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Quivers, Line Defects and Framed BPS
Invariants

Michele Cirafici

Abstract. A large class of N = 2 quantum field theories admits a BPS
quiver description, and the study of their BPS spectra is then reduced to
a representation theory problem. In such theories the coupling to a line
defect can be modeled by framed quivers. The associated spectral prob-
lem characterizes the line defect completely. Framed BPS states can be
thought of as BPS particles bound to the defect. We identify the framed
BPS degeneracies with certain enumerative invariants associated with the
moduli spaces of stable quiver representations. We develop a formalism
based on equivariant localization to compute explicitly such BPS invari-
ants, for a particular choice of stability condition. Our framework gives
a purely combinatorial solution to this problem. We detail our formalism
with several explicit examples.
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1. Introduction

The problem of counting BPS states of N = 2 quantum field theory has often
an algebraic reformulation in terms of quivers. Quivers can be studied using
powerful techniques from representation theory and provide conceptually clear
categorical tools to address the physical problem. In many cases the theory of
quiver mutations and the associated quantum cluster algebra structures give
an elegant formalism to study the BPS spectral problem and the wall-crossing
phenomena. The relation between wall-crossing phenomena, BPS spectra, and
non-perturbative effects is at the core of the Seiberg–Witten solution for the
Wilsonian effective action [1].

The information about the spectrum of BPS states in a given chamber can
be elegantly encoded in the quantum monodromy, or Kontsevich–Soibelman
operator. Its invariance upon crossing walls of marginal stability is a way
to formulate the Kontsevich–Soibelman wall-crossing formula for generalized
Donaldson–Thomas invariants [2]. When a given chamber in the Coulomb
moduli space admits a discrete R-symmetry the model admits finer fractional
quantum monodromy operators, whose iteration reproduces the full quantum
monodromy. Within the context of quantum field theory this program was
initiated in [3–8] and successfully applied to a variety of cases [9–21]. Similar
concepts have been pursued in the study of D-branes in Calabi–Yau varieties
[22–25]. There are by now several approaches to determine the BPS degen-
eracies, for example spectral networks [26–35], the MPS wall-crossing formula
[36–42], or a direct localization approach [18,43,44].

In this paper, as well as in the companion [45], we take a step to extend
this program to line defects in theories of class S[Ak]. This is part of a project
initiated in [46] for the case of S[A1] theories. In the deep infrared these defects
look like a bound state of an infinitely massive dyonic particle with a halo of
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ordinary BPS states. These bound states are called framed BPS states [47] and
can be described algebraically in terms of framed quivers [48]. Framed BPS
states pose a new BPS spectral problem in quantum field theory. In the UV
line defects can be identified with certain paths on a curve C, whose covering
is the Seiberg–Witten curve Σ [47,49–51]. Line defects and the corresponding
framed BPS spectra have been studied using semi-classical methods [51–57] or
spectral networks [34,58–61]. The work [45] establishes a connection between
line defects, quantum discrete integrable systems, and cluster algebras. The
latter aspect is also discussed in [46,62,63].

When we rephrase the problem in terms of BPS quivers, studying
the spectrum of stable BPS states becomes equivalent to classifying stable
quiver representations up to isomorphisms. Similarly, the wall-crossing for-
mula is associated with certain quantum dilogarithm identities corresponding
to sequences of quiver mutations. A BPS quiver is constructed directly from
the data of the N = 2 quantum field theory: the nodes of the quiver correspond
to a basis of the lattice of charges, while the arrow structure is dictated by
the Dirac–Schwinger–Zwanziger pairing between charges [6–8]. In many cases
BPS quivers can be engineered by studying D-branes on Calabi–Yau three-
folds [22–25], where the quiver nodes correspond to generators of the com-
pactly supported K-theory. Alternatively, they can be obtained via the 4d/2d
correspondence [5]. Mathematically, the BPS spectra and the wall-crossing
formula arise from the generalized Donaldson–Thomas theory associated with
the quiver [2,64,65].

In this paper we aim to develop a systematic framework to determine the
framed BPS degeneracies for several classes of BPS quivers. We will identify
the framed BPS degeneracies with BPS invariants of Donaldson–Thomas type
associated with the moduli spaces of cyclic modules of framed quivers. The
main tool we will use is equivariant localization with respect to a natural
toric action which rescales all the morphisms associated with the arrows of the
quivers. This formalism is naturally rooted in the analog problem of counting
supersymmetric bound states of a gas of D0 and D2 branes with a single
D6 brane wrapping a local Calabi–Yau [66–71]. The D0 and D2 branes are
supported on compact cycles and are the analog of the unframed BPS states,
while the non-compact brane is naturally associated with a line defect. Indeed,
in many cases this analogy can be made concrete by directly taking a certain
scaling limit [71]. Very closely related to this paper is the result of [66] which
provides a combinatorial solution for the BPS invariants in the case of the
non-commutative crepant resolution of the conifold; such a solution can be
expressed in terms of pyramid partitions, certain combinatorial arrangements.
We extend such a formalism to a variety of quivers and line defects, and for
each case we provide a simple combinatorial solution. While in this paper we
only discuss examples of asymptotically free gauge theories of class S[Ak], we
believe our techniques can be extended to a larger class of framed quivers, upon
choosing an appropriate superpotential and appropriate stability conditions.

This paper is organized as follows: Sect. 2 contains a brief review of the-
ories of class S and their line defects. Section 3 contains a discussion of the
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relation between BPS states and the representation theory of quivers and intro-
duces framed quivers to model line defects. In Sect. 4 we set up a formalism
to compute the framed BPS degeneracies using equivariant localization, which
we then apply in Sects. 5, 6, and 7. These sections contain several results for
SU(2), SU(3), and SO(8) line defects: some of them are checks that our for-
malism reproduces the results available in the literature, others are new. We
end with the conclusions.

2. Theories of Class S and Line Defects

2.1. Theories of Class S
Theories of class S[An, C,D], or S[An] for simplicity, are four-dimensional N =
2 supersymmetric field theories which arise from the compactification of the
six-dimensional N = (0, 2) superconformal theory on a Riemann surface C (the
“UV curve”) with punctures sn and some extra data Dn at the punctures. We
will denote with B their Coulomb branches. A generic point in B is a tuple
of meromorphic k-differentials u = (ϕ1, . . . , ϕr), where ϕk is a sections of the
kth power of the canonical bundle K⊗k

C with prescribed residues at sn. The
low-energy Wilsonian effective action is completely determined in terms of a
family of “IR curves” Σu. The Seiberg–Witten curve Σu is a r-fold branched
covering of C, defined by

λr + λr−1 ϕ1 + · · · + ϕr = 0. (2.1)

At a generic point u ∈ B, the gauge group is spontaneously broken down to its
maximal torus U(1)r. The lattice of electric and magnetic charges Γg is iden-
tified with a quotient of Γ = H1(Σu,Z) and endowed with an antisymmetric
integral pairing 〈, 〉. Locally, Γ = Γg ⊕ Γf , where the lattice of flavor charges
Γf is the annihilator of the pairing. Due to supersymmetry the central charge
operator is represented by an holomorphic function on B

Zγ(u) =
1
π

∫
γ

λ, (2.2)

written in terms of the periods of the Seiberg–Witten differential [1].
If we compactify the theory on a circle S1

R with radius R and peri-
odic boundary conditions for the fermions, the theory reduces to a three-
dimensional sigma model with N = 4 supersymmetry [72]. Due to supersym-
metry, the target of the sigma model MH is a smooth hyperkähler manifold of
dimC MH = 1

2 dimC B. The space MH carries a family of complex structures
Jζ and symplectic forms ωζ (holomorphic with respect to Jζ) parametrized by
ζ ∈ P

1. Geometrically, MH is the Hitchin moduli space, which parametrizes
harmonic bundles on C [26], that is solutions of the Hitchin equations

FA + R [ϕ,ϕ] = 0,

∂A φ = 0,

∂A φ = 0, (2.3)
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for a unitary connection A of a rank r Hermitian vector bundle E on C and
a section ϕ of End(E) ⊗ KC , with prescribed singularities, and up to gauge
equivalence. We refer the reader to [73] for a more detailed discussion.

In complex structure J0, MH coincides with the moduli space of Higgs
bundles (Eh, φ), where Eh is the holomorphic bundle defined by ∂A and φ
the (1, 0) part of ϕ. In this complex structure the Hitchin fibration realizes
MH as a bundle over B whose fibers are compact complex tori. The exact
metric on MH is smooth after taking into account the quantum corrections.
As a first approximation it arises from the naive dimensional reduction of the
four-dimensional Lagrangian field theory, where the r complex scalars param-
etrize the base B. The scalars parametrizing the torus fibers come from the
holonomies of the four-dimensional gauge fields along S1

R, as well as from dual-
izing the three-dimensional gauge fields into periodic scalars. The smoothness
of the quantum corrected metric is equivalent to the condition that the BPS
degeneracies enjoy the wall-crossing formula [74].

The moduli space MH has a canonical set of Darboux coordinates
{Xγ(u, ζ)} for γ ∈ Γ and (u, ζ) ∈ B × P

1. (We will usually suppress the
dependence from (u; ζ).) They satisfy the twisted group algebra

Xγ Xγ′ = (−1)〈γ,γ′〉 Xγ+γ′ (2.4)

and are piecewise holomorphic on MH in the sense that at fixed ζ ∈ C
∗,

Xγ(u, ζ) the dependence on u is holomorphic with respect to Jζ . They satisfy
the Poisson bracket relation

{Xγ ,Xγ′} = 〈γ, γ′〉Xγ+γ′ (2.5)

induced by the symplectic structure. The coordinates {Xγ(u, ζ)} jump at real
codimension one walls in B ×C

∗. These jumps occur at BPS walls, or walls of
second kind, the loci where

Z(γ′)/ζ ∈ R−, (2.6)

and which can be thought of as rays 
γ′ in the ζ-plane. The effect of crossing
the wall is captured by the transformation

Xγ −→ KΩ(γ′,u)
γ′ (Xγ) (2.7)

expressed in terms of the Kontsevich–Soibelman symplectomorphism

Kγ′(Xγ) = Xγ (1 − Xγ′)〈γ,γ′〉
. (2.8)

2.2. Line Defects

We will discuss line defects which are straight lines in R
1,3, located at the

spatial origin and extended along the time-like direction. We will follow [47] in
the presentation. We will require that such defects preserve a sub-algebra of
the N = 2 supersymmetry algebra labeled by a phase ζ ∈ C

∗, along with so(3)
rotations around the insertion point of the defect, time translations, and the
su(2)R R-symmetry group. For theories which have a Lagrangian description
in a certain region of the moduli space, these line defects admit a set of UV
labels which specify them uniquely. For a given gauge group G, these labels are
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a pair of weights α = (λe, λm) ∈ Λw × Λmw/w, elements of the weight lattice
of g and the weight lattice of the Langlands dual algebra g∗, respectively,
modulo the action of the Weyl group w. For example, supersymmetric Wilson
lines along the path 
 have the familiar form

W (R) = TrR Pexp
∫

�

d3x

(
φ

2ζ
− i A − ζ

φ

2

)
, (2.9)

where R is an irreducible representation of G and in this formula we have
denoted by (φ, φ,A) the bosonic fields in the 4d N = 2 vector multiplet.
Similarly, for a ’t Hooft operator, the boundary conditions consist in defining
a G-bundle over a small linking sphere S2, which are classified by magnetic
weights. For general dyonic charges, the allowed set of labels (λe, λm) is further
restricted by a Dirac-like quantization condition: for any pair (λe, λm) and
(λ′

e, λ
′
m) of line defect charges, we must have [47,75]

〈(λe, λm), (λ′
e, λ

′
m)〉 ∈ Z. (2.10)

For more general field theories, one can assume that such a discrete labeling
exists and takes value in an appropriate lattice; we will denote by LUV the
lattice of UV labels of a given theory.

In the presence of a defect Lζ,α the Hilbert space of states is modified to
HLζ,α

. Line defects form interesting algebraic structures. To begin with, they
can be endowed with an obvious addition operation: the line defect L1 + L2 is
defined as the defect whose correlators are simply the sum of the correlators
of L1 and of L2. More formally, the Hilbert space of the theory in the presence
of the sum of two defects is the direct sum HL1+L2 = HL1 ⊕ HL2 . This allows
us to define a simple line operator, as a line operator which is not the sum of
other line operators.

Similarly, the product structure is defined by inserting two line defects L1

and L2 in the functional integral. Supersymmetry guarantees that the correla-
tors are independent on the relative distance between the defects. Therefore,
by locality, letting them approach each other gives a new, composite defect.
The latter can be expressed in terms of simple line defects. More formally, at
the level of the Hilbert spaces, this procedure implies that

HBPS
Li

⊗ HBPS
Lj

=
⊕

k

N k
ij ⊗ HBPS

Lk
. (2.11)

The presence of the vector spaces N k
ij follows from quantization of the electro-

magnetic field sourced by the defects, seen as infinitely heavy dyonic particles
inserted in the functional integral.

2.3. Framed BPS Degeneracies

As we have mentioned the presence of a line defect modifies the Hilbert space
of the theory. To be more precise, HL,u will depend explicitly on the defect, as
well as on a point of the Coulomb branch u ∈ B. The Hilbert space is graded
by the electromagnetic charge as measured at infinity
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HL,u =
⊕

γ∈ΓL

HL,u,γ . (2.12)

Here ΓL denotes the lattice of charges in the presence of the defect L. This
lattice has generically the form of a torsor for Γ, that is ΓL = Γ + γL, where
〈γL, γ〉 ∈ Z for all γ ∈ Γ. The charge γL does not have to be an element of Γ.
Physically, it can be interpreted as an IR label for the line defect. The charge
γL has the form of a core charge plus a dummy flavor charge; the role of the
latter is to introduce a mass parameter in the central charge associated with
γL. This mass is then send to infinity to obtain a modified BPS bound. After
such a procedure the new BPS bound is

E = Re (Zγ(u)/ζ) , (2.13)

and the quantum states which saturate this bound are called framed BPS
states [47]. As in the case without the defect, we can introduce the framed
protected spin character as a trace over the single-particle BPS Hilbert space

Ω (u,L, γ; q) := TrHBP S
L,u,γ

q2J3(−q)2I3 , (2.14)

defined in terms of an so(3) generator J3 and an suR(2) generator I3. By taking
the q −→ 1 limit of (2.14), one finds

Ω (u,L, γ; q = 1) := TrHBP S
L,u,γ

(−1)2I3 . (2.15)

The no-exotic conjecture states that the protected spin characters receive con-
tributions only from states with trivial suR(2) quantum numbers [47]. In the
absence of exotic states, I3 = 0 identically and Ω (u,L, γ; q = 1) = dimHBPS

L,u,γ

is a nonnegative integer. Such a conjecture has been by now proven in many
cases [71,76]. On the other hand, the q −→ −1 limit yields

Ω (u,L, γ; q = −1) := TrHBP S
L,u,γ

(−1)2J3 , (2.16)

which is an ordinary Witten index and therefore counts the net number of
ground states.

Framed BPS states can be roughly pictured as particles bound to the
defect, separated by a non-vanishing energy gap from the continuum of
unbound states. As the Coulomb branch parameters vary, the gap might close
and a particle halo is free to join the continuum. As a result the protected spin
character jumps at BPS walls, the loci where Zγ(u)/ζ ∈ R−.

One can use the protected spin character to compute the OPE coefficients
of the algebra of line defects from (2.11)

ck
ij(q) = TrN k

ij
q2J3(−q)2I3 . (2.17)

If we assume that no exotics are present, then the suR(2) generator I3 in (2.17)
acts trivially. In particular, this implies that in the q −→ +1 limit

ck
ij(q = 1) = TrN k

ij
(−1)2I3 = dimN k

ij (2.18)

and in particular is manifestly positive. Therefore, the absence of exotics
implies that the coefficients of the OPE are nonnegative integers in the
q −→ +1 limit.
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It is useful to adopt a more geometrical perspective and consider the
framed BPS degeneracies as enumerative invariants of Donaldson–Thomas
type, as in [71]. To do so we model the Hilbert space of states on the cohomol-
ogy of an appropriate moduli space of BPS states

HL,u,γ =
⊕
p,q

Hp,q(MBPS(L, γ;u)). (2.19)

This formula assumes that MBPS(γ;u) can be defined as a smooth variety.
When this is not the case, we assume that analog quantities can be defined.
We can think of MBPS(L, γ;u) as parametrizing stable objects in a certain
category of quiver representations. Continuing with this analogy, the protected
spin character has the form of a refined Donaldson–Thomas invariant [71]

DTref (L, u, γ, q) = Ω(L, u, γ, q) =
∑

p,q,∈Z

(−1)p−q q2p−m hp,q(MBPS(L, γ;u))

(2.20)
where the dependence on m = dimC MBPS(L, γ;u) comes from the Lefschetz
action on cohomology, identified with the action of SU(2)spin. In particular,
the protected spin character can be written as

DTref (L, u, γ, q) = Ω(u,L, γ; q) = q−m χy(MBPS(L, γ;u))|y=q2 , (2.21)

in terms of the χy-genus

χy(MBPS(L, γ;u)) =
∑

p,q∈Z

(−1)p+q yp hp,q(MBPS(L, γ;u)). (2.22)

We can also provide a geometrical interpretation of the q −→ ±1 limits. In
particular when q −→ +1 the protected spin character specializes to the Euler
characteristic

Ω(u,L, γ; q = +1) = χ(MBPS(L, γ;u)). (2.23)

In the q −→ −1 limit the framed BPS degeneracies coincide with the numerical
Donaldson–Thomas invariants

Ω(u,L, γ; q = −1) = DT(MBPS(L, γ;u)). (2.24)

These are the quantities that we will discuss and compute in this paper. We
will often use the notations DT(L, u, γ), or more simply DT(L).

In general, MBPS(L, γ;u) is not a smooth manifold and all of the above
quantities have to be defined appropriately: for example numerical Donaldson–
Thomas invariants can be defined as weighted Euler characteristics [77] or via
localization [66]. However, the above relations are still expected to hold.

2.4. IR Vevs and Core Charges

When we define the theory on R
3 ×S1

R, a line defect becomes a local operator.
Since a defect Lζ,α preserves a supersymmetry sub-algebra parametrized by the
phase ζ, its vacuum expectation value defines a function on the moduli space
MH which is holomorphic in complex structure Jζ . In particular, there exists
a distinguished set of Jζ-holomorphic functions on MH which correspond to
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simple line defects. When we compactify the direction where the line defect is
stretched into an S1

R, the path integral turns into a trace

〈Lζ,α〉q,u = TrHL,u
(−1)F e −2πRH(−q)2J3+2I3 e i θ·Q σ(Q), (2.25)

where H is the Hamiltonian and the factor e i θ·Q σ(Q) is required to properly
define boundary conditions for both electric and magnetic defects, as discussed
in [47].

The q −→ −1 limit of (2.25) reduces to [47,73]

〈Lζ,α〉q=−1,u =
∑

γ∈ΓL

Ω(u,L, γ; q = −1) Xγ . (2.26)

This equation gives a direct meaning to the Darboux coordinates Xγ as vevs
of IR line operators, Xγ(u, ζ) ≡ 〈LIR

ζ,γ〉q=−1,u. These functions are not simple
line defect of an abelian theory, and they receive an infinite series of non-
perturbative corrections from the four-dimensional BPS states running around
the S1

R. The functions Xγ are discontinuous across BPS walls, with jumps given
by (2.7). On the other hand, 〈Lζ,α〉q=−1,u is a continuous function of (u, ζ), as
no phase transition is present in the UV. Therefore, consistency requires that
the framed degeneracies Ω(u,L, γ; q = −1) have discontinuities which precisely
cancel those of the Xγ . Physically, such jumps describe a process in which a
framed BPS bound state forms or decays, by capturing or emitting a vanilla
BPS particle.

The IR line operators Xγ are Jζ-holomorphic functions on MH and in
particular have the following asymptotic behavior for ζ −→ 0

Xγ ∼ cγ e πR
Zγ
ζ , (2.27)

where cγ is a constant independent of ζ. Therefore, a line defect vev as in
(2.26) will have a similar expansion. The charge γc determined by the smallest
term defines the core charge of the defect. Physically, it can be interpreted as
the ground state of the defect. Note that as we move in the (ζ, u) space the
core charge will jump, according to the discontinuities of the functions Xγ and
of the framed degeneracies Ω(u,L, γ; q = −1).

It is also useful to introduce untwisted coordinates Yγ , so that

Yγ Yγ′ = Yγ+γ′ . (2.28)

These coordinates describe locally a space M̃H and up to a quadratic refine-
ment can be identified with the Darboux coordinates X on MH , establishing
a conjectural isomorphism between MH and M̃H . We will assume that indeed
these spaces are isomorphic. The isomorphism between the two sets of coordi-
nates is given by a quadratic refinement, a map

σ:Γ −→ {±1} (2.29)

such that
σ(γ)σ(γ′) = (−1)〈γ,γ′〉 σ(γ + γ′). (2.30)
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In the following we will identify Yγ with σ(γ)Xγ with the choice σ(γ) =
(−1)J3+I3 [47]. With these choices, the transformation law for the coordi-
nates Yγ upon crossing the BPS wall for a single hypermultiplet with charge
γ′ becomes a cluster transformation

Yγ −→ Yγ(1 + Yγ′)〈γ,γ′〉. (2.31)

Such a transformation endows MH locally with the structure of a cluster
variety.

The coordinates Xγ and Yγ on the moduli space obey the TBA-like equa-
tions [74]

log Yγ(ζ) =
R

ζ
Zγ + i θγ + RζZγ

+
∑
γ′

Ω(γ′)
〈γ, γ′〉
4π i

∫
�γ′

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log (1 − σ(γ′)Yγ′(ζ ′))

(2.32)

in terms of the degeneracies of stable BPS particles Ω(γ). Above θ parametrizes
the holonomies of the gauge field along S1

R. The discontinuities of these coor-
dinates at the BPS rays are the reason certain dynamical systems play a role
in [45].

The reason why we are discussing both X and Y coordinates is that in this
paper we will compute the vevs 〈Lζ,α〉q=−1,u, while in [45] the uses of cluster
algebra techniques naturally led to results for the q −→ +1 limit of the same
quantity. To compare the result of this paper with [45] we simply need to pass
to the untwisted coordinates Yγ . The twisted vevs 〈Lζ,α〉q=−1,u contain more
information since the minus signs in the BPS invariants Ω(u,L, γ; q = −1)
keep track of the spin of the bound state and can, for example, distinguish a
vector multiplet for which Ω(u,L, γ; q = −1) = −2 from two hypermultiplets,
for which Ω(u,L, γ; q = −1) = +2.

To summarize, in the IR the defect splits as a sum of elementary line
defects with coefficients given by the framed degeneracies. At a certain point
(u, ζ) ∈ B × C

∗ the state with the smallest energy Re (Zγ/ζ) can be seen as
the defect ground state. Physically, the defect appears to an IR observer as an
infinitely massive dyon, surrounded by a cloud of (in general mutually non-
local) halos. The ground state charge is the core charge γc which plays the
role of IR label for the defect. As the central charge depends explicitly on the
Coulomb branch parameters, the core charge can jump as the ground state
becomes degenerate. The condition for this to happen is that another state in
the framed spectrum has its energy lowered to that of the core charge. This can
happen at loci where Re (Zγ1/ζ) = Re (Zγ2/ζ), or equivalently when Zγ/ζ ∈
− iR+ with γ = γ1 − γ2. The latter condition defines anti-walls. Crossing an
anti-wall corresponding to a charge γ, the core charge γc transforms as

γc′ = γc + [〈γ, γc〉]+ γ, (2.33)

where γc′ is the ground state charge at the other side of the wall [47].
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Therefore, to any defect, labeled in the UV by a α ∈ Λw × Λmw/w, we
can associate an IR label γc, uniquely defined modulo wall crossings at the
anti-walls. This map

RG(·, ζ, u):LUV −→ Γ (2.34)

was called defect renormalization group flow in [48]. This map was studied
for complete theories, where it appears to be invertible. In other words, a
line defect in the UV can be completely identified by its IR decomposition
into elementary line defects. It is likely that this property holds in general;
possibly at the price of restricting the variables (u, ζ) ∈ B×C

∗ to the physically
accessible region if the theory is not complete. In the following we will also label
defects by their core charge, i.e., as Lζ,γc

, whenever we want to emphasize it.

3. BPS Quivers and Representation Theory

For a large class of four-dimensional N = 2 supersymmetric field theories, the
spectrum of BPS states can be described in terms of quivers, at least in certain
chambers of their quantum moduli space. In this case we say that the theory
has the quiver property [5–8].

Recall that a quiver is a finite directed graph, consisting in the quadrupole
Q = (Q0, Q1, t, s). Here Q0 and Q1 are two finite sets which represents
the nodes and the arrows of the quiver, respectively. The two linear maps
s, t : Q1 −→ Q0 specify the starting node s(a) ∈ Q0 and the ending node
t(a) ∈ Q0 of every arrow. For every quiver Q we can define its algebra of paths
CQ as the algebra whose elements are the arrows and where multiplication
is given by the concatenation of paths whenever possible. To a quiver we can
associate a superpotential W :Q1 −→ CQ which has the form of a sum of
cyclic monomials. On such a function we can define a formal derivative ∂a for
each a ∈ Q1, which cyclically permutes the elements of a monomial until a is
at the first position and then deletes it, or gives zero if a does not appear in
the monomial. The Jacobian algebra JW = CQ/〈∂ W〉 is the quotient of CQ
by the two-sided ideal of relations R = 〈∂a W | a ∈ Q1〉.

When a theory has the quiver property, one can find a basis {ei} of the
lattice of charges Γ corresponding to stable hypermultiplets, and whose central
charges Zei

(u) lie in the upper half plane hθ = e− i θh. Furthermore, we require
this basis to be positive, that is for every BPS state of charge γ, we can write
γ =

∑
i niei where all the ni are positive (or negative) integers. These condi-

tions are typically met at a point p of the parameter space P and explicitly
depend on (p, θ). Out of this basis we construct the BPS quiver Qp,θ by label-
ing the vertices with the basis elements {ei} and connecting two vertices ei and
ej by a (signed) number of arrows given by the Dirac–Schwinger–Zwanziger
pairing 〈ei, ej〉. We call Bij = 〈ei, ej〉 the adjacency matrix of the quiver. At
the same point p ∈ P two different bases {ei} and {e′} which obey these prop-
erties are pct equivalent. Quivers Qp,θ associated with pct equivalent basis
are related by sequences of quiver mutations. An elementary quiver mutation
μ±

ê is defined as
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e′ ≡ μ±
ê (e) ≡

{
−e if e = ê

e + max(0,±〈ê, e〉)ê otherwise,
(3.1)

or equivalently in terms of the adjacency matrix

B′
ij =

{{
−Bij if i = k or j = k

Bij + sgn(Bik)[Bik Bkj ]+ otherwise.
(3.2)

Consider a theory with the quiver property. Then the low-energy dynam-
ics of a particle can be described by an effective matrix quantum mechanics
based on the quiver [5–8]. Such a model has four supercharges, so that sta-
ble BPS states correspond to its supersymmetric ground states. Such ground
states can be elegantly described in terms of stable quiver representations.1

Quiver representations are defined by the assignment of a vector space Vi

to each node i ∈ Q0 and morphisms Ba : Vs(a) −→ Vt(a), for each arrow
a ∈ Q1. For example the aforementioned basis Ep,θ of stable hypermulti-
plets corresponds to simple quiver representations: an element ei of the basis
is the representation where all the maps are set to zero and only one one-
dimensional vector space Vi is assigned to a single node i. We will denote
by rep(Q) the category of representations of the quiver Q. When Q has a
superpotential W, we require the representation morphisms to be compati-
ble with the relations ∂ W = 0 and denote the category of representation of
the quiver with superpotential (Q,W) by rep(Q,W). In many occasions, as
it will be the case in this paper, it is convenient to switch from the language
of quiver representations to the language of left modules over the algebra
JW . The two perspectives are equivalent, and the category of left JW -
modules JW −mod is equivalent to rep(Q,W). Finally, in physical applications
we are always interested in isomorphism classes of representations under the
action of

∏
i∈Q0

GL(dimC Vi,C).
A state with charge γ =

∑
i di ei with all di ∈ Z+ corresponds to a

representation with dimension vector d with components di = dimC Vi.
Finally, the stability condition is determined by the central charge. At

fixed u the action of the central charge Z(u) on the lattice of charges Γ induces
an action on the topological K-theory group Z(u) : K(rep(Q,W)) −→ C. We
say that a BPS state with charge γr corresponding to a representation R ∈
rep(Q,W) is stable (semi-stable) if for every proper sub-representation S ∈
rep(Q,W), associated with a BPS state with charge γs, one has arg Zγs

(u) <
arg Zγr

(u) (arg Zγs
≤ arg Zγr

).
When the spectrum of BPS states of a model can be described in terms of

quiver representation theory, the same is true for framed BPS states [46,48,71].
When a model is coupled to a line defect Lζ,α the low-energy description
of framed BPS states is captured by an effective quantum mechanics which
describes the low-energy dynamics of BPS states coupled to an infinitely mas-
sive dyonic particle, at a certain point in the Coulomb branch. The dyonic

1 More precisely, one trades the F-term and D-term equations of the matrix quantum
mechanics, modulo gauge transformations, for the F-terms equations modulo complexified
gauge transformations with an extra stability condition.
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particle has core charge γc, which, however, depends on the point in B. The
core charge is determined by the renormalization group map RG. At the level
of the quiver, this coupling is described by the framing. The framed BPS
quiver is defined as follows: first we extend the lattice of charges Γ to the
torsor ΓL = Γ + γL, where 〈γL, γ〉 ∈ Z for all γ ∈ Γ. Then we add to the
quiver Qθ,p an extra node ef where the charge γf is the core charge of the
defect at p ∈ P, and connect it to the rest of the quiver via the Dirac pairing.
We denote by Qθ,p[f ] or simply Q[f ] the resulting framed quiver. The central
charge function is extended to Q[f ] by linearity. The superpotential for Q[f ]
has now two terms

W ≡ WQ + WL, (3.3)

where WQ is the superpotential of Q and WL contains arrows that are con-
nected to the framing node f . Note that in general, W will not be the same
superpotential obtained by considering Q[f ] as an unframed quiver and then
sending the mass of a BPS particle to infinity. The reason for this is that when
deriving a BPS quiver one has already taken a Wilsonian limit. After such a
limit is taken, heavy degrees of freedom have been integrated out and it is not
anymore possible to send the mass of any state to infinity. In general, WL has
to be determined by other methods. A correct microscopic procedure would be
first to engineer the model with a collection of D-branes on a local threefold;
then to take the size of a cycle corresponding to the core charge to be very
large, in an appropriate scaling limit; and only as the final step to take the
Wilsonian limit to derive the low-energy effective quantum mechanics [71]. In
this paper we will determine WL indirectly. Furthermore, since we will employ
localization techniques within the context of topological models, we will always
have the freedom to change the relevant actions by BRST-exact terms in order
to choose a more convenient form.

Consider now the special case of (2.26) when the line defect is a Wilson
line Wζ,k in the representation k of an asymptotically free theory based on a
gauge group G. In the Coulomb branch G is broken to its maximal torus and
the representation spaces of k will decompose into their weight spaces. We can
therefore always pick one of the weights of the representation k as IR label.
Indeed, in this situation the core charge can be identified with the highest
weight of the representation k [47,53]. Gauge invariance guarantees that all
weights should then appear in the expansion (2.26), as color states of the core
charge:

〈Wζ,k〉 =
∑

wweight

Ω(u,W, γ; q = −1) Xe·B−1·w + quantum effects. (3.4)

Here e represents the standard basis of Rdimk and the sums run over all the
weight vectors w. The combination e ·B−1 ·w expresses elements of the charge
lattice Γ in terms of the weights of the representation k and the BPS quiver
adjacency matrix B. A more detailed description is in [45]. The extra terms
represent quantum effects which are not visible from the perturbative limit.
Physically, they correspond to the fact that the line operators in the Coulomb
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branch are not simply those of an abelian theory, but receive an infinite series
of quantum corrections from ordinary BPS particles.

4. Framed BPS Degeneracies from Equivariant Localization

In this section we will set up equivariant localization techniques to com-
pute the framed BPS degeneracies Ω(L, u, γ; q = −1) corresponding to line
defects. In the next sections we will see explicitly how these techniques can
be used in practice in various cases. We will use cyclic and co-cyclic stabil-
ity conditions to define appropriate moduli spaces with a natural toric action
and show how the framed BPS degeneracies can be computed directly using
localization with respect to this toric action. These techniques are rooted in
the analysis of [78,79] which pioneered localization in the context of topo-
logical quantum mechanics, and have been widely used in the mathematics
[66,67] and physics [68–70] literature to compute enumerative invariants of
Donaldson–Thomas type on non-commutative resolutions of Calabi–Yau sin-
gularities. These invariants are typically formulated in terms of framed quivers
associated with the singularities. In that setup the framing nodes represent
infinitely massive D6 branes wrapping the local threefold and the enumer-
ative invariants count bound states with lower-dimensional light branes on
compactly supported cycles. This is similar to the situation we have with line
defects: the framing node corresponds to an infinitely heavy particle coupled
to lighter BPS states. Indeed, our analysis will support the conclusions of [71]
that framed BPS degeneracies can be identified with the non-commutative
Donaldson–Thomas invariants of [66].

In this section we will discuss our formalism for the particular case of an
SU(2) model. We will, however, set up the discussion in more general terms,
such that it can be extended straightforwardly to more general framed quivers.

4.1. Generalities

We begin by discussing some general qualitative ideas about the localization
computation, which we will make more precise in the remaining of this section.
Techniques of localization are by now commonly used in quantum field theory
after the seminal works [80–82]. We refer the reader to the reviews [83–86] for
a more in-depth discussion. The expert reader can safely skip this subsection.

Our task is to study the ground states of a certain supersymmetric quiver
quantum mechanics associated with a framed BPS quiver. This in practice
entails studying the moduli space of solutions of the D-term and F-term equa-
tions modulo gauge transformations, and its cohomology. In these situations it
is usually convenient to study a closely related moduli space, obtained by only
imposing the F-term equations and taking the quotient respect to complexi-
fied gauge transformations. Upon imposing a suitable stability condition, the
moduli space obtained in this way coincides with the moduli space of physical
vacua.

This approach is particularly convenient when dealing with quiver quan-
tum mechanics, since after imposing the F-terms the relevant moduli space is



Vol. 19 (2018) Quivers, Line Defects and Framed BPS Invariants 15

the moduli space of quiver representations, or modules over the quiver Jacobian
algebra, a well-studied object. For the problem at hand, there are two partic-
ularly natural stability conditions, which correspond to cyclic and co-cyclic
modules [48]. We will usually choose cyclic stability conditions, for which the
moduli space of vacua will be represented by the moduli space Md(Q,W ; v)
of cyclic modules over the Jacobian algebra CQ/∂ W, generated by a framing
vector v.

Note that since we are only interested in the quantum mechanics ground
states, one can equivalently perform a topological twist and study the partition
function of the resulting topological quantum mechanics [78,79]. This prob-
lem can be studied using techniques of equivariant localization. In this paper
we will use localization techniques to compute BPS invariants directly; it is,
however, useful to have this quantum mechanics as a concrete physical model
in mind. We are interested in counting four-dimensional BPS states which
correspond to ground states of a supersymmetric quiver quantum mechanics
with four supercharges. The problem of counting ground states can be solved
by going to the topologically twisted sector of the quantum mechanics; equiv-
alently, one can construct directly a topological quiver quantum mechanics
whose partition function computes the relevant index of bound states, using
the formalism of [78,79]. Here we review this formalism, following [69,70] in the
exposition. Since we will not use this formalism we will be rather schematic.
One starts with a set of F-term and D-term equations �E = �0. Such equations
will depend on complex fields, which we denote collectively by Xa, associated
with the arrows of the quivers. One forms multiplets (Xa,Ψa) with BRST
transformations

QXa = Ψa, and QΨa = [φk,Xa]. (4.1)

Geometrically, we can think of the Ψa as differentials on the moduli space
parametrized by the Xa. In the quiver setting the fields Xa are really
morphisms Xa ∈ Hom(Vs(a), Vt(a)) associated with the arrows, while the
gauge parameters φk are GL(Vk,C)-valued and associated with the nodes.
The linearized gauge transformation [φk,Xa] should be properly written as
φs(a) Xa − Xa φt(a). We will avoid spelling out these details and simply write
[φk,Xa] for the gauge transformations, confident that no confusion can arise.
To this set of fields we add the Fermi multiplet (�χ, �H ) of anti-ghosts and
auxiliary fields with the same quantum numbers as the equations �E . In case
some of the equations are overdetermined, additional multiplets with opposite
statistics have to be added to avoid overcounting of degrees of freedom. In this
case there exists an additional set Ẽ of “relations between the relations” and
the corresponding multiplets.2 By abuse of notation we will still denote the
set of all these equations and multiplets by �E and (�χ, �H ). Finally, the gauge
multiplets (φk, φk, ηk) have to be added in order to close the BRST algebra.

2 As we will see momentarily, this produces a deformation complex with four terms. It is
sometime convenient to avoid dealing with relations between the relations and use a quasi-
isomorphic three-term complex.
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We will work equivariantly with respect to a natural torus T generated
by parameters εa, which rescales the fields Xa → Xa e i εa . This modifies the
BRST differential to an equivariant differential

Qε Xa = Ψa, and Qε Ψa = [φ,Xa] + εa Xa. (4.2)

These transformations can be extended to the Fermi multiplets by keeping
track of the transformations of the equations �E under T, while the gauge
multiplet transformations are unchanged. In particular, let us denote by εc,i

the toric weights associated with the transformation of the F-term equations,
which are just linear combinations of the parameters εa. The quantum mechan-
ics constructed in this fashion is cohomological, and its action

S = QεTr
(
η
[
φ, φ

]− �χ · �E + g �χ · �H + Ψi

[
Xi, φ

])
(4.3)

a BRST variation. Note that this action can be modified by adding Qε-exact
terms. For example, we can chose

t1 Qε

∑
r

Tr χr φ + t2 QεTr
(
Xi Ψ†

i − X†
i Ψi

)
, (4.4)

where χr are the anti-ghosts associated with the D-term equations, one for each
node of the quiver. Since the theory is cohomological, it does not depend on the
three parameters g, t1, and t2 which only enter in Qε-exact terms. To evaluate
the path integral one firstly diagonalizes all the gauge parameters φk producing
a set of Vandermonde determinants. Then can now evaluate the path integral
in three steps, taking first the t1 → ∞ limit, then the limiting g → ∞, and
finally sending t2 → ∞. These limits allow to integrate out fields and produce
ratios of determinants, depending on the bosonic or fermionic statistics of the
field which is integrated out. The result is a contour integral over the Cartan
sub-algebras of the gauge parameters φk, which has the structure∫

C

∏
k

dφk

∏
g (ad φ)g

∏
r (ad φ + ε)r∏

f (ad φ + ε)f
∏

rr (ad φ + ε)rr
. (4.5)

In this notation the products are as follows: g over the gauge parameters
associated with the nodes of the quiver, f over the fields associated over the
arrows of the quiver, e over the relations of the quiver, and rr over the dou-
bly determined relations, if any. Furthermore, each determinant is constructed
from the gauge and equivariant transformations of the field which was inte-
grated out. For example, for a field Xa ∈ Hom(Vs(a), Vt(a)) which transforms
as Xa → Xa e i εa , the notation (ad φ + ε)f stands for the operator which acts
on Xa as φs(a) Xa −Xa φt(a) + εa Xa. Similarly, for all the other determinants.
Finally, the contour has to be chosen appropriately to select the fixed points
of the Qε differential. This derivation has been very sketchy, and we refer the
reader to [69,70] for a lengthier discussion.

In the rest of the paper we will skip the cohomological quiver quantum
mechanics formalism and evaluate equivariant integrals directly. Indeed, what
the cohomological formalism constructs is a (Mathai–Quillen) representative
of a certain equivariant class over the moduli space, see [86] for a review. This
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class is a characteristic class of the obstruction bundle, whose sections are
the F-term relations. Roughly speaking, equivariant localization reduces the
computations of integrals over a moduli space upon which an algebraic group
acts, to a simpler integration over sub-varieties which are fixed by the action
of said group. In the simplest and most useful case, the fixed locus consists of
isolated points. In our applications the group acting on our moduli spaces will
always be a torus T. The Atiyah–Bott localization formula then states that

∫
M

α =
∑

f∈MT

α|f
eulT (TfM)

(4.6)

for any equivariant cohomology class α. The integral of α over a smooth variety
M is expressed as a sum over the fixed points f in the fixed point locus MT.
Each fixed point contributes with the class α evaluated at the fixed point, and
each contribution is weighted by the Euler class of the tangent space at the
fixed point eulT (TfM). The usefulness of the formula is that, no matter how
complicated are the physical configurations parametrized by M, only certain
configurations fixed by the toric action will contribute to the equivariant inte-
gral. Therefore, integrals over a moduli space M are in principle computable
once the fixed point configurations are classified, and the local structure of the
moduli space around each fixed point TfM is known. This can be done by
constructing a local model of the tangent space around each fixed point by lin-
earizing the moduli space equations. The information about the contribution
of each fixed point is then elegantly encoded in a deformation complex, adopt-
ing the approach of [87]. Later on, we will see how this formalism applies to the
computation of BPS indices associated with framed quivers. The computation
of BPS indices will be greatly simplified and reduced to a simple combinatorial
problem.

In many cases physical moduli spaces M are not smooth varieties; how-
ever, if they are smooth “generically” and have a well-defined virtual tangent
space, a stronger version of (4.6) holds, the virtual localization formula [88].
This is the version of equivariant integration that we will use to compute BPS
invariants. The main reason is that the corresponding virtual counts are what
typically enters in physics as BPS indices. In simple terms our formalism will
be a simple extension of the well-known localization computations for BPS
invariants of the Hilbert scheme of points Hilbn(C3). We will now discuss in
more detail our formalism. The reader who wishes to see more clearly the
physical counterpart of the virtual formalism is encouraged to think in terms
of topological quiver quantum mechanics.

4.2. Moduli Spaces and Framed Degeneracies

In the following we will freely switch between representations of the quiver Q
and finitely generated left JW -modules. To begin with, our quiver Q will be
the Kronecker quiver, framed by an extra node fn connected to the quiver
with n − 1 arrows for each node:
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•
B1,...,Bn−1

��
fn

C1,...,Cn−1 �� ◦

Ã

��

A

��

(4.7)

We will denote this quiver as Q[fn] or just Q[n], and its superpotential by W.
Later on, we will consider more general quivers. Introduce the representation
space

Rep(Q[fn]) =
⊕

a∈Q1[fn]

Hom(Vs(a), Vt(a))

=
⊕

a∈Q1

Hom(Vs(a), Vt(a)) ⊕ Hom(V•, Vf )⊕n−1 ⊕ Hom(Vf , V◦)⊕n−1,

(4.8)

where Vf = C will conventionally denote the representation space supported at
the framing node, which will always be one-dimensional. We have introduced
the notation V• and V◦ to denote the representation spaces based at the two
nodes •, ◦ of the quiver. We will employ this notation in the rest of the paper.

Assume we are given a superpotential W. We define Rep(Q[fn],W) as
the subspace obtained by imposing the relations ∂ W = 0. The moduli space
of quiver representations of dimension d is the smooth Artin stack

Md(Q[fn]) = [Repd(Q[fn],W)/GL(d◦,C) × GL(d•,C)] , (4.9)

where Repd(Q[fn],W) denotes the representation space with fixed dimension
vector and d◦ = dimC V◦ and d• = dimC V•. The gauge group GL(d◦,C) ×
GL(d•,C) acts by basis rotation at each node, and the superpotential W
is gauge invariant. We are interested in extracting Donaldson–Thomas-type
invariants from these moduli spaces. To do so we need to impose a stability
condition which selects the stable framed BPS states. Note that mathemati-
cally we expect framed moduli spaces to be better behaved than their unframed
counterparts, since a generic enough framing condition will not be preserved
by the automorphisms of the original moduli space.

In the following we will impose cyclic and co-cyclic stability conditions.3

These two choices are particularly natural and correspond to the fact that the
phase of the central charge of the defect is much bigger, or much smaller, than
that of all the other particles, while keeping the mass of the defect much bigger
than all the other masses [48]. These two choices greatly simplify the stability
analysis. A representation R ∈ rep(Q[fn],W) is cyclic if the only non-trivial

3 Recall that a representation is cyclic if it admits a cyclic vector. Namely, let V be a
representation for an algebra A. Then a vector v ∈ V is called cyclic if V = A v, and V
is called a cyclic representation. Cyclic representations are naturally associated with ideals.
Indeed, a representation V is cyclic if and only if it is of the form V = A/I, where I is a left
ideal of A. Similar arguments hold for co-cyclic representations. We refer the reader to the

text [89] for more details.



Vol. 19 (2018) Quivers, Line Defects and Framed BPS Invariants 19

sub-representation which has non-vanishing support at the framing node Vf

is R itself. Similarly, a representation R ∈ rep(Q[fn],W) is co-cyclic if all the
non-trivial sub-representations of R have non-vanishing support at the framing
node Vf . Note that the two notions are interchanged upon opposing the quiver.

Equivalently, we can talk about cyclic and co-cyclic modules of JW . In
this case a module M is a cyclic left JW -module if it is generated by a vector
v ∈ M . We will be interested in the case where the cyclic module is based at
a certain vertex of the quiver, that is v ∈ ei M , with ei an idempotent of the
Jacobian algebra JW of Q[fn]. In this case the relevant representation space
is Rep(Q[fn]; vk), defined as the sub-scheme of Rep(Q[fn]) which consists of
modules generated by the vector vk ∈ Vk, with k ∈ Q0[fn]. In the same way
Rep(Q[fn],W; vk) denotes the sub-scheme of Rep(Q[fn]; vk) cut out by the F-
term equations ∂ W = 0. Similarly, a co-cyclic module can be characterized by
the property that there exists a simple sub-module N of M which is contained
in every nonzero sub-module of M (for example, see [89, Thm 14.8]). We will
adopt a more practical view of co-cyclic modules and simply regard them as
cyclic modules of the opposite quiver (Q[fn])op.

Note that in general, we will have more than one cyclic vector. For exam-
ple, if we pick a vector vf ∈ Vf , all vectors of the form Ci vf = v(i) ∈ V◦
can be used to generate cyclic modules, as in [90]. Note that here Ci are fixed
framing morphisms. To be precise we should therefore speak of cyclic mod-
ules generated by a collection of fixed distinct vectors {v(i)} determined by
the framing. To avoid cluttering the notation, we will loosely speak of cyclic
modules generated by vf ∈ Vf , hoping that this will cause no confusion.

The relevant moduli space is now the moduli space of cyclic modules
M(c)

δ (Q[fn], v) ⊂ Mδ(Q[fn]), defined by the condition that each module is
generated by a vector v ∈ Vf with fixed framing morphisms, or the moduli
space of co-cyclic modules M(cc)

δ (Q[fn], v) ⊂ Mδ(Q[fn]). The dimension vec-
tor δ is of the form δ = (1,d), which corresponds to the condition that the
vector space Vf at the framing node is always one-dimensional. Physically, this
corresponds to the fact that the ground state of the defect can be thought of
as an infinitely massive dyon, in a certain region of the moduli space.

We will also use the shorthand notation M(c)
d and M(cc)

d for these mod-
uli spaces. Note that this is slightly different from the definition used in the
quiver literature [66,67], for which cyclic modules are modules of the unframed
quiver Q together with a morphism from the framing node to a node of Q.
We will argue later on that these two definitions are equivalent, thanks to the
constraint that dimVf = 1 for a line defect. From our perspective fixing a
vector within the framing node or its image in the unframed quiver is merely a
convenient notational choice. The reason we prefer this notation is that often
in our problems the arrows starting from and ending at the framing node will
be constrained by superpotential terms.

We will interpret the degeneracies of framed BPS states as non-
commutative Donaldson–Thomas invariants associated with these moduli
spaces, for example defined as weighted topological Euler characteristics [77]



20 M. Cirafici Ann. Henri Poincaré

of these moduli spaces. This is physically natural and expected from the prop-
erties of D-brane bound states on local toric Calabi–Yaus, where in the non-
commutative crepant resolution chamber the infinitely massive D6 brane wrap-
ping the threefold is modeled as a framing node [68–71,95–98]. For example,
we can define BPS invariants by integration over the moduli space of cyclic
modules as

Ω(u,Lζ,α, γ, q = −1) = DT
(c)
d (Lζ,α) = χ(M(c)

d (Q[fn], v), νA)

= (−1)dim TM(c)
d (Q[fn],v)χ(M(c)

d (Q[fn], v)), (4.10)

where γ =
∑

i∈Q0[fn] ei δi = ef +
∑

i∈Q0
ei di and ef is the core charge of the

defect. Similarly, for co-cyclic modules. Here νA is a canonical constructible
function [77]. Note that the indices (4.10) contain much more information
than just the Euler characteristics of the moduli spaces, which is at the origin
of their intricate wall-crossing behavior. Out of these enumerative invariants,
we will construct the generating functions

〈Lζ,α〉q=−1 =
∑

d=(d◦,d•)

DT
(c)
d (Lζ,α) Xef+d◦ e◦+d• e• . (4.11)

We will compute the framed degeneracies using equivariant virtual localization
to integrate over the moduli spaces (see [92, Section 3.5] for a review of this
approach). This is a two-step procedure: firstly we have to define an appropri-
ate toric action on the moduli space and classify the fixed points; secondly by
studying the local structure of the moduli space around each fixed point, we
can use the localization formula to compute (4.10).

4.3. Toric Action

As a working model, we will use the point of view of the supersymmetric
quantum mechanics associated with the line defect, appropriately twisted so
that it localizes onto its ground states [78,79]. From the quantum mechanics
perspective there is a natural toric action, which rescales each field in such a
way that the F-term relations are preserved. In other words we have a flavor
torus TF = (C∗)|Q1[fn]| which rescales the arrows and a sub-torus TF, ∂W ⊂ TF

which preserves the ∂ W = 0 relations. Note that this torus acts on the moduli
spaces Mc

d since these are constructed using the F-term relations. Part of
this toric action is, however, induced by gauge transformations; the gauge
group GL(d0,C) × GL(d1,C) contains a gauge torus TG = (C∗)2. An element
(μ1, μ2) ∈ (C∗)2 will act on a map Xa : Vt(a) −→ Vh(a) as μ1 Xa μ−1

2 . The
induced action is, however, just C

∗ = (C∗)2/C∗, since diagonal elements act
trivially. We will take the torus action to be TW = TF, ∂W/C∗.

To be definite assume a cyclic stability condition. As a working example
it is useful to keep in mind the quiver Q[f2] which describes a Wilson line
in the fundamental representation of SU(2). We take as superpotential W =
BAC − BÃC. The ∂ W = 0 relations are
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rA rÃ : CB = 0

rB : AC − ÃC = 0

rC : BA − BÃ = 0. (4.12)

Also note the following relations between the relations (4.12)

rr• : −ArA + Ã rÃ + rB B = 0

rr◦ : −rA A + rÃÃ + C rC = 0. (4.13)

The torus TF,∂ W acts on a quantum mechanics field X as

X −→ e i εX X, (4.14)

where compatibility with the F-term equations (4.12) requires εA = εÃ. A fixed
point is a field configuration such that the toric action can be compensated
by a gauge transformation (a change of basis in the representation spaces).
As we have remarked before part of the toric action is induced by diagonal
gauge transformations. For example, such a transformation would rescale all
the arrows between ◦ and • by a factor λ1 = g′

◦(g
′
•)

−1, where both g′
◦ and g′

• are
diagonal and distinct, and the arrows connecting the framing node by (g′

◦)
−1

or g′
•. For convenience we can “partially gauge fix,” by imposing an additional

condition on the toric weights, without altering the fixed points classification.
The toric action of TW is obtained by imposing this additional condition; we
can choose for example to impose εA +εB +εC = εÃ +εB +εC = 0 which leaves
the superpotential invariant. In our case, due to the cyclic stability condition
the arrow labeled by B can be effectively removed from the analysis. In the
following we will give a general argument why this is the case for the quivers
under consideration, based on the physical requirement that dimVf = 1, which
constraints the allowed toric fixed points.

4.4. Fixed Points and Pyramid Partitions

The main use of localization techniques is that they reduce the problem of com-
puting enumerative invariants to a simple combinatorial problem. Enumerative
invariants associated with moduli spaces of cyclic modules are well studied in
the literature using pyramid partitions [66], dimer models [68], plane partitions
[69,70,99], and techniques from algebraic topology [100]. In the following we
will adopt the prescription of [66] and use pyramid partitions to classify toric
fixed points. While we will focus on our example given by (4.7), we will discuss
how the classification of fixed points works in quite some generality, so that
we can apply it word by word to more general quivers.

Cyclic modules over JW = CQ/∂ W are generated by a vector v ∈ Vf .
Denote by vk ∈ Vk its image in Q. In our example at hand vk is based at V◦ and
has the form Ci v for some morphism Ci. Since dimVf = 1, we can pick a basis
of Vf consisting only of the vector v. Stable states correspond to cyclic modules,
and therefore to set up the localization formalism we need to characterize the
fixed point set Mc

d(Q[f ], v)TW , which corresponds to toric invariant cyclic
modules. Equivalently, we can reason in terms of ideals, following [66]. For
a cyclic module M , we have a canonical map JW −→ M which sends an
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element a ∈ JW to a v. We will denote this map by v. Then to the module
M we can associate the annihilator of the cyclic generator, IM = ker v. This
is an ideal and is generally of the form IM = If ⊕⊕j 
=k Pj where the Pj are
projective modules based at any node but f and k, and If is an ideal based
at the framing node f (in our example If = I◦v where I◦ is an ideal based
on ◦). The projective modules Pj will play only a passive role in the following
and will be generically omitted. Since cyclic modules M are in one-to-one
correspondence with ideals IM , we can classify toric fixed points in Mc

d by
looking at toric fixed ideals.

The generators of If naturally split into path algebra elements which
have the same starting point and the same endpoint. On all these paths the
gauge torus will act by multiplication of the same constant diagonal matrix.
Therefore, the covering torus TF,∂W also acts on the ideals and is enough to
classify fixed points [66]. In other words there is a one-to-one correspondence
between TW -fixed points in Mc

d and TF,∂W -fixed ideals If . In the following
we will switch freely between the two. Generators of a TF,∂W -fixed ideal must
necessarily have a definite weight under the TF,∂W action. Furthermore, a
TF,∂W -fixed ideal If is generated by monomials, eigenvectors of TF,∂W . Recall
that fixed points are such that the toric action can be compensated by a gauge
transformation. Therefore, a TF,∂W -fixed ideal If will be generated by linear
combinations of path algebra monomials with the same toric weight. For the
quivers at hand this can be verified explicitly by direct inspection, listing all
the path algebra monomials with the same TF,∂W weight. The latter give the
set of vectors

{v, C v,AC v, ÃC v, . . .} ∈ M (4.15)
which span the toric fixed module M . However, not all these vectors will be
linearly independent, but some of them will be identified (or set to zero) by the
Jacobian algebra relations. Since If is a monomial ideal, after imposing these
relations we are left with a set of linearly independent vectors (for example by
picking one representative for each equivalent class determined by ∂ W = 0)
and form a finite-dimensional basis for M . Note that in general, this will not
be true for ideals which are not TF,∂W -fixed.

Remark. Note that in principle we could consider vectors of the form B AC v ∈
Vf . By the above argument this can be a vector in a toric fixed module only if it
is linearly independent from the vector v ∈ Vf , since they have different TF,∂W
weights.4 In other words, while modules where B AC v and v are two parallel
vectors will generically be present within the moduli space, they drop out of
the localization formula and do not contribute to the index. Since in a toric
fixed module B AC v and v are linearly independent, this means that Vf is at

4 In general, the vector v has trivial toric weight, while B A C v has not. We could, however,
try to remove this weight by using the residual gauge transformation to gauge away its
phase. However, this is a global transformation and will reintroduce the same phase, now
multiplying v. This is just the statement that fixed points are classified by the TF,∂W action.

Later on, we will impose gauge conditions which remove the toric weight from vectors of the

form B A C v, but as we have just stated this does not affect the classification of TF,∂W -fixed

points.
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least two-dimensional. Considering more complicated cycles we would conclude
that the vector space Vf could have arbitrary dimension. This is, however, in
contradiction with our condition: since the framing vector represents a line
defect, obtained by sending to infinity the mass of a stable particle, its vector
space Vf is strictly one-dimensional. This extra condition implies that, for
what concerns counting toric fixed cyclic modules associated with line defects,
the Jacobian algebra of the quiver is effectively restricted only to the unframed
quiver. We see now that our definition of moduli spaces is indeed equivalent to
the standard definition [66,67]: since the arrow B can be effectively removed
(keeping, however, its equation of motion as relations in JW), we can simply
dispose of the framing node altogether and consider cyclic modules generated
by C v ∈ V◦.

So far, we have provided a classification of TF,∂W -fixed ideals. However,
to count BPS invariants associated with framed quivers it is customary in the
literature to use an elegant reformulation in terms of certain combinatorial
arrangements, known as pyramid partitions [66,68]. Pyramid partitions are
certain configurations of colored stones, where each stone is associated with
a node of the unframed quiver Q and different colors correspond to different
nodes.5 This construction is a simplified version of the construction of [66],
Proposition 2.5.1, which we follow closely. To define a pyramid partition one
starts from a pyramid arrangement. We arrange the stones in layers, and the
color of the first layer is determined by which node is associated with the vector
C v. Conventionally, and for practical drawing reasons, we will not associate
any stone with the zeroth layer associated with the framing vector v ∈ Vf .

In the case of Q[f2] the first layer contains only one stone, since there is
only one cyclic vector C v. This is generic for defects in the fundamental or
anti-fundamental representation, but will change for other representations. The
second layer consists of stones corresponding to nodes which can be reached
by an arrow a ∈ JW = CQ/∂ W from the first layer, the third layer consists
of stones corresponding to nodes which can be reached by an arrow from
the second layer, and so on. The relations ∂ W = 0 determine the shape of
the pyramid arrangement; in other words, the pyramid arrangement is just
a combinatorial representation of the Jacobian algebra based at the framing
node. In our case the pyramid arrangement is rather simple: from the framing
vector there is only one possibility of reaching the node •, since the F-term
relations identify AC = ÃC, as in Fig. 1.

A pyramid partition is a configuration π of stones such that for each stone
in π, the stones immediately above it (of a different color) are in π as well. For
example, in the case of Fig. 1 there are just three pyramid partitions, listed in
Fig. 2.

5 The simplest example of a pyramid partition is a Young tableau, corresponding to a framed
quiver with one framing node connected by an arrow to a single node and two arrows from
that node to itself [87]. Cyclic modules of this quiver correspond to point-like instantons and
play a fundamental role in Seiberg–Witten theory [81].
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Figure 1. Pyramid arrangement for SU(2) with a funda-
mental Wilson line

Figure 2. Pyramid partitions for SU(2) with a fundamental
Wilson line

Note that, by definition of a pyramid partition π, if a configuration of
stones of the form a p is part of π for some a ∈ JW , then also the configuration
of stones p must be part of π. On the other hand, consider the complement I
of the vector space spanned by the elements of π in JW ·v. Then by definition,
if any q ∈ I then it must be a q ∈ I for all a ∈ JW (or equivalently, if q /∈ π,
then a q /∈ π for every a ∈ JW). In other words, I is an ideal of JW . Indeed,
I is the annihilator of the cyclic module described by π.

Recall that a cyclic module M is generated by applying all the arrows to a
cyclic vector, and then imposing the F-term relations. The vectors obtained in
this way form a basis for the module M . In our particular case M = Vf⊕V◦⊕V•.
Each of these basis vectors corresponds to a stone in a pyramid partition.
After removing a pyramid partition, the remaining configuration in the pyra-
mid arrangement corresponds to a TF,∂W -fixed ideal, generated by monomi-
als. Therefore, TW -fixed cyclic modules are in one-to-one correspondence with
pyramid partitions.

On the other hand, given a pyramid partition π we can construct a cyclic
module explicitly. We simply assign to each stone in π a basis vector va where
the labels a runs over the number of stones in π, and construct the vector
spaces Vi spanned by the basis vectors of the same color, with i = ◦, •. In
our specific case these vector spaces are one-dimensional, given the allowed
configurations in Fig. 2, but in general will be of arbitrary dimension. The
arrows of the quiver induce maps between basis vectors, and these obey the
F-term relations by construction. Therefore, a pyramid partition gives an JW -
module M = Vf ⊕V◦⊕V•. Furthermore, this module is cyclic and generated by
the vector v by construction. Finally, these modules are in the torus fixed locus,
since the action of TW can be compensated by a change of basis. The toric
fixed ideals corresponding to the pyramid partitions in Fig. 2 are, respectively,
〈v〉 〈C v〉, and 〈AC v = Ã C v〉, where we only write down the generator based
at v for simplicity.

Therefore, the problem of counting the number of toric fixed ideals which
correspond to cyclic modules with fixed dimension vector can be more easily
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dealt with by counting pyramid partitions with a prescribed number of stones
for each color. Note that for Q[f2] this combinatorial construction is not neces-
sary as the Jacobian algebra is rather simple; on the other hand, it will simplify
the computations in the case of more general framings. We will see plenty of
examples later on.

When we have more than one framing arrow, say n arrows, we can gen-
erate cyclic modules by acting with each one of them on the vector v based at
the framing node. As a consequence, the corresponding pyramid arrangements
will have n stones in the first layer. We will use this fact in the next sections.

So far, we have only discussed cyclic modules, but everything we have said
also holds for co-cyclic modules. Since co-cyclic modules can be obtained from
cyclic modules by opposing the quiver, the modifications to our construction
are completely straightforward, and only amount to switching black and white
stones in the pyramid partitions. By partial abuse of language we will denote
co-cyclic modules by multiplication on the right, such as v B, v B A, and so
on.

4.5. Localization

The localization formula reduces equivariant integration over the moduli space
to a sum over contributions coming from toric fixed points. The contribution
of each fixed point is determined by the local structure of the moduli space
around that fixed point. We have reduced the problem of classifying torus fixed
points to a combinatorial problem. To compute the framed BPS degeneracies
we have to determine the contribution of each fixed point. We will now show
that each fixed point just contributes with a sign. We are going to compute
the degeneracies using the virtual localization formula [88], which generalizes
the Atiyah–Bott localization formula,∫

[Mc
d(Q[f ])]vir

1 =
∑

π∈Mc
d(Q[f ])TW

1
eul(T vir

π Mc
d(Q[f ]))

, (4.16)

to integrate over the moduli spaces (as reviewed, for example, in [92, Sec-
tion 3.5]). By doing so we will bypass the question if our moduli spaces are
smooth manifolds or not. This formula expresses the invariants as a sum over
the fixed points of the toric action with weights determined by the local struc-
ture of the moduli space around each fixed point. Here T vir

π = Def − Obs is
the virtual tangent space at the fixed point π, which has the canonical form of
deformations minus obstructions. It is precisely this structure which allows the
localization approach to reconstruct the full integral from only a finite num-
ber of fixed points. The approach we are using is basically the one outlined
in [91, Section 4], although in a much more simpler setting: in our cases the
fixed points of interest are a finite number and therefore we can verify many
statements directly. We have already classified the fixed points in terms of
the combinatorics of pyramid partitions; what is left to do is to compute the
equivariant Euler class of the virtual tangent space at a fixed point. Here the
virtual fundamental class [Mc

d(Q[f ])]vir is simply the one associated with the
vanishing locus of the F-term relations [77, Remark 3.12].
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To do so we write down a local model for the moduli space in the form
of a deformation complex at a point π

0 �� S0
π

δ0 �� S1
π

δ1 �� S2
π

δ2 �� S3
π

�� 0, (4.17)

similarly as to what is done in [71, Appendix E], where
S0

π = HomC(V◦,π, V◦,π) ⊕ HomC(V•,π, V•,π),

S1
π = HomC(V◦,π, V•,π) ⊗ (tA + tÃ) ⊕ HomC(V•,π, Vf,π) ⊗ tB

⊕ HomC(Vf,π, V◦,π) ⊗ tC ,

S2
π = HomC(V•,π, V◦,π) ⊗ (t−1

A + t−1

Ã
) ⊕ HomC(Vf,π, V•,π) ⊗ t−1

B

⊕ HomC(V◦,π, Vf,π) ⊗ t−1
C ,

S3
π = HomC(V◦,π, V◦,π) ⊕ HomC(V•,π, V•,π). (4.18)

With tX we denote the one-dimensional TW -module generated by e i εX . Recall
that at each fixed point we can use the gauge torus C

∗ to impose a condition
on the toric weights. We have chosen the condition εA + εB + εC = 0 so that
the superpotential is invariant. This is not necessary, but will simplify the
computations. We stress again that this is a gauge choice and does not affect
the fixed point classification. In particular, due to this condition we have that
S0 � S3,∗ and S1 � S2,∗ and the complex is self-dual. At each fixed point π,
each vector space Vi, with i = •, ◦, f , decomposes into TW modules. Let us
describe the deformation complex more explicitly. The map δ0 is the linearized
gauge transformation

δ0

(
φ◦
φ•

)
=

⎛
⎜⎜⎜⎝

φ• A − Aφ◦
φ• Ã − Ã φ◦

−B φ•
φ◦ C

⎞
⎟⎟⎟⎠ , (4.19)

the map δ1 is the linearization of the F-term relations (4.12)

δ1

⎛
⎜⎜⎝

ηA

ηÃ

ηB

ηC

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

C ηB + ηC B
C ηB + ηC B

AηC + ηA C − Ã ηC − ηÃ C

B ηA + ηB A − B ηÃ − ηB Ã

⎞
⎟⎟⎟⎠ , (4.20)

and finally δ2 corresponds to the linearized relations between the relations
(4.13)

δ2

⎛
⎜⎜⎝

σA

σÃ

σB

σC

⎞
⎟⎟⎠ =

(
−AσA + Ã σÃ + σB B

−σA A + σÃ Ã + C σC

)
. (4.21)

The differentials are linearizations around the fixed point labeled by π, which
therefore corresponds to a configuration (A, Ã,B,C) which is a solution of the
F-term equations. One can see directly that indeed δ1 ◦ δ0 = 0 and δ2 ◦ δ1 = 0.
Indeed, we have
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δ1 ◦ δ0

(
φ◦
φ•

)
= δ1

⎛
⎜⎜⎜⎜⎝

φ• A − A φ◦
φ• Ã − Ã φ◦

−B φ•
φ◦ C

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

−C B φ• + φ◦ C B = 0

−C B φ• + φ◦ C B = 0

A φ◦ C + (φ• A − A φ◦) C − Ã (φ◦ C) − (φ• Ã − Ãφ◦)C = φ•(A C − Ã C) = 0

B(φ• A − A φ◦) − B φ• A − B(φ• Ã − Ã φ◦) + B φ• Ã = (−B A + B Ã)φ◦ = 0

⎞
⎟⎟⎟⎟⎠ ,

(4.22)

where we have used the F-term equations (4.12). Similarly,

δ2 ◦ δ1

⎛
⎜⎜⎝

ηA

ηÃ

ηB

ηC

⎞
⎟⎟⎠ = δ2

⎛
⎜⎜⎜⎝

C ηB + ηC B

C ηB + ηC B

AηC + ηA C − Ã ηC − ηÃ C

B ηA + ηB A − B ηÃ − ηB Ã

⎞
⎟⎟⎟⎠ . (4.23)

Vanishing of this expression is equivalent to the conditions

− A (C ηB + ηC B) + Ã(C ηB + ηC B) + (AηC + ηA C − Ã ηC − ηÃ C)B

= (−AC + Ã C) ηB + ηA C B − ηÃ C B = 0,

− (C ηB + ηC B)A + (C ηB + ηC B)Ã + C(B ηA + ηB A − B ηÃ − ηB Ã)

= −ηC(B A − B Ã) + C B ηC − C B ηÃ = 0, (4.24)

which are indeed fulfilled due to the F-term equations (4.12). We conclude
that δ1 ◦ δ0 = 0 and δ2 ◦ δ1 = 0 as claimed.

We will assume that complex (4.17) has trivial cohomology at the first
position, that is ker δ0 = 0. This is equivalent to considering only irreducible
representations. Indeed, consider an irreducible representation X: then by
(4.19) the maps φ◦ and φ• commute with A and Ã and take value in End(X).
By Schur’s lemma, both maps are therefore proportional to the identity. How-
ever, the kernel equations −B φ• = 0 and φ◦ C = 0 ensure that this pro-
portionality constant vanishes. Therefore, for irreducible representations the
kernel is empty. Similarly, the cohomology ker δ1/Im δ0 parametrizes infini-
tesimal displacements at a fixed point, up to gauge transformations, and is
therefore a local model for the tangent space Tπ(Mc

d(Q[f2])). The linearized
deformations at a fixed points can, however, be obstructed, and this is mea-
sured by the cohomology at the third position Nπ (the “normal bundle” or
“obstruction bundle”). Finally, since the complex is self-dual, we will also
assume that cohomology at the fourth position is trivial. In this case the alter-
nating sum of the cohomologies of the complex is precisely the virtual tangent
space T vir

π Mc
d(Q[f2]) = TπMc

d(Q[f2]) � Nπ.
The Euler class eul(T vir

π Mc
d(Q[f2]) can be reconstructed from the equi-

variant character of the complex. The latter is given by the cohomology of the
complex, which can be expressed as the alternating sum of the weights of the
TW representations
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chTW (T vir
π Mc

d(Q[f2])) = S0
π − S1

π + S2
π − S3

π, (4.25)

in the representation ring of TW . Character (4.25) is the generalization, within
the present context, of [87, Proposition 5.7].

Note that by decomposing each term as a TW module, this character
can be schematically written as

∑
i e wi −∑j e w̃j , which in the language of

localization parametrizes deformations minus obstructions. Therefore, from
the character we can read directly the Euler class as

eul(T vir
π Mc

d(Q[f2])) =
∏

i wi∏
j w̃j

. (4.26)

Since the complex is self-dual, the toric weights wi and w̃j are exactly paired
up, and w̃i = −wi. In other words, numerator and denominator of (4.26) cancel
up to an overall sign given by dimS0

π+dim S2
π = dim S1

π+dim S3
π. In particular,

the dependence on the toric weights drops out. Comparing with (4.10) we see

(−1)dim TπMc
d(Q[f2]) = (−1)d2

◦+d2
•+d◦+d•+2d◦d• . (4.27)

Putting everything together we arrive at a compact expression for the framed
BPS degeneracies

DTc
d(Wζ,2) =

∑
π∈Mc

d(Q[f2])TW

(−1)d2
◦+d2

•+d◦+d•+2d◦d• . (4.28)

We can think of this as a supersymmetric quiver quantum mechanics derivation
of the result of [93, Thm. 3.4] (also compare with [94, Def. 7.21]).

Finally, we conclude that the Donaldson–Thomas invariants are

DTc
(d◦=0,d•=0)(Wζ,2) = +1,

DTc
(d◦=1,d•=0)(Wζ,2) = +1,

DTc
(d◦=1,d•=1)(Wζ,2) = +1. (4.29)

A similar computation for co-cyclic stability conditions (which can be equiva-
lently obtained by opposing the quiver) yields

DTcc
(d•=0,d◦=0)(Wζ,2) = +1,

DTcc
(d•=1,d◦=0)(Wζ,2) = +1,

DTcc
(d•=1,d◦=1)(Wζ,2) = +1. (4.30)

For cyclic boundary conditions we can write down the framed quantum
mechanics partition function as

〈Wζ,2〉q=−1 =
∑

d=(d◦,d•)

DTc
d(Wζ,2) Xe2+d◦e◦+d•e•

= X− 1
2 (e◦+e•) + X− 1

2 e◦+ 1
2 e• + X+ 1

2 (e◦+e•), (4.31)

with e2 = − 1
2 (e◦ + e•). This function precisely reproduces the known framed

BPS spectrum in this case, see, for example, [45–48].
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4.6. SU(2) Quivers: General Structure

We have so far discussed quite in detail the most simple example of an SU(2)
model coupled to a fundamental Wilson line. We have, however, set up the
formalism in such a way that it can be extended almost word by word to more
general quivers. We will now discuss the case of a general framed SU(2) quiver
Q[fn+1]. In this case there are n arrows connecting the framing node fn+1 with
the node ◦, and n arrows connecting the node • with fn+1. We consider the
superpotential

W = AC1B1 +
n−1∑
i odd

Bi+1(ÃCi+1 − ÃCi) +
n−2∑

i even

Bi+1(ACi+1 − ACi). (4.32)

This superpotential is a generalization of the superpotential we have used in
the previous case. We do not have a microscopic derivation of (4.32). This
form of the superpotential reproduces the results available in the literature,
for example in [45].

Remark. Note that such a superpotential should be regarded as a datum of the
topological quantum mechanics, which computed BPS indices associated with
the framed quiver. In particular, we are free to add any BRST-exact term in
the action of the topological model. Virtual counting for BPS states are robust
under such deformations. For example, such a superpotential differs from the
one used in [45] by a field redefinition. Mathematically, such a redefinition is
necessary to kill certain residual automorphisms of the quiver moduli space.
From the perspective of virtual counts the two superpotentials are therefore
equivalent and produce the same result, if one deals properly with the auto-
morphisms. We should, however, stress that we are not claiming that the two
corresponding physical (i.e., non-topological) quantum mechanics models are
equivalent or that the relevant representation theories are the same; as far as
we know, the models are equivalent only for the computation of the BPS index.

The torus TW acts by rescaling all the fields in the quantum mechanics,
with the constraint that its action preserves the F-term equations ∂ W = 0,
and modulo the action of the gauge sub-torus. Consider, for example, cyclic
stability conditions, where cyclic modules are generated by the vector v; in
this case, the pyramid arrangement has n white stones in the first layer and
n black stones in the second, and its shape is given by the Jacobian algebra
obtained from the superpotential (4.32), as shown in Fig. 3. Fixed points π
of the toric action correspond to pyramid partitions which can be removed
from this pyramid arrangement. We will discuss several explicit examples in
the next section.

Figure 3. Initial configuration
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We write down the following quiver deformation complex around the fixed
point π

0 �� S0
π

δ0 �� S1
π

δ1 �� S2
π

δ2 �� S3
π

�� 0 , (4.33)

where

S0
π =

⊕
i∈Q0

HomC(Vi,π, Vi,π), (4.34)

S1
π =

⊕
a∈Q1[fn]

HomC(Vs(a),π, Vt(a),π) ⊗ ta, (4.35)

S2
π =

⊕
r∈R

HomC(Vs(r),π, Vt(r),π) ⊗ tr, (4.36)

S3
π =

⊕
rr∈RR

HomC(Vs(rr),π, Vt(rr),π) , (4.37)

where tr denotes the one-dimensional TW -module generated by the toric
weight of the relation r ∈ R. (Recall that by definition of TW all the monomi-
als in a relation have the same weight.) The map δ0 is the linearization of the
gauge transformations, the map δ1 is the linearization of the F-term relations
∂ W = 0, and finally δ2 corresponds to the linearized relations between the
relations. We will write down the associated set of equations explicitly in a
few cases in Sect. 5.

The parity of the tangent space can be computed directly

(−1)dim Tπ Mc
d(Q[fn+1]) = (−1)d2

◦+d2
•+nd◦+nd•+2d◦d• , (4.38)

and the framed BPS degeneracies are given by

DTc
d(Wζ,n+1) =

∑
π∈Mc

d(Q[fn+1])TW

(−1)d2
◦+d2

•+nd◦+nd•+2d◦d• . (4.39)

The generating functions of framed BPS states now have the generic form

〈Wζ,n+1〉q=−1 =
∑

d=(d◦,d•)

DTc
d(Wζ,n+1)Xet+d◦ e◦+d• e• . (4.40)

We will compute them explicitly in the next section for a variety of cases.

4.7. Arbitrary Quivers

Now we will argue that these ideas extend to arbitrary quivers with fram-
ing, not just of the Kronecker type, under some generic assumptions. The
details of the argument will depend on the specific quiver, framing vector and
superpotential. However, we believe that the general structure continues to
hold, eventually involving arbitrarily complicated combinatorial arrangements
or choosing an appropriate superpotential. Sections 6 and 7 will contain more
detailed examples in the case of asymptotically free theories of class S[Ak]. We
streamline the argument as follows:

Quiver. Consider a generic quiver Q and add a framing node f . We will
denote the framed quiver by Q[f ]. To simplify the notation, we pick a superpo-
tential which is a sum of cubic terms, but our arguments hold more generically.



Vol. 19 (2018) Quivers, Line Defects and Framed BPS Invariants 31

We write
W =

∑
i,j,k

Xij Xjk Xki, (4.41)

where Xij denotes an element of Hom(Vj , Vi) and as usual the product is
defined to be zero if the arrows do not concatenate. The sum includes the
framing node and can be over a subset of Q[f ]0 only. The equations of motions
have the form

∂W
∂Xlm

=
′∑
k

Xmk Xkl = 0, (4.42)

where the ′ over the sum is a reminder that the vertices k, l, and m form a
closed triangle in the quiver. Finally, cycles starting and ending at the same
node m obey

′∑
l

(
∂W

∂Xlm
Xlm − Xml

∂W
∂Xml

)
= 0 (4.43)

for every m ∈ Q0.
Moduli spaces. We will consider cyclic stability conditions. Therefore, the

relevant moduli space is the moduli space of cyclic modules. As before this is
obtained by looking at a quotient of the representation space Repd (Q[f ],W; v),
the sub-scheme of the space of representations generated by v ∈ Vf defined by
the equations ∂ W = 0, by the gauge group

Gd =
∏

i∈Q0

GL(di,C). (4.44)

The resulting moduli space Mc
d(Q[f ]; v) parametrizes cyclic JW -modules gen-

erated by the vector v ∈ Vf .
Toric action. This moduli space carries a natural toric action generated

by rescaling the arrows of the quiver Q[f ]. Denote the fields of the quantum
mechanics by Xa for each a ∈ Q[f ]1. We let the torus TF = (C∗)|Q1[f ]| act by
rescaling Xa −→ Xa e i εa , and define the sub-torus TF,∂W by the condition
that it preserves the F-term equations. The gauge group Gd has a sub-torus
TG = (C∗)|Q0|−1 which has to be mod out. The overall “-1” in the exponent is
due to diagonal gauge transformations which act trivially. Therefore, the full
torus is TW = TF,∂W/TG. This is practically obtained by imposing |Q0| − 1
conditions on the toric parameters of TF,∂W . We will assume for simplicity that
such conditions can be chosen in such a way as to leave the superpotential W
invariant (although this is not necessary).

Fixed points. In this case we cannot make a general argument for the
structure of the pyramid arrangement, which will depend sensitively on the
Jacobian algebra JW , and in particular on the superpotential W. However,
the construction of the pyramid arrangement is completely algorithmic: one
draws colored stones for each node, connected by paths in the Jacobian algebra,
eventually identified by the F-term relations. The first layer of the pyramid
arrangement will contain as many stones as arrows from the framing node f
to the unframed quiver Q. For arbitrary quivers the combinatorial structure of
the pyramid arrangement might become rather intricate. However, fixed points
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are still counted by removing stone configurations in the form of a pyramid
partition; pyramid partitions by construction correspond to TF,∂W ideals in
the Jacobian algebra. Each stone in a pyramid partition identifies a basis vector
in the corresponding vector space, and the collection of these vectors together
with the induced maps between them reproduces a toric fixed cyclic module (or
a co-cyclic module for the opposite quiver). Given a quiver, the classification
of pyramid partitions is a completely algorithmic combinatorial problem.

Localization. We assume that one can construct a self-dual deformation
complex. Self-duality holds, for example, if the toric action can be chosen in
such a way as to leave the superpotential invariant. In case the deformation
complex is not self-dual, the same construction would nevertheless apply, but
the contribution of each point have to be computed one by one. Within this
assumption the local structure of the moduli space around a fixed point labeled
by a pyramid partition π is given by the deformation complex

0 �� S0
π

δ0 �� S1
π

δ1 �� S2
π

δ2 �� S3
π

�� 0, (4.45)

where

S0
π =

⊕
i∈Q0

HomC(Vi,π, Vi,π) � (S3
π)∗, (4.46)

S1
π =

⊕
a∈Q1[f ]

HomC(Vs(a),π, Vt(a),π) ⊗ ta � (S2
π)∗. (4.47)

The differentials are defined as follows. For simplicity we forget about the
T-equivariant structure. The map δ0 corresponds to an infinitesimal gauge
transformation. If we conventionally denote with φi, with i ∈ Q0 the linearized
gauge parameter, then the image of δ0 has the form

(φi Xij − Xij φj) ∈ Hom(Vj , Vi) ∀ i, j ∈ Q[f ]0, (4.48)

where φf = 0 if f is the framing node. We use the same set of indices for both
Q0 and Q[f ]0, hoping that this will not cause confusion. The differential δ1 is
the linearization of the equations of motions and acts as

′∑
k

(ηmk Xkl + Xmk ηkl) , (4.49)

on ηij ∈ Hom(Vj , Vi). Similarly, the differential δ2 acts as

′∑
l

(σlm Xlm − Xml σml) , (4.50)

on σij ∈ Hom(Vj , Vi). The ′ in all the sums is a reminder that all the maps
involved must concatenate.

We can now check explicitly that the differentials are nilpotent around a
solution of the equations of motions. Indeed, computing δ1 ◦ δ0 we see
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′∑
k

((φm Xmk − Xmk φk)Xkl + Xmk(φk Xkl − Xklφl))

= φm

( ′∑
k

XmkXkl

)
−
( ′∑

k

XmkXkl

)
φl = 0, (4.51)

where we have used the equations of motion (4.42). Similarly, evaluation of
δ2 ◦ δ1 leads to

′∑
l

′∑
k

(ηmkXkl + Xmkηkl) Xlm −
′∑
l

Xml

′∑
k

(ηlkXkm − Xlk ηkm)

=
′∑

l,k

(ηmkXkl Xlm − Xml Xlk ηkm) = 0, (4.52)

using again (4.42).
Since the equivariant complex is self-dual, when computing the framed

BPS degeneracies the toric weights cancel out and

DTc
d(Q[f ]) =

∑
π∈Mc

d(Q[f ],v)TW

(−1)qQ[f](d)−1, (4.53)

where
qQ[f ](d) =

∑
i∈Q0[f ]

d2
i −

∑
i,j∈Q0[f ]

Bf
ijdidj (4.54)

is the Tits form of the quiver Q[f ] (the minus one removes the quadratic
contribution from the framing node) and Bf

ij the adjacency matrix of the
framed quiver. These results are a natural generalization of [94, Chapter 7].

5. SU(2) Super Yang–Mills

We will now put the formalism described in the previous section to practice
and compute the framed BPS spectra of several Wilson lines in SU(2) super
Yang–Mills. These correspond to defects with core charges RG[Wζ,n] = en =
−n−1

2 (e◦+e•) and can be modeled by a framed quiver Q[fn], where the framing
node is connected to the quiver by n − 1 arrows. We will go through the
examples in some detail.

5.1. SU(2) with an Adjoint Wilson Line

We begin by considering the following quiver

•
B̃

�� B��
f3

C̃ ��

C

��
◦

Ã

��

A

��

(5.1)
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We model the coupling of SU(2) Yang–Mills to a Wilson line in the adjoint
representation with the following superpotential in the topological quiver quan-
tum mechanics

W = ACB + B̃
(
ÃC̃ − ÃC

)
. (5.2)

We will now compute explicitly the corresponding vev. The relations ∂ W = 0
derived from (5.2) are

rA : CB = 0, rÃ : C̃B̃ = CB̃, (5.3)

rB : AC = 0, rB̃ : ÃC̃ = ÃC, (5.4)

rC : BA = B̃Ã, rC̃ : B̃Ã = 0. (5.5)

Note the following relations between the relations

rr• : ArA − rBB − rB̃B̃ + ÃrÃ = 0, (5.6)

rr◦ : CrC − rAA − rÃÃ + C̃rC = 0. (5.7)

The gauge group GL(V◦) × GL(V•) of the quantum mechanics acts as

(A, Ã) −→ (g• Ag−1
◦ , g• Ã g−1

◦ ), (5.8)

(B, B̃) −→ (B g−1
• , B̃ g−1

• ), (5.9)

(C, C̃) −→ (g◦ C, g◦ C̃). (5.10)

We pick a toric action (C∗)6 which acts as the rescaling by a phase X −→
e i εX X on each quantum mechanics field X. For this action to be compatible
with the relations ∂ W = 0 we must have

εC = εC̃ , εA + εB = εÃ + εB̃ . (5.11)

We proceed now to classify the torus fixed points. If we write JW =
⊕n JW,n, where the grading is identified with the length of a cyclic modules,
we find

JW,0 = {v},

JW,1 = {C v, C̃ v},

JW,2 = {AC̃ v, Ã C̃ v = Ã C v}. (5.12)

Again the condition that dim Vf = 1 effectively truncates the pyramid arrange-
ment at this point: fixed points containing stones based at the framing node
would necessarily imply dimVf > 1. The classification of fixed points proceeds
as in the previous section. Now there are two arrows starting from the framing
node, and therefore two vectors, C v and C̃ v, are selected in V◦. As a conse-
quence, the pyramid arrangement will have two stones in the first layer.6 In

6 Dealing with situations where the framing involves more arrows is the main reason why
we defined cyclic modules starting from a vector in the framing node. Of course, ordinary
cyclic modules can be defined similarly by dealing with more linearly independent vectors in
the unframed quiver specified by more morphisms from the framing node to the unframed
quiver [66,98]. We find our approach more convenient from a combinatorial viewpoint in the
case where there are many framing arrows.
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CvC̃v C̃v Cv
∂W = 0

Ã

A

Ã

A

Figure 4. How a pyramid arrangement arises after imposing
the F-terms relations

Figure 5. Initial configuration, for SU(2) super Yang–Mills
with a Wilson line in the representation 3

Figure 6. Classification of the fixed points in the case of
SU(2) super Yang–Mills with a Wilson line in the represen-
tation 3

Fig. 4 we show how this pyramid arrangement is obtained by imposing the F-
term relations, which identify Ã C̃ v = Ã C v and set AC v = 0 in the Jacobian
algebra.

To facilitate drawing we will project these structures on the two-
dimensional plane, as in Fig. 5. The computation of the framed BPS degen-
eracies involves the classification of the fixed point configurations. Recall that
fixed points correspond to pyramid partitions, configurations of stones to be
removed from the pyramid arrangement, defined by the property that if a stone
is present in the configuration then all the stones immediately above must be
part of the configuration too. Using this definition, it is easy to write down
directly all the pyramid partitions which can be obtained from the pyramid
arrangement of Fig. 5; they are listed in Fig. 6.

Since the number of stones in a pyramid partition corresponds to the
dimension vectors, we see immediately that the stable framed BPS states are
those with d given by: (0, 0), (1, 0), (2, 0), (1, 1), (2, 1), and (2, 2).

Having classified the fixed points, what remains to be done is to compute
their contribution to the framed BPS index using the localization formula. The
gauge group GL(V◦) × GL(V•) has a diagonal torus C

∗ which we can use to
remove one of the toric parameters. We chose to set to zero the combination
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εA + εB + εC = εÃ + εB̃ + εC̃ = 0 so that the superpotential W is invariant.
In this case the equivariant deformation complex around a toric fixed point is
constructed out of

S0
π = HomC(V◦,π, V◦,π) ⊕ HomC(V•,π, V•,π),

S1
π = HomC(V◦,π, V•,,π) ⊗ (tA + tÃ) ⊕ HomC(V•,π, Vf,π) ⊗ (tB + tB̃)

⊕ HomC(Vf,π, V◦,π) ⊗ (tC + tC̃),

S2
π = HomC(V•,π, V◦,π) ⊗ (t−1

A + t−1

Ã
) ⊕ HomC(Vf,π, V•,π) ⊗ (t−1

B + t−1

B̃
)

⊕ HomC(V◦,π, Vf,π) ⊗ (t−1
C + t−1

C̃
) ,

S3
π = HomC(V◦,π, V◦,π) ⊕ HomC(V•,π, V•,π), (5.13)

around a toric fixed point π. Note that we do not allow gauge transforma-
tions (as well as relations between relations) on the vector space Vf since it
is a framing node. Here tX stands for the one-dimensional TW -module gen-
erated by e i εX , for any quantum mechanics field X. The appearance of the
conjugate t−1

A modules is due to the gauge condition εA + εB + εC = 0. Since
upon imposing this condition the superpotential is TW invariant, the arrows
transform opposite to the relations.

As explained in the previous section, we can compute the generating
function associated with the quiver quantum mechanics from the character of
the deformation complex by using the equivariant localization formula. The
equivariant character has the form

chTW (T vir
π Mc

d(Q[f3])) = S0
π − S1

π + S2
π − S3

π. (5.14)

Each module can be decomposed according to the toric action as Sa
π =

∑
i e wa

i .
The contribution of each fixed point to the quantum mechanics partition func-
tion can be computed via virtual localization with respect to the toric action.
The data involved in the localization formula can be obtained from the equi-
variant character by the standard conversion [81]

∑
i

ni e wi −→
∏

i

wni
i , (5.15)

where ni = ±. Since the complex is self-dual, numerator and denominators can-
cel up to an overall sign given by dimS0

π+dim S2
π. In particular, the dependence

on the toric weights drops out. Comparing with (4.10) we see

(−1)dim TπMc
d(Q[f3]) = (−1)d2

◦+d2
•+2d◦+2d•+2d◦d• . (5.16)

The framed degeneracies are therefore given by

DTc
d(Wζ,3) =

∑
π∈Mc

d(Q[f3])TW

(−1)d2
◦+d2

•+2d◦+2d•+2d◦d• . (5.17)
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We can now compute (5.17) explicitly and write down the BPS invariants in
the following table:

(d◦, d•) n. fixed points (−1)dim Tπ DT
(0, 0) 1 + +1
(1, 0) 2 − −2
(2, 0) 1 + +1
(1, 1) 1 + +1
(2, 1) 2 − −2
(2, 2) 1 + +1

(5.18)

Finally, we can compute the generating function of framed BPS degeneracies,
that is the vev of the Wilson line expressed in terms of the Darboux coordinates
on the Hitchin moduli space

〈Wζ,3〉q=−1 =
∑
d

DTc
d(Wζ,3)Xe3+d•e•+d◦e◦

= X−(e◦+e•) − 2X−e• + X+e◦−e• + X0 − 2Xe◦ + Xe◦+e• . (5.19)

Here X0 = 1 by convention. This spectrum consists of four hypermultiplets
and two vector multiplets. Note that the Donaldson–Thomas invariant is neg-
ative for vector multiplets, as expected. Passing to untwisted coordinates, this
expression agrees with the results of [45].

5.2. SU(2) with a Wilson Line in the Representation 4
We will now couple SU(2) super Yang–Mills to a Wilson line defect in the
representation 4 of SU(2). As explained in the previous section, this is given
by the quiver Q[f4]

•
B1,...,B3

��
f4

C1,...,C3 �� ◦

Ã

��

A

��

(5.20)

with superpotential

W = AC1B1 + B2(ÃC2 − ÃC1) + B3(AC3 − AC2). (5.21)

The equations of motion can be computed easily and read

rA : C1B1 + C3B3 − C2B3 = 0, rÃ : C2B2 − C1B2 = 0,

rB1 : AC1 = 0, rB2 : ÃC2 − ÃC1 = 0, rB3 : AC3 − AC2 = 0,

rC1 : B1A − B2Ã = 0, rC2 : B2Ã − B3A = 0, rC3 : B3A = 0, (5.22)

while the following relations hold

rr◦ : ArA + ÃrÃ − rB1B1 − rB2B2 − rB3B3 = 0,

rr• : rAA + rÃÃ − C1rC1 − C2rC2 − C3rC3 = 0. (5.23)
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Figure 7. Initial configuration in the case of SU(2) super
Yang–Mills coupled to a Wilson line defect in the representa-
tion 4

Figure 8. All the pyramid partitions π for SU(2) with a
Wilson line in the 4

As we have explained before, we define a toric action on the matrix quantum
mechanics such that each field is rescaled by a phase. The condition that the
F-term relations are invariant implies

εC1 = εC2 = εC3 , εB1 = εB3 , εB1 + εA = εB2 + εÃ. (5.24)

Furthermore, we can impose one extra condition coming from the gauge torus.
We choose

εA + εC1 + εB1 = 0, (5.25)

so that the superpotential W is toric invariant. Note that indeed condition
(5.25) also implies εÃ + εB2 + εC2 = 0.

The classification of TW -fixed points proceeds as in the previous sections.
Now the initial pyramid arrangement is shown in Fig. 7, and we enumerate all
the fixed points (that is to say the pyramid partitions obtained from Fig. 7) in
Fig. 8, by the combinatorial rule that if a stone is part of the pyramid partition
π, then all the stones immediately above are in π too.

Now we turn to the contribution of the fixed point configurations. The
equivariant quiver deformation complex is again self-dual, and therefore, the
parity of the tangent space (−1)dim TπMc

d(Q[f4]) can be computed from

dimS0
π + dimS2

π = d2
◦ + d2

• + 3d◦ + 3d• + 2d◦d•. (5.26)

The framed BPS degeneracies are now given in compact form by

DTc
d(Wζ,4) =

∑
π∈Mc

d(Q[f4])TW

(−1)d2
◦+d2

•+3d◦+3d•+2d◦d• (5.27)
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and are listed in the following table:

(d◦, d•) n. fixed points (−1)dim Tπ DT
(0, 0) 1 + +1
(1, 0) 3 + +3
(1, 1) 1 + +1
(2, 0) 3 + +3
(2, 1) 4 + +4
(2, 2) 1 + +1
(3, 0) 1 + +1
(3, 1) 3 + +3
(3, 2) 3 + +3
(3, 3) 1 + +1

(5.28)

Finally, by putting all the results together, we can compute the generating
function for a defect with core charge RG[Wζ,4] = e4 = − 3

2 (e◦ + e•)

〈Wζ,4〉q=−1 =
∑
d

DTc
d(Wζ,4) Xe4+d◦e◦+d•e•

= X− 3
2 (e•+e◦) + 3X− 3

2 e•− 1
2 e◦ + X− 1

2 e•− 1
2 e◦ + 3X− 3

2 e•+ 1
2 e◦

+ 4X− 1
2 e•+ 1

2 e◦ + X 1
2 e•+ 1

2 e◦ + X− 3
2 e•+ 3

2 e◦ + 3X− 1
2 e•+ 3

2 e◦

+ 3X 1
2 e•+ 3

2 e◦ + X 3
2 e•+ 3

2 e◦ . (5.29)

This result agrees with [45,48].

5.3. SU(2) with a Wilson Line in the Representation 5
In this example we take the coupling of SU(2) super Yang–Mills to a Wilson
line in the representation 5 of SU(2), given by the framed quiver

•
B1,...,B4

��
f5

C1,...,C4 �� ◦

Ã

��

A

��

(5.30)

with superpotential

W = AC1B1 +B2(ÃC2 − ÃC1)+B3(AC3 −AC2)+B4(ÃC4 − ÃC3). (5.31)

From W we find the following F-term equations

rA : C1B1 + C3B3 − C2B3 = 0,

rÃ : C2B2 − C1B2 + C4B4 − C3B4 = 0,

rB1 : AC1 = 0, rB2 : ÃC2 − ÃC1 = 0,

rB3 : AC3 − AC2 = 0, rB4 : ÃC4 − ÃC3 = 0,

rC1 : B1A − B2Ã = 0, rC2 : B2Ã − B3A = 0,

rC3 : B3A − B4Ã = 0, rC4 : B4Ã = 0, (5.32)
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and the following relations

rr◦ : ArA + ÃrÃ − rB1B1 − rB2B2 − rB3B3 − rB4B4 = 0,

rr• : rAA + rÃÃ − C1rC1 − C2rC2 − C3rC3 − C4rC4 = 0. (5.33)

Consider now the torus TW . Compatibility with the F-term equations requires
εC1 = εC2 = εC3 = εC4 , εB1 = εB3 , εB1 + εA = εB2 + εÃ, and εB2 = εB4 .
Furthermore, we can use the gauge torus to impose the extra condition εA +
εC1 + εB1 = 0. This condition also implies εÃ + εB2 + εC2 = 0, and therefore,
the superpotential W is invariant. The initial pyramid arrangement and the
pyramid partitions corresponding to the fixed points are shown in Figs. 9
and 10.

From the localization formula we see that the parity of the tangent space
can be read off

dimS0
π + dimS2

π = d2
◦ + d2

• + 4d◦ + 4d• + 2d◦d•. (5.34)

Again the framed BPS degeneracies can be computed according to

DTc
d(Wζ,5) =

∑
π∈Mc

d(Q[f5])TW

(−1)d2
◦+d2

•+4d◦+4d•+2d◦d• . (5.35)

The contribution of each fixed point is summarized in the following table:

Figure 9. Initial configuration in the case of SU(2) super
Yang–Mills coupled to a Wilson line defect in the representa-
tion 5

Figure 10. All the fixed points for SU(2) with a Wilson line
in the 5, classified by pyramid partitions
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(d◦, d•) n. fixed points (−1)dim Tπ DT
(0, 0) 1 + +1
(1, 0) 4 − −4
(1, 1) 1 + +1
(2, 0) 6 + +6
(2, 1) 6 − −6
(2, 2) 1 + +1
(3, 0) 4 − −4
(3, 1) 9 + +9
(3, 2) 6 − −6
(3, 3) 1 + +1
(4, 0) 1 + +1
(4, 1) 4 − −4
(4, 2) 6 + +6
(4, 3) 4 − −4
(4, 4) 1 + +1

(5.36)

Finally, we can compute the vev of the Wilson line operator, given by the
generating function of framed BPS degeneracies

〈Wζ,5〉q=−1 =
∑
d

DTc
d(Wζ,5) Xe5+d◦e•+d•e◦

= X−2(e•+e◦) − 4X−2e•−e◦ + X−e•−e◦ + 6X−2e• − 6X−e•

+ X0 − 4Xe◦−2e•

+ 9Xe◦−e• − 6Xe◦ + Xe•+e◦ + X−2e•+2e◦ − 4X2e◦−e•

+ 6X2e◦ − 4X2e◦+e• + X2e•+2e◦ (5.37)

for a defect with core charge RG(Wζ,5) = e5 = −2(e◦ + e•).
This result agrees with [45,48].

5.4. SU(2) with a Wilson Line in the Representation 6
To further illustrate the power of our combinatorial solution for the local-
ization computation, we will now consider the case of a Wilson line in the
representation 6 of SU(2). In this case we limit ourselves to writing down the
result directly. The pyramid arrangement is the one in Fig. 3 where each line
contains five stones. The parity of the tangent space can be read off directly
from (4.38). Our prediction for the framed BPS degeneracies is contained in
the following table:
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(d◦, d•) n. fixed points (−1)dim Tπ DT
(0, 0) 1 + +1
(1, 0) 5 + +5
(1, 1) 1 + +1
(2, 0) 10 + +10
(2, 1) 8 + +8
(2, 2) 1 + +1
(3, 0) 10 + +10
(3, 1) 18 + +18
(3, 2) 9 + +9
(3, 3) 1 + +1
(4, 0) 5 + +5
(4, 1) 16 + +16
(4, 2) 18 + +18
(4, 3) 8 + +8
(4, 4) 1 + +1
(5, 0) 1 + +1
(5, 1) 5 + +5
(5, 2) 10 + +10
(5, 3) 10 + +10
(5, 4) 5 + +5
(5, 5) 1 + +1

(5.38)

One can check that this result is correct by computing the OPE

Wζ,2 ∗ Wζ,5 = Wζ,6 + Wζ,4, (5.39)

where 〈Wζ,6〉q=−1 is the only unknown. Note, however, that our method does
not assume the OPE, but rather the OPE is explicitly recovered from the
degeneracies computed with localization. Therefore, our formalism is in prin-
ciple a tool to determine the OPE of line defects in full generality. Also note
that the combinatorial computation is relatively easy. It would be very inter-
esting to extend our formalism to the full q-deformed case. We are currently
investigating this issue.

5.5. Dyonic Defects

We have so far discussed Wilson line defects. We will now briefly consider
another class of defects where the core charge is a dyon. In the case of SU(2)
super Yang–Mills, dyonic defects of this kind were studied in [45,46] using
cluster algebra methods. Alternatively, their vevs can be computed with the
approach of [47]. Now we will reproduce these results by a direct localization
computation.7

7 Technically, to reproduce exactly these results we should use the untwisted coordinates
Yγ in the Hitchin moduli space, related to the coordinates Xγ by a quadratic refinement of
the pairing between charges. In the examples below this simply amounts to neglecting the
minus signs in the BPS invariants.
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Consider the framed BPS quiver

f
[2]
•

β1,β2

��◦
A1,A2

���� •

α1,...,α4

��

(5.40)

with superpotential

W
f
[2]
•

= α1A1β1 + α2A2β1 + α3A1β2 + α4A2β2. (5.41)

In this case the pyramid arrangement simply consists in two copies of ◦, since
any other concatenation of arrows is set to zero by the equations of motion. The
fixed points have the following dimension vectors (d◦, d•): (0, 0), (1, 0) (with
multiplicity two), and (2, 0). It is easy to see that the parity of the tangent
space is

(−1)dim TπMc
d = (−1)d2

◦+d2
•−2d◦−4d•−2d◦d• . (5.42)

Therefore, the framed BPS spectrum is

〈L
ζ,f

[2]
•

〉q=−1 = X−e•−2e◦ − 2X−e◦−e• + X−e• , (5.43)

consistent with [46].
Consider now the framed BPS quiver

f
[3]
•

β1,...,β4

��◦
A1,A2

���� •

α1,...,α6

��

(5.44)

with superpotential

W
f
[3]
•

= α1A1β1 + α2A1β2 + α3A1β3 + α4A1β4

+α5A2β1 − α1A2β2 + α6A2β3 − α3A2β4. (5.45)

The relevant equations of motions are

A1β1 = A2β2,

A1β3 = A2β4,

A1β2 = A1β4 = A2β1 = A2β3 = 0, (5.46)

out of which we form the pyramid arrangement in Fig. 11. The contribution
of each fixed point is simply

(−1)d2
◦+d2

•−4d◦−6d•−2d◦d• , (5.47)
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Figure 11. Pyramid arrangement for the defect f
[3]
•

and the framed BPS indices are summarized in the following table:

(d◦, d•) fixed pts (−1)dim Tπ DT (d◦, d•) fixed pts (−1)dim Tπ DT
(0, 0) 1 + +1 (2, 1) 2 − −2
(1, 0) 4 − −4 (3, 1) 4 + +4
(2, 0) 6 + +6 (4, 1) 2 − −2
(3, 0) 4 − −4 (4, 2) 1 + +1
(4, 0) 1 + +1

(5.48)

which again agrees with [45,46].

6. SU(3) Super Yang–Mills

We will now consider SU(3) super Yang–Mills, coupled to Wilson line or dyonic
defects. In this case the combinatorics is slightly more complicated, but we are
still able to provide solutions in closed form. These computations agree with
the results of [45] obtained with cluster algebra methods.

The BPS quiver of pure SU(3) super Yang–Mills is the following [4,8]:

•1
ψ̃ �� ◦2

Ã2

��

A2

��◦1

Ã1

��

A1

��

•2
ψ

��

(6.1)

with superpotential W = ψ̃A1ψA2 − ψ̃Ã1ψÃ2. (6.2)

6.1. SU(3) with a Fundamental Wilson Line

We will begin with the case of a Wilson line in the fundamental representation
3 of SU(3). Such a defect has core charge RG(Wζ,3) = − 2

3 (e•1 + e◦1) −
1
3 (e•2+e◦2), which indeed corresponds to the highest weight of the fundamental
representation of SU(3) (see [45]). The BPS quiver describing the coupled
system is

•1

B��

ψ̃ �� ◦2

Ã2

��

A2

��

f3

C
��◦1

Ã1

��

A1

��

•2
ψ

��

(6.3)
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with superpotential

W = CBA1 + ψ̃A1ψA2 − ψ̃Ã1ψÃ2. (6.4)

The equations of motion are

rB : A1 C = 0,

rC : B A = 0,

rA1 : C B + ψA2ψ̃ = 0,

rÃ1
: ψ Ã2ψ̃ = 0,

rA2 : ψ̃ A1ψ = 0,

rÃ2
: ψ̃Ã1ψ = 0,

rψ : A2ψ̃A1 − Ã2ψ̃Ã1 = 0,

rψ̃ : A1ψA2 − Ã1ψÃ2 = 0. (6.5)

The natural toric action is compatible with the F-term equations if

εC + εB = εψ + εA2 + εψ̃,

εA1 + εA2 = εÃ1
+ εÃ2

. (6.6)

Once again to construct the pyramid arrangement we have to look at the
relevant terms in the Jacobian algebra JW = ⊕n≥0JW,n:

JW,0 = {v},

JW,1 = {C v},

JW,2 = {Ã1 C v},

JW,3 = {ψ̃ Ã1 C v},

JW,4 = {A2 ψ̃ Ã1 C v}. (6.7)

The pyramid arrangement truncates due to the equation C B + ψ A2 ψ̃ = 0
restricted to the set of field configurations such that B = 0, the only regions of
the moduli space which can contribute to the fixed points due to the condition
dim Vf = 1. As we have explained previously configurations with B �= 0 do
not contribute to the set of relevant fixed points (for which dimVf3 = 1)
and therefore, while they are generically part of the moduli space, can be
excluded from the analysis. In this case the pyramid arrangement is trivial and
only consists in the sequence of stones: ◦1, •1, ◦2, •2. It is therefore a routine
application of our formalism to write down the fixed points.

To simplify the computations we can use the gauge torus TG = (C∗)3 to
impose three conditions on the toric weights. In this case

εA1 + εC + εB = 0,

εψ̃ + εA1 + εψ + εA2 = 0 (6.8)

are enough to make the superpotential invariant, and we can use the remaining
condition to set one of the toric weights to zero. Around each fixed point π, the
local structure of the moduli space is captured by the deformation complex
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0 �� S0
π

δ0 �� S1
π

δ1 �� S2
π

δ2 �� S3
π

�� 0. (6.9)

Due to equations (6.8) the complex is self-dual, and the relevant terms are

S0
π = HomC(V◦1,π, V◦1,π) ⊕ HomC(V•1,π, V•1,π) ⊕ HomC(V◦2,π, V◦2,π)

⊕ HomC(V•2,π, V•2,π),

S1
π = HomC(V◦1,π, V•1,π) ⊗ (tA1 + tÃ1

) ⊕ HomC(V•1,π, Vf,π) ⊗ tB

⊕ HomC(Vf,π, V◦1,π) ⊗ tC ⊕ HomC(V•2,π, V◦1,π) ⊗ tψ

⊕ HomC(V•1,π, V◦2,π) ⊗ tψ̃

⊕ HomC(V◦2,π, V•2,π) ⊗ (tA2 + tÃ2
). (6.10)

The contribution to each fixed point can be written down immediately

(−1)dim TπMc
d = (−1)d2

•1
+d2

◦1
+d2

•2
+d2

◦2
−d•1−d◦1−2d•1d◦1−d•1d◦2−d◦1d•2−2d•2d◦2 .

(6.11)
It is easy to see that this is always positive for the dimension vectors corre-
sponding to toric fixed modules. Therefore, the framed BPS spectrum consists
of only hypermultiplets and its generating function is

〈Wζ,3〉q=−1 =
∑
d

DTc
d(Wζ,3) Xec+d◦1e◦1+d•1e•1+d◦2e◦2+d•2e•2

= X− 2
3 e•1− 2

3 e◦1− 1
3 e•2− 1

3 e◦2
+ X− 2

3 e•1+ 1
3 e◦1− 1

3 e•2− 1
3 e◦2

+ X+ 1
3 e•1+ 1

3 e◦1− 1
3 e•2− 1

3 e◦2
+ X+ 1

3 e•1+ 1
3 e◦1− 1

3 e•2+ 2
3 e◦2

+ X+ 1
3 e•1+ 1

3 e◦1+ 2
3 e•2+ 2

3 e◦2
. (6.12)

This result indeed agrees with [45], based on cluster algebra methods, as well
as with [62].

6.2. SU(3) with a Wilson Line in the Representation 6
Now we consider the case of SU(3) with a Wilson line in the representation 6.
This case is modeled on the framed quiver

•1

B̃

�� B��

ψ̃ �� ◦2

Ã2

��

A2

��

f6

C̃ ��

C

��
◦1

Ã1

��

A1

��

•2
ψ

��

.

(6.13)

We take the superpotential

W = CBA1 − C̃BA1 + C̃B̃A1 − CB̃Ã1 + ψ̃A1ψA2 − ψ̃Ã1ψÃ2. (6.14)



Vol. 19 (2018) Quivers, Line Defects and Framed BPS Invariants 47

It is easy to derive the equations of motion

rA1 : CB − C̃B + C̃B̃ + ψA2ψ̃ = 0, (6.15)

rB : A1C − A1C̃ = 0, (6.16)

rC : BA1 − B̃Ã1 = 0, (6.17)

rÃ1
: −CB̃ − ψÃ2ψ̃ = 0, (6.18)

rB̃ : A1C̃ − Ã1C = 0, (6.19)

rC̃ : −BA1 + B̃A1 = 0, (6.20)

rA2 : ψ̃A1ψ = 0, (6.21)

rÃ2
: ψ̃Ã1ψ = 0, (6.22)

rψ : A2ψ̃A1 − Ã2ψ̃Ã1 = 0, (6.23)

rψ̃ : A1ψA2 − Ã1ψÃ2 = 0. (6.24)

As explained in the previous sections, for the classification of the fixed points
we are only interested in solutions of the equations of motions for which B =
B̃ = 0.

We let T act by rescaling each field. Compatibility with the ∂ W = 0
relations implies

εC = εC̃ , εA1 = εÃ1
, εB = εB̃ , εA2 = εÃ2

. (6.25)

If we furthermore choose to use the gauge torus TG = (C∗)3 to impose the
following conditions

εA1 + εC + εB = 0, (6.26)
εψ̃ + εA1 + εψ + εA2 = 0, (6.27)

then the superpotential W is invariant under the toric action. We have one
condition left, which we can use to set, say εC = 0.

As in the previous sections, the fact that the superpotential is invariant
under the toric action implies that the deformation complex

0 �� S0
π

δ0 �� S1
π

δ1 �� S2
π

δ2 �� S3
π

�� 0 (6.28)

is self-dual and therefore to compute the contribution of each fixed point we
only need the first two terms

S0
π = HomC(V◦1,π, V◦1,π) ⊕ HomC(V•1,π, V•1,π)

⊕ HomC(V◦2,π, V◦2,π) ⊕ HomC(V•2,π, V•2,π),

S1
π = HomC(V◦1,π, V•1,π) ⊗ (tA1 + tÃ1

) ⊕ HomC(V•1,π, Vf,π) ⊗ (tB + tB̃)

⊕ HomC(Vf,π, V◦1,π) ⊗ (tC + tC̃) ⊕ HomC(V•2,π, V◦1,π) ⊗ tψ

⊕ HomC(V•1,π, V◦2,π) ⊗ tψ̃

⊕ HomC(V◦2,π, V•2,π) ⊗ (tA2 + tÃ2
). (6.29)
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In the complex above δ2 is the linearization of the following relations between
the F-term conditions

rr•1 : A1rA1 + Ã1rÃ1
− rBB − rB̃B̃ − rψ̃ψ̃ = 0,

rr◦1 : CrC + C̃rC̃ + ψrψ − rA1A1 − rÃ1
Ã1 = 0,

rr◦2 : ψ̃rψ̃ − rA2A2 + rÃ2
Ã2 = 0,

rr•2 : A2rA2 − Ã2rÃ2
− rψψ = 0. (6.30)

Therefore, at each fixed point

(−1)dim Tπ = (−1)d2
•1

+d2
◦1

+d2
•2

+d2
◦2

−2d•1−2d◦1−2d•1d◦1−d•1d◦2−d◦1d•2−2d•2d◦2 .
(6.31)

Now we write down the Jacobian algebra elements corresponding to cyclic
modules JW = ⊕∞

n=0JW,n

JW,0 = {v},

JW,1 = {Cv, C̃v},

JW,2 = {A1Cv = A1C̃v = Ã1Cv, Ã1C̃v},

JW,3 = {ψ̃A1Cv, ψ̃Ã1C̃v},

JW,4 = {A2ψ̃A1Cv = Ã2ψ̃Ã1C̃v = Ã2ψ̃A1Cv, A2ψ̃Ã1C̃v}, (6.32)

and summands with higher grading do not contribute to the classification of
the fixed points due to the condition dim Vf = 1 and Eqs. (6.15) and (6.18)
evaluated at B = B̃ = 0. To write down JW,4 we have used

A2ψ̃A1Cv = A2ψ̃A1C̃v = Ã2ψ̃Ã1C̃v, (6.33)

thanks to (6.16) and (6.24), respectively, and

A2ψ̃A1Cv = Ã2ψÃ1Cv = Ã2ψA1C̃v = Ã2ψA1Cv, (6.34)

thanks to (6.24), (6.19), and (6.16), respectively. Now we would like to have
a classification of fixed points, in terms of pyramid partitions extracted out
of a pyramid arrangement. These are simply given by configurations of stones
π such that, if a stone is in π, then so are all the stones immediately above.
Given the form of the path algebra, the pyramid arrangement for this quiver
is the one shown in Fig. 12

The pyramid partitions of Fig. 12 are listed in Fig. 13.
At this point the associated enumerative invariants can be easily com-

puted and are listed in the following table (here we have introduced the nota-
tion d = (d◦1 , d•1 , d◦2 , d•2)).
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Figure 12. The pyramid arrangement for the case of SU(3)
Yang–Mills coupled to a Wilson line in the representation 6
of SU(3)

Figure 13. All the pyramid partitions corresponding to fixed
points for SU(3) with a Wilson line in the 6

d fixed pts (−1)dim Tπ DT d fixed pts (−1)dim Tπ DT
(0, 0, 0, 0) 1 + +1 (2, 2, 1, 0) 2 − −2
(1, 0, 0, 0) 2 − −2 (2, 2, 2, 0) 1 + +1
(2, 0, 0, 0) 1 + +1 (1, 1, 1, 1) 1 + +1
(1, 1, 0, 0) 1 + +1 (2, 1, 1, 1) 1 + +1
(2, 1, 0, 0) 2 − −2 (2, 2, 1, 1) 1 + +1
(2, 2, 0, 0) 1 + +1 (2, 2, 2, 1) 2 − −2
(1, 1, 1, 0) 1 + +1 (2, 2, 2, 2) 1 + +1
(2, 1, 1, 0) 2 − −2

(6.35)

Putting everything together we have the following prediction for the vev of the
Wilson line operator
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〈Wζ,6〉q=−1 =
∑
d

DTd(Wζ,6) Xe6+e·d

= X− 4e◦1
3 − 2e◦2

3 − 4e•1
3 − 2e•2

3
− 2X− e◦1

3 − 2e◦2
3 − 4e•1

3 − 2e•2
3

+ X 2e◦1
3 − 2e◦2

3 − 4e•1
3 − 2e•2

3

+ X− e◦1
3 − 2e◦2

3 − e•1
3 − 2e•2

3
− 2X 2e◦1

3 − 2e◦2
3 − e•1

3 − 2e•2
3

+ X− e◦1
3 +

e◦2
3 − e•1

3 − 2e•2
3

− 2X 2e◦1
3 +

e◦2
3 − e•1

3 − 2e•2
3

+ X 2e◦1
3 − 2e◦2

3 +
2e•1

3 − 2e•2
3

− 2X 2e◦1
3 +

e◦2
3 +

2e•1
3 − 2e•2

3

+ X 2e◦1
3 +

4e◦2
3 +

2e•1
3 − 2e•2

3

+ X− e◦1
3 +

e◦2
3 − e•1

3 +
e•2
3

+ X 2e◦1
3 +

e◦2
3 − e•1

3 +
e•2
3

+ X 2e◦1
3 +

e◦2
3 +

2e•1
3 +

e•2
3

− 2X 2e◦1
3 +

4e◦2
3 +

2e•1
3 +

e•2
3

+ X 2e◦1
3 +

4e◦2
3 +

2e•1
3 +

4e•2
3

. (6.36)

This prediction was confirmed in the q −→ +1 limit in [45] imposing that vevs
of Wilson lines obey an OPE derived from the tensor product decomposition of
SU(3) representations. Here we find the same result, however, without imposing
the OPE, and keeping track of certain spin information.

6.3. SU(3) with a Wilson Line in the Representation 10
Finally, we couple the SU(3) BPS quiver to a line operator with core charge
RG(Wζ,10) = −2(e•1 + e◦1) − (e•2 + e◦2). In this case the relevant quiver is
given by

•1
B1,...,B3

		

ψ̃ �� ◦2

Ã2

��

A2

��

f10

C1,...,C3 

 ◦1

Ã1

��

A1

��

•2
ψ

��

(6.37)

and we take the superpotential

W = B1(A1C1 − A1C2) + B2(Ã1C2 − Ã1C3) + B3(A1C3 − Ã1C2)

+ ψ̃A1ψA2 − ψ̃Ã1ψÃ2. (6.38)

We write only the equations of motions that we will need in the following:

rB1 : A1C1 − A1C2 = 0,

rB2 : Ã1C2 − Ã1C3 = 0,

rB3 : A1C3 − Ã1C2 = 0,

rψ : A2ψ̃A1 − Ã2ψ̃Ã1 = 0,
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rA2 : ψ̃A1ψ = 0,

rÃ2
: ψ̃Ã1ψ = 0. (6.39)

Using these equations we find the following identifications

A1C1v = A1C2v, (6.40)

Ã1C2v = Ã1C3v = A1C3v, (6.41)

as well as

Ã2ψ̃A1C1v = Ã2ψ̃A1C2v, (6.42)

A2ψ̃A1C1v = Ã2ψ̃Ã1C1v = A2ψ̃A1C2v = Ã2ψ̃Ã1C2v

= Ã2ψ̃A1C3v = Ã2ψ̃Ã1C3v = A2ψ̃A1C3v

= A2ψ̃Ã1C2v = A2ψ̃Ã1C3v. (6.43)

We can write the cyclic elements of the Jacobian algebra as

JW,0 = {v},

JW,1 = {C1v, C2v, C3v},

JW,2 = {Ã1C1v, A1C2v, A1C3v},

JW,3 = {ψ̃Ã1C1v, ψ̃A1C2v, ψ̃A1C3v},

JW,4 = {A2ψ̃Ã1C1v, Ã2ψ̃A1C2v, A2ψ̃A1C3v}. (6.44)

The fixed point configuration can be described in terms of the pyramid arrange-
ment in Fig. 14.

The contribution of each fixed point is given by

(−1)dim Tπ = (−1)d2
•1

+d2
◦1

+d2
•2

+d2
◦2

−3d•1−3d◦1−2d•1d◦1−d•1d◦2−d◦1d•2−2d•2d◦2 .
(6.45)

We assemble all the invariants in the following table, using the shorthand
notation d = (d◦1 , d•1 , d◦2 , d•2).

Figure 14. Pyramid arrangement for SU(3) Yang–Mills cou-
pled to a Wilson line in the representation 10
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d fixed pts (−1)dim Tπ DT d fixed pts (−1)dim Tπ DT
(0, 0, 0, 0) 1 + +1 (3, 3, 2, 0) 3 + +3
(1, 0, 0, 0) 3 + +3 (3, 3, 3, 0) 1 + +1
(2, 0, 0, 0) 3 + +3 (1, 1, 1, 1) 1 + +1
(3, 0, 0, 0) 1 + +1 (2, 1, 1, 1) 2 − −2
(1, 1, 0, 0) 1 + +1 (2, 2, 1, 1) 1 + +1
(2, 1, 0, 0) 4 + +4 (2, 2, 2, 1) 2 − −2
(2, 2, 0, 0) 1 + +1 (2, 2, 2, 2) 1 + +1
(3, 1, 0, 0) 3 + +3 (3, 2, 1, 1) 2 − −2
(3, 2, 0, 0) 3 + +3 (3, 2, 2, 1) 4 + +4
(3, 3, 0, 0) 1 + +1 (3, 2, 2, 2) 1 + +1
(1, 1, 1, 0) 1 + +1 (3, 1, 1, 1) 1 + +1
(2, 1, 1, 0) 4 + +4 (3, 3, 1, 1) 1 + +1
(2, 2, 1, 0) 2 − −2 (3, 3, 2, 1) 4 + +4
(2, 2, 2, 0) 1 + +1 (3, 3, 2, 2) 1 + +1
(3, 2, 1, 0) 6 − −6 (3, 3, 3, 1) 3 + +3
(3, 2, 2, 0) 3 + +3 (3, 3, 3, 2) 3 + +3
(3, 1, 1, 0) 3 + +3 (3, 3, 3, 3) 1 + +1
(3, 3, 1, 0) 3 + +3

(6.46)

Finally, we have the following prediction for the Wilson line vev

〈Wζ,10〉q=−1 = X−2e•1−e◦2−2e◦1−e•2
+ 3X−e•1−e◦2−2e◦1−e•2

+ Xe•1−e◦2−2e◦1−e•2
+ X−e•1−e◦2−e◦1−e•2

+3Xe•1−e◦2−e◦1−e•2

+ Xe•1−e◦2+e◦1−e•2
+ 3Xe•1+e◦2+e◦1−e•2

+ Xe•1+2e◦2+e◦1−e•2

+ Xe•1+e◦2+e◦1+e•2
+ 3Xe•1+2e◦2+e◦1+e•2

+ Xe•1+2e◦2+e◦1+2e•2

+ 4Xe•1+e◦2+e◦1
+ 3Xe•1+2e◦2+e◦1

+ 3Xe•1−e◦2−e•2

+ 3Xe•1+e◦2−e•2
+ Xe•1+e◦2+e•2

+ 4Xe•1+e◦2
+ X−e•1−e◦1−e•2

+ 3Xe•1−e◦1−e•2
+ 3Xe•1+e◦1−e•2

+ X−e•1−e◦1
+ Xe•1−e◦1

+ Xe•1+e◦1
− 6Xe•1−e•2

− 2Xe•1
+ 3X−e◦2−2e◦1−e•2

+ 4X−e◦2−e◦1−e•2
+ X−e◦2−e•2

+ Xe◦2−e•2
+ Xe◦2+e•2

− 2Xe◦2
+ 4X−e◦1−e•2

− 2X−e◦1
− 2X−e•2

+ X0. (6.47)

Again it can be easily seen that this result is compatible with the OPE induced
by the tensor product decomposition of SU(3) representations 3 ∗ 6 = 8 +
10. Equivalently, we can claim that we have derived this OPE by a direct
computation.

6.4. Dyonic Defects

Now we will consider another class of defects, where the core charge is dyonic.
Consider first the defect



Vol. 19 (2018) Quivers, Line Defects and Framed BPS Invariants 53

f
[1]
1

βi





•1
αi

1

��
αi

2�� ψ �� ◦2

Ã1

��
Ã2

��◦1

A1

��

A2

��

•2
φ��

(6.48)

with superpotential

W =
3∑

i=1

(βiαi
2A2 + βiαi

1A1) + Ã1ψA1φ + Ã2ψA2φ. (6.49)

Due to the equations of motion, it is immediate to see that the pyramid
arrangement consists of three copies of ◦ and that the fixed points have dimen-
sion vectors (d◦1 , d•1 , d◦2 , d•2) as follows: (0, 0, 0, 0), (1, 0, 0, 0) with multiplicity
3, (2, 0, 0, 0) with multiplicity 3, and (3, 0, 0, 0) with multiplicity 1. The parity
of the tangent space is always positive. Therefore, we have reproduced the
result of [45].

Consider now the less trivial defect

f
[2]
1

��βi
1,βi

2 ��

•1
����

αi
1,αi

2,αi
3

��
ψ �� ◦2

Ã1

��
Ã2

��◦1

A1

��

A2

��

•2
φ��

(6.50)

with superpotential

W =
3∑

i=1

(A1β
i
1α

i
1 +A2β

i
2α

i
2 +αi

3(A1β
i
2 −A2β

i
1))+ Ã1ψA1φ+ Ã2ψA2φ. (6.51)

The relevant equations of motion are

A1β
i
1 = A2β

i
2 = 0,

A1β
i
2 = A2β

i
1,

Ã1ψA1 = −Ã2ψA2, (6.52)

for i = 1, 2, 3. The associated pyramid arrangement takes the form of Figure 15.
This shape follows directly from the equations of motion. For example, one has
that

Ã2ψA1β
i
1 = Ã1ψA1β1 = 0 , (6.53)

and similarly
Ã1ψA2β

i
1 = Ã1ψA1β

i
2 = Ã2ψA2β2 = 0. (6.54)

The parity of the tangent space is given by the combination

(−1)d2
◦1

+d2
•1

+d2
◦2

+d2
•2

−6d◦1−9d•1−2d◦1d•1−d•1d◦2−d◦1d•2−2d◦2d•2 . (6.55)

It is now straightforward to compute the framed BPS degeneracies, and the
results are contained in the following table, with the shorthand notation d =
(d◦1 , d•1 , d◦2 , d•2).
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Figure 15. Pyramid arrangement for the defect f
[2]
1 in SU(3)

d fixed pts (−1)dim Tπ DT d fixed pts (−1)dim Tπ DT
(0, 0, 0, 0) 1 + +1 (6, 3, 0, 0) 1 + +1
(1, 0, 0, 0) 6 − −6 (2, 1, 1, 0) 3 + +3
(2, 0, 0, 0) 15 + +15 (3, 1, 1, 0) 12 − −12
(3, 0, 0, 0) 20 − −20 (4, 1, 1, 0) 18 + +18
(4, 0, 0, 0) 15 + +15 (5, 1, 1, 0) 12 − −12
(5, 0, 0, 0) 6 − −6 (6, 1, 1, 0) 3 + +3
(6, 0, 0, 0) 1 + +1 (4, 2, 1, 0) 6 − −6
(2, 1, 0, 0) 3 + +3 (5, 2, 1, 0) 12 + +12
(3, 1, 0, 0) 12 − −12 (6, 2, 1, 0) 6 − −6
(4, 1, 0, 0) 18 + +18 (6, 3, 1, 0) 3 + +3
(5, 1, 0, 0) 12 − −12 (4, 2, 2, 0) 3 + +3
(6, 1, 0, 0) 3 + +3 (5, 2, 2, 0) 6 − −6
(4, 2, 0, 0) 3 + +3 (6, 2, 2, 0) 3 + +3
(5, 2, 0, 0) 6 − −6 (6, 3, 2, 0) 3 + +3
(6, 2, 0, 0) 3 + +3 (6, 3, 3, 0) 1 + +1

(6.56)

This framed BPS spectrum agrees with the one computed [45] using untwisted
variables Yγ , if we neglect the signs. The above result goes beyond and also
contains spin information.

7. SO(8) Super Yang–Mills

As the last example, we will now apply our formalism to the case of SO(8)
super Yang–Mills. To our knowledge no framed BPS spectra are known for
this theory. This case is somewhat more technical than the previous sections.
However, we will see that our formalism is very powerful and allows for a
complete solution of the framed BPS spectra in many cases. The unframed
quiver which describes the BPS spectrum of SO(8) super Yang–Mills can be
chosen as [8]
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◦2

A2

��

Ã2

��

◦1

A1

��

Ã1

��

•3
φ̃

��
λ̃

��

ψ
���������� ◦4

A4

��

Ã4

��

•2

ψ̃

		��
��
��
��

•1
φ �� ◦3

A3

��

Ã3

��

•4
λ��

(7.1)

which has the structure of the product of a D4 Dynkin diagram with a Kro-
necker quiver. The spectrum has a Z12 symmetry, for certain values of the
physical parameters, corresponding to the 1/12-monodromy r+ = •1, •2, •3, •4

with permutation σ = {(◦1, •1), (◦2, •2), (◦3, •3), (◦4, •4)}.
We will now couple it to Wilson lines in the representations 8s, 8c, and

8v. These framings are related to each other by the triality of D4. Indeed,
it is enough to pick one representation, say 8s, and the other results can be
obtained by permutations. The Wilson line defect in the 8s has core charge
RG(Wζ,8s

) = −(e•1 + e•3 + e◦1 + e◦3) − 1
2 (e•2 + e•4 + e◦2 + e◦4). We therefore

consider the quiver

◦2

A2

��

Ã2

��

◦1

A1

��

Ã1

��

•3
φ̃

��
λ̃

��

ψ
���������� ◦4

A4

��

Ã4

��

f8s

C

��

•2

ψ̃

����
��
��
��

•1
φ ��

B


◦3

A3

��

Ã3

��

•4
λ��

(7.2)

with superpotential

W = C B A1 + φ̃ A3 φ A1 − φ̃ Ã3 φ Ã1 + ψ̃ A2 ψ A1 − ψ̃ Ã2 ψ Ã3

+ λA4 λ̃ A3 − λ Ã4 λ̃ Ã3. (7.3)

The framed BPS quivers for line defects in the 8c and in the 8v are obtained
from this one by coupling the defect in the same fashion, on the two other
external Kronecker sub-quivers (with nodes labeled ◦2 and ◦4, respectively).
Note that in the above superpotential the coupling to the Wilson line is the
same as in the case of Sect. 6.1, while the unframed part is given in [8].

Since we have discussed several examples so far, we will be brief. The first
step is to construct the relevant truncated pyramid arrangement associated
with this quiver and then study the fixed points of the natural toric action,
which rescales all the fields while preserving the F-term relations. To construct
the shape of the pyramid arrangement we must look at the Jacobian algebra
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generated by the cyclic vector v. As usual this is graded JW =
⊕

n≥0 JW,n

and the first few terms are

JW,0 ={v},

JW,1 ={C v},

JW,2 ={Ã1 C v},

JW,3 ={φ Ã1 C v},

JW,4 ={A3 φ Ã1 C v},

JW,5 ={ψ A3 φ Ã1 C v, λ̃A3 φ Ã1 C v}. (7.4)

To go one step further observe that

A2 ψ A3 φ Ã1 C v = Ã2 ψ Ã3 φ Ã1 C v = Ã2 ψ A3 φ A1 C v = 0, (7.5)

where we have used the F-term equations ∂ψ̃W = 0, ∂φ̃W = 0, and ∂BW = 0.
In the same fashion one concludes that

A4 λ̃ A3 φ Ã1 C v = 0. (7.6)

Therefore, we have shown that

JW,6 = {Ã2 ψ A3 φ Ã1 C v, Ã4 λ̃ A3 φ Ã1 C v}. (7.7)

At the next level we have

JW,7 = {ψ̃ Ã2 ψ A3 φ Ã1 C v = −λ Ã4 λ̃ A3 φ Ã1 C v}. (7.8)

This follows from the equation ∂Ã3
W = 0:

φ Ã1 φ̃ + ψ̃ Ã2 ψ + λ Ã4 λ̃ = 0, (7.9)

which implies

φ Ã1 φ̃ A3 φ Ã1 C v + ψ̃ Ã2 ψ A3 φ Ã1 C v + λ Ã4 λ̃ A3 φ Ã1 C v = 0. (7.10)

Now (7.8) follows from the condition ∂A1W = 0 evaluated at B = 0, a con-
dition which can always be imposed when classifying fixed points, due to the
constraint dim Vf = 1. Similarly, one can see that

JW,8 = {A3 ψ̃ Ã2 ψ A3 φ Ã1 C v = −A3 λ Ã4 λ̃ A3 φ Ã1 C v},

JW,9 = {φ̃ A3 ψ̃ Ã2 ψ A3 φ Ã1 C v}, (7.11)

where we have used ∂A2W = 0 and ∂A4W = 0, and finally

JW,10 = {Ã1 φ̃ A3 ψ̃ Ã2 ψ A3 φ Ã1 C v}. (7.12)

Indeed,
φ Ã1 φ̃ A3 ψ̃ Ã2 ψ A3 φ Ã1 C v = 0, (7.13)

which follows from (7.9), upon imposing ∂A2W = 0 and ∂A4W = 0. Therefore,
the pyramid arrangement assumes the simple form of Fig. 16.

We have also taken a step further and used the triality of the D4 Dynkin
graph to write down the pyramid arrangements also for the 8c and 8v Wilson
lines. Fixed points are now in correspondence with pyramid partitions which
can be removed from the pyramid arrangement. It can be easily checked that
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Figure 16. Pyramid arrangements for SO(8) super Yang–
Mills coupled to Wilson lines in the representations 8s, 8c,
and 8v. The label of the stones corresponds to the label of
the nodes of the quiver

the parity of the tangent space is positive at each fixed point. Therefore, we can
write down directly the Wilson line vevs simply by enumerating configurations:

〈Wζ,8s
〉 =
[ 1
X•1X•3X◦1X◦3(X•2X•4X◦2X◦4)1/2

+
1

X•3X◦3(X•2X•4X◦2X◦4)1/2
+

1
(X•2X•4X◦2X◦4)1/2

+
(

X•4X◦4

X•2X◦2

)1/2

+
(

X•2X◦2

X•4X◦4

)1/2

+ (X•2X•4X◦2X◦4)
1/2 + X•3X◦3 (X•2X•4X◦2X◦4)

1/2

+ X•1X•3X◦1X◦3 (X•2X•4X◦2X◦4)
1/2
]

+
1

X•3 (X•2X•4X◦2X◦4)
1/2

+
(

X◦2

X•2X•4X◦4

)1/2
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+
1

X•1X•3X◦3 (X•2X•4X◦2X◦4)
1/2

+
(

X◦4

X•2X•4X◦2

)1/2

+
(

X◦2X◦4

X•2X•4

)1/2

+
(

X•2X◦2X◦4

X•4

)1/2

+
(

X•4X◦2X◦4

X•2

)1/2

+ X◦3 (X•2X•4X◦2X◦4)
1/2

+ X•3X◦1X◦3 (X•2X•4X◦2X◦4)
1/2

〈Wζ,8c
〉 = 〈Wζ,8s

〉|cyclic perm.{◦1,◦2,◦4} ,{•1,•2,•4}

〈Wζ,8v
〉 = 〈Wζ,8c

〉|cyclic perm.{◦1,◦2,◦4} ,{•1,•2,•4}. (7.14)

One can easily see (for example using the mathematica package LieArt)
that the terms in parentheses correspond to the weights of the corresponding
representation of SO(8), according to the decomposition (3.4).

Finally, we would like to consider the remaining fundamental represen-
tation of SO(8), given by the 28. However, for technical reasons, it is easier
to compute first the 35s and then use the OPE between representations. The
relevant quiver is now

◦2

A2

��

Ã2

��

◦1

A1

��

Ã1

��

•3
φ̃

��
λ̃

��

ψ
���������� ◦4

A4

��

Ã4

��

f35s

C

��
C̃

��

•2

ψ̃

����
��
��
��

•1
φ ��

B
��

B̃

��

◦3

A3

��

Ã3

��

•4
λ��

(7.15)

where the superpotential

W = C B A1 − C̃ B A1 + C̃ B̃ A1 − C B̃ A1 + φ̃ A3 φ A1 − φ̃ Ã3 φ Ã1

+ ψ̃ A2 ψ A1 − ψ̃ Ã2 ψ Ã3 + λA4 λ̃ A3 − λ Ã4 λ̃ Ã3 (7.16)

is obtained from the analog situation for SU(3), Eq. (6.14). To build the pyra-
mid arrangement we have to study modules generated by the action of the
Jacobian algebra on a single vector v ∈ Vf , with Vf one-dimensional. The
Jacobian algebra thus generated is naturally graded JW =

⊕
n≥0 JW,n, and

the first few terms are easy to work out

JW,0 = {v},

JW,1 = {C̃ v, C v},

JW,2 = {Ã1 C̃v, A1C̃v = A1 C v = Ã1 C v},
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JW,3 = {φ Ã1 C̃v, φ C̃v,A1C̃v = φ A1 C v = φ Ã1 C v},

JW,4 = {A3 φ Ã1 C̃v, Ã3φÃ1 C̃v = A3 φ A1 C v = Ã3 φ Ã1 C v}. (7.17)

At the next levels we have four independent vectors

JW,5 = {ψ A3 φ Ã1 C̃ v, ψ Ã3 φ Ã1 C v, λ̃ A3 φ Ã1 C̃ v, λ̃ Ã3 φ Ã1 C v},
JW,6 = {A2 ψ A3 φ Ã1 C̃ v, Ã2 ψ A3 φ Ã1 C̃ v, A4 λ̃ A3 φ Ã1 C̃ v, Ã4 λ̃ A3 φ Ã1 C̃ v},

(7.18)

where we have used the F-term relations obtained from (7.16) to show

A2 ψ A3 φ Ã1 C̃ v = Ã2 ψ Ã3 φ Ã1 C v = A2 ψ Ã3 φÃ1 C v,

A4 λ̃ A3 φ Ã1 C̃ v = A4 λ̃ Ã3 φ Ã1 C v = Ã4 λ̃ Ã3 φ Ã1 C v. (7.19)

Similar arguments give

JW,7 = {ψ̃ Ã2 ψ A3 φ Ã1 C̃ v, ψ̃ A2 ψ A3 φ Ã1 C̃ v},

JW,8 = {A3 ψ̃ Ã2 ψ A3 φ Ã1 C̃ v, Ã3 ψ̃ Ã2 ψ A3 φ Ã1 C̃ v},

JW,9 = {φ̃ A3 ψ̃ Ã2 ψ A3 φ Ã1 C̃ v, φ̃ Ã3 ψ̃ Ã2 ψ A3 φ Ã1 C̃ v},

JW,10 = {Ã1 φ̃ A3 ψ̃ Ã2 ψ A3 φ Ã1 C̃ v, A1 φ̃ A3 ψ̃ Ã2 ψ A3 φ Ã1 C̃ v}. (7.20)

Putting all together we have built the pyramid arrangement of Fig. 17, where
to avoid graphical complications, we have “dismembered” the pyramid and
drawn a black link where two stones are supposed to be touching.

The counting of framed BPS degeneracies proceeds now as usual, albeit
being considerably more involved. Toric fixed ideals are labeled by pyramid
partitions, configurations of stones which can be removed from Fig. 17, sub-
jected to the condition that if a stone is in the pyramid partition, then any
stone immediately above connected by a black link is part of the pyramid par-
tition as well. Each fixed point contributes to the degeneracies with a sign,
given by

(−1)
∑4

i=1(d
2
◦i

+d2
•i

)−d◦1−d•1−∑4
i=1 d◦i

d•i
−d•1d◦3−d•3d◦1−d•2d◦3−d•3d◦2−d•4d◦3−d•3d◦4 ,

(7.21)
where d = (d•1 , d•2 , d•3 , d•4 , d◦1 , d◦2 , d◦3 , d◦4) denotes the dimension vector
of a cyclic module. The framed BPS spectrum consists of four states with
DT = +4 and dimension vectors

{(2, 0, 2, 0, 2, 1, 2, 1), (2, 1, 2, 0, 2, 2, 2, 1), (2, 0, 2, 1, 2, 1, 2, 2),
(2, 1, 2, 1, 2, 2, 2, 2)}, (7.22)

one state with DT = +3 and dimension vector (2, 1, 2, 1, 2, 1, 2, 1); 36 vector
multiplet states with DT = −2, and dimension vectors

{(0, 0, 0, 0, 1, 0, 0, 0), (1, 0, 0, 0, 2, 0, 0, 0), (1, 0, 0, 0, 2, 0, 1, 0), (2, 0, 0, 0, 2, 0, 1, 0),

(2, 0, 1, 0, 2, 0, 2, 0), (2, 0, 1, 0, 2, 1, 2, 0), (2, 0, 2, 0, 2, 1, 2, 0), (2, 0, 1, 0, 2, 0, 2, 1),

(2, 0, 2, 0, 2, 0, 2, 1), (2, 0, 1, 0, 2, 1, 2, 1), (2, 0, 2, 0, 2, 2, 2, 1), (2, 0, 2, 0, 2, 1, 2, 2),

(2, 1, 2, 0, 2, 2, 2, 0), (2, 1, 2, 0, 2, 1, 2, 1), (2, 2, 2, 0, 2, 2, 2, 1), (2, 1, 2, 0, 2, 2, 2, 2),

(2, 0, 2, 1, 2, 1, 2, 1), (2, 0, 2, 1, 2, 0, 2, 2), (2, 0, 2, 2, 2, 1, 2, 2), (2, 0, 2, 1, 2, 2, 2, 2),
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Figure 17. Pyramid arrangement for the 35s of SO(8).
Instead of a three-dimensional visualization, we have opted for
drawing black links where two stones should be touching. Now
toric fixed ideals are counted by removing pyramid partitions:
stone configurations, such that if a stone is in the configura-
tion, then all the stones immediately above connected via one
black link should be in it. The links are non-intersecting

(2, 1, 1, 1, 2, 1, 2, 1), (2, 1, 2, 1, 2, 2, 2, 1), (2, 1, 2, 1, 2, 1, 2, 2), (2, 2, 2, 1, 2, 2, 2, 2),

(2, 1, 2, 2, 2, 2, 2, 2), (2, 1, 2, 1, 2, 1, 3, 1), (2, 1, 2, 1, 2, 2, 3, 2), (2, 2, 2, 1, 2, 2, 3, 2),

(2, 1, 2, 2, 2, 2, 3, 2), (2, 2, 2, 2, 2, 2, 3, 2), (1, 1, 2, 1, 2, 1, 2, 1), (2, 2, 3, 2, 2, 2, 4, 2),

(2, 1, 2, 1, 3, 1, 2, 1), (2, 2, 3, 2, 3, 2, 4, 2), (2, 2, 4, 2, 3, 2, 4, 2), (3, 2, 4, 2, 4, 2, 4, 2)},
(7.23)

and 97 other hypermultiplets with DT = +1. Recall that in our conventions the
charges of the BPS states are given by e35s

+ e · d. From these degeneracies
we can write down the vev as



Vol. 19 (2018) Quivers, Line Defects and Framed BPS Invariants 61

〈Wζ,35s
〉 = 〈Wζ,35s

〉diag + 〈Wζ,35s
〉offdiag (7.24)

with

〈Wζ,35s
〉diag

=
[ 1

X2•1
X•2X2•3

X•4X2◦1
X◦2X2◦3

X◦4

+
1

X•1X•2X2•3
X•4X◦1X◦2X2◦3

X◦4

+
1

X•2X2•3
X•4X◦2X2◦3

X◦4

+
1

X•1X•2X•3X•4X◦1X◦2X◦3X◦4

+
1

X•1X•2X•3X◦1X◦2X◦3

+
1

X•1X•3X•4X◦1X◦3X◦4

+
1

X•2X•3X•4X◦2X◦3X◦4

+
1

X•1X•3X◦1X◦3

+
1

X•2X•3X◦2X◦3

+
1

X•3X•4X◦3X◦4

+
1

X•2X•4X◦2X◦4

+
1

X•3X◦3

+
1

X•1X◦1

+
1

X•2X◦2

+
1

X•4X◦4

+
X•4X◦4

X•2X◦2

+ 3 +
X•2X◦2

X•4X◦4

+ X•4X◦4 + X•2X◦2 + X•1X◦1 + X•3X◦3 + X•2X•4X◦2X◦4 + X•3X•4X◦3X◦4

+ X•2X•3X◦2X◦3 + X•1X•3X◦1X◦3 + X•2X•3X•4X◦2X◦3X◦4 + X•1X•3X•4X◦1X◦3X◦4

+ X•1X•2X•3X◦1X◦2X◦3 + X•1X•2X•3X•4X◦1X◦2X◦3X◦4 + X•2X
2
•3

X•4X◦2X
2
◦3

X◦4

+ X•1X•2X
2
•3

X•4X◦1X◦2X
2
◦3

X◦4 + X
2
•1

X•2X
2
•3

X•4X
2
◦1

X◦2X
2
◦3

X◦4

]
(7.25)

and

〈Wζ,35s
〉offdiag = − 2

X•1

− 2

X•2

− 2

X•3

+
1

X•1X•3

+
1

X•2X•3

− 2

X•4

+
4

X•2X•4

+
1

X•3X•4

− 2

X•2X•3X•4

+
1

X•1X•3X◦1

− 2X◦1 +
X◦1

X•1

+
1

X•2X•3X◦2

− 2

X•2X•4X◦2

− 2

X•2X•3X•4X◦2

− 2X◦2

+
X◦2

X•2

+
4X◦2

X•4

− 2X◦2

X•2X•4

− 2X•2X◦2

X•4

+
1

X•1X•3X◦3

+
1

X•2X•3X◦3

+
1

X•1X•2X•3X◦3

+
1

X•3X•4X◦3

+
1

X•1X•3X•4X◦3

+
1

X•2X•3X•4X◦3

+
1

X•1X•2X•3X•4X◦3

+
1

X•1X•2X•3X◦1X◦3

+
1

X•1X•3X•4X◦1X◦3

+
1

X•1X•2X•3X•4X◦1X◦3

+
1

X•1X•2X•3X◦2X◦3

+
1

X•2X•3X•4X◦2X◦3

+
1

X•1X•2X•3X•4X◦2X◦3

+
1

X•1X•2X•3X•4X◦1X◦2X◦3

− 2X◦3 +
X◦3

X•3

+ X◦1X◦3 + X•1X◦1X◦3 + X•3X◦1X◦3 + X◦2X◦3 + X•2X◦2X◦3 + X•3X◦2X◦3

+ X•3X◦1X◦2X◦3 + X•1X•3X◦1X◦2X◦3 + X•2X•3X◦1X◦2X◦3 − 2

X•2X•4X◦4

+
1

X•3X•4X◦4

− 2

X•2X•3X•4X◦4

+
1

X•2X
2•3

X•4X◦2X◦4

− 2

X•2X•3X•4X◦2X◦4

− 2X◦2

X•4X◦4

+
X◦2

X•2X•4X◦4
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+
1

X2•1
X•2X

2•3
X•4X◦2X

2◦3
X◦4

− 2

X•1X•2X
2•3

X•4X◦2X
2◦3

X◦4

− 2

X2•1
X•2X

2•3
X•4X◦1X◦2X

2◦3
X◦4

+
1

X•1X•3X•4X◦3X◦4

+
1

X•2X•3X•4X◦3X◦4

+
1

X•1X•2X•3X•4X◦3X◦4

+
1

X•1X•2X•3X•4X◦1X◦3X◦4

− 2

X•2X
2•3

X•4X◦2X◦3X◦4

− 2

X•1X•2X
2•3

X•4X◦2X◦3X◦4

+
1

X•1X•2X•3X•4X◦2X◦3X◦4

+
1

X•1X•2X
2•3

X•4X◦1X◦2X◦3X◦4

− 2X◦4 +
4X◦4

X•2

+
X◦4

X•4

− 2X◦4

X•2X•4

− 2X•4X◦4

X•2

− 2X◦4

X•2X◦2

+
X◦4

X•2X•4X◦2

+ 4X◦2X◦4 − 2X◦2X◦4

X•2

− 2X•2X◦2X◦4

− 2X◦2X◦4

X•4

+
X◦2X◦4

X•2X•4

+
X•2X◦2X◦4

X•4

− 2X•4X◦2X◦4 +
X•4X◦2X◦4

X•2

+ X◦3X◦4 + X•3X◦3X◦4

+ X•4X◦3X◦4 + X•3X◦1X◦3X◦4 + X•1X•3X◦1X◦3X◦4 + X•3X•4X◦1X◦3X◦4

− 2X◦2X◦3X◦4 − 2X•2X◦2X◦3X◦4 + X•3X◦2X◦3X◦4 + X•2X•3X◦2X◦3X◦4

− 2X•4X◦2X◦3X◦4 − 2X•2X•4X◦2X◦3X◦4 + X•3X•4X◦2X◦3X◦4 + X•3X◦1X◦2X◦3X◦4

+ X•1X•3X◦1X◦2X◦3X◦4

+ X•2X•3X◦1X◦2X◦3X◦4 + X•1X•2X•3X◦1X◦2X◦3X◦4 + X•3X•4X◦1X◦2X◦3X◦4

+ X•1X•3X•4X◦1X◦2X◦3X◦4 + X•2X•3X•4X◦1X◦2X◦3X◦4 + X•2X•4X◦2X
2
◦3

X◦4

− 2X•2X•3X•4X◦2X
2
◦3

X◦4 − 2X•2X•3X•4X◦1X◦2X
2
◦3

X◦4

+ X•1X•2X•3X•4X◦1X◦2X
2
◦3

X◦4

− 2X•2X
2
•3

X•4X◦1X◦2X
2
◦3

X◦4 + X•2X
2
•3

X•4X
2
◦1

X◦2X
2
◦3

X◦4

− 2X•1X•2X
2
•3

X•4X
2
◦1

X◦2X
2
◦3

X◦4 . (7.26)

The terms in 〈Wζ,35s
〉diag correspond precisely to the weights of the 35s

representation of SO(8) as in decomposition (3.4). The remaining terms are
non-perturbative in nature. Finally, our prediction for the remaining funda-
mental Wilson line 28 is given by the OPE

〈Wζ,28〉 = 〈Wζ,8s
〉〈Wζ,8s

〉 − 〈Wζ,35s
〉 − 1, (7.27)

according to the tensor product decomposition 8s ⊗ 8s = 28 + 35s + 1.
These quantities pass a very non-trivial check. As argued in [45] the

Wilson line defects correspond to conserved charges of a discrete integrable
system associated with the unframed BPS quiver. In this case this is the Q-
system associated with the D4 Dynkin diagram. More in general for a Dr

Dynkin diagram, define the commutative variables {Rα,n : α ∈ Ir, n ∈ Z}.
These variables obey the recursion relation
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Rα,n+1 Rα,n−1 = R2
α,n +

∏
β∈Ir

Cαβ=−1

Rβ,n, R0,n = Rr+1,n = 1,

(α ∈ Ir, n ∈ Z), (7.28)

with Ir = 1, . . . , r. This system can be recast within the formalism of cluster
algebras by interpreting (7.28) as exchange relations for the seed (x, B) with

x = (R1,0, . . . ,Rr,0;R1,1, . . . ,Rr,1) , B =
(

0 −C
C 0

)
, (7.29)

where C is the Cartan matrix of Dr (in the conventions such that B is the
exchange matrix of the unframed BPS quiver for SO(4) (7.1)). Define the
Y -seed variables

Yi =
∏

i

x
Bij

i . (7.30)

These variables are the untwisted coordinates related to the Xγ functions
which we have been using throughout this paper by a quadratic refinement
[47]. It is easy to see that converting the vevs we have computed above in
terms of the Y -variables simply amounts to neglecting all the minus signs. In
these variables it is easy to compute the evolution of the D4 Q-system which
simply amounts to the rational transformation

R̃ ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y•1 → 1/Y•1

Y•2 → 1/Y•2

Y•3 → 1/Y•3

Y•4 → 1/Y•4

Y◦1 → Y 2
•1

(1+Y•3 )Y◦1
(1+Y•1 )2

Y◦2 → Y 2
•2

(1+Y•3 )Y◦2
(1+Y•2 )2

Y◦3 → (1+Y•1 )(1+Y•2 )Y 2
•3

(1+Y•4 )Y◦3
(1+Y•3 )2

Y◦4 → (1+Y•3 )Y 2
•4

Y◦4
(1+Y•4 )2 .

(7.31)

This transformation coincides with the 1/12-fractional monodromy of the BPS
quiver (7.1) when composed with the permutation

σ = {(◦1, •1), (◦2, •2), (◦3, •3), (◦4, •4)}.

To our knowledge there is no systematic way to compute the conserved
charges for this Q-system. We claim that these coincide with Wilson lines of
the supersymmetric field theory which we have just computed. This follows
from the results of [45], to which we refer the reader for a more detailed
discussion. Indeed, now one can directly check that the vevs of the Wilson line
operators Wζ,8s

, Wζ,8c
, Wζ,8v

, and Wζ,28 (as well as Wζ,35), when expressed in
terms of the commuting variables Yγ , are invariant under σ ◦ R̃: they precisely
correspond to the fundamental constants of motion of the Q-system of D4.
This is a highly non-trivial confirmation of our result.
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8. Conclusions

This paper was devoted to the study of framed BPS degeneracies from an
algebraic viewpoint. Framed BPS degeneracies correspond to certain BPS
invariants of Donaldson–Thomas type associated with moduli spaces of framed
quiver representations. We have introduced a general formalism to compute
directly these quantities using localization techniques and detailed several
rather explicit examples. In the special case of cyclic or co-cyclic stability
conditions we can give a complete classification of the fixed points and deter-
mine explicitly the contribution of each fixed point to the framed BPS index.
Localization reduces the problem to a purely combinatorial one, counting cer-
tain combinatorial arrangements defined in terms of the quiver data. We have
shown this in a variety of examples for asymptotically free theories of class
S[Ak]. We believe that our results are more general and that these steps,
however technically involved, can be carried out directly for any framed quiver
with an appropriately chosen superpotential. In principle given a framed quiver
corresponding to a line defect in any N = 2 model, we believe that the
problem of computing the framed BPS spectrum can be solved applying our
formalism.

A different perspective, based on the transformation properties of framed
quivers under mutations, is detailed in [45]. The framed BPS spectra computed
with these two different methods agree.

We conclude by collecting here a few open problems which we are cur-
rently investigating:

• It would be interesting to consider more general theories. We have only
considered certain asymptotically free theories, but compactifications of
the N = (0, 2) theory produce a variety of strongly coupled or non-
Lagrangian or other exotic theories. In most cases no result for line oper-
ators is available. We believe our methods should be very useful to attack
this problem.

• We have focussed on the simpler limit q −→ − 1 of the protected spin
character, but one could easily envision an extension of our methods to
general values of q. As we have already mentioned we expect techniques
from quantum cluster algebras [101] and the theories of motives as used
in [2,95,102,103], to play a role here. This would be an important step
toward a full-fledged categorification of the ring of line operators, together
with their OPE relations.

• From a geometric perspective a line defect in a theory of class S can be
seen as a link in S1 × C. It is therefore natural to suspect that the BPS
degeneracies computed in this paper could be interpreted as some kind
of link invariant. Therefore, the generalization of our formalism to the
full protected spin character should have some description in terms of a
version of Khovanov homology for links. It would be very interesting to
make these vague statements more precise.
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