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Effective Potentials Generated by Field
Interaction in the Quasi-Classical Limit

Michele Correggi and Marco Falconi

Abstract. We study the quasi-classical limit of a quantum system com-
posed of finitely many nonrelativistic particles coupled to a quantized
field in Nelson-type models. We prove that, as the field becomes classical
and the corresponding degrees of freedom are traced out, the effective
Hamiltonian of the particles converges in resolvent sense to a self-adjoint
Schrödinger operator with an additional potential, depending on the state
of the field. Moreover, we explicitly derive the expression of such a po-
tential for a large class of field states and show that, for certain special
sequences of states, the effective potential is trapping. In addition, we
prove convergence of the ground-state energy of the full system to a suit-
able effective variational problem involving the classical state of the field.

1. Introduction

The interaction between particles and radiation, either generated by an elec-
tromagnetic field or a phonon field in a crystal, plays a key role in several
phenomena in condensed matter physics [15]. In several experiments, however,
the presence of a quantum field is even more fundamental, being the core of
the experimental apparatus, e.g., acting as a trap to keep the particle confined
to a certain region. This is the typical case of magneto-optical traps, whose
relevance goes well beyond low-temperature physics [10]: Such type of confine-
ments of atomic beams [17] has been developed mostly in the investigation of
low-temperature behavior of neutral atomic clouds and was involved in one
of the first realizations of Bose–Einstein condensation [19]. Similar techniques
have been used to generate optical lattices [13], where particles are pinned to
lattice sites and can only hop from one site to another, thus generating a sort
of discrete model on the lattice. Concretely this is achieved by superposing
laser beams on a lattice with suitable resonating frequencies. More recently
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the same setup has been even used to generate artificial gauge fields for the
atoms [16].

The theoretical models conventionally used to describe the atomic sys-
tems discussed above (see, e.g., [37] and references therein), do not involve,
however, the direct interaction between the atoms or the particles and the
quantized radiation field, but rather take the simplified point of view of ap-
proximating such an interaction with effective potentials, i.e., of considering
directly Schrödinger operators of the form

N∑

j=1

(−Δj + Veff(xj)) + U(x1, . . . ,xN ), (1.1)

where N is the number of quantum particles and U their interaction potential,
e.g., Coulomb interaction. The explicit form of the effective potential Veff is
then tuned appropriately for the specific system under investigation and can
range from confining potentials of the form |x|s, s � 2, in the case of magneto-
optical traps, to periodic oscillating potentials in the case of optical lattices.
For the sake of simplicity, we are going to assume that the potential U satisfies
the following assumptions:

U ∈ L2
loc

(
R

dN ; R+
)

+ K�
(
R

dN
)
, (A1)

where K� denotes the set of potentials which are Kato-infinitesimally small
w.r.t. the free Laplacian.

The connection between the fundamental Hamiltonian describing quan-
tum particles interacting with a radiation field and the effective model (1.1)
has not attracted much attention, at least in the physics literature, and the
justification of (1.1) is mostly phenomenological. There is, however, a regime
in which such a connection can be put on rigorous grounds and the approx-
imation behind (1.1) made explicit. This is the semiclassical regime of large
number of field excitations (see below), when the quantum nature of field
(bosonic) carriers can be neglected and the corresponding degrees of freedom
approximated by their classical counterparts. Notice that, in the physical pic-
ture we are describing, the quantum nature of the particle system is preserved
and only the field is assumed to behave almost classically. We are going to
refer to this limit as quasi-classical limit in order to distinguish it from the
usual semiclassical limit.

The semiclassical approximation of quantum mechanics or Schrödinger
equation is indeed a widely studied topic in mathematical physics, and we
refer to the monographs [30,47] and references therein for an extensive list
of results. On the other hand, the specific case of the quasi-classical limit
described above was studied, to the best of our knowledge, only in [26], which
focuses on the partially classical limit of the dynamics in the Nelson model
(see below for further comments about this result). From the technical point
of view, the key difference with the conventional results about semiclassics is
that the authors of [26] have to deal with a classical limit � → 0 in an infinite-
dimensional Hilbert space (the Fock space of quantized radiation). At that
time, only limited mathematical tools were available to study such a question,
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whereas more recently semiclassical analysis in infinite dimensions has been
developed for bosonic systems, see, e.g., [1,4,5,21] (also [3,8], for a different
approach to Weyl quantization in Wiener spaces). These are in fact the very
same techniques we are going to use in this work.

The problem of deriving effective models for the quantum dynamics in
a suitable semiclassical limit is clearly not new in the mathematical physics
literature, and we list here some works which have some similarities with our
approach. For instance, in [42,44] (see also references therein) the “opposite”
partial limit of classical particles coupled to a quantized field has been studied.
More generally, a regime in which there emerges a behavior similar to the quasi-
classical limit is the adiabatic decoupling generated by a separation between
fast and slow degrees of freedom [38,39,43], and also the nonrelativistic limit
of electrons coupled to a quantum field [9,31,32]. In spite of a completely
different physical meaning, there are also strong mathematical analogies with
the strong coupling limit for the Fröhlich polaron [22,24,27] (see also below).
Finally, we want to mention the works [11,12] about the effective mass and
dynamics of a quantum particle interacting with the electromagnetic field in
QED.

Let us now be more precise about the models we plan to study: We want
to focus on the behavior of a quantum system composed by N nonrelativistic
particles interacting with a quantized bosonic field, which will be often referred
to as radiation. The interaction is modeled by a linear coupling as in the Nelson
model [35], but we take into account two different cases: either the usual Nelson
interaction with ultraviolet cutoff or the Fröhlich polaron model [23]. More
precisely, the Hamiltonian of the full system is given by an expression of the
following form

H = Hfree +
N∑

j=1

A(xj), Hfree = H0 + dΓ(ω), (1.2)

where

H0 = −Δx1,...,xN
+ U(x1, . . . ,xN ), (1.3)

is a self-adjoint operator on L2(RdN ), d = 1, 2, 3. The dispersion relation of
the field is ω(k) and throughout the paper we are going to assume that

ω(k) � 0. (A2)

The interaction A(x) is linear in the field creation and annihilation operators,1

e.g.,

A(x) =
∫

Rd

dk
(
a†(k)λ(k)e−ik·x + a(k)λ∗(k)eik·x) , (1.4)

1 We denote by · ∗ the complex conjugate of a complex number.
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λ being the Fourier transform of the particle coupling factor, which is assumed
to be the same for each particle. Above dΓ stands for the second quantization
map, and therefore, dΓ(ω) is the field energy, i.e.,

dΓ(ω) =
∫

Rd

dk ω(k) a†(k)a(k). (1.5)

The physical regime we investigate here is the one which is sometimes re-
ferred to as semiclassical limit in the physics literature [18,25,34], also known
as quasi-classical or partially classical limit (see, e.g., [26,46]), to distinguish it
from the vast mathematical literature about semiclassics: In the experiments,
the fields are typically considered as classical, and therefore, their quantum na-
ture is discarded. More precisely, we think of a regime where the number of field
excitations, e.g., photons or phonons, is large. Hence, the non-commutativity
of the quantum variables, which is of order 1 (in units of Planck’s constant �),
can be neglected when compared to the large number of excitations. This is
the approximation we study here, by proposing a model in which the classical
behavior of the field emerges from the semiclassical limit of a purely quantum
system. The regime is therefore named quasi-classical limit because only the
field becomes classical, while the quantum nature of the particles is preserved.

Such an approximation of large number of field excitations has already
been considered in the physics literature [18]. This is also the typical case of
the strong coupling regime as, e.g., for the polaron [22,24,27]. Alternatively,
one can think of particles whose wave functions live on a scale much smaller
than the typical length scale of the field excitations [34].

Concretely, the quasi-classical limit is realized by letting

ε → 0, (1.6)

where ε plays the role of Planck’s constant, in the CCR relations satisfied by
the annihilation and creation operators a(k) and a†(k), i.e.,

[
a(k), a†(k′)

]
= εδ(k − k′). (1.7)

It is clear that when ε → 0 the non-commutativity of the field becomes neg-
ligible, and thus, it becomes classical. Notice that such a limit should not be
interpreted as a classical limit � → 0 but rather as a scale limit emerging from
the physics of the coupling.

Our main goal is thus to identify the effective Hamiltonian of the particles
in the limit ε → 0, when the degrees of freedom of the field are traced out. As
we are going to see, we will prove that the system of particles is still described
by a sequence of operators Hε, which converges as ε → 0 in either the norm or
the strong resolvent sense to a self-adjoint Schrödinger operator Heff , given, for
each particle, by the unperturbed particle operator H0 plus a suitable external
potential. Moreover, we provide the explicit expression of such a potential as
a function of the state of the quantized field.

Once the effective model is identified, it is then natural to ask whether
the ground-state properties of the full system can be suitably approximated
in terms of the effective operators obtained in the quasi-classical limit. This is
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indeed the case for the ground-state energy, as we prove for both the massive
Nelson model and the polaron: The effective energy is obtained by minimizing
the bottom of the spectrum of the state-dependent effective Hamiltonian with
respect to the classical state of the field.

In this work, we are interested in dealing only with the stationary features
of the particles and we do not investigate the full dynamics of the system.
Dynamical questions have already been studied under restrictive assumptions
on the initial state: The partial classical limit of time-evolved squeezed coherent
states was indeed considered for both the renormalized Nelson model [26] and
the polaron model [22,24,27]. In the former case, the resulting classical field
evolves freely and the quantum fluctuations are described by a free quantum
field together with quantum particles subjected to an external time-dependent
potential given by the classical field. In the latter one, the quasi-classical limit
takes the form of a strong coupling limit and the field does not evolve at order
zero but yields an effective potential on the quantum particles. At first order,
for suitable time scales, the nonlinear Landau-Pekar system is recovered.

In this respect, our analysis is more general than the one contained in
the works mentioned above [22,24,26,27], although we do not address any
dynamical question: In all those papers, indeed the initial state of the field
must be of very special type, i.e., a (squeezed) coherent state, which is already
semiclassical from a certain point of view. On the opposite, we make very weak
restrictions on the possible field configurations and show explicitly how such a
freedom influences the effective Schrödinger operator for the particles. Let us
also stress that the approximation of the particle dynamics for generic initial
states remains an open problem in both cases and we plan to address such a
question in a future work.

We consider three different forms of interaction, leading to similar results
in the partially classic limit, but requiring suitable assumptions and slightly
different approaches:

(1) discrete modes of radiation (Sect. 2.1): this is the simplest setting since we
assume that the field has only a discrete set of frequencies. It is, however,
meaningful from the physical point of view, since it might be viewed as
a model for particles in an optical lattice;

(2) Nelson model with ultraviolet cutoff (Sect. 2.2): the Nelson model [35]
is simply the continuous version of the previous case, where the high
frequencies are cut off by means of a suitable ε-independent form factor;

(3) Fröhlich polaron (Sect. 2.3): this model introduced in [23] is typically used
to describe the interaction of quantum particles with a phonon field. It
might be thought of as a Nelson-type model with a special dispersion
relation, where no ultraviolet cutoff is necessary.

We will first focus on the dependence of the effective operator on the
chosen state of the full system. A wide class of states, e.g., product states, leads
indeed to bounded effective potentials and to norm resolvent convergence of
the corresponding Schrödinger operators (Sects. 2.1–2.3). For a smaller class
of models, i.e., the massive Nelson and polaron ones, we will also prove the
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convergence of the ground-state energies (Sect. 2.4). A rather special choice
of the sequence of states, i.e., suitable squeezed coherent states, can generate
unbounded potentials, as it occurs for experimental traps (Sect. 2.5).

2. Main Results

Before stating our main results, we define more precisely the models we are
going to consider. The technical assumptions we make on both the unperturbed
part Hfree of the Hamiltonian of the full system and its interaction terms are
also recalled later in Sect. 3.1.

As anticipated, we want to consider a coupled system of N quantum d-
dimensional particles coupled with a bosonic field. Therefore, we assume that
the Hilbert space is given by

L2(RdN ) ⊗ Γsym (H) , (2.1)

where Γsym (H) is the usual bosonic Fock space, i.e.,

Γsym(H) =
∞⊕

n=0

Sn (H)⊗n
,

with Sn the symmetrizing operator. The one-particle space H for the field de-
pends on the model, but it is always a (complex) at most separable Hilbert
space. In case of identical particles, L2(RdN ) can be substituted with either
L2

sym(RdN ) or L2
asym(RdN ). For simplicity, we take the particle to be spinless,

similar arguments may apply to particles with spin and suitable coupling with
the field. We will use the following convention throughout the paper: stan-
dard capital letters, e.g., H, will denote operators on the full Hilbert space
L2(RdN ) ⊗ Γsym (H), while calligraphic capital letters, e.g., H0, will stand for
operators acting only on the particle Hilbert space L2(RdN ). Finally we will
always use the momentum space representation for the field degrees of freedom
and, consistently, all the variables depending on those degrees of freedom will
be thought of as functions of k ∈ R

d, e.g.,

a#(f) :=
∫

Rd

dk a#(k)f(k). (2.2)

We denote by f̂ the Fourier transform of f , i.e.,

f̂(k) :=
1

(2π)d/2

∫

Rd

dx e−ik·xf(x), (2.3)

and by ˇ the inverse map.
With the hypotheses described in detail in Sect. 3.1, the full Hamiltonian

H given by (1.2) is self-adjoint on a suitable domain. A form core for H
is any form core domain for the unperturbed part Hfree. We do not discuss
such technical issues further (see again Sect. 3.1), in order to state as soon as
possible our main results.
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Our main goal is to characterize the energy of the particle system once
the field degrees of freedom are traced out. Therefore, for any product state
of the full system of the form

ψ(x1, . . . ,xN ) ⊗ Ψε, (2.4)

with Ψε ∈ Γsym (H) normalized, we consider the operator Hε acting on ψ ∈
L2(RdN ) defined as the partial trace of the expectation of H in the product
state above, i.e.,

Hε := 〈Ψε|H |Ψε〉Γsym(H) − cε, (2.5)

and study its limit as ε → 0. The constant cε is the mean energy of the field,
i.e., explicitly

cε = 〈Ψε| dΓ(ω) |Ψε〉Γsym(H) , (2.6)

and we have subtracted it for simplicity, since it just fixes the zero of the energy
scale. Notice that one can take an equivalent point of view and investigate the
limit ε → 0 of the quadratic form associated with Hε which is defined as

Qε[ψ] := 〈ψ ⊗ Ψε|H |ψ ⊗ Ψε〉L2(RdN )⊗Γsym(H) − cε ‖ψ‖2
L2(RdN ) . (2.7)

We conclude this preliminary discussion by recalling a result about the
convergence of states in the Fock space Γsym (H) originally proved in [4–7]
(see also [1,2] for further applications). The detailed version of the result is
stated in Sect. 3.2. We first identify the subspace of sequences of states always
admitting at least one probability measure as a semiclassical accumulation
point as the set of states such that the following conditions are satisfied

〈Ψε| dΓ(1) |Ψε〉Γsym(H) � C < +∞,

〈Ψε| dΓ(ω) |Ψε〉Γsym(H) � C ′ < +∞, (A3)

i.e., the expectation values of both the number operator and dΓ(ω) on such
states are uniformly bounded in ε. Under these assumptions, there exists a
subsequence {Ψεk

}k∈N
, εk → 0, and a measure μ ∈ M (H), with M (H) the

space of probability measures over H, so that, if g ∈ H,

lim
k→∞

〈
Ψεk

∣∣a(g) + a†(g)
∣∣Ψεk

〉
Γsym(H)

= 2Re
∫

H

dμ(z) 〈z|g〉H . (2.8)

In general, the limit above is not unique, namely, it depends on the chosen
subsequence. However, we can adopt the following convenient notation: When
we write

Ψε −−−→
ε→0

μ ∈ M (H), (2.9)

it means that either we are considering a subsequence {Ψεk
}k∈N

that converges
in the sense of (2.8), or the function ε 	→ Ψε has a unique limit μ (no need
to extract any subsequence). Since it is always possible to extract at least one
convergent subsequence from the family Ψε, the notation above is justified.
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2.1. Discrete Modes of Radiation

The first model consists of a countable number of radiation modes linearly cou-
pled with N particles (in d dimensions). In this case, the one-particle Hilbert
space H is simply �2(Zd). Let kn ∈ R

d, n ∈ Z
d, be a collection of real frequen-

cies (modes), characteristic of the system, and denote ωn = |kn|. Then the full
Hamiltonian of system takes the form

H =
N∑

j=1

−Δj + U(x1, . . . ,xN ) +
∑

n∈Zd

ωna†
nan +

N∑

j=1

A(xj), (2.10)

with
A(x) =

∑

n∈Zd

(
a†
nλne−ikn·x + anλneikn·x) , (2.11)

where we also assume that

{λn}n∈Zd ∈ �2(Zd). (A4)

Theorem 2.1 (Effective Hamiltonian). Let the assumptions (A1), (A2), (A3),
and (A4) be satisfied and let Ψε → μ ∈ M (�2(Zd)) in the sense of (2.9). Then
for any ε small, Hε is a self-adjoint operator on D(H0) and2

Hε
‖ · ‖−res−−−−−→

ε→0
Heff = H0 +

N∑

j=1

Vμ(xj), (2.12)

where Heff is self-adjoint on D(H0) and

Vμ(x) = 2Re
∫

�2(Zd)

dμ(z)
〈{

λne−ikn·x}
n∈Zd

∣∣∣ z
〉

�2(Zd)
. (2.13)

Hence, the net effect of the field on the particle dynamics in the limit
ε → 0 is, in this case, to generate a bounded potential Vμ. The potential
depends only on the coupling λ between particles and radiation, and on the
state of radiation, that in the limiting regime is described by the probability
μ.

Let us now discuss which types of potentials can be obtained in this
fashion. The coupling {λn}n∈Zd ∈ �2(Zd) yields some a priori information on
the modes that affect the particles, and with which strength. For instance,
if λn 
= 0 for any n ∈ Z

d, so that every mode contributes to the coupling
with the particles, then λn has a multiplicative inverse given by the sequence
λ−1 :=

{
λ−1
n

}
n∈N

. Let then b := {bn}n∈N
be any sequence in �1(Zd) such that

λ−1
n bn ∈ �2(Zd); then, we can construct the squeezed coherent states Ξ

(
1

2λ∗ b∗).
For any f ∈ H = �2(Zd), the vector Ξ(f) ∈ Γs(H) is given by the usual coherent
state for the field, i.e.,

Ξ(f) := W
(

1
iεf
)
Ω, (2.14)

2 We use the shorthand notation ‖ · ‖ − res and s − res to indicate the convergence of an
operator in norm and strong resolvent sense, respectively.
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where Ω is the vacuum and W is the Weyl operator

W(f) := ei(a†(f)+a(f)). (2.15)

It is well known [4, Theorem 4.2] that

Ξ(f) −−−→
ε→0

δ (z − f) , (2.16)

in the sense defined in (2.9). Hence, under the above assumptions,

Ξ
(

1
2λ∗ b∗) −−−→

ε→0
δ
(
z − 1

2λ∗ b∗) .

Therefore, applying Theorem 2.1 to such a class of coherent states, we obtain
the almost periodic effective potentials

Vb(x) =
∑

n∈Zd

(
Re(bn) cos(kn · x) + Im(bn) sin(kn · x)

)
. (2.17)

These potentials play a very important role in condensed matter experiments,
where they take the name of optical lattices [14,36]: By suitably tuning su-
perimposed laser beams forming a lattice, one can create periodic wells, which
are typically described in first approximation by potentials of the form above.
In fact, when the intensity of lasers gets very large, the tunneling between
different wells gets small and the particles can be considered pinned at lattice
sites, so giving rise to a discrete model. So our result justifies the use of a first
quantized periodic potential to approximate the effect of the field interaction
in the semiclassical regime. Actually, Theorem 2.1 gives much more informa-
tion: It is indeed possible to obtain a wider class of almost periodic potentials
of the form

2Re
∫

�2(Zd)

dμ(z)
∑

n∈Zd

λ∗
nzneikn·x, (2.18)

provided that there is a family of quantum states of the field such that Ψε → μ.
It turns out that all probability measures μ ∈ M

(
�2(Zd)

)
can be reached by

suitable families of quantum states [21].

2.2. Nelson Model: Bounded Potentials Vanishing at Infinity

If the radiation has a continuum of modes coupled with particles, it is possible
to obtain bounded potentials vanishing at infinity.

The one-particle Hilbert space is in this case H = L2(Rd) and the Hamil-
tonian has the form (1.2) with interaction (1.4), i.e.,

H =
N∑

j=1

−Δj + U(x1, . . . ,xN ) +
∫

Rd

dk ω(k)a†(k)a(k) +
N∑

j=1

A(xj),

(2.19)

A(x) =
∫

Rd

dk
(
a†(k)λ(k)e−ik·x + a(k)λ∗(k)eik·x) ; (2.20)

where the cutoff is chosen so that

λ(k) ∈ L2(Rd). (A4′)
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The analogue of Theorem 2.1 is the following.

Theorem 2.2 (Effective Hamiltonian). Let the assumptions (A1), (A2), (A3)
and (A4′) be satisfied and let Ψε → μ ∈ M (L2(Rd)) in the sense of (2.9).
Then for any ε small, Hε is a self-adjoint operator on D(H0) and

Hε
‖ · ‖−res−−−−−→

ε→0
Heff = H0 +

N∑

j=1

Vμ(xj), (2.21)

where Heff is self-adjoint on D(H0) and

Vμ(x) = 2(2π)d/2Re
∫

L2(Rd)

dμ(z)
(

̂

zλ∗)(x). (2.22)

Note that, under the assumptions we made, zλ∗ ∈ L1(Rd), and therefore,
its Fourier (anti-)transform is a well-defined L∞ function. The allowed effec-
tive potentials Vμ for this model are thus averages of Fourier transforms of
L1(Rd) functions and, as such, they are continuous and vanishing at infinity.
More precisely, suppose that λ ∈ L2(Rd) has a multiplicative inverse almost
everywhere 1

λ (e.g., λ is not compactly supported), then for any f̂ ∈ L1(Rd)
such that 1

λ f̂ ∈ L2(Rd), the potentials

Vf (x) = Ref(x) (2.23)

are recovered by taking squeezed coherent states of the form

Ξ
(

1
2(2π)d/2λ∗ f̂

)
.

Being the Fourier anti-transform of functions in L1, such potentials are actually
continuous functions vanishing at ∞.

2.3. Polaron Model: Form-Bounded Potentials

Finally, we focus our attention to the Fröhlich polaron model [23], which
is meant to describe the coupling between electrons and vibration modes
in a crystal. The polaron Hamiltonian is “more singular” than the other
Nelson-type operators previously considered, but the corresponding unitary
dynamics can still be defined without a renormalization procedure. In this
model, the charge distribution is concentrated at a single point. In the Fock
representation, the Hilbert space of the theory is, as in Sect. 2.2, H =
L2(RdN ) ⊗ Γsym

(
L2(Rd)

)
, with d � 2. The Hamiltonian H takes the form

H =
N∑

j=1

−Δj + U(x1, . . . ,xN ) +
∫

Rd

dk a†(k)a(k) +
N∑

j=1

A(xj), (2.24)

A(x) =
∫

Rd

dk
1

|k| d−1
2

(
a†(k)e−ik·x + a(k)eik·x) . (2.25)

As in Sects. 2.1 and 2.2, for suitably regular states it is possible to prove
the convergence of the effective potential when ε → 0.
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Theorem 2.3 (Effective Hamiltonian). Let the assumptions (A1) and (A3) be
satisfied and let Ψε → μ ∈ M (L2(Rd)) in the sense of (2.9). Then for any
ε small, Hε is a self-adjoint operator on D(Hε) with form domain D(

√
H0),

and

Hε
‖ · ‖−res−−−−−→

ε→0
Heff = H0 +

N∑

j=1

Vμ(xj), (2.26)

where Heff is self-adjoint on D(Heff) with form domain D(
√

H0), Vμ is in-
finitesimally form-bounded w.r.t −Δ, and

Vμ(x) = 2(2π)
d
2 Re

∫

L2(Rd)

dμ(z)

̂

(
|k| 1−d

2 z
)
(x). (2.27)

As before the notation in (2.27) stands for

̂

(
|k| 1−d

2 z
)
(x) :=

1

(2π)
d
2

∫

Rd

dk eik·x|k| 1−d
2 z(k).

Note, however, than, unlike the potentials obtained in the case of the Nelson
model, Vμ is in general unbounded and it could not vanish at infinity. Anyways,
as stated in the theorem, Vμ is infinitesimally form-bounded w.r.t. −Δ, and
therefore, it is only an arbitrarily small perturbation of the kinetic energy.

As for the Nelson model, it is interesting to find out which type of po-
tentials can be produced through this quasi-classical limit. By taking suitable
squeezed coherent states, one can indeed get in the limit ε → 0 a wide class of
potentials W . Such potentials W might not vanish at infinity but cannot be
trapping in the usual sense, i.e., the resolvent of −Δ + W cannot be compact.
More precisely, let

W ∈ Ḣ
d−1
2 (Rd) ∩ L2

loc(R
d),

then the squeezed coherent state

Ξ

⎛

⎝ 1
2(2π)d/2 |k|

d−1
2

̂

W

⎞

⎠

yields, according to (2.27), the potential W . In fact, in this case the effective
potential does not depend on ε and equals W even before the limit ε → 0 is
taken. The regularity request on W is made in order to ensure that the argu-
ment of the coherent state is an L2 function, and therefore, the construction
makes sense. Note that such potentials are actually the “static” analogues of
the zeroth-order strongly coupled polaron dynamics studied in [24].

More in general, all the potentials generated by the field interaction are
form-bounded w.r.t. the free part of the Hamiltonian. In fact, as described
in Remark 3.17, if Ψε is more regular, e.g., in addition to (A3) it belongs
uniformly to D(

√
dΓ(|k|2)); then, the potential Vμ is continuous and vanishes

as |x| → ∞. Hence, we can say that in order to obtain “rougher” potentials,
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the state of the field cannot be too regular. Notice, however, that the effective
potential is in any case form-bounded and therefore can never be too strong.

2.4. Ground-State Energy

This section is devoted to the study of the ground-state energy of the full
Hamiltonian H in the quasi-classical limit ε → 0. In order to stress the de-
pendence on ε, in this section only we set Hε := H. All the three types of
models considered so far take into account operators Hε which are bounded
from below. However, in order to state our result, we have to select either the
massive Nelson model or the Fröhlich polaron (see Remark 2.6 below for a
discussion of the reasons).

For any self-adjoint operator A on H , we denote by σ(A) ∈ R ∪ {−∞}
the bottom of the spectrum of A:

σ(A) := inf
{
λ ∈ R

∣∣ λ ∈ σ(A)
}

= inf
ψ∈D (A),‖ψ‖2=1

〈ψ|A |ψ〉H , (2.28)

where D(A) ⊂ H is the self-adjointness domain of A or any core for it.
Our main result is the convergence of the bottom of the spectrum of Hε

as ε → 0 to the infimum of the ground-state energy of Heff w.r.t. the measure
μ identifying the classical limit of the state of the field. To this purpose, let us
define the measure minimization domain

Mω :=
{

μ ∈ M
(
L2(Rd)

) ∣∣∣ μ
(
L2

ω(Rd)
)

= 1, μ
∣∣
L2

ω(Rd)
is Borel, c(μ) < ∞

}
.

(2.29)

Here c(μ) is the classical energy of the field c(μ) = limε→0 cε, for any Ψε → μ,
i.e.,

c(μ) :=
∫

L2(Rd)

dμ(z)
∥∥ω1/2z

∥∥2

2
=
∫

L2(Rd)

dμ(z)
∫

Rd

dk ω(k) |z(k)|2 . (2.30)

In addition, we have set

L2
ω(Rd) :=

{
f ∈ L2(Rd)

∣∣∣∣
∫

Rd

dk ω(k) |f(k)|2 < ∞
}

. (2.31)

To simplify the presentation, we formulate the results only for systems with
continuously many radiation modes, for a countable number of modes it can
be easily adapted. Finally, recall the definitions of Heff given in (2.21) and
(2.26), and its dependence on the classical measure μ through the potentials
(2.22) and (2.27).

Theorem 2.4 (Ground-state energy). Let the operator Hε be given either by
(2.19) or (2.24). Also, let the assumptions (A1), (A2) and (A4′) be satisfied,
with the additional request

ω(k) � c > 0, uniformly w.r.t. k ∈ R
d, (A2′)

Then we have

lim
ε→0

σ(Hε) = inf
μ∈Mω

[
σ(Heff) + c(μ)

]
. (2.32)
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Remark 2.5 (Boundedness from below). Since σ(Hε) is bounded from below
(see Propositions 3.1 and 3.2), and the bound can be actually chosen uniformly
w.r.t. ε, we implicitly state that the r.h.s. is also finite (Propositions 3.19 and
3.21). In order for this to be true, the presence of the constant c(μ) is obviously
crucial: The free energy of the field is needed in order to control from below
the interaction term.

Remark 2.6 (Nelson massless model). The reason why the Nelson massless
model is excluded from the statement is that, without the bound (A2′), there
can be quantum states for which the associated measure μ is concentrated on
a suitable homogeneous Sobolev space and hence outside of L2. In fact, μ is
not in general a true probability measure on L2 but only a cylindrical measure
[21], with respect to which it is possible to integrate only cylindrical functions.
We still expect the result to be true for the massless Nelson model; the proof,
however, would require to deal with such technical problems and we omit its
discussion here, for the sake of simplicity.

Remark 2.7 (Convergence of ground states). The reader might wonder
whether it is possible to deduce from the ground-state energy convergence
(2.32) an analogous result for the ground states. The major obstruction in
this direction is given by the existence of the ground state itself: It is indeed
known that, for instance, the massive Nelson model admits a ground state,
once the translational symmetry has been broken. However, it is much more
complicated to show that the infimum of the r.h.s. of (2.32) is actually reached
on a configuration μgs, ψgs: For any given measure μ, the Schrödinger operator
Heff certainly has a ground-state ψμ, but it is far from obvious that it would
converge on a minimizing sequence μn.

2.5. Trapping Potentials

We conclude the section by presenting a generalization of the results discussed
in Sects. 2.1–2.3, i.e., the convergence of the effective particle Hamiltonians
to Schrödinger operators with trapping. Indeed, as we have commented ex-
tensively, the effective potentials Vμ obtained in the quasi-classical limit in
Theorems 2.1, 2.2 and 2.3 are never traps. In fact, with the exception of the
polaron, those potentials always vanish at infinity. So in this discussion, we
take a different point of view: Instead of considering a rather general state for
the full system, but with good properties in terms of the classical limit, we
restrict the class of field configurations to coherent states and drop the reg-
ularity assumptions, in order to find out whether one can reproduce a wider
class of effective potentials. As we are going to see, this is indeed the case and
we will show that one can derive any reasonable confining trap.

Let us now consider the Nelson model defined by (2.19) and recall the
definition (2.14) of a squeezed coherent state:

Ξ(f) := W
(

1
iεf
)
Ω, (2.33)
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where Ω is the vacuum in Γsym(L2(Rd)) and W(f), f ∈ L2(Rd), the Weyl
operator. We have seen in (2.16) that

Ξ(f) −−−→
ε→0

δ(z − f),

in the sense of (2.9). If f is independent of ε and belongs to L2(Rd), the
potential generated in the limit is always vanishing at infinity. Therefore, we
modify the coherent vector, in such a way that it converges to a point measure
on D′(Rd) concentrated outside of L2(Rd).

We are now ready to state the main result of this section. Let

W ∈ L2
loc(R

d; R+) (2.34)

be any positive confining potential and assume that λ admits a polynomially
bounded multiplicative inverse 1

λ , then we denote by fW,ε ∈ C∞
0 (Rd) the

function

fW,ε(k) =
1

2(2π)d/2λ∗(k)

(
ϕ̂ε ∗ W

)
(k), (2.35)

where ϕε(x) = ε−dϕ(x/ε), ϕ ∈ C∞
0 (Rd), is a suitable mollifier (see Lemma

3.13 for further details). The coherent state we want to consider has then the
form

Ξ (fW,ε) , (2.36)

and notably it does not satisfy the assumptions (A3). As a matter of fact, by
Proposition 3.28, it follows that

〈Ξ (fW,ε) |dΓ(1)| Ξ (fW,ε)〉 = ‖fW,ε‖2
L2 ,

〈Ξ (fW,ε) |dΓ(ω)| Ξ (fW,ε)〉 =
∥∥√ωfW,ε

∥∥2

L2 ,

and both right-hand sides diverge as ε → 0 whenever W /∈ L2(Rd).

Theorem 2.8 (Effective Hamiltonian). Let the assumptions (A1), (A2) and
(A4) be satisfied and additionally assume that 1

λ(k) is polynomially bounded
and λ,

√
ωλ ∈ L2(Rd). Then we have

〈Ξ (fW,ε) |H| Ξ (fW,ε)〉Γsym(L2(Rd))

s−res−−−→
ε→0

Heff = H0 +
N∑

j=1

W (xj), (2.37)

and Heff is essentially self-adjoint on C∞
0 (Rd).

The paradigmatic case one can think of is the derivation of an harmonic
trapping potential: W (x) = α|x|2 satisfies indeed the hypothesis of the the-
orem, and therefore, the partial trace of H on the coherent state Ξ(fW,ε)
converges in strong resolvent sense to the Schrödinger operator

Heff =
n∑

j=1

(
−Δj + α |xj |2

)
+ U(x1, . . . ,xN ).
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A similar statement holds true for W (x) = α|x|s, s > 0, or, more in general,
for any positive potential diverging at infinity. The magneto-optical traps con-
sidered in condensed matter physics are then reproduced as effective potentials
emerging from the interaction of quantum particles with a radiation field in
the quasi-classical regime.

Remark 2.9 (Field energy). It is interesting to remark that all the confining
potentials described above can be obtained in the quasi-classical limit only
with an infinite energy of the field. More precisely, whenever W is trapping,
the free energy cε → +∞, as ε → 0 : recall that for a squeezed coherent state
Ξ(fε), cε takes the form

cε = ‖
√

ωfε‖2
2

(see Proposition 3.11 for further details), and therefore, it diverges in the limit
ε → 0, whenever limε→0 fε /∈ L2 in the distributional sense. This is, however,
not surprising since the physical approximation we are considering is the one
of the large numbers of field excitations: In order to have a trapping effective
potential, the field must be very strong. Therefore, the number of excitations
has to diverge even faster and the field energy has to become the dominant
term in the energy.

3. Proofs

3.1. Preliminaries

We first discuss the well-posedness of the models we plan to study and state
the explicit technical assumptions we make.

The potential U , which is supposed to describe both an additional ex-
ternal trapping and the particle interaction, is assumed to be such that H0 =
−Δ+U is self-adjoint and bounded from below on L2(RdN ). For concreteness,
we require

U ∈ L2
loc

(
R

dN ; R+
)

+ K�
(
R

dN
)
, (A1)

where

K�
(
R

dN
)

=
{
V : R

dN → R
∣∣ V is infinitesimally bounded w.r.t. − Δ

}
,

is the set of multiplication operators which are Kato-infinitesimally small w.r.t.
−Δ. In the following, we will use the notation U =: U+ + U� to distinguish
the positive part U+ of the potential from the infinitesimal one U�. With such
assumptions, H0 is essentially self-adjoint on C∞

0

(
R

dN
)

and self-adjoint and
bounded from below on

D(H0) =
{
ψ ∈ H2(RdN )

∣∣ U+ψ ∈ L2
(
R

dN
)}

.

We aim at modeling a Coulomb-type interaction between the particles and,
possibly, the presence of an external trapping potential that is assumed to be
positive without loss of generality.

Concerning the field part of the free Hamiltonian Hfree, we recall that

ω(k) � 0, (A2)
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so that dΓ(ω) is a self-adjoint operator on Γsym (H) with domain
D(dΓ(ω)).

It remains then to give a meaning to the interaction term. For any
g(x) ∈ L∞(Rd;H), one can easily define the creation and annihilation opera-
tors a(g(x)), a†(g(x)) and their sum a(g(x)) + a†(g(x)), as closed and densely
defined operators on the Fock space Γsym (H) for a.e. x ∈ R

d.
The simplest case we are going to consider is H = �2(Zd), in which case

a#(g(x)) :=
∑

n∈Zd

a#
n gn(x), (3.1)

with a#
n the usual creation and annihilation operators associated with the

frequencies kn ∈ R
d, such that

[
an, a†

m

]
= εδn1,m1 · · · δnd,md

,

and

{gn(x)}n∈Zd ∈ �2(Zd), for a.e. x ∈ R
d. (3.2)

The dispersion relation is in this case set equal to

ω(kn) = ωn := |kn| . (3.3)

Similarly, when H = L2(Rd) (Nelson model),

a#(g(x)) :=
∫

Rd

dk a#(k)g(k;x), (3.4)

with a#(k) the usual operator-valued distributions satisfying (1.7) and

g( · ;x) ∈ L2(Rd), for a.e. x ∈ R
d. (3.5)

In both cases described above, we define the interaction as
N∑

j=1

A(xj) :=
N∑

j=1

[
a(g(xj)) + a†(g(xj))

]
, (3.6)

with

gn(x) = λne−ikn·x, {λn}n∈Zd ∈ �2(Zd), (A4)

in the first case and

g(k;x) = λ(k)e−ik·x, λ ∈ L2(Rd), (A4
′
)

in the second one. The polaron is obviously not covered by the assumptions
above and we will discuss it separately.

A preliminary but crucial result for our analysis is the self-adjointness
of the full Hamiltonian of the system, which in the case of the Nelson model
(and a fortiori for a discrete set of frequencies) can be proved directly using
the properties of at most quadratic interactions in the Fock space. We refer to
[20,28] for a detailed proof. We denote by C∞

0 (Rd) the set of smooth functions
with compact support and, consequently, C∞

0 (dΓ(1)) ⊂ Γsym(H) stands for
the vectors in Γsym(H) with finitely many particles.
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Proposition 3.1 (Self-adjointness of H—cases 1. & 2.). Let H be given by (1.2)
with interaction (3.6) and let the assumptions (A1), (A2) and (A4) (resp.
(A4′)) be satisfied. Then the Hamiltonian H is essentially self-adjoint on the
domain D(H0)∩D (dΓ(ω))∩C∞

0 (dΓ(1)). If in addition ω−1/2λ ∈ �2(Zd) (resp.
L2(Rd)), then H is self-adjoint on D(H0)∩D (dΓ(ω)) and bounded from below.

Proof. The first part of the statement is a straightforward application of [20,
Theorem 3.1]. Under the additional regularity assumptions on λ, the exact
domain of self-adjointness and boundedness from below are obtained via an
application of Kato–Rellich theorem: One can indeed show that both U� (by
assumption) and the interaction term are infinitesimally small w.r.t. to Hfree +
U+ in the sense of Kato. We postpone the details to Appendix. �

As anticipated, the polaron case is not covered by the above result and has
to be discussed separately. Fröhlich polaron Hamiltonian is indeed identified
by the choices

ω(k) = 1, (3.7)

and

g(k;x) =
1

|k| d−1
2

e−ik·x, (3.8)

which is clearly not in L∞(Rd;L2(Rd)). In fact, the only way to give a meaning
to the formal expression H is through its quadratic form

QH [Ψ] := 〈Ψ|H |Ψ〉 , (3.9)

which can be shown to be well defined at least in a dense subset of the Hilbert
space (see Appendix). Moreover, one can prove (see, e.g., [24,29]) that the
form is closable and its closure defines a unique self-adjoint operator:

Proposition 3.2 (Self-adjointness of H—case 3.). Let H be given by (2.24) with
interaction (2.25) and let the assumption (A1) be satisfied. Then the quadratic
form QH [Ψ] is closed and bounded from below and identifies a unique self-
adjoint operator, again denoted by H, with domain D(H) ⊂ D(

√
−Δ + U+)∩

D(
√

dΓ(1)).

Proof. Since H is defined only in the quadratic form sense, one needs to use the
KLMN theorem, in order to show that the interaction term is an infinitesimally
small perturbation of Hfree + U+. For the convenience of the reader, we recall
some details of the proof in Appendix. �

3.2. Quasi-Classical Limit

We now describe in mathematical details the procedure of the quasi-classical
limit. First of all, we want to restrict our attention to the system of particles
alone and, in order to do that, we trace out the field’s degrees of freedom.
The control parameter ε on the field, which will eventually be taken to zero,
is introduced through (1.7) or, more precisely, as

[
a(f), a†(g)

]
= ε 〈f |g〉H , (3.10)
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for a generic pair of functions f, g ∈ H. Notice that such a choice implies that
both the creation and annihilation operators are of order

√
ε. Analogously, H

depends on ε through the field free energy dΓ(ω), which is of order ε, and
the interaction A(f) proportional to

√
ε again. Accordingly, quantum states

for the field might in general be ε-dependent. In Sect. 1, we have discussed
the physical meaning of the limit ε → 0 that we are going to consider in the
following.

The Fock partial trace of an operator (quadratic form) on L2
(
R

dN
)

⊗
Γsym(H) is defined as follows: Let Q be a quadratic form on the full Hilbert
space L2

(
R

dN
)

⊗ Γsym(H), which should be thought of as the quadratic form
associated with the operator H, and let D0[Q] be a total subset of a core
domain for Q given by tensor product states, i.e.,

D0[Q] :=
{

ψ ⊗ Ψ
∣∣∣ ψ ∈ D0,1 ⊂ L2

(
R

dN
)
,Ψ ∈ D0,2 ⊂ Γsym(H)

}
, (3.11)

where D0,j are densely defined subspaces. Then the Fock partial trace Q of Q
w.r.t. a field state Ψε ∈ Γsym(H) is the quadratic form on L2(RdN )

Q[ψ] := Q[ψ ⊗ Ψε], (3.12)

which is densely defined on D0,1. Similarly one can define the sesquilinear form
Q[ψ, φ] as

Q[ψ, φ] := Q [ψ ⊗ Ψε, φ ⊗ Ψε] , (3.13)

or, equivalently, from Q[ψ] by polarization.
Such a procedure can be applied to the full Hamiltonian H, yielding a

quadratic form on L2
(
R

dN
)
, which is associated with a Schrödinger operator

with an ε-dependent potential:

Proposition 3.3 (Partial trace). Let (A4) (resp. (A4′)) be satisfied and QH

be the sesquilinear form associated with the self-adjoint operator H. Then the
partial trace QH of QH on Ψε ∈ Γsym(H) is densely defined on C∞

0

(
R

dN
)

for any Ψε ∈ D(
√

dΓ(ω)). Moreover, for any ψ, φ ∈ C∞
0 (RdN ), the quadratic

form QH is given by

QH [ψ, φ] =
〈
ψ
∣∣∣H0 +

∑
Vε,Ψε

(xj) + cε

∣∣∣φ
〉

L2(RdN )
, (3.14)

where

Vε,Ψε
(x) = 〈Ψε |A(x)| Ψε〉Γsym(L2(Rd)) , cε = 〈Ψε |dΓ(ω)| Ψε〉Γsym(L2(Rd)) .

(3.15)

Proof. The result is obtained by computing the partial trace in a straightfor-
ward way. The well-posedness of the r.h.s. on smooth functions with compact
support is inherited from the properties of the quadratic form QH , whose
domain contains such type of wave functions for the particle subsystem. �
Remark 3.4 (Partial trace for the polaron). The above proposition does not
apply straightforwardly to the polaron model, since by (3.8) λ /∈ L2(Rd). It is,
however, possible to prove an analogous statement where the main difference
is that QH is only a quadratic form and the association with the operator on
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the r.h.s. purely formal, until one proves that such a form is closed and defines
a unique self-adjoint operator (see Appendix).

In general, it is very difficult to characterize the effective potential Vε,Ψε

obtained in this way. For example, it is not a priori assured that the r.h.s. of
(3.14) is a sesquilinear form associated with a unique self-adjoint operator, even
if H is self-adjoint. Conversely, it might happen that such a form identifies a
unique self-adjoint operator, even though H is not self-adjoint. Such problems,
however, do not show up in the limit ε → 0, if reasonable assumptions on the
state Ψε are made.

The result below is based on the techniques of semiclassical analysis for
infinite-dimensional systems introduced in [4–7]. Let us recall that both the
operators, e.g., dΓ(ω), and vectors, e.g., Ψε, in the Fock space depend on ε.

Proposition 3.5 (Classical limit). Let Ψε ∈ Γsym(H) be such that, uniformly in
ε small,

• there exist δ � 1
2 and C < +∞ such that
〈
Ψε

∣∣∣(dΓ(1))δ
∣∣∣Ψε

〉

Γsym(H)
� C; (3.16)

• there exists C ′ < +∞, such that

〈Ψε| dΓ(ω) |Ψε〉Γsym(H) � C ′, (3.17)

where ω is the multiplication operator by the function ωn or ω(k).
Then there is a subsequence {Ψεk

}k∈N
, εk → 0, as k → ∞, and a probability

measure μ ∈ M (H), such that:
• μ is concentrated on D(ω);
• ‖z‖α1

H and ‖√ωz‖α2
H , with α1 � 2δ and α2 � 2, are integrable with respect

to the measure dμ(z) and

lim
k→∞

〈Ψεk
| dΓ(ω) |Ψεk

〉Γsym(H) =
∫

H

dμ(z)
∥∥√ωz

∥∥2

H
; (3.18)

• for any g ∈ H,

lim
k→∞

〈Ψεk
| a(g) + a†(g) |Ψεk

〉Γsym(H) = 2Re
∫

H

dμ(z) 〈z|g〉H . (3.19)

Proof. The existence of a subsequence converging to the classical measure is
proved in [4, Theorem 6.2], as well as the integrability of ‖z‖α1

H , α1 � 2δ. The
concentration of μ in D(

√
ω), and the integrability of ‖√ωz‖α2

H , α2 � 2, as
well as the convergence of the corresponding evaluation of dΓ(ω) is proved
in [7, Lemma 3.13]. The convergence of the expectation of the field operator
also follows along the same guidelines, an interested reader might consult, e.g.,
[1]. �

In the following, the role of the function g will be played by the cutoff
λ ∈ H, so that (3.19) will allow us to take the limit ε → 0 of the interaction
term in the Hamiltonian H. Once again, the case of the polaron is excluded
since λ /∈ L2(Rd), and therefore, a comment is in order.
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Remark 3.6 (Classical limit for the polaron). The limit (3.19) may also hold
true for functions g not belonging to H = L2(Rd). The easiest situation is given
by a function g that is in H−s(Rd), s > 0. In this case, the scalar product
〈 · | · 〉2 defined on Hs ⊗Hs extends to a continuous duality map on Hs ⊗H−s

(denoted by 〈 · | · 〉∗). Hence, for any g ∈ H−s(Rd), (3.19) is reformulated as
follows:

lim
k→∞

〈
Ψεk

∣∣a(g) + a†(g)
∣∣Ψεk

〉
Γsym(L2)

= 2Re
∫

L2(Rd)

dμ(z) 〈z|g〉∗ , (3.20)

where the r.h.s. is finite if and only if μ is concentrated on Hs(Rd).
Another important example is given by generalized functions x 	→ g(x)

whose inverse derivative (more precisely (−Δ + 1)−1/2g) takes values in H for
a.e. x ∈ R

d. We adopt the natural notation W−1,∞ (
R

d,H
)

for the space of
such functions. Now for any g(x) ∈ W−1,∞ (

R
d,H

)
, the convergence

lim
k→∞

N∑

j=1

〈
Ψεk

∣∣a(g(xj)) + a†(g(xj))
∣∣Ψεk

〉
Γsym(H)

= 2Re
N∑

j=1

∫

H

dμ(z) 〈z|g(xj)〉H (3.21)

has to be interpreted as the convergence in a dense domain of quadratic forms
in L2

(
R

dN
)
, and the limit defines a quadratic form bounded by Q√−Δ. In

fact, since g(x) ∈ W−1,∞(Rd,H), there exists a g̃(x) = (g̃1(x), . . . , g̃d(x)) ∈
L∞(Rd,H ⊗ R

d) such that

g(x) = [−i∇, g̃(x)] .

Therefore, it follows that

2Re
N∑

j=1

∫

H

dμ(z) 〈z|g(xj)〉H =
N∑

j=1

[
−i∇xj

, 2Re
∫

H

dμ(z) 〈z|g̃(xj)〉H
]

.

An important feature which we have already commented upon extensively
in Sect. 2 is the fact that, given any Ψε satisfying the hypothesis of Proposition
3.5, there exists at least one limit measure μ, which might depend on the chosen
subsequence. When we say that, as in (2.9),

Ψε −−−→
ε→0

μ,

we mean that the subsequence has been chosen (and thus the limit point μ)
or the limit is unique and no choice has to be made. To ensure that the results
of Proposition 3.5 hold true, we will also assume that (A3) hold true, i.e.,

〈Ψε| dΓ(1) |Ψε〉Γsym(H) � C < +∞,

〈Ψε| dΓ(ω) |Ψε〉Γsym(H) � C ′ < +∞, (A3)

A first important consequence of Proposition 3.5 is the following.
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Corollary 3.7 (Pointwise convergence). Let the assumptions of Proposition 3.5
be satisfied, i.e., Ψε → μ as ε → 0 in the sense of (2.9), and let g(x) ∈
L∞ (

R
dN ;H

)
. Then

Vε,Ψε
(x) a.e.−−−→

ε→0
Vμ(x) = 2Re

∫

H

dμ(z) 〈z|g(x)〉H . (3.22)

Remark 3.8 (Convergence along a subsequence). The convergence Ψε → μ is
meant on a specific subsequence, if the limit is not unique. Therefore, the above
pointwise limit (3.22) holds true along the same subsequence and, in order to be
precise, we should have stated the convergence of Vεk,Ψεk

, as k → ∞. However,
we choose not to use such a cumbersome notation, but we stress that (3.22)
should be taken in the appropriate sense.

Proof. By treating x ∈ R
dN as a parameter, one can directly apply Proposition

3.5 and specifically (3.19): For a.e. x ∈ R
dN , g(x) belongs to H and therefore

〈
Ψεk

∣∣a(g(x)) + a†(g(x))
∣∣Ψεk

〉
Γsym(H)

−−−→
ε→0

2Re
∫

H

dμ(z) 〈z|g(x)〉H ,

where the convergence is meant on the chosen subsequence. �

We conclude with an obvious consequence of Proposition 3.5 and assump-
tions (A3):

Corollary 3.9 (Field energy). Let the assumptions (A3) be satisfied, then

lim
ε→0

cε =
∫

H

dμ(z)
∥∥√ωz

∥∥2

H
< +∞. (3.23)

Now that we have specified the key mathematical tools of our analysis,
we proceed with the proofs of the results stated in Sect. 2.

3.3. Discrete Modes

We aim at proving Theorem 2.1: the key ingredient is the convergence guaran-
teed by Proposition 3.5. The other properties can be proved by direct inspec-
tion. We recall that the full Hamiltonian H is given in (1.2) with interaction
(3.6). We denote by Cb

(
R

dN
)

the space of bounded continuous functions on
R

dN , while C∞
(
R

dN
)

stands for continuous functions vanishing as |x| → ∞.
Before attacking the proof of Theorem 2.1, we only need one more tech-

nical result:

Lemma 3.10. Let the assumption (A4) be satisfied and Ψε ∈ D(dΓ(1)1/4)
uniformly in ε, then Vε,Ψε

(x) ∈ Cb(Rd), i.e.,

sup
x∈Rd

|Vε,Ψε
(x)| � C < +∞, (3.24)

uniformly in ε.

Proof. The key observation is that the following bound holds true:
∣∣∣〈Ψε |A(x)| Ψε〉Γsym

∣∣∣ � 2 ‖gn(x)‖�2

∥∥∥
(
dΓ(1) + 1

)1/4Ψε

∥∥∥
2

Γsym

. (3.25)
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Indeed, it yields

sup
x∈Rd

|Vε,Ψε
(x)| = sup

x∈Rd

∣∣∣〈Ψε |A(x)| Ψε〉Γsym

∣∣∣ � C
∥∥∥
(
dΓ(1) + 1

)1/4Ψε

∥∥∥
2

Γsym

� C

[∥∥∥dΓ(1)1/4Ψε

∥∥∥
2

Γsym

+ ‖Ψε‖2
Γsym

]
� C,

and therefore, Vε,Ψε
(x) is uniformly bounded in ε. To prove continuity, we use

again (3.25):

|Vε,Ψε
(x) − Vε,Ψε

(y)| � C
∥∥∥
(
dΓ(1) + 1

)1/4Ψε

∥∥∥
2

Γsym

‖gn(x) − gn(y)‖�2 −−−→
x→y

0,

by dominated convergence.
We prove now (3.25): Let Ψ ∈ D

(
dΓ(1)1/4

)
and g ∈ �2

(
R

dN
)
; then, using

Cauchy–Schwarz twice, one has
∣∣∣〈Ψ|a(g)Ψ〉Γsym

∣∣∣ �
∞∑

m=0

√
εm + 1

·
∣∣∣∣
∑

n∈Zd

Ψ∗
m(n1, . . . ,nm)gnΨm+1(n,n1, . . . ,nm)

∣∣∣∣

�
∞∑

m=0

‖g‖�2

∥∥∥(εm + 1)1/4Ψm

∥∥∥
�2m

∥∥∥(εm + 1)1/4Ψm+1

∥∥∥
�2m+1

� ‖g‖�2

∥∥∥(dΓ(1) + 1)1/4 Ψ
∥∥∥

Γsym

∥∥∥dΓ(1)1/4Ψ
∥∥∥

Γsym

,

where for any m ∈ N ∪ {0}, Ψm ∈ �2(Zd)⊗symm =: �2m is the component of Ψ
with m modes, i.e., Ψ = (Ψ0, . . . ,Ψm, . . .) ∈ Γsym

(
�2
(
Z

d
))

. �

We are now in position to complete the proof of the main result about
the model with discrete modes of radiation.

Proof of Theorem 2.1. Under the hypothesis of Theorem 2.1 and thanks to
Lemma 3.10, Vε,Ψε

is an infinitesimally small perturbation of H0 in the sense
of Kato. Therefore, Hε is self-adjoint on the domain of self-adjointness D(H0)
of H0.

Moreover, one has
N∑

j=1

sup
xj∈Rd

|Vμ(xj)| � 2N

( ∑

n∈Zd

|λn|2
)1/2(∫

�2(Zd)

dμ(z) ‖z‖2
�2(Zd)

)1/2

< +∞, (3.26)

thanks to the assumptions (A4) on λn and (A3) on Ψε in combination with
Proposition 3.5. Therefore, Heff is also self-adjoint on D(H0).

To prove the convergence in norm resolvent sense, pick any ζ ∈ ρ(Hε) ∩
ρ(Heff) uniformly in ε, i.e., such that there exists C > 0 so that
dist(ζ, σ(Hε)) > C. Then by the second resolvent identity
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sup
‖ψ‖2=1

∥∥∥
[
(Hε − ζ)−1 − (Heff − ζ)−1

]
ψ
∥∥∥

L2

� sup
‖ψ‖2=1

N∑

j=1

∥∥∥(Hε − ζ)−1 (Vε,Ψε
(xj) − Vμ(xj)) (Heff − ζ)−1

ψ
∥∥∥

2

L2

� C sup
‖ψ‖2=1

N∑

j=1

∥∥∥(Vε,Ψε
(xj) − Vμ(xj)) (Heff − ζ)−1

ψ
∥∥∥

2

L2

� CN sup
‖ψ‖2=1

∥∥∥(Heff − ζ)−1
ψ
∥∥∥

2

L2
� C sup

‖ψ‖2=1

‖ψ‖2
L2 � C < +∞, (3.27)

by the uniform boundedness of Vε,Ψε
and Vμ proved in (3.26) and in (3.24)

and the assumptions on ζ. Therefore, the integrand on the l.h.s. is uniformly
bounded by a L1 function, whose norm is finite. Hence, we can apply a dom-
inated convergence argument and the result then follows from pointwise con-
vergence of Vε,Ψε

to Vμ proved in Corollary 3.7. �

3.4. Nelson Model and Trapping Potentials

The proof of Theorem 2.2 is a trivial adaptation of the proof of Theorem 2.1
discussed in the previous section: It is indeed sufficient to replace �2(Zd) with
L2(Rd) and follow step by step the same arguments. We omit the details.

We turn now our attention to the result presented in Sect. 2.5 and specif-
ically Theorem 2.8. We recall that the setting is slightly different: the goal is
to derive the effective particle Hamiltonian under restrictive assumptions on
the field state, which is assumed to be a squeezed coherent state, i.e., a state
of the form (2.33),

Ξ(f) = W
(

1
iεf
)
Ω,

Ω being the vacuum state. More precisely we assume that Ψε is given by (2.36),
i.e.,

Ξ(fW,ε) := W
(

1
iεfW,ε

)
Ω,

where

fW,ε(k) =
1

2(2π)d/2λ∗(k)

(
ϕ̂ε ∗ W

)
(k),

for W ∈ L2
loc(R

d; R+) and a suitable mollifier ϕε(x) = ε−dϕ(x/ε), ϕ ∈ C∞
0 (Rd)

with ‖ϕ‖1 = 1. Note in particular that we drop in this section the assumptions
(A3) on the field state, and therefore, Proposition 3.5 does not apply. In the
case of coherent states, however, the derivation of the effective potential is
much more explicit and there is no need to pass through the convergence to
classical measures:

Proposition 3.11 (Classical limit of coherent states). Let Ψε = Ξ(fε) be a state
of the form (2.33) for some fε ∈ L2(Rd), for any ε < 1. Then

〈Ψε |A(x)| Ψε〉 = 2Re
∫

Rd

dk eik·xfε(k)λ∗(k). (3.28)
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If in addition ωfε ∈ L2(Rd), then

〈Ψε |dΓ(ω)| Ψε〉 =
∫

Rd

dk ω(k) |fε(k)|2 . (3.29)

Proof. The result is a consequence of the following well-known property of the
Weyl operators: for any g ∈ L2(Rd)

W† ( 1
iεg
)
a(k)W

(
1
iεg
)

= a(k) + g(k) ,

W† ( 1
iεg
)
a†(k)W

(
1
iεg
)

= a†(k) + g∗(k) .

It then follows that

〈Ψε |A(x)| Ψε〉Γsym
= 2Re

∫

Rd

dk eik·xfε(k)λ∗(k) + 〈Ω |A(x)| Ω〉Γsym
,

and the second term in the right-hand side is zero since it consists of the action
of the annihilation operator on the vacuum (once on the right and once on the
left). Analogously,

〈Ψε |dΓ(ω)| Ψε〉Γsym
=
∫

Rd

dk ω(k)f∗
ε (k)fε(k) + 〈Ω |dΓ(ω)| Ω〉Γsym

+ 2Re 〈Ω |a(ωfε)| Ω〉Γsym
,

and again the second and third term on the right-hand side vanish because
the annihilation operator acts on the vacuum. �

Remark 3.12 (Convergence to a classical measure.) One can naturally wonder
whether a result like the one stated in Proposition 3.5, i.e., a sort of convergence
of Ψε to a classical measure, holds true also for state of the form (2.36), or,
more generally, for Ξ(fε). The answer is actually given by [21, Theorem 3.15]:
there is always at least one cluster point, but unfortunately such point might
be a cylindrical measure instead of a true measure. Given the properties of
cylindrical measures, this actually means that, by suitably enlarging the space,
one can make the limit point μ a true measure, but the key feature is that
typically the support of μ is outside H.

A technical but useful result is the following

Lemma 3.13. For any ϕ ∈ C∞
0 (Rd) with ‖ϕ‖1 = 1 and W ∈ L2

loc(R
d),

ϕε ∗ W
L2

loc(R
d)−−−−−→

ε→0
W, (3.30)

where ϕε(x) := ε−dϕ(x/ε).
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Proof. We use once more dominated convergence: Let K ⊂ R
d be any compact

set, then
∫

K

dx |(ϕε ∗ W ) (x) − W (x)|2

=
∫

K

dx
∣∣∣∣
∫

supp(ϕ)

dx′ ϕ(x′) (W (x + εx′) − W (x))
∣∣∣∣
2

� ‖ϕ‖2
L2(Rd)

∫

K

dx
∫

supp(ϕ)

dx′ |W (x + εx′) − W (x)|2

� C

[ ∫

K

dx
∫

supp(ϕ)

dx′ |W (x + εx′)|2 + |suppϕ| ‖W‖2
L2(K)

]
� CK ,

so that we can take the limit ε → 0 inside the integral by Vitali’s Theorem.
Since ϕε ∗W converges a.e. to W on any compact set, we obtain the result. �

The last technical ingredient for the proof of Theorem 2.8 is stated in the
next lemma.

Lemma 3.14. Let Tε := −Δ + U + Vε be a family of self-adjoint operators on
L2(RdN ) such that (A1) is satisfied and Vε ∈ L2

loc

(
R

dN ; R+

)
, with L2 norm

uniformly bounded in ε in any compact set, and

Vε(x1, . . . ,xN )
L2

loc(R
dN ;R+)−−−−−−−−−→

ε→0
V0(x1, . . . ,xN ). (3.31)

Then Tε −−−→
ε→0

T = −Δ + U + V0 in strong resolvent sense.

Proof. The result is a direct consequence of a general result about convergence
of operators (see, e.g., [40, Theorem VIII.25]): If there exists a common core
for all the operators Tε, T0 and on that core Tεψ → T0ψ, then the operators
converge in strong resolvent sense.

Under the hypothesis of the Lemma both the sequence of operators Tε

and T0 are essentially self-adjoint on C∞
0

(
R

dN
)

(see, e.g., [41, Theorem X.28]).
Moreover, for any ψ ∈ C∞

0

(
R

dN
)
,

‖(Tε − T0) ψ‖2
L2(RdN ) = ‖(Vε − V0) ψ‖2

L2(RdN ) =
∫

RdN

dx (Vε − V0)
2 |ψ|2

� C ‖Vε − V0‖L2(supp(ψ))

(
‖Vε‖L2(supp(ψ)) + ‖V0‖L2(supp(ψ))

)
−−−→
ε→0

0,

since |ψ|2 is bounded and has compact support. �

We proceed now with the proof of the main result:

Proof of Theorem 2.8. Thanks to (3.28) proved in Proposition 3.11, we know
that the effective potential generated by the partial trace of the field operator
on coherent states of the form (2.36) is

N∑

j=1

Wε(xj) =
N∑

j=1

(ϕε ∗ W ) (xj) ∈ L2
loc

(
R

dN
)
.



214 M. Correggi and M. Falconi Ann. Henri Poincaré

Note that Proposition 3.11 can be applied since ϕε∗W is a smooth function for
any 0 < ε < 1, and therefore, its Fourier transform is rapidly decaying (faster
than polynomially). Hence, fW,ε ∈ L2(Rd), since λ(k) diverges as |k| → ∞ at
most polynomially.

Self-adjointness of Hε := H0+U+
∑

Wε and Heff := Hε := H0+U+
∑

W
follows, e.g., from [41, Theorem X.28], which also guarantees that C∞

0

(
R

dN
)

is a common core for both operators. Then the combination of Lemmas 3.13
and 3.14 completes the proof. �

3.5. Polaron

The full Hamiltonian of Fröhlich polaron in given in (2.24), although that
expression is purely formal. As anticipated in Proposition 3.2 and proved in
Appendix, indeed, the interaction in (2.24) makes sense only when written as
a quadratic form, which can be shown to be a small perturbation of the free
quadratic form associated with Hfree. Therefore, we think of H as the unique
self-adjoint operator associated with the quadratic form QH [Ψ] = 〈Ψ|H |Ψ〉.

The reader should also keep in mind that, as discussed in Remark 3.6,
the convergence of quantum expectation values of creation and annihilation
operators to suitable classical quantities should be taken with care, and should
be interpreted as the convergence of quadratic forms.

Therefore, the proof strategy has to be suitably tuned to take into account
two technical features, which are specific of the polaron: On the one hand, one
has to switch from the outset from Schrödinger operators to the associated
quadratic forms, and, on the other, find an alternative route, which does not
require g(x) to be in L∞(RdN ,H).

We start by showing that both Hε, for any ε, and Heff are self-adjoint on
suitable domains:

Lemma 3.15. Let the assumptions (A1), (3.7) and (3.8) be satisfied and let
Ψε ∈ D(

√
dΓ(1)). Then Hε is self-adjoint on a domain D(Hε)

⊂ D
(√

−Δ + U+

)
and bounded from below for any ε small.

Proof. The result is a consequence of the estimate (A.7) proved in Appendix
and used in the application of KLMN theorem to the quadratic form QH asso-
ciated with the full polaron Hamiltonian. As explained in detail in Appendix,
the trick is to split the expectation value of the field operator into an infrared
contribution for |k| � � and an ultraviolet one for |k| � �, where � > 0 is a
positive parameter to be optimized over.

Let then ψ ∈ D
(√

−Δ + U+

)
and Ψε be normalized. Then by definition

of partial trace

N∑

j=1

〈ψ |Vε,Ψε
(xj)|ψ〉L2(RdN ) =

N∑

j=1

〈ψ ⊗ Ψε |A(xj)| ψ ⊗ Ψε〉L2⊗Γsym
.
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The KLMN estimate (A.7) yields (−Δ =
∑

−Δj stands here for the Laplacian
on R

dN )
∣∣∣∣

N∑

j=1

〈ψ |Vε,Ψε
(xj)|ψ〉L2(RdN )

∣∣∣∣ � 1
2 〈ψ |−Δ + U+)|ψ〉L2(RdN )

+
[

1
2 〈Ψε |dΓ(1)| Ψε〉Γsym

+ C
]
‖ψ‖2

L2 ,

where C is a finite quantity. Hence, the potential
N∑

j=1

Vε,Ψε
(xj) + U�(x1, . . . ,xN )

is a small perturbation of Q−Δ+U+ in the sense of quadratic forms, since by
hypothesis U� is infinitesimally small w.r.t. −Δ + U+, and therefore, the
relative bound can be obtained as small as 1

2 + ε < 1. The KLMN theorem
(see, e.g., [41, Theorem X.17]) then yields the results. �
Lemma 3.16. Let μ ∈ M

(
L2(Rd)

)
be a probability measure, satisfying the

statement of Proposition 3.5 under the assumptions (A3). Then Heff defined
in (2.26) is self-adjoint on D(Heff), with form domain D(

√
−Δ + U+).

Proof. We are going to prove that
∑

Vμ(xj) is form-bounded w.r.t. −Δ with
infinitesimally small bound. For any z ∈ L2(Rd), we split the potential into
two pieces:

̂

(
|k| 1−d

2 z
)
(x) =

1

(2π)
d
2

∫

|k|��

dk eik·x|k| 1−d
2 z(k)

+
1

(2π)
d
2

∫

|k|��

dk eik·x|k| 1−d
2 z(k) =: W<

z (x) + W>
z (x).

(3.32)

By Cauchy–Schwarz,

sup
x∈Rd

∣∣W<
z (x)

∣∣ � 1
2

∫

|k|��

dk |k|1−d +
1

2(2π)d
‖z‖2

L2 � C
(
1 + ‖z‖2

L2

)
,

(3.33)

for any finite �. Therefore, since ‖z‖2
L2 is integrable with respect to dμ(z) by

(A3) and Proposition 3.5, the potential associated with W<
z is bounded:

sup
x∈Rd

∣∣∣∣
∫

L2(Rd)

dμ(z) W<
z (x)

∣∣∣∣ � C

∫

L2(Rd)

dμ(z)
(
1 + ‖z‖2

L2

)

� C < +∞. (3.34)

In particular, the quadratic form of

2Re
N∑

j=1

∫

L2(Rd)

dμ(z) W<
z (xj)

is infinitesimally small w.r.t. to any positive operator.
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In order to bound the second part, we rewrite

W>
z (x) =

[ ∫

|k|��

dk
k

|k| d+3
2

e−ik·xz(k) + c.c. , i∇x

]
, (3.35)

so that, by Cauchy–Schwarz, for any ψ ∈ D(
√

−Δx) and any α > 0,
∣∣∣
〈
ψ
∣∣W>

z (x)
∣∣ψ
〉

L2(Rd)

∣∣∣ � α 〈ψ |−Δx|ψ〉

+
1
α

‖z‖2
L2(Rd) ‖ψ‖2

L2(Rd)

∫

|k|��

dk
1

|k|d+1
. (3.36)

Now since again the integrals of both 1 and ‖z‖2
L2 against dμ(z) are finite, it

follows that

2Re
N∑

j=1

∫

L2(Rd)

dμ(z) W>
z (xj)

is Kato-infinitesimally small w.r.t.
∑N

j=1 −Δj . �

Remark 3.17 (Decay of Vμ). We point out that, if in addition to (A3), Ψε ∈
D(
√

dΓ(|k|2)), with uniform bound w.r.t. ε, then Vμ is in fact continuous
and vanishing at infinity. Indeed one can show that Vμ is the Fourier (anti-
)transform of an L1 function: Instead of using the trick (3.35), it suffices to
apply Cauchy inequality twice, obtaining

∫

L2(Rd)

dμ(z)
∣∣∣∣
∫

|k|��

dk
1

|k| d−1
2

z(k) + c.c.
∣∣∣∣

�
[ ∫

L2(Rd)

dμ(z)
]1/2[ ∫

L2(Rd)

dμ(z)
∣∣∣∣
∫

|k|��

dk
1

|k| d−1
2

z(k) + c.c.
∣∣∣∣
2]1/2

� 4
[ ∫

|k|��

dk
1

|k|d+1

]1/2[ ∫

L2(Rd)

dμ(z) ‖|k|z‖2
L2

]1/2

� C.

Hence, the Fourier transform of that part of the potential belongs to L1, but
an identical property holds true for W<

z : exploiting again Cauchy inequality
instead of (3.33) as above, one obtains immediately the result.

The completion of the proof of Theorem 2.3 only requires to prove the
convergence of Hε to Heff in norm resolvent sense. Before attacking the proof,
we state, however, another useful technical result that will be used later.

Lemma 3.18. Let ζ ∈ R such that −ζ ∈ ρ(Hε) ∩ ρ(Heff) belongs to resolvent
sets of Hε and Heff uniformly in ε. Then

∥∥∥i∂j (Hε + ζ)−1
∥∥∥ � C,

∥∥∥i∂j (Heff + ζ)−1
∥∥∥ � C, (3.37)

for any j = 1, . . . , dN .
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Proof. Let us prove the result for Hε. The proof for Heff is identical. We write
∥∥∥i∂j (Hε + ζ)−1

∥∥∥
2

= sup
‖ψ‖2=1

〈
ψ
∣∣∣(Hε + ζ)−1 (−∂2

j

)
(Hε + ζ)−1

∣∣∣ψ
〉

� sup
‖ψ‖2=1

〈
ψ
∣∣∣(Hε + ζ)−1 (−Δ) (Hε + ζ)−1

∣∣∣ψ
〉

. (3.38)

On the other relative boundedness of the quadratic form of Vε,Ψε
, positivity

of U+ and Kato smallness of U� implies that −Δ � −Δ + U+ and

−Δ + U+ � Hε + a (−Δ + U+) + b

for any a < 1 and b finite, which implies that

−Δ � −Δ + U+ � C (Hε + 1) .

By replacing such an operator bound into (3.38), we thus get
∥∥∥i∂j (Hε + ζ)−1

∥∥∥
2

� sup
‖ψ‖2=1

〈
ψ
∣∣∣(Hε + ζ)−1

C (Hε + 1) (Hε + ζ)−1
∣∣∣ψ
〉

� C

[
sup

‖ψ‖2=1

〈
ψ
∣∣∣(Hε + ζ)−1

∣∣∣ψ
〉

+ (1 − ζ)
∥∥∥(Hε + ζ)−1

∥∥∥
2
]

� C.

�

Proof of Theorem 2.3. Thanks to Lemmas 3.15 and 3.16, it suffices to prove
that Hε → Heff in norm resolvent sense. We first decompose both potentials
as follows

Vε,Ψε
= V <

ε + V >
ε , Vμ = V <

μ + V >
μ (3.39)

in order to distinguish low and high frequencies, as in the proof of Lemma
3.16. Indeed we set

V #
μ (x) := 2Re

∫

L2(Rd)

dμ(z) W#
z (x), (3.40)

where the operators W#
z , # being either < or >, are defined in (3.32) and

� > 0 is a positive parameter. For Vε,Ψε
, we perform a similar decomposition

at the level of the full quadratic form, i.e.,

Vε,Ψε
(x) = 〈Ψε |A(g(x))| Ψε〉Γsym

=
∫

|k|��

dk e−ik·x|k| 1−d
2

〈
Ψε

∣∣∣a†
k

∣∣∣Ψε

〉

Γsym

+ c.c.

+
∫

|k|��

dk e−ik·x|k| 1−d
2

〈
Ψε

∣∣∣a†
k

∣∣∣Ψε

〉

Γsym

+ c.c.=:V <
ε (x)+V >

ε (x),

(3.41)

for the same � as above. Now let ψ ∈ L2(Rd), and ζ > 0 such that −ζ ∈
ρ(Hε)∩ρ(Heff) uniformly in ε, i.e., dist(−ζ, σ(Hε)) > C > 0. Then the second
resolvent identity yields
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sup
‖ψ‖2=1

∥∥∥
[
(Hε + ζ)−1 − (Heff + ζ)−1

]
ψ
∥∥∥

L2

� sup
‖ψ‖2=1

[∥∥∥(Hε + ζ)−1
T<

ε (Heff + ζ)−1
ψ
∥∥∥

L2

+
∥∥∥(Hε + ζ)−1

T>
ε (Heff + ζ)−1

ψ
∥∥∥

L2

]
, (3.42)

where we have set

T#
ε (x1, . . . ,xN ) :=

N∑

j=1

(
V #

μ (xj) − V #
ε (xj)

)

for short. At this stage, there is a technical subtlety not to be forgotten: The
explicit expressions of the operators Hε and Heff are a priori purely formal
and make sense only when represented as quadratic forms. Therefore, it is not
obvious that the second resolvent identity could be used above and would lead
to the the r.h.s. of (3.42). There is, however, a simple way out: By noting that

∥∥∥
[
(Hε + ζ)−1 − (Heff + ζ)−1

]
ψ
∥∥∥

L2

= sup
‖φ‖2�1

∣∣∣
〈
φ
∣∣∣
[
(Hε + ζ)−1 − (Heff + ζ)−1

]
ψ
〉

L2

∣∣∣,

one can express the vector norm in terms of a sesquilinear form, which in turn
can be reduced to quadratic forms via polarization. At that level then one
can use the operator expressions, being sure that the second resolvent identity
makes sense and yields the r.h.s. of (3.42), because the form domains of Hε

and Heff are the same.
We now claim that both potentials V <

ε (x) and V <
μ (x) belongs to L∞(Rd)

uniformly in ε and therefore
∥∥T<

ε (x1, . . . ,xN )
∥∥

L∞(RdN )
� C < +∞.

This was already proved for Vμ in (3.34), while, for V <
ε , we act exactly as

in (3.33) to estimate (recall that by assumption Ψε is normalized and (A3)
holds)

∣∣V <
ε (x)

∣∣ �
∫

|k|��

dk
1

|k|d−1
+ 〈Ψε |dΓ(1)| Ψε〉Γsym

� C(�) < +∞,

for any finite �. Therefore, we can prove that the term involving T<
ε in (3.42)

tends to 0 as ε → 0 directly by a dominated convergence argument, using the
pointwise convergence to 0 of T<

ε (x1, . . . ,xN ), which is discussed in Corol-
lary 3.7:

sup
‖ψ‖2=1

∥∥∥(Hε + ζ)−1
T<

ε (Heff + ζ)−1
ψ
∥∥∥

L2
� C sup

‖ψ‖2=1

∥∥T<
ε φ
∥∥

L2

= sup
‖ψ‖2=1

sup
‖ξ‖2�1

〈
ξ
∣∣T<

ε φ
〉

L2 −−−→
ε→0

0, (3.43)

where we have set φ := (Heff + ζ)−1
ψ ∈ L2(Rd).
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To complete the proof, it remains then to consider the second term on
the r.h.s. of (3.42). The idea is still to use the dominated convergence theorem
but one has to exploit the trick (3.35): We rewrite

sup
‖ψ‖2=1

∥∥∥(Hε + ζ)−1
T>

ε (Heff + ζ)−1
ψ
∥∥∥

L2

= sup
‖ψ‖2=1

dN∑

k=1

∥∥∥(Hε + ζ)−1 [(Sε(x1, . . . ,xN ))k , i∂k] (Heff + ζ)−1
ψ
∥∥∥

L2
,

(3.44)

where Sε(x1, . . . ,xN ) is a vectorial multiplication operator given by

Sε(x1, . . . ,xN ) :=
N∑

j=1

[ ∫

|k|��

dk e−ik·xj
k

|k| d+3
2

〈
Ψε

∣∣a† (k)
∣∣Ψε

〉
Γsym

+ c.c.

−
∫

L2(Rd)

dμ(z)
∫

|k|��

dk e−ik·x k

|k| d+3
2

z∗(k) − c.c.
]
.

(3.45)

By Lemma 3.18 and (3.44),

∥∥∥(Hε + ζ)−1
T>

ε (Heff + ζ)−1
ψ
∥∥∥

L2
� C

dN∑

k=1

[
‖(Sε(x1, . . . ,xN ))k χ‖L2

+
∥∥∥(Sε(x1, . . . ,xN ))k (Heff + ζ)−1

ψ
∥∥∥

L2

]
,

where χ := i∂k (Heff + ζ)−1
ψ ∈ L2(RdN ) with norm independent of ε and

we have used the boundedness of the resolvent (Hε + ζ)−1. Now for any k =
1, . . . , dN

(Sε(x1, . . . ,xN ))k

pointwise−−−−−−→
ε→0

0, (3.46)

by a direct application of Corollary 3.7, since now 1[�,∞)(|k|)|k|− d+1
2 ∈ L2(Rd),

for any � > 0. Moreover, following the very same argument used above, one
can show that

‖(Sε(x1, . . . ,xN ))k‖L∞(RdN ) � C < +∞. (3.47)

Indeed, by (A3) and integrability of ‖z‖2
2 (see Proposition 3.5)

|Sε(x1, . . . ,xN )| � N

[
2
∫

|k|>�

dk
1

|k|d+1
+ 〈Ψε |dΓ(1)| Ψε〉Γsym

+
∫

L2(Rd)

dμ(z) ‖z‖2
L2

]
� C(�) < +∞,
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for any � > 0. In conclusion, by writing

sup
‖ψ‖2=1

‖(Sε(x1, . . . ,xN ))k χ‖
L2 +

∥∥∥(Sε(x1, . . . ,xN ))k (Heff + ζ)−1
ψ
∥∥∥

L2

= sup
‖ψ‖2=1

sup
‖ξ‖2�1

[
〈ξ |(Sε(x1, . . . ,xN ))k χ 〉L2

+
〈
ξ
∣∣∣(Sε(x1, . . . ,xN ))k (Heff + ζ)−1

ψ
〉

L2

]
,

and using again dominated convergence, we get the result. �

3.6. Ground-State Energy: Massive Nelson Model

The setting in this section is the one described in Sect. 2.4. We start by consid-
ering the massive Nelson model and then comment on the adaptation required
for the polaron.

We recall that the effective Hamiltonian for the particles in the quasi-
classical limit is by Theorem 2.2

Heff(μ) = H0 + 2Re
N∑

j=1

∫

L2(Rd)

dμ(z)
∫

Rd

dk eik·xj z(k)λ∗(k)

= H0 + 2(2π)d/2Re
N∑

j=1

∫

L2(Rd)

dμ(z)

⎛

⎝

̂

zλ∗

⎞

⎠ (xj)

where we have made explicit the dependence of Heff on the classical measure
μ ∈ M (L2(Rd)) provided by Proposition 3.5. The field energy in the limit
ε → 0 becomes, under the assumptions (A3) (see again Proposition 3.5),

c(μ) =
∫

L2(Rd)

dμ(z)
∥∥√ωz

∥∥2

L2 .

For further convenience, we will denote the full energy of the system in the
classical limit by

Keff(μ) := Heff(μ) + c(μ). (3.48)

Finally, we recall the minimization domain (2.29) for the measure μ:

Mω :=
{

μ ∈ M
(
L2(Rd)

) ∣∣∣ μ
(
L2

ω(Rd)
)

= 1, μ
∣∣
L2

ω(Rd)
is Borel, c(μ) < ∞

}
,

where

L2
ω(Rd) :=

{
f ∈ L2(Rd)

∣∣∣∣
∫

Rd

dk ω(k) |f(k)|2 < ∞
}

,

and ω � 1. An important remark about measures in Mω is that, although each
μ ∈ Mω is a probability measure on L2(Rd), its support is totally concentrated
in L2

ω(Rd), i.e., the measure μ vanishes outside L2
ω(Rd) and all the integrals

involving μ can be equivalently computed over L2(Rd) or L2
ω(Rd).

The first key result we prove is the boundedness from below of the infi-
mum of the spectral bottom of Keff(μ) over μ ∈ Mω:
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Proposition 3.19 (Boundedness from below of σ(Keff(μ))). Let the assumptions
(A1), (A4′) and (A2′) be satisfied, then

inf
μ∈Mω

σ (Keff(μ)) � σ(H0) − N2
∥∥∥ω−1/2λ

∥∥∥
2

L2
> −∞. (3.49)

Proof. We first prove a simple but useful inequality: For any μ ∈ Mω and
δ > 0,

∣∣∣∣
∫

L2(Rd)

dμ(z)
∫

Rd

dk eik·xj z(k)λ∗(k)
∣∣∣∣ � δ

∫

L2(Rd)

dμ(z)
∥∥√ωz

∥∥2

L2

+
1
δ

∥∥∥ω−1/2λ
∥∥∥

2

L2
. (3.50)

Note that the r.h.s. is finite thanks to the assumptions on λ (A4′) and the
hypothesis on ω. Here in particular it is important that we are considering the
massive Nelson model to have ω � 1. Using the above inequality, we get

σ (Keff(μ)) � σ(H0) + c(μ)

+ 2(2π)d/2 inf
(x1,...,xN )∈RdN

Re
N∑

j=1

∫

L2(Rd)

dμ(z)

⎛

⎝

̂

zλ∗

⎞

⎠ (xj)

� σ(H0) + c(μ) − Nδ

∫

L2(Rd)

dμ(z)
∥∥√ωz

∥∥2

L2 − N

δ

∥∥∥ω−1/2λ
∥∥∥

2

L2

� σ(H0) − N2
∥∥∥ω−1/2λ

∥∥∥
2

L2
> −∞,

where we have taken δ = 1
N in the last step. Since the r.h.s. is independent of

μ, we conclude that (3.49) holds true. �

An important consequence of Proposition 3.19 is that the infimum can
be taken over measures with finite support, i.e., finite linear combinations of
Dirac masses. We set

Mfin :=
{

μ ∈ Mω

∣∣∣ ∃I ⊂ N finite, {αi}i∈I ∈ R
+,

∑

i∈I

αi = 1, {zi}i∈I ∈ L2
ω(Rd),

s.t. μ =
∑

i∈I

αiδ(z − zi)
}

. (3.51)

Lemma 3.20. Under the assumptions of Proposition 3.19,

inf
μ∈Mω

σ (Keff(μ)) = inf
μ∈M fin

σ (Keff(μ)) . (3.52)

Proof. Since for any z0 ∈ L2
ω(Rd), δ(z−z0) ∈ Mω, it immediately follows that

inf
μ∈Mω

σ (Keff(μ)) � inf
μ∈M fin

σ (Keff(μ)) . (3.53)

Now let Mω be endowed with the 2-Wasserstein distance. Since L2
ω is

separable and complete, then Mω � M2(L2(Rd, ω dk)), the space of measures
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on L2(Rd, ωdk) with finite 2-moments, is separable and complete. In addition,
Mfin is dense in M2(L2(Rd, ω dk)) (see, e.g., [45, Theorem 6.18]). By the
isomorphism Mω � M2(L2(Rd, ω dk)), it follows that the atomic measures
are dense in Mfin w.r.t. the topology induced by M2(L2(Rd, ω dk)).

Now, let us assume that for any μ ∈ Mω and any sequence {μn}n∈N

converging to μ in M2, one has

∃ {μnk
}k∈N

s.t. |σ (Keff(μ)) − σ (Keff (μnk
))| −−−−→

k→∞
0. (3.54)

By definition of infimum, there exists some ν ∈ Mω, such that, for any δ > 0,

σ (Keff(ν)) < inf
μ∈Mω

σ (Keff(μ)) + 1
2δ.

Thanks to the density of Mfin in Mω, there must exist a sequence {νn}n∈N
∈

Mfin, such that

νn
M2−−−−→

n→∞ ν.

Then (3.54) implies that there exists at least one subsequence {νnk
}k∈N

and a
k̄ ∈ N such that for all k � k̄:

|σ (Keff(ν)) − σ (Keff (νnk
))| < 1

2δ,

which implies

inf
μ∈Mω

σ (Keff(μ)) > σ (Keff(ν)) − 1
2δ > σ (Keff(νnk

)) − δ

> inf
μ∈M fin

σ (Keff(μ)) − δ.

Since δ > 0 is arbitrary, it follows that

inf
μ∈Mω

σ (Keff(μ)) � inf
μ∈M fin

σ (Keff(μ)) , (3.55)

which together with (3.53) yields the result.
The only thing that has yet to be proved is the statement (3.54). If

μn −→ μ in M2, then {μn}n∈N
is Cauchy and therefore tight (and precompact

by Prokhorov’s Theorem) in M (L2
ω) (see [45, Lemma 6.14]). Therefore, there

exists a subsequence {μnk
}k∈N

, such that μnk
−→ μ as k → ∞ in both M and

M2 topologies. Then the following convergence holds:

‖Keff(μ) − Keff(μnk
)‖ � N sup

x∈Rd

∣∣∣Vμ(x) − Vμnk
(x)
∣∣∣+ |c(μ) − c(μnk

)|

� N
∥∥∥ω−1/2λ

∥∥∥
2

L2

∣∣∣∣
∫

L2
ω(Rd)

d(μ − μnk
)(z)

∣∣∣∣

+ (N + 1)
∣∣∣∣
∫

L2
ω(Rd)

d(μ − μnk
)(z)

∥∥√ωz
∥∥2

L2

∣∣∣∣ −−−−→
k→∞

0.

Finally, by [33, Theorem 4.10], the distance between the spectra of Keff(μ) and
Keff(μnk

) converges to zero and the same is true for the ground state energy,
and thus, (3.54) is proved. �

We can now complete the proof of our main result on the ground-state
energy convergence:
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Proof of Theorem 2.4. First of all, we observe that assumptions (A3) and
Proposition 3.5 guarantee that the classical measure μ is actually supported
on L2

ω(Rd) and c(μ) < +∞ (see Corollary 3.9). Moreover, since it is a proba-
bility measure, it must be μ(L2

ω(Rd)) = 1. Finally, the fact that each measure
obtained in the quasi-classical limit is Borel when restricted to L2

ω(Rd) can
be proved by adapting [7, Proposition 3.11]. We have therefore justified the
restriction to Mω in the minimization of the energy form.

Next we recall that C∞
0

(
R

dN
)
⊗D (dΓ(ω)) is a core for H, and C∞

0

(
R

dN
)

is a core for Heff(μ), for any μ ∈ M (L2(Rd)), which is a consequence of the
fact that Heff(μ) is self-adjoint on D(H0) (Theorem 2.2) and H0 is essentially
self-adjoint on C∞

0

(
R

dN
)
.

In addition, σ(H) is uniformly bounded from below w.r.t. ε (see Propo-
sition 3.1 but also Proposition A.1). Now let ϕ ∈ C∞

0

(
R

dN
)
, by Lemma 3.20

it suffices to compute the energy for measures μ ∈ Mfin: Let then I be a finite
subset of N, {αi}i∈I ∈ R

+ such that
∑

i∈I αi = 1, {zi}i∈I ∈ L2
ω, so that we

can express μ as a convex combination of Dirac masses, i.e.,

μ =
∑

i∈I

αiδ(z − zi).

Then, by linearity (recall the definition of coherent states (2.14) and Proposi-
tion 3.11),

σ(H) � inf
μ∈M fin

inf
ϕ∈C∞

0 (RdN )

∑

i∈I

αi 〈ϕ ⊗ Ξ(zj) |H|ϕ ⊗ Ξ(zj)〉L2⊗Γsym

= inf
μ∈M fin

inf
ϕ∈C∞

0 (RdN )
〈ϕ |Keff(μ)| ϕ〉L2 = inf

μ∈M fin

σ (Keff(μ))

= inf
μ∈Mω

σ (Keff(μ)) ,

where the last equality holds by Lemma 3.20.
It remains to show that

lim inf
ε→0

σ(H) � inf
μ∈Mω

σ
(
Keff(μ)

)
.

Let Πε,δ ∈ C∞
0 (RdN ) ⊗ D(dΓ(ω)), δ > 0, be a vector that satisfies

〈Πε,δ|H|Πε,δ〉 < σ(H) + δ.

The simple operator bound

〈Ψ |H| Ψ〉 � 1
2 〈Ψ |dΓ(ω)| Ψ〉 −

(
2
∥∥ω−1/2λ

∥∥2

L2 + M
)

‖Ψ‖2

� 1
2 〈Ψ |dΓ(ω)| Ψ〉 − C ‖Ψ‖2

,

for some M,C < +∞, which follows from boundedness from below of H0, and
(3.49) (with δ = 1

2 ) together with (3.55), imply the that the expectation value
of dΓ(ω) on Πε,δ is uniformly bounded in ε. Since dΓ(1) � dΓ(ω) for a massive
field, both conditions in (A4) are therefore fulfilled by Πε,δ.

Now, the vectors of the form ψ ⊗ Ξ(f), ψ ∈ C∞
0 (RdN ) and f ∈ L2

ω(Rd),
are total in L2(RdN ) ⊗ Γsym(L2(Rd)), and belong to C∞

0 (RdN ) ⊗ D(dΓ(ω)).
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Let us recall that Ξ(f) is the squeezed coherent state defined in (2.33). Hence,
it is possible to choose, for any δ > 0, the vector Πε,δ of the form

Πε,δ =
M(δ)∑

i=1

λi,δ(ε)ψi,δ ⊗ Ξ
(
zi,δ

)
,

where zi,δ 
= zk,δ for all i 
= k, each ψi,δ, ψk,δ is normalized, and the λi,δ(ε)
satisfy
M(δ)∑

i=1

|λi,δ(ε)|2 +
∑

i<k

2Re λ̄i,δ(ε)λk,δ(ε)ψ̄i,δψk,δe
− i

ε Im〈zi,δ|zk,δ〉2− 1
2ε ‖zi,δ−zk,δ‖2

2 = 1.

(3.68)

Now, ∣∣∣2Reλ̄i,δ(ε)λk,δ(ε)ψ̄i,δψk,δ

∣∣∣ � |λi,δ|2 + |λk,δ|2 ,

so (3.68) yields
M(δ)∑

i=1

(1 − Ci,δ(ε))|λi,δ(ε)|2 � 1 ,

where 0 � |Ci,δ(ε)| < 2M(δ)maxi<k∈M(δ) e− 1
2ε ‖zi,δ−zk,δ‖2

2 , and Ci,δ(ε) → 0 as
ε → 0. Therefore, it follows that each (λi,δ(ε))ε∈(0,1) is uniformly bounded for
ε small enough, e.g., such that Ci,δ(ε) � 1/2 for any i.

Given Πε,δ of this form, the corresponding expectation of H can be thus
explicitly computed quite easily, and takes the form

〈Πε,δ|H|Πε,δ〉

=
M(δ)∑

i,k=1

λ̄i,δ(ε)λk,δ(ε)〈zi,δ|ω|zk,δ〉2e− i
ε Im〈zi,δ|zk,δ〉2− 1

2ε ‖zi,δ−zj,δ‖2
2

+
M(δ)∑

i,k=1

λ̄i,δ(ε)λj,δ(ε)
(
〈ψi,δ|H0|ψk,δ〉2 +

〈
ψi,δ

∣∣∣〈g(x)|zk,δ〉2

+ 〈zi,δ|g(x)〉2
∣∣∣ψk,δ

〉

2

)
e− i

ε Im〈zi,δ|zk,δ〉2− 1
2ε ‖zi,δ−zj,δ‖2

2 . (3.56)

Now let (λi,δ)
M(δ)
i=1 ⊂ C be cluster points of each (λi,δ(ε))ε∈(0,1) corresponding

to a common subsequence, satisfying
M(δ)∑

i=1

|λi,δ|2 = 1.

Then the corresponding cluster point of (3.56) has the form
M(δ)∑

i=1

|λi,δ|2
(
‖ω1/2zi,δ‖2

2 + |λi,δ|2〈ψi,δ|H0|ψi,δ〉2

+
〈
ψi,δ

∣∣∣2Re〈zi,δ|g(x)〉2
∣∣∣ψi,δ

〉

2

)
=

M(δ)∑

i=1

|λi,δ|2
〈
ψi,δ

∣∣Keff

(
δ(· − zi,δ)

)∣∣ψi,δ

〉
2
.
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Therefore, defining

Dgs(δ) =
{

(λi,δ)
M(δ)
i=1 ⊂ C ,

M(δ)∑

i=1

|λi,δ|2 = 1 ; {zi,δ}M(δ)
i=1 ⊂ L2

ω(Rd) ;

{ψi,δ}M(δ)
i=1 ⊂ {‖ψ‖2 = 1} ∩ L2(RdN )

}

the lim infε→0 of 〈Πε,δ|H|Πε,δ〉 takes the form

lim inf
ε→0

〈Πε,δ|H|Πε,δ〉 = inf
Dgs(δ)

M(δ)∑

i=1

|λi,δ|2
〈
ψi,δ

∣∣Keff

(
δ(· − zi,δ)

)∣∣ψi,δ

〉
2

� inf
‖λi,δ‖

�2=1,

{zi,δ}⊂L2
ω(Rd)

M∑

i=1

|λi,δ|2σ
(
Keff

(
δ(· − zi,δ)

))

� inf
μ∈M fin

σ(Keff(μ)) = inf
μ∈Mω

σ(Keff(μ)).

It then follows that

inf
μ∈Mω

σ(Keff(μ)) � σ(H) + δ ,

and that concludes the proof. �
3.7. Ground-State Energy: Polaron

The proof of Theorem 2.4 for the polaron model goes along the same lines as
for the massive Nelson model, so we will focus mostly on the points where the
two proofs differ.

As we are going to see, the technical differences are related to the fact
that most quantities involved in the proof have to be expressed as quadratic
forms, since they do not make sense as operators. We thus set

Qμ[ψ] := 〈ψ |Heff(μ)| ψ〉L2(RdN ) ,

Tμ[ψ] := Qμ[ψ] + c(μ) ‖ψ‖2
L2(RdN ) , (3.57)

where, as in the previous section,

c(μ) =
∫

L2(Rd)

dμ(z) ‖z‖2
L2(Rd) .

Note that the minimization domain for the measure μ becomes

D1 = M2

(
L2(Rd)

)
, (3.58)

which is a separable and complete metric space once endowed with the 2-
Wasserstein distance.

The analogue of Proposition 3.19 is formulated in next proposition, which
is a direct consequence of the KLMN theorem.

Proposition 3.21 (Boundedness from below of Tμ). Let the assumptions (A1),
(3.7) and (3.8) be satisfied, then

inf
μ∈Mω

inf
‖ψ‖2=1

Tμ[ψ] � −C. (3.59)
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Proof. The result follows from KLMN theorem (see the proof of Lemma 3.16
and its notation). If we set

C<(�) :=
∫

|k|��

dk |k|1−d
, C>(�) :=

∫

|k|��

dk |k|1−d
,

and take α = 1
4N in (3.36) and combine it with (3.34), we get the following

bound for any � � 0 and any μ ∈ D1:

Qμ[ψ]
‖ψ‖2

L2

> −
(
8N2C>(�) + Nα1

) ∫

L2
dμ(z) ‖z‖2

L2 − N

α1
C<(�). (3.60)

Now choosing �, α1 in such a way that 8N2C>(�) + Nα1 = 1, we obtain

Qμ[ψ]
‖ψ‖2

L2

> −
∫

L2
dμ(z) ‖z‖2

L2 − C,

where the constant C < +∞ on the r.h.s. is independent of μ. Using the
explicit expression of c(μ), we immediately get

Tμ[ψ] � −C ‖ψ‖2
2 . (3.61)

�

The only other argument to be adapted is the proof of Lemma 3.20. In
fact most of the proof does not need to be changed at all, whereas (3.54)
requires a totally different approach. We thus state the result as a separate
lemma.

Lemma 3.22. Let {μn}n∈N
be a sequence of measures in M2(L2(Rd)) such that

μn
M2−−−−→

n→∞ μ.

Then there exists a subsequence {μnk
}k∈N

, such that
∣∣∣∣ inf
‖ψ‖2=1

Tμ[ψ] − inf
‖ψ‖2=1

Tμnk
[ψ]
∣∣∣∣ −−−−→

k→∞
0. (3.62)

Proof. Since {μn}n∈N
is Cauchy and tight in M

(
L2(Rd)

)
, there exists a sub-

sequence {μnk
}k∈N

, such that

μnk

M−−−−→
k→∞

μ, μnk

M2−−−−→
k→∞

μ.

Now let δ > 0 be fixed and let {ψj}j∈N
⊂ H1(Rd) be a minimizing

sequence for Tμ[ψ]. The existence of such a minimizing sequence for Tμ[ψ],
μ ∈ M1, is guaranteed by Proposition 3.21. Then

inf
‖ψ‖2=1

Tμn
[ψ] � Qμn

[ψj ] + c(μn) = Qμ [ψj ] + c(μ) + Qμn−μ [ψj ] + c(μn − μ),

Therefore, there exists some j̄ � 0, such that, for any j � j̄,

inf
‖ψ‖2=1

Tμn
[ψ] < inf

‖ψ‖2=1
Tμ[ψ] + Qμn−μ [ψj ] + c(μn − μ) + 1

4δ.
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In addition the convergence of μnk
in M2 guarantees that there exists some

n̄1 ∈ N such that, for any nk � n̄1, |c(μ − μnk
)| � δ

2 and therefore

inf
‖ψ‖2=1

Tμn
[ψ] < inf

‖ψ‖2=1
Tμ[ψ] + Qμn−μ [ψj ] + 1

2δ,

for any nk � n̄1 and j � j̄. On the other hand, following the same lines leading
to (3.34) and (3.36), one can bound

|Qμn−μ [ψ]| � C ‖ψ‖H1(RdN )

[ ∫

L2(Rd)

d |μ − μnk
|
(
1 + ‖z‖2

L2

)]1/2

� δ′ ‖ψ‖H1(RdN ) , (3.63)

for any δ′ > 0 and big enough nk, thanks to the convergence of μnk
to μ in

M and M2. Indeed, this guarantees the existence of a n̄2 ∈ N such that
∫

L2(Rd)

d |μ − μnk
|
(
1 + ‖z‖2

L2

)
� δ′2,

for any nk � n̄2 and δ′ arbitrary. Hence, if nk � n̄ := max{n̄1, n̄2},

inf
‖ψ‖2=1

Tμn
[ψ] < inf

‖ψ‖2=1
Tμ[ψ] + 2δ′ ‖ψj‖H1(RdN ) + 1

2δ

� inf
‖ψ‖2=1

Tμ[ψ] + δ, (3.64)

where we have taken δ′ = 1
4 ‖ψj‖−1

H1(RdN ) δ. Since j � j̄, which does depend on
δ, in order to show that such a choice of δ′ is possible, we have to ensure that
‖ψj‖H1(RdN ) is uniformly bounded. This is, however, a direct consequence of
the following inequality

Tμ[ψ] � (1 − α) ‖ψ‖2
H1(RdN ) − Cα ‖ψ‖2

L2(RdN ) , (3.65)

for any α > 0, where the coefficient Cα is finite for any α > 0. Such a bound
can be obtained as in deriving (3.60) but keeping the positive kinetic energy.
Hence, applying it to Tμ[ψj ], we get

(1 − α) ‖ψj‖2
H1(RdN ) � inf

‖ψ‖2=1
Tμ[ψ] + 1

4δ + Cα � C,

for any α > 0 and ψj normalized in L2, by the boundedness from above of
inf‖ψ‖2=1 Tμ[ψ].

Now to complete the proof one needs to show that there exists another
m̄ ∈ N, such that for any nk � m̄, the opposite inequality is also true, i.e., for
any δ > 0 arbitrary

inf
‖ψ‖2=1

Tμ[ψ] < inf
‖ψ‖2=1

Tμnk
[ψ] + δ, (3.66)

for nk � m̄. The argument is, however, perfectly symmetric: pick a minimizing
sequence

{
ψ

(nk)
j

}
j∈N

for Tμnk
[ψ], the estimates leading to (3.64) can be proved

in the very same way. The only one requiring some comment is the uniform
boundedness of the H1 norm of ψ

(nk)
j , which is, however, implied by (3.65), as

above. �
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The rest of the proof is identical to the one provided in the previous
Sect. 3.6, apart from the fact that in certain estimates the operator inequalities
have to be replaced by the corresponding ones in terms of quadratic forms.
We omit the details for the sake of brevity.
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Appendix A. Fock Space Estimates

In this appendix, we collect some rather standard results and technical esti-
mates relative to the well-posedness of the models considered in the paper. In
particular, we provide a full proof of Propositions 3.1 and 3.2.

The starting point is obviously the definition of the models: Even the
rigorous meaning of the formal expressions mentioned in Sects. 1 and 2 deserves
some brief discussion. Indeed, even if, for the Nelson model, the operator H
can be given a meaning at least as symmetric operator with dense domain,
the same is not true for the polaron. We recall that the formal expression we
want to study has the form

H = Hfree +
N∑

j=1

A(g(xj)), Hfree = H0 + dΓ(ω),

H0 =
N∑

j=1

(−Δj) + U(x1, . . . ,xN ).

The precise assumptions made on the quantities involved are specified in
Sect. 3.1 for the various models under investigation. We simply recall that
U decomposes as

U = U+ + U�, U+ ∈ L2
(
R

dN ; R+
)
, U� ∈ K�

(
R

dN
)
.

For the field part, the only assumption on ω = ω(k) is that it is positive.
In order to study the operator H, one is typically forced to start with the

quadratic form (3.9) associated with it, i.e.,

QH [Ψ] = 〈Ψ |H| Ψ〉L2⊗Γsym
= QHfree [Ψ] + QA[Ψ].

Now, under assumptions (A1), (A2), (A4), or (A4′), or, more importantly,
under the assumptions for the polaron given by (3.7) and (3.8), the above ex-
pression makes sense on a dense domain given by C∞

0

(
R

dN
)

∩ D(
√

dΓ(1)) ∩
D(
√

dΓ(ω)). Note that on the same domain one is also allowed to split the
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quadratic form into two terms which make sense individually. In spite of seem-
ing natural, this is indeed impossible at the operator level, without a closer
inspection of its properties.

There are various techniques to prove that the form QH is associated
with a unique self-adjoint operator, which will be identified with the formal
expression H. Depending on the regularity of the function g appearing in
the interaction term, one can apply either the Kato–Rellich theorem (Nelson
model) or the KLMN theorem (polaron).

Let us start by discussing the first approach, which will lead to the proof
of Proposition 3.1: the result relies on a technical estimate that we state in a
separate Lemma A.3, whose discussion is postponed.

Proposition A.1 (Kato–Rellich). For any function g ∈ L∞ (
R

d;H
)

such that
ω−1/2g ∈ L∞ (

R
d;H

)
, the operator H is self-adjoint on D(−Δ+U+)∩D

(
dΓ(ω)

)

and bounded from below.

Proof. Using (A.8) and the identity
∥∥a†(g)Ψ

∥∥2

Γsym(H)
= ‖a(g)Ψ‖2

Γsym(H) + ‖g‖2
H ‖Ψ‖2

Γsym(H) , (A.1)

we obtain for any Ψ ∈ D(
√

dΓ(ω))
∥∥∥
∑

A(g(xj))Ψ
∥∥∥

L2⊗Γsym

� N

(
2
∥∥∥ω−1/2g

∥∥∥
L∞(Rd;H)

∥∥∥
√

dΓ(ω)Ψ
∥∥∥

L2⊗Γsym

+ ‖g‖L∞(Rd;H) ‖Ψ‖L2⊗Γsym

)
.

Then by Cauchy–Schwarz, one gets

2N
∥∥∥ω−1/2g

∥∥∥
L∞(Rd;H)

∥∥∥
√

dΓ(ω)Ψ
∥∥∥

L2⊗Γsym

= 2N
∥∥∥ω−1/2g

∥∥∥
L∞(Rd;H)

(
〈Ψ |dΓ(ω)| Ψ〉L2⊗Γsym

)1/2

� 2N
∥∥∥ω−1/2g

∥∥∥
L∞(Rd;H)

(
〈Ψ |−Δ + U+ + dΓ(ω)| Ψ〉L2⊗Γsym

)1/2

� α ‖(−Δ + U+ + dΓ(ω)) Ψ‖L2⊗Γsym

+N2α−1
∥∥∥ω−1/2g

∥∥∥
2

L∞(Rd;H)
‖Ψ‖L2⊗Γsym

for any α > 0, and therefore
∥∥∥
∑

A(g(xj))Ψ
∥∥∥

L2⊗Γsym

� α ‖(−Δ + U+ + dΓ(ω)) Ψ‖L2⊗Γsym

+ b(α) ‖Ψ‖L2⊗Γsym
, (A.2)

with

b(α) = N2α−1
∥∥∥ω−1/2g

∥∥∥
2

L∞(Rd;H)
+ N ‖g‖L∞(Rd;H) .

In addition, for any α′ > 0, there exists b′(α′) > 0 finite, such that

‖U�ψ‖L2(RdN ) � α′ ‖(−Δ + U+) ψ‖L2(RdN ) + b′(α′) ‖ψ‖L2(RdN )
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thanks to the hypothesis of Kato smallness of U�. The positivity of dΓ(ω)
allows to extract from the above inequality a bound on L2 ⊗ Γsym where the
operator on the r.h.s. is replaced with −Δ + U+ + dΓ(ω) � −Δ + U+.

Picking now α and α′ both strictly smaller than 1
2 , the result is proved by

a direct application of Kato–Rellich theorem. As a by-product, we also obtain
that the full operator is bounded from below by

−M := sup
1/4<α,α′<1/2

−
(
b(α) + b′(α′)

)
> −∞.

�

The above proof does not cover the case of Fröhlich’s polaron, since in
that case

g(x) =
1

|k| d−1
2

eik·x,

which is not a function in L∞(Rd;L2(Rd)). However, (|k|2 + 1)−1/2g(x) ∈
L2(Rd) for a.e. x ∈ R

d, or, in other words,

1

|k| d−1
2

eik·x ∈ W−1,∞(Rd, L2(Rd)). (A.3)

Using the trick described in Remark 3.6, i.e., rewriting g(x) above as the
commutator between −i∇x and a (vector-valued) function in L∞(Rd;H⊗R

d),
it is possible to exploit the aforementioned regularity (A.3) and prove self-
adjointness of H via the KLMN theorem.

Before stating the result, however, we remark that the function (A.3) not
only is in W−1,∞(Rd,H) but possesses a stronger regularity property: For any
δ > 0, there exists a � > 0, such that one can decompose

g(x) = g<,�(x) + g>,�(x),

ω−1/2g<,� ∈ L∞(Rd,H),

ω−1/2g>,� ∈ W−1,∞(Rd,H), (A.4)

with
∥∥∥ω−1/2 (−Δ)−1/2

g>,�(x)
∥∥∥

L∞(Rd,H)
� δ, (A.5)

i.e., the function can be decomposed into a part which is in H for a.e. x
and a rest whose (homogeneous) W−1,∞(Rd,H) norm can be assumed to be
arbitrarily small. Concretely, in the case of the polaron, this can be easily
realized by writing

g(x) = 1[0,�](|k|)g(x) + 1[�,+∞)(|k|)g(x) =: g<,�(x) + g>,�(x),

and taking � large enough. Indeed, since ω = 1 for the polaron, one has
∥∥∥ω−1/2 |k|−1

g>,�(x)
∥∥∥

2

L∞(Rd,L2(Rd))
=
∫

|k|��

dk
1

|k|d+1
= C�−1 −−−→

�→∞ 0.



Vol. 19 (2018) Effective Potentials in the Quasi-Classical Limit 231

Proposition A.2 (KLMN). Let g be a function such that (A.4) and (A.5) are
satisfied. Then QH is closed on D(

√
−Δ + U+) ∩ D(

√
dΓ(ω)) and bounded

from below. Therefore, it is associated with a unique operator H self-adjoint
on D(H) ⊂ D(

√
−Δ + U+) ∩ D(

√
dΓ(ω)) that is also bounded from below.

Proof. By linearity of A(g), we can split the quadratic form into three pieces:
QH,<, QH,>, and QH,� with obvious meaning of the notation. Let us consider
QH,> first. An easy computation yields

a(g>,�(x)) = [a (∇xg̃>,�(x)) ,−∇x] ,

with g̃>,�(x) := (−Δx)−1
g>,�(x). Therefore, it follows that

|QH,>[Ψ]| � 2
N∑

j=1

∣∣∣
〈
−i∇xj

Ψ
∣∣a
(
∇xj

g̃>,�(xj)
)
Ψ
〉

L2⊗Γsym

∣∣∣

� 4N
∥∥∥ω−1/2 (−Δ)−1/2

g>,�(x)
∥∥∥

L∞(Rd,H)

∥∥∥
√

dΓ(ω)Ψ
∥∥∥
∥∥∥
√

−Δ + U+Ψ
∥∥∥

� 4N
∥∥∥ω−1/2 (−Δ)−1/2

g>,�(x)
∥∥∥

L∞(Rd,H)
Q−Δ+U++dΓ(ω)[Ψ],

for any Ψ ∈ D(
√

−Δ + V1)∩D(
√

dΓ(ω)), where we have used Cauchy–Schwarz
inequality and (A.8). Now by (A.5), it is possible to choose � > 0 big enough
such that

α1(�) := 4N
∥∥∥ω−1/2 (−Δ)−1/2

g>,�(x)
∥∥∥

L∞(Rd,H)
= 1

4 . (A.6)

Now let us turn the attention to QH,<, with � fixed by condition (A.6). Using
again the Cauchy–Schwarz inequality and (A.8), we obtain

|QH,<[Ψ]| � α 〈Ψ |dΓ(ω)| Ψ〉L2⊗Γsym

+N2α−1
∥∥∥ω−1/2g<,�(x)

∥∥∥
L∞(Rd,H)

‖Ψ‖2
L2⊗Γsym

� α Q−Δ+U++dΓ(ω)[Ψ] + N2α−1
∥∥∥ω−1/2g<,�(x)

∥∥∥
L∞(Rd,H)

‖Ψ‖2
L2⊗Γsym

for any ψ ∈ D(
√

−Δ + U+) ∩ D(
√

dΓ(ω)) and α > 0. Choosing α = 1
4 , we

obtain

|QH,>[Ψ] + QH,<[Ψ]| � 1
2 Q−Δ+U++dΓ(ω)[Ψ]

+ 3N2
∥∥∥ω−1/2g<,�(x)

∥∥∥
L∞(Rd,H)

‖Ψ‖2
L2⊗Γsym

,

(A.7)

for a suitable � > 0 such that (A.6) is satisfied. Now since U� is infinitesimally
form-bounded w.r.t. −Δ, it follows that there exists a constant C� > 0 such
that for any Ψ ∈ D(

√
−Δ + V1) ∩ D(

√
dΓ(ω)),

|QH,�[Ψ]| � 1
3Q−Δ+U++dΓ(ω)[Ψ] + C� ‖Ψ‖2

L2⊗Γsym
.

The result then follows from KLMN theorem. �
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We conclude Appendix with a technical estimate used before in the proofs
of both Propositions A.1 and A.2:

Lemma A.3. For any function g such that ω−1/2g ∈ L∞ (
R

d;H
)
, we have

‖a(g(x))Ψ‖L2(RdN )⊗Γsym(H) �
∥∥∥ω−1/2g

∥∥∥
L∞(Rd;H)

∥∥∥
√

dΓ(ω)Ψ
∥∥∥

L2(RdN )⊗Γsym(H)
.

(A.8)

Proof. The result is obtained via Cauchy inequality as in the derivation of
(3.25). We omit the details. �
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tonian. J. Math. Phys. 57(2), 021902 (2016)

[30] Helffer, B.: Semi-classical analysis for the Schrödinger operator and applications.
Lecture Notes Math., vol. 1336, Springer, Berlin (1988)

[31] Hiroshima, F.: Scaling limit of a model of quantum electrodynamics. J. Math.
Phys. 34(10), 4478–4518 (1993)

[32] Hiroshima, F.: Weak coupling limit with a removal of an ultraviolet cutoff for a
Hamiltonian of particles interacting with a massive scalar field. Infin. Dimens.
Anal. Quantum Probab. Relat. Top. 1(3), 407–423 (1998)

http://dx.doi.org/10.1007/s11040-015-9173-x
http://arxiv.org/abs/1605.04778
http://arxiv.org/abs/1612.00395


234 M. Correggi and M. Falconi Ann. Henri Poincaré
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