2.8). Since

p(k1) p(k4) = p(k1) p(k2)2 p(k3)2 p(k4),

it follows that

(−1)I(α(0,k2)) = (−1)I(α(k1,0)) (−1)I(α(1/2,k2)) (−1)I(α(k1,1/2)).
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There are then only three independent GP-indices among the ones of α(k1, 0),
α(0, k2), α(k1, 1/2) and α(1/2, k2).

Remark 2.13. If we drop the assumptions of time-reversal symmetry as in Re-
mark 2.7, then one can show that when d ∈ {1, 2} any family of matching
matrices is null-homotopic, regardless of whether it is of bosonic or fermionic
nature. This is done in [3,4] for d = 1, and in Theorem 4.6 below for d = 2. In
particular, continuous and Z

D-periodic Bloch frames for D-dimensional con-
tinuous, periodic, and time-reversal symmetric families of projections always
exist (and can be explicitly constructed) when D ≤ 3.

2.4. Summary

To summarize the above considerations, we see that in order to construct a
Bloch frame for a D-dimensional family of projections, we need the following
ingredients:

• a Bloch frame for the d-dimensional restriction of the family on the hy-
perplane {k1 = 0} ⊂ R

D (d = D − 1);
• a multi-step logarithm (in the sense of Definition 2.3) for the correspond-

ing family of matching matrices, defined via (2.7).

Theorem 2.9 shows that the second condition is in general topologically ob-
structed. Nonetheless, in the unobstructed case it is possible to provide an
explicit algorithm to produce the required multi-step logarithm. For example,
the case d = 1 (corresponding to D = 2) was analyzed thoroughly in [3] for
the bosonic case and in [4] for the fermionic case.

In the following we study the case d = 2 (and correspondingly D = 3).
The construction of a (multi-step) logarithm for a family of unitary matri-
ces requires in general its approximation by matrices that lift any spectral
degeneracy which is not dictated by symmetry (as is the case for Kramers
degeneracy). As an illustrative example, we treat the case of families of 2 × 2
matching matrices in the next section, both for d = 1 and d = 2. This already
displays all the issues to be faced in the general setting. The case of matching
matrices of arbitrary rank in d = 2 will be addressed in Sect. 4.

Remark 2.14. In what follows, we will implicitly assume (unless otherwise
stated) that families of matching matrices, as well as their families of multi-step
logarithms, are smooth (at least of class C1). The general case of continuous
families of matching matrices can be recovered by first taking a convolution
with a smooth, even kernel (compare [3, Lemma 2.3] and [4, Lemma A.2]).

3. Construction of the Multi-step Logarithm: Rank 2

Throughout this section, {α(k)}k∈Rd , d ≤ 2, is a family of 2 × 2 matching
matrices. Without loss of generality, we moreover assume that α(k) ∈ SU(2)
(compare Remark 2.8).
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Recall that any smooth, Zd-periodic map R
d � k �→ α(k) ∈ SU(2) can

be represented as

α(k) = m(k)1 + i
3∑

j=1

Fj(k)σj , (3.11)

where m and Fj , j ∈ {1, 2, 3}, are smooth, Zd-periodic and real-valued func-
tions satisfying

m(k)2 +
3∑

j=1

Fj(k)2 = 1,

where {σ1, σ2, σ3} are the Pauli matrices.
The general strategy to find a multi-step logarithm goes as follows: One

first constructs an approximation α̃ of α which has non-degenerate spectrum
and lies sufficiently close to α in the norm topology. Due to the non-degeneracy
of the spectrum of α̃, it is possible to find a branch cut for the logarithm which
always lies in its resolvent set, and hence α̃ has a “good” logarithm in the sense
of Definition 2.3, namely α̃(k) = ei h2(k). The fact that α̃ is close to α implies
that e−i h2(k)/2 α(k) e−i h2(k)/2 is close to 1 uniformly in k, and hence it admits
a logarithm h1(k). The combination of h1 and h2 as in (2.2) gives the desired
multi-step logarithm of α.

From the above discussion, it becomes clear that we need to lift the
spectral degeneracies of α. One can show that the spectrum of α(k) as in
(3.11) is then given by

σ(α(k)) = {m(k) ± i ‖F(k)‖} , F(k) := [F1(k), F2(k), F3(k)] ,

so that points k for which α(k) has degenerate spectrum coincide with zeroes
of the vector field F(k). Thus, the construction of a multi-step logarithm for
α will be achieved by perturbing the vector field F so that it avoids zero.

3.1. The Case d = 1 (D = 2)

We start by considering the one-dimensional bosonic case. Time-reversal sym-
metry of α(k) ∈ SU(2) reads then α(k) = α(−k)t. One can check that σ1 = σt

1

and σ3 = σt
3, while σ2 = −σt

2. Thus the time-reversal symmetry of α(k) implies

m(−k) = m(k), F1(−k) = F1(k), F3(−k) = F3(k), and F2(−k) = −F2(k)

for the functions m and Fj appearing in (3.11).
We see that F2(0) = 0. We want to slightly perturb α so that the per-

turbed matrix αs has non-degenerate spectrum and is still a family of matching
matrices. Because the map k �→ [F1(k), F3(k)] traces a closed smooth curve
in R

2, the origin is not an interior point of this curve by Sard’s lemma. Thus
given s > 0 we may find a vector v(s) = [v(s)

1 , v
(s)
3 ] ∈ R

2 with ‖v‖ = s such
that

inf
k∈R

∥
∥
∥
[
F1(k) + v

(s)
1 , F3(k) + v

(s)
3

]∥
∥
∥ > 0.
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Define F1,s(k) = F1(k) + v
(s)
1 , F2,s(k) = F2(k), F3,s(k) = F3(k) + v

(s)
3 ,

and

Fs(k) = [F1,s(k), F2,s(k), F2,s(k)].

If s is small enough, we have m(k)2 + ‖Fs(k)‖2 ≥ 1/2 for all k and we can
define

αs(k) :=
1

√

m(k)2 + ‖Fs(k)‖2

⎛

⎝m(k)1 + i
3∑

j=1

Fj,s(k)σj

⎞

⎠ . (3.12)

We see that Fs(k) can never be zero; hence, the matrix αs has non-degenerate
spectrum. Moreover, it converges to α as s → 0; it is smooth, periodic, and
time-reversal symmetric. Thus α admits a two-step logarithm.

We now come to the fermionic case. This case is more involved, first of
all because not all fermionic families of matching matrices are equivariantly
null-homotopic, and hence admit a multi-step logarithm (Theorem 2.4).

Homotopy classes of fermionic matching matrices in this dimension are
described by Theorem 2.9(2), and in particular the equivariant homotopy class
of α is characterized by its GP-index I(α). In the case of 2×2 matrices of unit
determinant, this index is easily computable. Indeed, one just needs to look
at the Kramers degenerate spectrum of α(0) and α(1/2). Combining Kramers
degeneracy with the constraint detα(k) = 1, we obtain that the degenerate
eigenvalues of α(0) and α(1/2) must be either 1 or −1. Then one easily checks
that I(α) = 0 if and only if the spectra of α(0) and α(1/2) coincide.

In the following, we construct a multi-step logarithm (with moreover a
number of steps M ≤ 3) for α, under the assumption that both α(0) and
α(1/2) have the same spectrum. Let us stress once again that the existence of
the multi-step logarithm is guaranteed by the general argument in Theorem 2.4
(together with the characterization of the equivariant homotopy classes in
Theorem 2.9), but we look for a constructive algorithm to produce it.

Since we assumed that the two matrices have the same spectrum, then
by the previous considerations α(0) = α(1/2) = ±1. Let us show that the case
α(0) = α(1/2) = −1 can be reduced to the other one. Indeed, in this case we
define h1(k) := π1 and introduce the family

α1(k) = e−i h1(k)/2 α(k) e−i h1(k)/2.

We see that α1(k) remains a family of fermionic 2 × 2 matching matrices, and
moreover α1(0) = α1(1/2) = 1. Hence we can assume without loss of generality
that α(0) = α(1/2) = 1.

Looking at the representation (3.11) for α(k), fermionic time-reversal
symmetry implies this time

m(−k) = m(k) and Fj(−k) = −Fj(k), j ∈ {1, 2, 3} .

In particular, m(0) = m(±1/2) = 1 and Fj(0) = Fj(±1/2) = 0, and hence
there exists a closed interval I ⊂ (0, 1/2) such that

m(k) ≥ 0, k ∈ [0, 1/2]\I.
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The vector field F(k) = [F1(k), F2(k), F3(k)] is smooth, Z-periodic, and
odd. The restriction of F(k) to I defines a smooth curve in R

3. The origin in
R

3 is not an interior point of the range of F by Sard’s lemma, hence given
s > 0 one can find a vector v(s) such that

∥
∥v(s)

∥
∥ = s and

∥
∥F(k) + v(s)

∥
∥ > 0

on I. Because I is compact, we can find cs > 0 such that

inf
k∈I

∥
∥
∥F(k) + v(s)

∥
∥
∥ ≥ cs > 0.

Let 0 ≤ χ ≤ 1 be a smooth function which equals 1 on I and has support in
(0, 1/2). Define

Fs(k) := F(k) + (χ(k) − χ(−k))v(s), k ∈ [−1/2, 1/2],

and extend it to R by periodicity:

Fs(k) = F(k) +
∑

n∈Z

(χ(k − n) − χ(−k − n))v(s), k ∈ R.

Clearly, Fs(−k) = −Fs(k). Also, m(k)2 +‖Fs(k)‖2 ≥ 1/2 if s is small enough,
and we can define αs as in (3.12). Denote by

ms(k) :=
m(k)

√

m(k)2 + ‖Fs(k)‖2
.

We see that ms can never be −1 on [−1/2, 1/2] if s is small enough: if k 
∈
I ∪(−I) then m is positive, while if k ∈ I ∪(−I) then ‖Fs(k)‖ is bounded from
below by a positive number. This implies that −1 is never in the spectrum of
αs, and we can define

h2(k) :=
arccos ms(k)

‖Fs(k)‖
3∑

j=1

Fs,j(k)σj , Tr h2(k) = 0, αs(k) = eih2(k).

We observe that h2 is smooth (because arccos(x)√
1−x2 is C∞ on (−1, 1]) and obeys the

properties listed in Definition 2.3. Since αs(k) converges in norm to α(k), we
conclude by the considerations at the beginning of this section that α admits
a multi-step logarithm.

3.2. The Case d = 2 (D = 3)

We now move to the two-dimensional case, and as before we start by consid-
ering a bosonic family of matching matrices in the form (3.11). Given s1 > 0
we can find a vector v(s1) = [v(s1)

1 , v
(s1)
3 ] ∈ R

2 with
∥
∥v(s1)

∥
∥ = s1 such that

inf
k2∈R

∥
∥
∥
[
F1(0, k2) + v

(s1)
1 , F3(0, k2) + v

(s1)
3

]∥
∥
∥ > 0.

Let 0 ≤ η ≤ 1 be a C∞
0 (R) even function that equals 1 on [−1/10, 1/10], and

has support in (−1/5, 1/5). Extend η to R by Z-periodicity:

ηp(x) :=
∑

n∈Z

η(x − n). (3.13)
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We have ηp(x) = ηp(−x) and ηp(x + 1) = ηp(x). Define

Fs1(k) :=
[
F1(k) + ηp(k1) v

(s1)
1 , F2(k), F3(k) + ηp(k1) v

(s1)
3

]
.

There exists a small strip of width δ1 < 1/10 around the line k1 = 0 such that
‖Fs1(k)‖ is bounded from below by a positive constant if k belongs to this
strip.

Now we perturb Fs1(k) (only its first and third components) around the
line k1 = 1/2, so that the new Fs2(k) will be away from zero on narrow strips
around both k1 = 0 and k1 = 1/2, and then make it periodic and symmetric
as before. Finally, we perturb again around a narrow horizontal strip around
k2 = 1/2 and get Fs3(k), where we have to make sure that s3 is small enough
so that we do not destroy the non-vanishing property on the “vertical” strips.
By periodicity, the same property will hold near k2 = −1/2.

In order to simplify notation, we may assume that the original F(k) is
nonzero near the boundary of Ω′ = (0, 1/2)×(−1/2, 1/2). Let K be a compact
included in Ω′ such that F(k) is away from zero on the compact set Ω′\K. Let
0 ≤ χ ≤ 1 be a smooth function which equals 1 on K and 0 outside Ω′. Given
s > 0 we can find a three-dimensional vector v(s) ∈ R

3 with
∥
∥v(s)

∥
∥ = s such

that

inf
k∈K

∥
∥
∥F(k) + v(s)

∥
∥
∥ > 0.

Then if s is small enough (in order not to destroy the non-vanishing property
of F near the boundary of Ω′), the function

Fs(k) =F(k) +
∑

n∈Z2

{
(χ(k − n) + χ(−k − n))

[
v
(s)
1 , 0, v

(s)
3

]

+ (χ(k − n) − χ(−k − n))
[
0, v

(s)
2 , 0

]}

will be periodic, never zero, and obeying the necessary symmetry. Hence we
can construct a multi-step logarithm as before.

We switch now to the case of a two-dimensional family of fermionic
2 × 2 matching matrices. In this case, by virtue of Corollary 2.11 we have
to look at the GP-indices of the four families {α(0, k2)}k2∈R

, {α(1/2, k2)}k2∈R
,

{α(k1, 0)}k1∈R
, and {α(k1, 1/2)}k1∈R

in order to ensure that the family α is
null-homotopic and hence admits a multi-step logarithm. Notice that these
restrictions are indeed one-dimensional families of matching matrices; hence,
their GP-indices are well-defined. When all these indices vanish, we are able
to construct a multi-step logarithm. Similarly to the one-dimensional case, the
vanishing of these indices is equivalent to the fact that the matrices α(0, 0),
α(1/2, 0), α(0, 1/2) and α(1/2, 1/2) have the same spectrum. Moreover, be-
cause of the Kramers degeneracy of their spectrum, the four matrices listed
above are all simultaneously equal to ±1. By the same reduction argument as
in d = 1, we can consider that they equal 1.

Consider the family γ1(k1) := α(k1, 0), with k1 ∈ R. By the argument
provided in the previous subsection for the fermionic one-dimensional case,
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we can find two families g11(k1) and g12(k1) obeying the properties listed in
Definition 2.3 and

e−i g12(k1)/2e−i g11(k1)/2γ1(k1)e−i g11(k1)/2e−i g12(k1)/2 = 1.

Moreover, the g’s are traceless and equal zero at 0 and ±1/2.
Let ηp(x) be the function in (3.13). The families

g̃11(k1, k2) := g11(k1) ηp(k2) and g̃12(k1, k2) := g12(k1) ηp(k2)

obey the properties of a multi-step logarithm. Define

α1(k) := e−i g̃12(k)/2e−i g̃11(k)/2α(k)e−i g̃11(k)/2e−i g̃12(k)/2.

This new family will again be a family of matching matrices, and in addi-
tion α1(k1, 0) = 1 for all k1 ∈ R. Moreover, α1(±1/2, 0) = α1(0,±1/2) =
α1(±1/2,±1/2) = 1.

Define γ2(k1) := α1(k1,±1/2). Repeating the previous argument we can
construct two smooth families g21(k1) and g22(k1) as in Definition 2.3, which
equal zero at k1 = 0 and k1 = ±1/2 and such that

e−i g22(k1)/2e−i g21(k1)/2γ2(k1)e−i g21(k1)/2e−i g22(k1)/2 = 1.

Using the same function ηp as before, we can construct the corresponding

g̃21(k1, k2) = g11(k1) ηp(k2 − 1/2) and g̃22(k1, k2) = g12(k1) ηp(k2 − 1/2),

and define

α2(k) := e−i g̃22(k)/2 e−i g̃21(k)/2 α1(k) e−i g̃21(k)/2 e−i g̃22(k)/2.

This new family will again be a family of matching matrices, and

α2(k1, 0) = α2(k1,±1/2) = 1, k1 ∈ R.

Let

K1 := (0, 1/2) × (0, 1/2), K2 := (0, 1/2) × (−1/2, 0).

By two other successive constructions, we arrive at α4(k1, k2) which equals the
identity on the contour defined by ∂K1 ∪ ∂(−K1) ∪ ∂K2 ∪ ∂(−K2). Then we
can write α4(k) = m(k)1 +

∑3
j=1 Fj(k)σj with m ≡ 1 on the above contour.

Let I ⊂ (K1 ∪ K2) be a compact set such that m(k) ≥ 0 on K1 ∪ K2\I.
The vector field F(k) = [F1(k), F2(k), F3(k)] is smooth, Z2-periodic, and odd.
The restriction of F(k) to I defines a smooth two-dimensional surface in R

3.
The origin in R

3 is not an interior point of the range of F, hence given s > 0
one can find a vector v(s) ∈ R

3 such that
∥
∥v(s)

∥
∥ = s and

∥
∥F(k) + v(s)

∥
∥ > 0

on I. Because I is compact, we can find cs > 0 such that
inf
k∈I

∥
∥
∥F(k) + v(s)

∥
∥
∥ ≥ cs > 0.

Let χ ∈ C∞
0 (R2) such that 0 ≤ χ ≤ 1, χ = 1 on I and supp(χ) ⊂ (K1 ∪ K2).

Define

Fs(k) := F(k) + (χ(k) − χ(−k))v(s), k ∈
2⋃

j=1

(
Kj ∪ −Kj

)
,

and extend it to R
2 by periodicity:
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Fs(k) = F(k) +
∑

n∈Z2

(χ(k − n) − χ(−k − n))v(s), k ∈ R
2.

Now we can apply the construction in (3.12) to α4 and obtain the desired
multi-step logarithm for α in two additional steps.

4. Construction of the Multi-step Logarithm: General Rank

We come back to the general case of a two-dimensional family of matching ma-
trices {α(k)}k∈R2 . The aim of this section is to show how to explicitly construct
a multi-step logarithm for α, assuming it is equivariantly null-homotopic (com-
pare Theorem 2.4). We will actually prove also a stronger statement, which
gives a continuous and periodic (but in general not time-reversal symmetric)
multi-step logarithm for any family of matching matrices, regardless of its
equivariant homotopy class (compare Remarks 2.7 and 2.13).

In order to proceed with the construction of the multi-step logarithm, we
will need to know what is the “generic” form of the spectrum of such families
of matching matrices, much in the spirit of Theorem 2.9.

Definition 4.1. Let {α(k)}k∈R2 be an equivariantly null-homotopic family of
matching matrices. We say that α is in generic form if

1. ε = 1, and the spectrum of α(k) is completely non-degenerate for all
k ∈ R

2; or
2. ε = J , and the spectrum of α(k) is completely non-degenerate in any

compact set not containing the high-symmetry points k� ∈ R
2 such that

k� ≡ −k� mod Z
2, it is doubly degenerate at those points, and consists

of clusters of two eigenvalues which are at distance at least A from each
other uniformly in the open balls of radius R around each of the k�’s,
where A,R > 0 are two positive constants (uniform in k).

The following result shows the origin of the terminology “generic form”.

Theorem 4.2. Assume that d = 2. Let {α(k)}k∈R2 be an equivariantly null-
homotopic family of matching matrices. Then one can construct a sequence
{αn(k)}k∈R2 , n ∈ N, of families of matching matrices such that

• supk∈R2 ‖αn(k) − α(k)‖ → 0 as n → ∞, and
• for any n ∈ N the family {αn(k)}k∈R2 is in generic form.

A stronger form of the above statement holds, if we drop the requirement
of time-reversal symmetry for the approximants.

Theorem 4.3. Assume that d = 2. Let {α(k)}k∈R2 be a family of matching ma-
trices. Then one can construct a sequence {α̂n(k)}k∈R2 , n ∈ N, of continuous
and Z

d-periodic families of unitary matrices such that

• supk∈R2 ‖α̂n(k) − α(k)‖ → 0 as n → ∞, and
• for any n ∈ N the matrix α̂n(k) has completely non-degenerate spectrum

for all k ∈ R
2, which is moreover invariant under the exchange k �→ −k.
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The proofs of the above Theorems are constructive but rather technical,
and we defer them to the next section. We conclude this section by exhibiting
the required multi-step logarithm. In the following we may assume that α(k) ∈
U(m) with m ≥ 3, since in view of Remark 2.8 any family of matching matrices
with m = 1 admits a “one-step” logarithm in any dimension, and we have
already treated the case m = 2 in Sect. 3.

In the following, we denote by α̂ any of the approximants provided by
Theorem 4.2 or 4.3 such that

sup
k∈R2

‖α̂(k) − α(k)‖ < 2. (4.14)

Proposition 4.4. Let Ω ⊂ R
2 be a star-shaped compact domain such that the

family of unitary matrices α̂(k) has non-degenerate spectrum for k ∈ Ω. Then
the eigenvalues of α̂ can be labeled so that they define smooth functions on Ω.

Proof. Assume that every point k of Ω can be connected to a fixed k0 through
a straight segment. Assume that α̂(·) has m non-degenerate eigenvalues. There
exists a minimal distance A > 0 between any two eigenvalues of α̂(·) (compare
Lemma 5.7 below for n = 1).

We can label the eigenvalues of α̂(k0) using the increasing order of their
arguments 0 ≤ φ1(k0) < · · · < φm(k0) < 2π. Consider the family γ(t) :=
α̂((1 − t)k0 + tk), with 0 ≤ t ≤ 1. It is uniformly continuous on [0, 1] because
α̂ is uniformly continuous on Ω. Hence there exists δ(A) > 0 such that

‖γ(t) − γ(t′)‖ ≤ A/100 whenever |t − t′| ≤ δ(A).

The spectrum of γ(t) lies at a distance less than A/10 from the spectrum of
γ(t′), for every |t − t′| ≤ δ(A). Note that δ(A) does not depend on k.

Consider the Riesz projections of γ(0) given by

Pj(0) =
1

2πi

∫

|z−λj(0)|=A/2

(z1 − γ(0))−1dz, 1 ≤ j ≤ N.

The spectrum of γ(t) lies at a distance less than A/10 from the spectrum of
γ(0), for every 0 ≤ t ≤ δ(A). Then the formulas

Pj(t) =
1

2πi

∫

|z−λj(0)|=A/2

(z1 − γ(t))−1 dz, 1 ≤ j ≤ m, 0 ≤ t ≤ δ(A)

give a smooth extension of the spectral projections of γ(t), and λj(t) :=
Tr(Pj(t)γ(t)) are its labeled eigenvalues. We can then repeat the construc-
tion on the interval (δ(A), 2δ(A)] starting from the labeling at t = δ(A). After
a finite number of steps we reach t = 1.

Now define γ̃(t) = α̂((1 − t)k0 + t k̃). If ‖k − k̃‖ is small enough, then

sup
0≤t≤1

‖γ(t) − γ̃(t)‖ ≤ A/100.

This shows that around each eigenvalue of γ(t) there exists exactly one eigen-
value of γ̃(t) which is situated sufficiently close to it. If λj(1) ∈ σ(γ(1)) and
λ̃j′(1) ∈ σ(γ̃(1)) are closer than A/10, then
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∣
∣
∣λj(1 − δ) − λ̃j′(1 − δ)

∣
∣
∣ ≤ |λj(1 − δ) − λj(1)| +

∣
∣
∣λj(1) − λ̃j′(1)

∣
∣
∣

+
∣
∣
∣λ̃j′(1) − λ̃j′(1 − δ)

∣
∣
∣ <

3A

10

so that λj(1 − δ) and λ̃j′(1 − δ) are also close for the same choice of indices
j and j′. Since we know that there is only one eigenvalue of γ̃(1 − δ) which is
close to the j-th eigenvalue of γ(1 − δ), we deduce that it must be the j′-th,
and we can then deduce that they are actually closer than A/10. We can then
bootstrap the above argument all the way to t = 0, where then λj(0) and
λ̃j′(0) must coincide, thus implying that j′ = j. Hence the labeling coincides
for all t ∈ [0, 1] because it coincided at t = 0.

In this way we also globally label the (Riesz) spectral projections, and
they are as smooth as α̂. Thus λj(k) = Tr(Pj(k)α̂(k)), j ∈ {1, . . . , m}, are
also smooth. �

Proposition 4.5. Let {α̂(k)}k∈R2 be an approximation of α as in Theorem 4.2
such that (4.14) holds. Then one can construct a continuous and Z

2-periodic
function Λ: R2 → R such that ei Λ(k) always lies in the resolvent set of αn(k)
for all k ∈ R

2. If instead {α̂(k)}k∈R2 is as in Theorem 4.3, the function Λ can
be chosen to be even as well.

Proof. By symmetry, it suffices to define Λ continuously on the half unit cell
[0, 1/2]×[−1/2, 1/2]. Evenness and periodicity dictate how the function should
be extended to the whole R

2.
The bosonic case and the case in which there is no time-reversal sym-

metry are simpler to treat, since in these cases α̂ has non-degenerate spec-
trum everywhere. Using the continuous labeling of the eigenvalues provided
by Proposition 4.4, we can simply define

Λ(k) :=
φ2(k) + φ3(k)

2
,

where φj(k), j ∈ {2, 3} are continuous choices of the arguments for λj(k).
The fermionic case is instead slightly more involved. The above definition

works in the compact, star-shaped region

Ω :=
([

0,
1
2

]

×
[

−1
2
,
1
2

])

\
4⋃

i=1

BR(ki),

where the points ki are defined in (2.10) and R > 0 is as in Definition 4.1. In
Ω, the eigenvalues of α̂(k) are non-degenerate and can be labeled continuously.
Instead, in the balls of radius R around the points ki, pairs of eigenvalues will
cluster and become the doubly degenerate eigenvalues of α̂(ki), but the clusters
themselves stay at a positive distance A > 0 from each other. Now, since α̂ and
α are close, also the GP-indices of the four restrictions of α̂ which determine its
homotopy classes will vanish [4, Prop. 5.2], in view of the hypothesis in Theo-
rem 4.2 that α is equivariantly null-homotopic (compare Theorem 2.10). This
implies in particular that, moving along these four directions, the eigenvalues
which “move out” of one of the balls BR(ki) have to come together again and



3884 H. D. Cornean, D. Monaco Ann. Henri Poincaré

form another cluster in any of the other balls BR(kj). Thus, we may assume
that the extensions to these balls of the eigenvalues labeled in Ω as {λ1, λ2}
form one cluster, while {λ3, λ4} form a different cluster. As a consequence, the
function Λ defined above approaches the balls BR(ki) while staying between
two separate clusters: since there is a minimal positive distance A > 0 between
clusters, its definition can be extended continuously inside BR(ki) while stay-
ing in the resolvent set of α̂(k), for example, by staying at fixed distance from
one of the clusters. �

With the tools above, we can finally prove

Theorem 4.6. Let {α(k)}k∈R2 be a family of matching matrices. Then one can
construct a continuous and Z

2-periodic multi-step logarithm for α.
If moreover α is equivariantly null-homotopic, then the multi-step loga-

rithm can be chosen to be also time-reversal symmetric.

Proof. As above, we denote by α̂ any of the approximants provided by Theo-
rem 4.2 or 4.3 such that (4.14) holds. From Proposition 4.5 we end up with a
continuous, periodic, and possibly even function Λ: R2 → R such that eiΛ(k)

always lies in the resolvent set of α̂(k), for all k ∈ R
2. This means that

−1 is always in the resolvent set of the family of unitary matrices defined
by α̃(k) := e−iΛ(k)α̂(k), and consequently one can write α̃(k) = eih̃(k) for
{h̃(k)}k∈R2 a continuous and Z

2-periodic family of self-adjoint matrices, which
moreover satisfies the time-reversal symmetry constraint (4) in Definition 2.3
if the original α̂ is as in Theorem 4.2. We conclude that

α̂(k) = eih2(k), with h2(k) := h̃(k) + Λ(k)1.

The family {h2(k)}k∈R2 still obeys the properties listed in Definition 2.3 (pos-
sibly with the exception of time-reversal symmetry), and moreover

sup
k∈R2

∥
∥
∥1 − e−ih2(k)/2α(k)e−ih2(k)/2

∥
∥
∥ < 2

by (4.14). In turn this implies that −1 lies in the resolvent set of e−ih2(k)/2α(k)
e−ih2(k)/2 for all k ∈ R

2, which gives that

e−ih2(k)/2α(k)e−ih2(k)/2 = eih1(k),

or equivalently

α(k) = eih2(k)/2eih1(k)eih2(k)/2

for a family of matrices {h1(k)}k∈R2 as in Definition 2.3 (again with the pos-
sible exception of time-reversal symmetry). We recognize that the above is
exactly (2.2) for M = 2, and hence the desired multi-step logarithm for α has
been constructed. �
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5. Technicalities About the Generic Form

This section is devoted to the proofs of Theorems 4.2 and 4.3. We let
{α(k)}k∈R2 be a two-dimensional family of matching matrices, and we want
to construct approximants to α which are in generic form. Due to the Z

2-
periodicity and time-reversal symmetry of families of matching matrices, which
reflect in periodicity and evenness of their spectra, it suffices to perform the
construction on the half unit cell C = [0, 1/2] × [−1/2, 1/2] in such a way that
a periodic, time-reversal symmetric extension results in a smooth family.

5.1. Local Splitting Lemma

The first step to put α in generic form is to control the spectrum at the high-
symmetry points k� such that k� ≡ −k� mod Z

2. This is achieved through
the following Lemma, which is valid in any dimension and generalizes [4,
Lemma A.1].

Lemma 5.1 (Local Splitting Lemma). Let R > 0 and k� ∈ R
d be a high-

symmetry point. Denote by BR(k�) the open ball of radius R centered at k�. Let
{α(k)}k∈BR(k�)

be a continuous and time-reversal symmetric family of unitary
matrices. Then it is possible to construct a sequence{
αn(k) = eihn(k)

}
k∈BR′ (k�)

, possibly for 0 < R′ ≤ R, of continuous and time-
reversal symmetric families of unitary matrices, with k �→ hn(k) as in Defini-
tion 2.3, such that

lim
n→∞ sup

k∈BR′ (k�)

‖αn(k) − α(k)‖ = 0,

and

• the spectrum of αn(k�) is completely non-degenerate if ε = 1, or
• each eigenvalue of αn(k�) is doubly degenerate if ε = J .

Moreover, it is possible to construct a sequence
{

αn(k) = eiĥn(k)
}

k∈BR′ (k�)
,

possibly for 0 < R′ ≤ R, of continuous families of unitary matrices, with
k �→ ĥn(k) satisfying (1), (2) and (2.2) in Definition 2.3, and such that

• supk∈BR′ (k�)
‖α̂n(k) − α(k)‖ → 0 as n → ∞, and

• the spectrum of α̂n(k) is completely non-degenerate and even-symmetric
with respect to k� for k ∈ BR′(k�).

Proof. By a shift k → k − k�, we can always assume k� = 0. Notice indeed
that the combination of periodicity and time-reversal symmetry implies that
the spectrum of a family of matching matrices is even-symmetric around any of
the high-symmetry points (that is, under the transformation k� +q �→ k� −q).

Step 1: The local logarithm. Assume that the spectrum of α(0) consists of
1 ≤ p0 ≤ n (possibly even degenerate, due to Kramers degeneracy) eigen-
values labeled as {λ1(0), . . . , λp0(0)} in the increasing order of their principal
arguments. If s > 0 is sufficiently small and ‖k‖ < s, due to the continuity
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of k �→ α(k) we know that the spectrum of α(k) will also consist of well sep-
arated clusters of eigenvalues. Let Πj(k) be the spectral projection of α(k)
corresponding to the j-th cluster:

Πj(k) =
1

2πi

∫

Cj

(z1 − α(k))−1 dz, ε Πj(k) = Πj(−k)t ε, ‖k‖ < s.

The matrix α(k) is block diagonal with respect to the decomposition C
m =⊕p0

j=1 Πj(k)Cm, i.e., α(k) =
∑p0

j=1 Πj(k)α(k)Πj(k), ‖k‖ < s.
Define

α̃(k) :=
p0∑

j=1

λj(0)Πj(k) = exp

⎛

⎝i
p0∑

j=1

Arg(λj(0))Πj(k)

⎞

⎠ , ‖k‖ < s.

The matrix α̃(k) is unitary, commutes with α(k), and ε α̃(k) = α̃(−k)t ε if
‖k‖ < s. Define γ(k) := α̃−1(k)α(k); we have that γ(k) is unitary, commutes
with α(k), ε γ(k) = γ(−k)t ε if ‖k‖ < s and limk→0 γ(k) = 1. In particular,
−1 is never in the spectrum of γ(k). Going through the Cayley transform, we
can find a self-adjoint matrix h̃(k) such that

γ(k) = eih̃(k), h̃(0) = 0, ε h̃(k) = h̃(−k)t ε, [Πj(k), h̃(k)] = 0, ‖k‖ < s.

We obtain

α(k) = exp

⎛

⎝i

⎛

⎝h̃(k) +
p0∑

j=1

Arg(λj(0))Πj(k)

⎞

⎠

⎞

⎠ , ‖k‖ < s.

In the following, we will then assume that α(k) = eih(k) on BR(0), at the
expense of taking a smaller R.

Step 2: Splitting of spurious degeneracies. Let us use the generic notation Π
for any of the spectral projections onto one of the eigenvalues of α(0); let p
denote the dimension of the range of Π (i.e., the degeneracy of the eigenvalue).

We distinguish now the bosonic and the fermionic case. When time-
reversal symmetry is of bosonic type, the choice of any real orthonormal basis
for Π = Πt gives a decomposition

Π =
p⊕

j=1

Pj , dim RanPj = 1, Pj = P 2
j = P ∗

j = P t
j . (5.15)

When we have instead fermionic time-reversal symmetry, we proceed as
follows. Denote by C the complex conjugation with respect to the basis in
which ε is represented by the symplectic matrix J , and by Θ := εC; then Θ
is an antiunitary operator satisfying Θ2 = −1 on Ran Π � C

m. From (2.1) we
see that we have the property

ΘΠ = ΠΘ, or εΠ = Πtε, dim Ran Π = 2r.
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We want to prove the following decomposition formula:

Π =
r⊕

j=1

Pj , dim Ran Pj = 2, Pj = P ∗
j = P 2

j , εPj = P t
j ε. (5.16)

Start by choosing an arbitrary unit vector v1 ∈ Ran Π. Define v2 = Θv1. We
have that Πv2 = ΠΘv1 = ΘΠv1 = v2, hence v2 also belongs to Ran Π. We
also know that 〈v1, v2〉 = 0 and v1 = −Θv2. Define

P1 = |v1〉 〈v1| + |v2〉 〈v2| .
Let f ∈ C

m. Then

ΘP1f = v2〈v1, f〉 − v1〈v2, f〉
= −v1 〈f , v2〉 + v2 〈f , v1〉 = −v1 〈Θv2, Θf〉 + v2 〈Θv1, Θf〉
= v1 〈v1, Θf〉 + v2 〈v2, Θf〉 = P1Θf .

This shows that ΘP1 = P1Θ, or εP1 = P t
1ε. If r > 1 we continue inductively.

Let v3 be an arbitrary unit vector orthogonal to RanP1 in Ran Π. Define
v4 = Θv3. As before, we can show that Πv4 = v4 and 〈v3, v4〉 = 0. Moreover,
using the properties of Θ we can show that v4 is also orthogonal on both v1

and v2. Define P2 = |v3〉 〈v3|+ |v4〉 〈v4|. The proof of ΘP2 = P2Θ is the same
as the one for P1. We now continue inductively until we exhaust the range of
Π. We conclude that (5.16) is proved.

Now let us apply now (5.15) (respectively, (5.16)) to each spectral projec-
tion Πj(0) of α(0). Assume that the multiplicity of the eigenvalue λj(0) (i.e.,
the dimension of Ran Πj(0)) equals pj(0), where 1 ≤ pj(0) ≤ m. In presence
of fermionic time-reversal symmetry, we have that this multiplicity is even,
pj(0) = 2rj(0).

Then (5.15) leads to

Πj(0) =
pj(0)⊕

lj=1

Pj,lj (0), dim Ran Pj,lj (0) = 1,

Pj,lj (0) = Pj,lj (0)∗ = Pj,lj (0)2 = Pj,lj (0)t. (5.17)

Respectively, (5.16) leads to

Πj(0) =
rj(0)⊕

lj=1

Pj,lj (0), dim Ran Pj,lj (0) = 2,

Pj,lj (0) = Pj,lj (0)∗ = Pj,lj (0)2, εPj,lj (0) = Pj,lj (0)tε. (5.18)

Define

Aj(0) :=
mj(0)∑

lj=1

(lj − 1) Pj,lj (0)

where mj(0) := pj(0) in the bosonic case, and mj(0) := rj(0) in the fermionic
case. From (5.17) and (5.18), we also have εAj(0) = Aj(0)tε, where ε = 1 or
ε = J depending on the type of time-reversal symmetry. Seen as an operator
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acting on Ran Πj(0), the spectrum of Aj(0) consists of (doubly degenerate in
the fermionic case) eigenvalues given by {0, 1, . . . ,mj(0) − 1}. Of course, if
rj(0) = 1, then Aj(0) = 0.

Now let gs : Rd → [0, 1] be smooth, even, gs(0) = 1, and supp(gs) ⊂
Bs/2(0). Define

vs(k) := s gs(k)

⎛

⎝
p0∑

j=1

Aj(0)

⎞

⎠

where p0 is the total number of distinct eigenvalues of α(0). Then the support
of vs is contained in Bs(0) and obeys time-reversal symmetry. Define αs(k) to
be ei(h(k)+vs(k)) if k ∈ Bs(0), and let αs(k) = α(k) outside Bs(0). The family
αs obeys all the required properties, at the price of taking possibly a smaller s
to avoid overlapping of the eigenvalues at 0, and converges uniformly in norm
to α when s → 0.

Step 3: Complete splitting. We come to the final part of the statement. By
virtue of the above constructions, this is of relevance only if the original fam-
ily of matching matrices α is of fermionic nature, and we will assume that
α(k) is defined on a ball B = Bs(0) of radius s > 0 around 0, has doubly
degenerate eigenvalues at 0, and has non-degenerate spectrum on the surface
Ss of this ball. In view of time-reversal symmetry, the spectrum will be also
even-symmetric. For k ∈ Ss, write the spectral decomposition of α(k) as

α(k) =
m∑

j=1

λj(k)Pj(k), dim Ran Pj(k) = 1.

Notice that λj(k) = λj(−k) by time-reversal symmetry.
Say that the eigenvalues λ1, λ2 belong to the cluster which originates

from some doubly degenerate eigenvalue λ = eiφ of α(0), and assume that
their are labeled by the increasing order of the values of their principal argu-
ments1 φ1 < φ2. Consider the spectral projection Π(0) of α(0) relative to the
eigenvalue λ, and call Π(k) = P1(k)⊕P2(k) for k ∈ Ss. If s is sufficiently small,
then ‖Π(k) − Π(0)‖ < 1, and the two projections are related by a Kato-Nagy
unitary Us(k). Moreover, since Us(k) is close to the identity, we can write
Us(k) = eiHs(k) for a smooth family of self-adjoint matrices Hs(k). The same
is true when we replace k with −k. Let

Vs(tk) :=

{
eitHs(k) if t ∈ [0, 1]
ei|t|Hs(−k) if t ∈ [−1, 0]

be a smooth path of unitaries joining Us(k) to Us(−k), passing through the
identity at k = 0.

1Notice that the choice of principal arguments together with time-reversal symmetry imply
φj(k) = φj(−k), j ∈ {1, 2}, k ∈ Ss.
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A choice of a basis in Ran Π(0) corresponds to a splitting Π(0) = P1(0)⊕
P2(0), with dim RanPj(0) = 1. Setting

P
(s)
j (tk) := Vs(tk)Pj(0)Vs(tk)−1, j ∈ 1, 2, t ∈ [−1, 1]

gives a path of one-dimensional projections joining Pj(−k) with Pj(k), and
coinciding with the chosen Pj(0) at t = 0.

Finally, if g > 0 denotes the minimal distance between the degenerate
eigenvalues of α(0), denote by λ

(s)
j (tk) = ei φ

(s)
j (tk), where

φ
(s)
j (tk) := (1 − |t|)

(
φ + (−1)j g

10

)
+ |t|φj(k), j ∈ {1, 2} , t ∈ [−1, 1].

For example, the function λ
(s)
2 (tk) interpolates between ei(φ+g/10) and λ2(k) for

positive t ∈ [0, 1], and between λ + g/10 and λ2(−k) for negative t ∈ [−1, 0];
the function λ

(s)
1 (tk) does the same, but starting from ei(φ−g/10). Since at

the level of principal arguments the interpolations are linear, we have that
φ

(s)
1 (tk) < φ

(s)
2 (tk) for all t ∈ [−1, 1].

We repeat the above construction for all the n = m/2 pairs of spectral
subspaces originating from the doubly degenerate eigenvalues of α(0). We set
then for k ∈ Ss

αs(tk) :=
m∑

j=1

λ
(s)
j (k)P (s)

j (tk), t ∈ [−1, 1]

on the ray joining k to −k through 0. The above gives the required approxi-
mation of α with non-degenerate, even-symmetric spectrum. �

5.2. Extending Non-degeneracy to 1D

The next step in the construction of the approximants requires to remove mul-
tiple eigenvalues which are not due to Kramers degeneracy. In this subsection
we will do so on a “quasi one-dimensional” set of points in R

2, for which one
of the two coordinates is very close to a half-integer.

In view of the Local Splitting Lemma 5.1, we can assume that the matrices
α(k�), for k� a high-symmetry point, have non-degenerate spectrum (in the
bosonic case) or only doubly degenerate eigenvalues (in the fermionic case).
Moreover, since by the assumption in Theorem 4.2 the family α is equivariantly
null-homotopic, we know that its restrictions to the four lines {k1,2 = 0} are
{k1,2 = 1/2} are equivariantly null-homotopic (compare Theorem 2.10); by
periodicity the same is true on any line where one of the coordinates is equal
to a half-integer. In particular, in the fermionic case this implies that the
GP-indices of the restrictions to these lines vanish (Corollary 2.11).

Proposition 5.2. Under the above assumptions, there exists a sequence of fam-
ilies of matching matrices {α�(k)}k∈R2 such that

lim
�→∞

sup
k∈R2

‖α�(k) − α(k)‖ = 0,

and such that for all � ∈ N
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• the restriction of the family {α�(k)}k∈R2 to the lines {kj = pj/2}, j ∈
{1, 2}, pj ∈ Z, is completely non-degenerate if ε = 1, or

• the same restrictions have completely non-degenerate spectrum on any
given compact interval not containing the double Kramers degeneracies if
ε = J .

Proof. Fix a compact set I ⊂ (−1/2, 0) ∪ (0, 1/2) symmetric with respect
to 0. Since {α(k1, 0)}k1∈R

is equivariantly null-homotopic, it can be approx-
imated arbitrarily well with a smooth one-dimensional family of matching
matrices {α̃1(k1)}k1∈R

which has completely non-degenerate spectrum in I

and which admits a traceless, smooth and periodic logarithm h1(k1) such that
α̃1(k1) = eih1(k1) and ε h1(k1) = h1(−k1)t ε−1: this is Theorem 2.9(1) (com-
pare [3, Lemma 2.18]) in the bosonic case, where I can be actually taken
to be the whole interval [−1/2, 1/2], while it is Theorem 2.9(2) (compare [4,
Prop. 5.4(2)]) in the fermionic case, under the assumption mentioned above
that I(α(·, 0)) = 0 ∈ Z2.

Define the unitary matrix

γ1(k1, k2) := e−ih1(k1)/2α(k1, k2)e−ih1(k1)/2.

If k2 lies closer than some δ0 > 0 from any given integer, then γ1(k1, k2) is close
to the identity matrix. Via the Cayley transform, we can construct a traceless
self-adjoint H1(k1, k2) with ε H1(k) = H1(−k)t ε when k2 is closer than δ0 to
an integer. The family H1 is periodic in k1 and also in k2 near the integers.

Now let gδ : R → R, 0 ≤ gδ ≤ 1, be smooth, even, equal to 1 on [−δ, δ] and
supported in the interval (−2δ, 2δ) with δ small. Define Gδ(x) =

∑
n∈Z

gδ(x −
n). If δ ≤ δ0/10, we define

α′(k1, k2) := eih1(k1)/2ei(1−Gδ(k2))H1(k1,k2)eih1(k1)/2

if k2 is closer than 3δ from Z, and α′(k1, k2) = α(k1, k2) otherwise.
The matrix α′(k1, 0) coincides with α̃1(k1); hence, it is non-degenerate on

k1 ∈ I. If δ is small, α′(k1, k2) will continue to be equivariantly null-homotopic
and we continue by investigating α′. When we modify α′ near k1 = 0 by a
similar construction as above, we see that the affected region in k1 is of order
δ, so by choosing δ small enough we do not change anything in the segment
{k1 ∈ I, k2 = 0}, so the previous non-degeneracy is not affected. We thus ob-
tain α′′ which has complete non-degeneracy on two segments: {k1 ∈ I, k2 = 0}
and {k1 = 0, k2 ∈ I}. After four steps and putting δ = 1/� (starting with some
large enough �0), we finish the construction of α�. �

Remark 5.3. The proof above can be adapted, with minor modifications, to
show the existence of approximants {α̂�(k)}k∈R2 for any (not necessarily equiv-
ariantly null-homotopic) family of matching matrices α which are continuous,
Z

d-periodic, and whose spectrum is completely non-degenerate on the lines
{kj = pj/2}, j ∈ {1, 2}, pj ∈ Z. One just needs to use the second part of
the statement of Lemma 5.1 (together with [4, Prop. 5.4(1)]) in the fermionic
case, to lift the Kramers degeneracies at the cost of breaking time-reversal
symmetry. This goes into the proof of Theorem 4.3.
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From now on, we may assume that α is completely non-degenerate on
some thin slabs centered around the lines (k1, 0), (0, k2), (k1, 1/2) and (1/2, k2),
possibly not including some small open balls containing the crossing points of
these lines in the fermionic case. Inside these balls, only double degeneracies are
allowed. Due to the periodicity of α, this property is extended around all the
lines of the type {kj = pj/2}, with j ∈ {1, 2} and pj ∈ Z. Notice that it is only
on these slabs that time-reversal symmetry plays the role of a compatibility
condition.

In the following, we proceed with our construction of the approximants of
α in generic form on the quadrant Q = [0, 1/2]× [0, 1/2]; a similar construction
works for Q′ = [0, 1/2] × [−1/2, 0]. Since the half unit cell C = Q ∪ Q′, this
will suffice in view of the considerations at the beginning of this section.

Let [a, b] ⊂ (0, 1/2) be the interval obtained by projection on one of the
axes of the complement of the thin slabs where α has non-degenerate spectrum.
Let us consider the four segments given by

S1 := [a, b] × {0}, S2 := [a, b] × {1/2}, S3 := {0} × [a, b], S4 := {1/2} × [a, b].

The previous Proposition allows us to assume that α(k) is completely non-
degenerate on a thin neighborhood of these segments. We now we want to
close the contour by keeping complete non-degeneracy.

Proposition 5.4. Let Λ be the segment joining the endpoint (0, b) of S3 with the
endpoint (a, 1/2) of S2. Then there exists a sequence of families of matching
matrices {αn(k)}k∈Q such that

• supk∈Q ‖αn(k) − α(k)‖ → 0 as n → ∞, and
• for all n ∈ N the spectrum of αn(k) is completely non-degenerate on a

thin (n-dependent) compact neighborhood of Λ.

Proof. We introduce some natural global coordinates (xλ, yλ) induced by Λ ⊂
R

2 such that a point belonging to Λ is represented by yλ = 0 and xλ belongs
to an interval.

When we restrict α(k) to the closed segment Λ we obtain a one-dimensio-
nal family of unitary matrices. We know that we can approximate it arbitrarily
well with a smooth family of unitary matrices with no degeneracies on Λ, which
also admits a smooth logarithm hn(xλ), i.e.,

sup
k∈Λ

∥
∥
∥e−ihn(xλ)/2 α(k(xλ, 0)) e−ihn(xλ)/2 − 1

∥
∥
∥ ≤ 1

n
.

We know that α is non-degenerate at the endpoints; hence, by continuity it will
remain non-degenerate on a small neighborhood of them. Thus we may find a
smaller open segment Λ′ ⊂ Λ such that α(k) is non-degenerate on Λ\Λ′. Then
eihn(xλ) will also be completely non-degenerate on Λ\Λ′ if n is large enough,
while the minimal distance between its eigenvalues is bounded from below by
some n-independent positive constant A > 0. Of course, this might no longer
be true inside Λ′.
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Denote by Λ′
r the convex open set containing all the points k such that

dist(k,Λ′) < r. There exists some rn small enough such that

sup
k∈Λ′

rn

∥
∥
∥e−ihn(xλ)/2 α(k(xλ, yλ)) e−ihn(xλ)/2 − 1

∥
∥
∥ ≤ 2

n
. (5.19)

We can also assume that Λ′
rn

is always included in the open square (0, 1/2) ×
(0, 1/2).

Consider the unitary operator

γn(k(xλ, yλ)) := e−ih(xλ)/2 α(k(xλ, yλ)) e−ih(xλ)/2, k(xλ, yλ) ∈ Λ′
rn

.

From (5.19) we conclude that γn(k(xλ, yλ)) is close to the identity operator
and it admits a smooth logarithm Hn(k(xλ, yλ)), hence

γn(k(xλ, yλ)) = eiHn(k(xλ,yλ)), k(xλ, yλ) ∈ Λ′
rn

, ‖Hn‖ = O(1/n).

Consider a smooth function 0 ≤ χn ≤ 1 which equals 1 on Λ′
rn/10 and has

support on Λ′
rn/5. Define the following unitary matrix in the closed rectangle

Q:

βn(k(xλ, yλ))

:=

{
eihn(xλ)/2ei[1−χn(k(xλ,yλ))]Hn(k(xλ,yλ))eihn(xλ)/2 if k(xλ, yλ) ∈ Λ′

rn

α(k(xλ, yλ)) if k(xλ, yλ) ∈ Q\Λ′
rn

.

We see that βn differs from α only on Λ′
rn/5, and βn − α = O(1/n) anywhere

in Q. Also, βn is smooth.
Now let us show that βn is completely non-degenerate on Λ. We write

βn(k(xλ, 0))

:=

{
eihn(xλ)/2ei[1−χn(k(xλ,0))]Hn(k(xλ,0))eihn(xλ)/2 if k(xλ, 0) ∈ Λ′

rn

α(k(xλ, 0)) if k(xλ, 0) ∈ Λ\Λ′
rn

.

We see that the only problems might come from the region corresponding to

Λ ∩ {Λ′
rn/5\Λ′

rn/10} ⊂ Λ\Λ′.

In that region, Hn is of order 1/n while the logarithm hn has a positive minimal
splitting which is independent of n. Thus if n is large enough, no degeneracies
can be induced on Λ\Λ′. Also, by continuity, the non-degeneracy on Λ can be
extended to an n dependent slab containing Λ. This concludes the proof. �

We can now join the extremities of the fours segments S1, . . . , S4 in order
to obtain a closed polygonal line inside the rectangle Q. A similar construction
as in Proposition 5.4 provides us with an α which is completely non-degenerate
around a thin neighborhood of this polygonal line.

The next step is to avoid any eigenvalue crossings inside this polygon.
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5.3. Eigenvalue Splitting in the “Bulk”

Let Ω ⊂ R
2 be a compact set and let {α(k)}k∈Ω be a smooth family of m×m

unitary matrices. We want to show in this final Subsection that degeneracies
of the eigenvalues of α can be lifted and that one can find a family of unitary
matrices arbitrarily close to α which has completely non-degenerate spectrum.

We begin with a formal definition of a cluster of eigenvalues.

Definition 5.5. Let ε > 0. We say that cn(k) ⊂ σ(α(k)) is an ε-cluster of n
eigenvalues of α(k) (counting multiplicities) if for every λ, μ ∈ cn(k) we have
|λ − μ| < ε.

The next Lemma shows that ε-clusters are stable.

Lemma 5.6. If α(k0) has an ε-cluster cn(k0), then α(k) has at least one ε-
cluster with n eigenvalues whenever k ∈ Br(k0) and r is small enough. If
α(k0) does not have any ε-clusters containing n eigenvalues, then α(k) cannot
have ε/2-clusters with n eigenvalues when k ∈ Br(k0) and r is small enough.

Proof. First, we assume that α(k0) has an ε-cluster cn(k0). Consider a closed
simple contour C in the complex plane which surrounds the n eigenvalues in
cn(k0) and define the Riesz projection associated to them:

P (cn(k0)) =
1

2πi

∫

C
(z1 − α(k0))−1 dz.

The Hausdorff distance dH(σ(α(k)), σ(α(k0))) between the spectra of α(k) and
α(k0) is smooth; thus, if r is small enough, C lies in the resolvent set of α(k)
and we can define the spectral projection

P (k) =
1

2πi

∫

C
(z1 − α(k))−1 dz.

If r is small enough, then ‖P (k) − P (cn(k0))‖ < 1; hence, the range of P (k)
has dimension n and corresponds to a cluster cn(k) which converges in the
Hausdorff metric to cn(k0). Finally, let λ, μ ∈ cn(k). Then if r is even smaller

|λ − μ| ≤ 2dH(cn(k), cn(k0)) + max
a,b∈cn(k0)

|a − b| < ε.

Second, we assume that α(k0) has no ε-clusters containing n eigenvalues.
In particular, each eigenvalue of α(k0) has a degeneracy of order at most n−1.
This implies that given any collection of n eigenvalues (counting multiplicities)
of α(k0), at least two of them are at a distance larger or equal than ε from each
other and are associated to mutually orthogonal projections. Now assume that
there exists a sequence k� converging to k0 such that α(k�) has an ε/2-cluster
with n eigenvalues. If � is large enough, then near each eigenvalue λ of α(k0)
with degeneracy j < n there will be exactly j eigenvalues of α(k�) (counting
multiplicities) which will converge to λ. Hence at least two of the n eigenvalues
from the ε/2-cluster of α(k�) must be close to different eigenvalues of α(k0)
if � is large enough; thus, at some point the distance between them must be
larger or equal than ε/2, a contradiction. �
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For any ε > 0, we define Ωε,n ⊂ Ω to be the set of those k’s for which
α(k) has at least one ε-clusters of n eigenvalues counting multiplicities.

Lemma 5.7. 1. Ωε,n is an open set.
2. Assume that α(k) can have eigenvalues with a degeneracy at most n ≤ m,

for all k ∈ Ω. Then there exists some ε0 and A > 0 such that for any
ε < ε0 and for any ε-cluster cn(k) we have

(

inf
k∈Ωε,n

inf
λ∈cn(k)

inf
μ∈σ(α(k))\cn(k)

|λ − μ|
)

≥ A > 0. (5.20)

In other words, each such “maximal” cluster remains at a distance at
least A from the rest of the spectrum, uniformly in k ∈ Ωε,n and ε < ε0.

Proof. The fact that Ωε,n is open is a direct consequence of Lemma 5.6.
Now let us assume that the infimum in (5.20) is zero. Then there exists

a sequence ε� → 0 and a sequence k� ∈ Ω such that the matrix α(k�) has
an ε�-cluster cn(k�), and there exist two eigenvalues λ� ∈ cn(k�) and μ� ∈
σ(α(k�))\cn(k�) such that |λ� − μ�| < 1/�.

Passing to a subsequence, we may assume that k� converges to some
k∞ ∈ Ω. Since α(k∞) can have eigenvalues with a degeneracy at most n,
there exists some δ small enough such that α(k∞) cannot have δ-clusters
containing n+1 eigenvalues (counting multiplicities). Since α(k�) converges in
norm to α(k∞), Lemma 5.6 implies that α(k�) cannot have δ/2-clusters which
contain n + 1 eigenvalues (counting multiplicities) if � is large enough. But
cn(k�)∪{μ�} is a δ/2-cluster containing n+1 eigenvalues when ε� +1/� < δ/2,
a contradiction. �

Let Sε,n ⊂ Ω be the set of all k’s where α(k) has at least one “closed”
cluster cn(k) of n eigenvalues, i.e., for any λ, μ ∈ cn(k) we have that |λ−μ| ≤ ε.

Lemma 5.8. The set Sε,n is compact, and for every ε′ > ε we have

Ωε,n ⊂ Sε,n ⊂ Ωε′,n.

Proof. We first prove that Sε,n is closed. Let k0 ∈ Ω\Sε,n. Then given any
group cn of n eigenvalues of α(k0), there exists at least one among them, call
it λ and assume that it has multiplicity j < n, such that the distance between
λ and the other n − j eigenvalues is larger than ε. Since α(k) is norm-smooth,
the subcluster of j eigenvalues evolving from λ will still remain at a distance
larger than ε from the other n − j if ‖k − k0‖ < r is small enough. Since the
number of all possible n combinations of eigenvalues is finite, we may find an
r > 0 which simultaneously works for all of them. Thus Ω\Sε,n is open. Since
Sε,n is contained in the compact set Ω, it must be compact as well.

We also have Sε,n ⊂ Ωε′,n, while both Sε,n and Ω\Ωε′,n are compact.
Thus the distance between Sε,n and Ω\Ωε′,n is positive. �

Assume that α(k) can have eigenvalues of multiplicity at most n when
k ∈ Ω and let ε1 ≤ min{ε0/10, A/10}, where ε0 and A are as in (5.20). We
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also assume that the maximal degeneracy n is achieved in at least one point
so that Sε1,n is never empty no matter how small ε1 is taken.

Given any k0 ∈ Sε1,n we know that there exist �(k0) ≥ 1 “closed” clusters

of n eigenvalues denoted by c
(j)
n (k0), 1 ≤ j ≤ �(k0), such that the distance

between any two eigenvalues inside each cluster is less or equal than ε1 ≤ A/10,
while the distance between any given cluster and its complementary part of
the spectrum is at least A, uniformly in ε1.

There are exactly �(k0) Riesz projections Pj(k0) of rank n, and each of
them can be smoothly extended to a unique Pj(k) near k0.

Let d > 0 be the distance between Sε1,n and Ω\Ω2ε1,n. Define the open
sets
O1(k0) = Bd/2(k0) ∩ {k ∈ Ω2ε1,n : ‖Pj(k) − Pj(k0)‖ < 1/10, 1 ≤ j ≤ �(k0)},

O2(k0) = Bd(k0) ∩ {k ∈ Ω3ε1,n : ‖Pj(k) − Pj(k0)‖ < 1/5, 1 ≤ j ≤ �(k0)}.

The closure O1(k0) is included in the set

Bd/2(k0) ∩ {k ∈ Ω2ε1,n : ‖Pj(k) − Pj(k0)‖ ≤ 1/10, 1 ≤ j ≤ �(k0)}.

Also, from Lemma 5.8, we have that Ω2ε1,n ⊂ S2ε1,n ⊂ Ω3ε1,n, hence

O1(k0) ⊂ O2(k0).

Because Sε1,n is compact, there exist a finite number B of points kb such that

Sε1,n ⊂
B⋃

b=1

O1(kb). (5.21)

Finally we introduce the set

Tε1,n,L :=
⋃

�(kb)=L

O1(kb), L := max
1≤b≤B

{�(kb)} ≥ 1. (5.22)

This compact set contains all the points of Ω in which α might have exactly L
different n-fold degenerate eigenvalues, well separated among themselves and
from the rest of the spectrum.

The next result allows to lift maximal degeneracies.

Proposition 5.9. Assume that α(k) is smooth in k and can have eigenvalues of
multiplicity at most n, with 2 ≤ n ≤ m. We also assume that not more than
one eigenvalue can be n-fold degenerate at a time. Then we can construct a
family of smooth unitary maps αs(k), s > 0, such that

lim
s→0

sup
k∈Ω

‖αs(k) − α(k)‖ = 0

while αs(k) can only have eigenvalue crossings of order at most n − 1.

Proof. An example would be m = 5 and n = 3, when if a 3-crossing occurs at
some k, no other 3-crossing is possible at the same k.

Since no more than one n cluster can occur if ε1 is small enough, then on
each open set O1(kb) in (5.21) we will eventually have �(kb) = 1, i.e., there is
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exactly one ε1-cluster of maximal dimension n near kb, and we can put L = 1
in (5.22).

We first want to prevent any n-fold degeneracies which might happen
in O1(k1). We know that there exists exactly one 3ε1-cluster of n eigenvalues
corresponding to a smooth Riesz projection P1(k) if k ∈ O1(k1). We can
intertwine P1(k) and P1(k1) through a smooth Kato-Nagy unitary U(k), such
that U(k)P1(k)U−1(k) = P1(k1). The eigenvalues belonging to the n cluster
coincide with the eigenvalues of the reduced operator

U(k)P1(k)α(k)U−1(k) = P1(k1)U(k)α(k)U−1(k)P1(k1), k ∈ O2(k1).
(5.23)

This operator is represented by an n×n unitary matrix γ(k) when restricted to
Ran(P1(k1)). Denoting by {Ψi(k1)}n

i=1 some orthonormal basis in this range,
we have

γij(k) :=
〈
Ψi(k1), U(k)α(k)U−1(k)Ψj(k1)

〉
, 1 ≤ i, j ≤ n.

The unitary matrix γ(k) is almost diagonal because the distance between any
two of its n eigenvalues is at most 3ε1. Define z(k) = Tr(γ(k))/n. Then we
must have

γ(k) = z(k)1 + O(ε1), |z(k)| = 1 + O(ε1).

Taking the determinant on both sides we obtain

det γ(k) = z(k)n(1 + O(ε1)).

If ε1 is chosen smaller than some numerical constant, then we can write

det γ(k) =
(
z(k)e

1
n Ln(1+O(ε1))

)n

.

Let us define

γ̃(k) :=
(
z(k)e

1
n Ln(1+O(ε1))

)−1

γ(k).

Then det γ̃(k) = 1 and ‖γ̃(k) − 1‖ = O(ε1) for all k ∈ O2(k1). An important
consequence is that γ̃(k) is a smooth SU(n) matrix, close in norm to the
identity matrix. Moreover,

γ̃(k) = eih(k)

where h(k) is a traceless generator of SU(n), self-adjoint, smooth, and
‖h(k)‖ = O(ε1). Hence the U(n) matrix γ(k) can be expressed as

γ(k) = z(k)e
1
n Ln(1+O(ε1))eih(k).

The complete matrix α has an n-crossing in O2(k1) if and only if γ is diagonal,
and this is equivalent with h(k) = 0. The following estimate

‖h(k)‖ ≥ C(ε1) > 0, k ∈ O2(k1)\Tε1,n,1 (5.24)

tells us that at least one of the n eigenvalues of our cluster must be at a
positive distance from at least one other eigenvalue from the other n − 1 if
k ∈ O2(k1)\Tε1,n,1, hence h must have at least one nonzero real eigenvalue,
uniformly in k.
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Denote by Σ1,2,3 the extensions of the usual Pauli matrices to su(n). The
decomposition of h(k) with respect to the basis of the generators of SU(n)
has some components F1(k)Σ1 + F2(k)Σ2 + F3(k)Σ3, where each Fj(k) =
Tr(h(k)Σj)/2 is smooth on O2(k1). The range of the map

O2(k1) � k �→ F(k) := [F1(k), F2(k), F3(k)] ∈ R
3

has Lebesgue measure zero; hence, the origin of R3 cannot be an interior point
of this range. Thus given any s1 > 0, we may find a vector v(s1) ∈ R

3 such
that:

∥
∥
∥v(s1)

∥
∥
∥ = s1, inf

k∈O1(k1)

∥
∥
∥F(k) + v(s1)

∥
∥
∥ > 0.

Now take a smooth function 0 ≤ χ ≤ 1 which equals 1 on the compact set
O1(k1) and has support in O2(k1). Define the U(n) matrix

γ(s1)(k) := z(k)e
1
n Ln(1+O(ε1)) exp

{
i
(
h(k) + χ(k)v(s1) · Σ

)}
, k ∈ O2(k1).

The perturbed generator h(k) + χ(k)v(s1) · Σ is traceless; hence, γ(s1)(k) has
n identical eigenvalues in O2(k1) if and only if h(k) + χ(k)v(s1) · Σ = 0 for
some k ∈ O2(k1).

If s1 is sufficiently small compared to ε1, then h(k)+χ(k)v(s1) ·Σ cannot
become zero inside O2(k1)\Tε1,n,1 due to (5.24). Also, the same perturbed
generator equals h(k) + v(s1) · Σ inside O1(k1); thus, it is different from zero,
no matter how small s1 > 0 is. We conclude that if s1 is smaller than some
critical value depending on ε1, the U(n) matrix γ(s1)(k) can have an n-crossing
neither on O2(k1)\Tε1,n,1 nor on O1(k1). Moreover,

lim
s1↘0

sup
k∈O2(k1)

∥
∥
∥γ(s1)(k) − γ(k)

∥
∥
∥ = 0.

Using the notation introduced in (5.23), we define the U(m) matrix
α(s1)(k) for k ∈ Ω as follows:

α(s1)(k)

:=

{
α(k), k ∈ Ω\O2(k1)

P1(k)⊥α(k) +
∑m−1

i,j=1 γ
(s1)
ij (k) |U∗(k)Ψi(k1)〉 〈U∗(k)Ψj(k1)| , k ∈ O2(k1)

The matrix α(s1)(k) is smooth and converges in norm to α(k). Also, if s1 is
sufficiently small (compared to ε1), we know that α(s1)(k) can have n-crossings
neither on the old Ω\Tε1,n,1 nor on O1(k1).

In the next step, we will fix s1 and perturb α(s1)(k) inside O2(k2) so
that the new perturbed matrix (denoted by α(s1,s2)(k)) has no n-crossings on
the old Ω\Tε1,n,1, on O1(k1) and on O1(k2), provided s2 is small enough with
respect to both ε1 and s1. We stress the fact that the sets O2(kj) and O1(kj)
(see (5.21)) remain unchanged and only depend on the initial α.

We observe that α(s1)(k) will continue to have exactly one well isolated
n cluster if k ∈ O2(kb). Moreover, the Riesz projections P

(s1)
j (k) are close

in norm to Pj(k) when s1 is small; hence, the Kato-Nagy formula can again
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be used for k ∈ O2(k2) in order to reduce the problem to an n-dimensional
matrix as we did in (5.23).

We can perform the same type of local generator perturbation (depending
on s2), where now α is replaced with α(s1) and O2(k1) with O2(k2). The s2-
perturbation may affect the set O2(k2) ∩ O1(k1), but if s2 is small enough
compared to s1 and ε1, it cannot re-induce n-crossings inside O1(k1). On the
other hand, we can make sure that the perturbed generator is never zero on
O1(k2) no matter how small s2 is.

After B steps, we make sure that no n-crossings can take place in Tε1,n,1

and we are done. �

Finally, with the next result we are able to lift multiple simultaneous
degeneracies.

Proposition 5.10. Assume that α(k) is smooth and can have eigenvalues of
multiplicity at most n, with 2 ≤ n ≤ m. We assume that exactly L > 1 different
eigenvalues can be simultaneously n-fold degenerate at a given k. Then we can
construct a family of smooth unitary maps αs(k), s > 0, such that

lim
s→0

sup
k∈Ω

‖αs(k) − α(k)‖ = 0

and αs(k) can have at most L − 1 different eigenvalues which can be simulta-
neously n-fold degenerate at a given k.

Proof. An example would be m = 5 and n = 2, where we could have two
different doubly degenerate eigenvalues at the same k, i.e., L = 2 in (5.22) if
ε1 is small enough.

The strategy of the proof is quite close to the previous one. We need
to slightly perturb the matrix α on the set Tε1,n,L, see (5.22). We start with
one of the sets O1(kb) for which we know that �(kb) = L, i.e., for every k in
this set, the spectrum of α(k) has precisely L clusters of n eigenvalues which
are well separated from each other and from the rest of the spectrum. Up
to a Kato-Nagy rotation, we can block-diagonalize α(k) and find L unitary
matrices γj(k) ∈ U(n) which are almost diagonal and their spectrum coincide
with the j-th cluster.

Like in the previous case, we can write

γj(k) = eiφj(k)eihj(k), k ∈ O2(kb), hj ∈ su(n),

where φj is some smooth phase, and ‖hj(k)‖ = O(ε1). As before, we can
slightly perturb each hj(k) such that the perturbed ones will never be zero on
O1(kb), no matter how small the perturbation is.

The crucial difference compared to the case L = 1 is that (5.24) becomes

max
1≤j≤L

‖hj(k)‖ ≥ C(ε1) > 0, for all k ∈ O2(k1)\Tε1,n,L.

In words, this says that outside Tε1,n,L, we cannot have L simultaneous
n-crossings, only at most L − 1. Hence one of the generators hj must have at
least one eigenvalue away from zero.
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Now choosing as before s1 small enough, the perturbation will not in-
duce L simultaneous crossings outside Tε1,n,L, while lifting completely the
n-crossings inside O1(kb). Overall, the conclusion is that we now can have at
most L− 1 simultaneous n-crossings inside O2(k1)\Tε1,n,L and no crossings at
all inside O1(kb).

Then after a finite number of steps in which we use weaker and weaker
perturbations each time, we exhaust Tε1,n,L and we are done. �

We are finally able to conclude with the desired completely non-
degenerate generic form.

Proposition 5.11. Assume that α(k) ∈ U(m) is smooth on the compact set Ω.
Then, there exists a family of smooth unitary maps αs(k), s > 0, such that

lim
s→0

sup
k∈Ω

‖αs(k) − α(k)‖ = 0

and αs(k) only has only non-degenerate eigenvalues.

Proof. This general statement follows from successive applications of Propo-
sitions 5.9 and 5.10. For each point at which α(k) has L eigenvalues each of
which is n-fold degenerate, the two Propositions allow to perturb the matrix
locally in order to achieve that the approximant has either less n-fold degen-
erate eigenvalues (i.e., one reduces L to L − 1), or at least one degeneracy is
lifted (i.e., one passes from n-fold to (n−1)-fold degenerate eigenvalues). After
a finite number of steps, each degeneracy is lifted.

We give a detailed proof for m = 4. Assume that α has crossings which
involve all its eigenvalues, i.e., n = m = 4. Only one maximal cluster can occur
in this case, so we can apply Proposition 5.9 which gives us an approximation
α′ which can only have crossings of order m − 1 = 3.

If there exist points k where α′ can have crossings involving n = 3 eigen-
values, then again there exists only one maximal cluster at a time; hence,
Proposition 5.9 gives us another approximation α′′ which can only have cross-
ings of order n − 1 = 2.

If α′′ has crossings of order two, it might happen that there exist points
k where a simultaneous double degeneracy can occur (n = 2, 2 + 2 = 4). This
corresponds to L = 2 in Proposition 5.10. Applying this Proposition we obtain
a new matrix α′′′ which can only have one (i.e., L − 1) crossing of n = 2
eigenvalues at any given k. Finally, we apply Proposition 5.9 in order to split
the last degeneracy and we are done. �

6. Outlook

To conclude this paper, let us briefly state two interesting issues which have
not been addressed before.

In the fermionic case in d = 1 (D = 2), we gave in [4] an explicit construc-
tion of an homotopy which interpolates between any two families of matching
matrices having the same Z2 invariant, regardless of whether it vanishes or
not. The proof relies on a certain special factorization of any such family α,
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obstructed or not, which allows one to combine the two similar families into
an equivariantly null-homotopic one, which can then be deformed into the
identity. The special factorization in question reads [4, Lemma 5.1]

α(k) = ε−1 γ(−k)t ε γ(k), k ∈ R,

where {γ(k)}k∈R
is a continuous and Z-periodic family of unitary matrices.

This factorization is also useful to compute the GP-index of α as I(α) =
deg(det(γ)) mod 2, namely as the reduction mod 2 of the winding number of
the periodic map det γ : [− 1/2, 1/2] → U(1) [4, Prop. 5.1].

Assume that a similar factorization holds in d = 2 (D = 3), namely that

α(k) = ε−1 γ(−k)t ε γ(k), k ∈ R
2. (6.25)

Then the map γ(k1, ·) gives an homotopy between the family {γ(k1, 0)}k1∈R

and {γ(k1, 1/2)}k1∈R
, implying in particular that I(α(·, 0)) = I(α(·, 1/2)).

Similarly one would deduce that I(α(0, ·)) = I(α(1/2, ·)) by exchanging the
roles of k1 and k2. We see then that the factorization (6.25) cannot hold in
general, since the above constraints on the GP-indices only account for four
out of the eight equivariant homotopy classes of families of fermionic match-
ing matrices in d = 2 provided by Corollary 2.11(2). Indeed, the constraints
above exclude those classes for which the restrictions on one horizontal and
one vertical line have the same GP-index (say I(α(·, 0)) = I(α(0, ·))), but
they disagree with the GP-indices on the “opposite” horizontal and verti-
cal lines (say I(α(·, 0)) 
= I(α(·, 1/2))). Thus, even if Theorem 2.4 gives an
explicit homotopy between all equivariantly null-homotopic matrices (com-
pare (2.6)), constructing explicit homotopies between obstructed families of
fermionic matching matrices in d = 2 remains an open problem, and we sus-
pect that a completely new idea is needed.

The second open issue is about the explicit construction of maximally ex-
ponentially localized composite Wannier functions in L2(RD) corresponding to
an isolated spectral band σ0 (assuming that no obstructions are
present). Let us be more precise. The integral kernel of the corresponding
projection has an off-diagonal exponential decay e−δ0‖x−x′‖ where δ0 equals
the distance between σ0 and the rest of the spectrum. In the Bloch picture, the
corresponding projection P (k) will have an analytic continuation to a complex
open strip near RD of width δ0. Our constructive algorithm can be adapted, as
mentioned in the Introduction, to produce a Bloch frame which is periodic and
real analytic, that is, analytic in a smaller complex strip of width δ′ < δ0. The
main question is whether one can push the analyticity of the periodic Bloch
frame up to a strip of width δ0, which would provide composite Wannier func-
tions having an exponential decay like e−δ‖x‖ with any δ < δ0. We note that
the construction of Nenciu [17] in the rank-1 case does just that. The existence
of such exponentially localized composite Wannier functions can be proved by
means of methods from the theory of functions of several complex variables
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(see [13,18] and references therein), but to the best of our knowledge a con-
structive proof is still missing in the literature and constitutes a stimulating
line of research for the future.
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