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Low-Energy Fock-Space Localization for
Attractive Hard-Core Particles in Disorder

Vincent Beaud and Simone Warzel

Abstract. We study a one-dimensional quantum system with an arbitrary
number of hard-core particles on the lattice, which are subject to a deter-
ministic attractive interaction as well as a random potential. Our choice
of interaction is suggested by the spectral analysis of the XXZ quantum
spin chain. The main result concerns a version of high-disorder Fock-
space localization expressed here in the configuration space of hard-core
particles. The proof relies on an energetically motivated Combes–Thomas
estimate and an effective one-particle analysis. As an application, we show
the exponential decay of the two-point function in the infinite system uni-
formly in the particle number.

1. Introduction

Imbrie’s works [18,19] notwithstanding, complete mathematical proofs of
many-body localization in the bulk of the many-particle spectrum remain a
challenge. Much mathematical progress has been devoted to the understand-
ing of localization in integrable systems [1,2,4,17,21,27,28]. First proofs of
ground-state localization for weakly interacting (non-integrable) fermions sub-
ject to the Aubry–André potential [22,23] as well as within the Hartree–Fock
approximation [13] are among the latest highlights. Interestingly, there is also
a recent proof of quasi-localization in the Bose–Hubbard model without dis-
order, based on Nekhoroshev estimates [9].

The present paper returns to earlier attempts at addressing the local-
ization problem, namely proofs of multi-particle localization [5,11]. In these
articles (see also [12] and references therein), systems of n particles are proven
to exhibit (strong dynamical) localization with a bound on the localization
length that diverges with the particle number. A salient point of our study is
to emphasize that, by adapting the techniques in the aforementioned works,
the issue of a divergent localization length bound may be absent; in fact,
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whenever the interaction among particles is attractive, thereby naturally forc-
ing clustering of particles. This further allows us to energetically restrict to
the low-energy regime defined by the two-cluster breakup. The many-particle
localization estimates derived here suffice in particular to conclude exponential
decay of the two-point function of low-energy eigenstates. Since such a scenario
is relevant to the understanding of exponential decay of correlations in the XXZ
quantum spin chain, we shall concentrate on the case of hard-core (spinless)
particles with a translation-invariant, nearest-neighbor, attractive interaction
on the one-dimensional lattice, or a subset thereof, Λ := [−L,L] ∩ Z with
L ∈ N.

Though from a slightly different perspective, related results were proven
independently in the recent preprint [14].

1.1. Model and Assumptions

The configuration space of n hard-core particles on Λ is identified with the set

X n
Λ := {x = {x1, x2, . . . , xn} ∈ Λn : x1 < x2 < · · · < xn}

of all ordered n-tuples in Λ. A configuration x ∈ X n
Λ can equivalently be

understood as a subset of n sites in Λ. Two sites u, v ∈ Λ are said to be
neighboring if |u − v| = 1, and similarly, a site u ∈ Λ is neighboring a subset
B ⊂ Λ if dist(u,B) = 1. We refer to a subset of neighboring sites in x as a
cluster if it is not neighboring any other site of x. The set of configurations
may thus be partitioned into a disjoint union,

X n
Λ =

n⋃

k=1

C(k)
Λ ,

of configurations with exactly k clusters, 1 � k � n. The Hilbert space of n
hard-core particles on Λ is then

Hn
Λ := l2
(X n

Λ

)
=

n⊕

k=1

l2
(C(k)

Λ

)
,

with inner product 〈·, ·〉. An orthonormal basis is given by {δx}x∈X n
Λ

where
δx(y) = δx,y.

The class of Hamiltonians considered here consists of a kinetic hopping
term, a hard-core attractive interaction and a random potential. The hopping
of particles on Λ is modeled by the adjacency matrix,

Aδx :=
∑

y∈X n
Λ

d(x,y)=1

δy, (1.1)

where the summation extends over all configurations y ∈ X n
Λ whose �1-

distance,

d(x,y) :=
n∑

j=1

|xj − yj |, (1.2)
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to x is one. Due to the hard-core constraint, any translation-invariant, nearest-
neighbor, attractive interaction among the particles increases linearly with the
number of clusters in the given configuration. Hence, for k-cluster configura-
tions, we set

Uδx := kδx, x ∈ C(k)
Λ . (1.3)

The number k ≡ k(x) equals half of the number of natural cluster boundaries
in x ∈ C

(k)
Λ . For g > 1, λ � 0, we then define on Hn

Λ the operator

HΛ := −A + 2g U + λV, (1.4)

where V is a random potential described below. It should be emphasized that
the strength of the hopping term is of order O(1) in this definition. These
Hamiltonians are closely related to the XXZ spin chain in its Ising phase as
detailed in Sect. 1.3 below. It is assumed throughout the paper that:
A1 The random potential is given in terms of a collection of iid random

variables {ω(α)}α∈Λ through

V δx =

⎛

⎝
n∑

j=1

ω(xj)

⎞

⎠ δx. (1.5)

A2 The distribution of each ω(α) has a bounded density � ∈ L∞(R) with
compact support, supp � ⊂ [0, ωmax].

Remark. While the lower boundedness of the random variables is essential,
the upper boundedness can be relaxed; this assumption is made here to keep
the paper short. In particular, A1 and A2 imply all the assumptions in [5].

In the dynamics generated by HΛ, clustering is energetically favored. In
fact, let P(k) stand for the orthogonal projection onto the subspace l2

(C(k)
Λ

)
of

exactly k clusters and Q(k) for the orthogonal projection onto
⊕n

j=k l2
(C(j)

Λ

)
,

the subspace of at least k clusters. Note that

1 = Q(1), Q(k) = P(k) + Q(k+1) (1 � k � n − 1), Q(n) = P(n).

The following monotonically increasing lower bounds hold for restrictions
Q(k)HΛQ(k) of the Hamiltonian to sectors with at least k clusters.

Lemma 1.1. Let HΛ be as in (1.4) with λV � 0. Then for all 1 � k � n:

Q(k)HΛQ(k) � 2k(g − 1)Q(k). (1.6)

The elementary proof is spelled out in Appendix A.

1.2. Main Result

Our main result will be formulated in terms of the configurational eigenfunction
correlator of HΛ as introduced in [3]. It is defined for any interval I ⊂ R by

Q
(n)
Λ (x,y, I) :=

∑

E∈σ(HΛ)∩I

∣∣〈δx, P{E}(HΛ)δy〉∣∣ ,
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where PJ(H) stands for the spectral eigenprojection of H associated with
J ⊂ R. Note that HΛ has discrete spectrum σ(HΛ). In case of non-degenerate
eigenvalues, the above definition hence coincides with the sum over eigenvalues
E ∈ I of the product of normalized eigenvectors |ΦE(x)| |ΦE(y)|. We recall
two useful relations from [6, Ch. 7]:

Q
(n)
Λ (x,y, I) �

√
Q

(n)
Λ (x,x, I)Q

(n)
Λ (y,y, I),

Q
(n)
Λ (x,x, I) = 〈δx, PI(HΛ)δx〉 � 1. (1.7)

The correlator is thus bounded in terms of the local density of states, which
is exponentially small in n—reflecting the fact that the potential energy (and
hence the total energy) of any configuration is of order O(n). This is easily
seen by an adaptation of the semigroup method in [5, Lemma 4.6]:

Lemma 1.2. Let I = [0, sup I] be a compact interval and λ > 0. Under Assump-
tions A1–A2, there exist constants C, c ∈ (0,∞) such that for all n,Λ and
x ∈ X n

Λ :

E

[
Q

(n)
Λ (x,x, I)

]
� Ce−cn. (1.8)

Proof. The spectral theorem and the bound 1I(E) � et sup Ie−tE , t > 0, on
the indicator function 1I of I yield Q

(n)
Λ (x,x, I) � et sup I〈δx, e−tHΛδx〉. The

latter may be expressed probabilistically using the Feynman–Kac formula [10,
Prop. II.3.12]:

〈δx, e−tHΛδx〉 =
∫

exp
(

−
∫ t

0

λV (y(s))ds − 2g

∫ t

0

U(y(s))ds

)
ν

(x;t)
Λ (dy),

where ν
(x;t)
Λ is the measure generated by −AΛ on paths {y(s)}0�s�t starting

at and returning to x in time t. Jensen’s inequality, exp(− ∫ t
0

λV (y(s))ds) �∫ t
0

exp(−tλV (y(s)))ds/t, then yields:

E
[〈δx, e−tHΛδx〉] � E

[
e−tλV (x)

]
〈δx, e−t(−A+2g U)Λδx〉

� E

[
e−tλV (x)

]
=
(∫

e−tλω�(ω)dω

)n

.

The proof is concluded by noting that the Laplace transform of � on the right
is strictly smaller than one for tλ > 0. �

The main result of this paper is the following theorem, which provides
a version of Fock-space localization [8] for the present system of hard-core
particles.

Theorem 1.3. Let g > 1 and μt > 0 be such that

E(g, μt) := 4g − 12eμt > 0, (1.9)

I ⊂ [0, E(g, μt)) be a compact interval and μ ∈ (0, μt). Under Assump-
tions A1–A2, there exist constants λ0, C ∈ (0,∞) such that for all n � 2,Λ,
all x,y ∈ X n

Λ , and all λ > λ0:
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E
[|Q(n)

Λ (x,y, I)|] � C Fμ(x,y), (1.10)

where

Fμ(x,y) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

e−μ|x1−y1| if x,y ∈ C,
∑

w∈C
e−μ(d(x,w)+|w1−y1|) if x 	∈ C and y ∈ C,
∑

w,v∈C
e−μ(d(x,w)+d(v,y)+|w1−v1|) if x,y 	∈ C.

(1.11)

Here and henceforth, C ≡ C(1)
Λ abbreviates clustered configurations in X n

Λ .

The proof essentially treats clustered and non-clustered configurations
separately. Non-clustered configurations are localized by an energetically moti-
vated Combes–Thomas estimate found in Sect. 2. Localization of clustered
configurations follows in Sect. 3 by a standard (one-particle) argument, which
is carried out on the level of the many-particle Green functions. The proof of
Theorem 1.3 in Sect. 4 finally relies on a relation between the Green function
and the eigenfunction correlator from [5].

We continue with further remarks:
1. The spectrum of HZ with λ = 0 on Hn

Z
decomposes into (delocalized)

bands caused by the energetic separation of clusters. The lowest such
interval, essentially induced by fully clustered configurations C, is referred
to as the droplet band and given by

Δ(n) := 2
√

g2 − 1
[
cosh(ρgn) − 1

sinh(ρgn)
,
cosh(ρgn) − 1

sinh(ρgn)

]

⊂ [2(g − 1), 2(g + 1)
]
,

where ρg := ln(g +
√

g2 − 1), see [15,16,24,25]. Since the spectrum of
HZ then contains Δ(n) + λ supp�, the above localization statement is
not void for sufficiently large g. In particular, if supp� = [0, ωmax], the
random potential V has arbitrarily large clearings in the infinite system
so that Δ(n) ⊂ σ(HZ) almost surely.

Although the localization estimates are uniform in the particle num-
ber, the above theorem does not address localization for typical realiza-
tions if the particle number is proportional to the system’s size. That is
to say, the bottom of the spectrum is typically above E(g, μt) for large
n,Λ with n/|Λ| = const > 0. In fact, by similar methods as in the proof
of Lemma 1.1, we have

inf σ
(
HΛ

)
� 2(g − 1) + min

{
2(g − 1), λV C

min

}
,

where V C
min := minx∈C

∑n
i=1 ω(xi). A Chernoff bound now yields for any

E � 0

P
(
λV C

min � E
)

� (|Λ| − n + 1) inf
t>0

etE

(∫
e−tλω�(ω)dω

)n

,

which vanishes in the limit |Λ| → ∞ if n is proportional to |Λ|.
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2. The (non-optimal) restriction (1.9) imposed on the value of g stems from
the corresponding technical condition (2.1) in the Combes–Thomas esti-
mate below.

3. At first sight, the summations over clustered configurations in the defi-
nition of Fμ may look frightening. However, their entropic contribution
is low since all these sums (e.g., w ∈ C) are equivalent to a summation
over one variable (e.g., w1 ∈ Λ). Introducing the function

d(x,y) := min
w,v∈C
{
d(x,w) + |w1 − v1| + d(v,y)

}
, (1.12)

one may simplify (1.10) and write

E
[|Q(n)

Λ (x,y, I)|] � C e−μd(x,y), (1.13)

(cf. Lemma B.1, which collects some properties of d). Note that d is
no distance function, as it is not definite and fails to satisfy a triangle
inequality. Nonetheless, even for clustered configurations, the result is
stronger than in [5] since the Hausdorff distance between the sets defined
by x and y is much smaller than d(x,y). Moreover, the constants C, μ ∈
(0,∞) do not depend on the particle number n. It would be interesting to
see whether the techniques outlined in this paper can be further combined
with [5] or [11,12] to show localization higher up in the spectrum of HΛ,
where clusters C(k)

Λ with finite k appear.
4. Thanks to (1.7), the three bounds (1.8), (1.10) and (1.13) may be

combined at one’s convenience, i.e., for any triple s1, s2, s3 � 0 with
s1 + s2 + s3 = 1:

E
[|Q(n)

Λ (x,y, I)|] � C e−s1cn e−s2μd(x,y) Fs3μ(x,y). (1.14)

5. By standard arguments [6], the bound (1.10) implies dynamical localiza-
tion

E
[
sup
t∈R

∣∣〈δx, e−itHZPI(HZ)δy〉∣∣ ] � E[|Q(n)
Z

(x,y, I)|] � CFμ(x,y).

For any fixed x ∈ X n
Z

and using Lemma B.2, Fμ(x,y) is summable with
respect to y ∈ X n

Z
. Thus, by the RAGE Theorem [4], any spectrum of

HZ on Hn
Z

within I is entirely pure point for any n.
6. In the one-particle case, localization is known to occur in one dimension

for short-range hopping also at arbitrarily weak disorder λ > 0, cf. [6,10,
17,28] and references therein. The idea behind the present proof suggests
that this also applies to the localization of the droplet as long as n stays
much smaller than |Λ|. A proof of such a result is not immediate, though.

A further virtue of the bound (1.10) resides in its summability over config-
urations x and y containing at least one particle in disjoint subsets U, V ⊂ Λ.
The key technical observation here is Lemma B.2. Such quantities are rele-
vant in the discussion of exponential clustering of many-particle eigenstates.
More precisely, for U, V ⊂ Λ two connected and disjoint subsets, one may be
interested in the correlator
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q
(n)
Λ (U, V, I) :=

∑

E∈σ(HΛ)∩I

∑

x∈X n
Λ

x∩U �=∅

∑

y∈X n
Λ

y∩V �=∅

|〈δx, P{E}(HΛ)δy〉|,

which coincides with the respective sum over the eigenfunction correlator. An
immediate consequence of the bounds (1.14) is the following

Corollary 1.4. In the setup of Theorem 1.3, there exist constants C, c, μ ∈
(0,∞) such that for all n � 2,Λ, and all connected and disjoint U, V ⊂ Λ:

E

[
q
(n)
Λ (U, V, I)

]
� C e−cn exp (−μdist(U, V )) , (1.15)

where dist(U, V ) := min{|u − v| : u ∈ U, v ∈ V } denotes the distance between
U and V .

Proof. The proof relies on (1.14) and Lemma B.1(vi), according to which
d(x,y) � dist(U, V ) − (n − 1). Combining this with Lemma B.3, we arrive
at the bound
∑

x∈X n
Λ

x∩U �=∅

∑

y∈X n
Λ

y∩V �=∅

E

[
Q

(n)
Λ

(
x,y, I
)]

� C (n + 1) e−n(s1c−s2μ)e−s2μ dist(U,V ),

where c, C, μ ∈ (0,∞) are independent of n and Λ. Choosing s1, s2 ∈ (0, 1)
such that s1c > s2μ yields the result. �

In more physical terms, the above result guarantees in particular that,
for any non-degenerate, normalized n-particle eigenvector Φ(n)

E of HZ with
energies E < E(g, μt), the corresponding one-particle reduced density matrix
decays exponentially, i.e., there are (non-random) constants c, μ ∈ (0,∞) and
a random variable A > 0 with finite mean E [A] < ∞ such that for all n � 2
and all u, v ∈ Z:

∣∣∣〈Φ(n)
E , a∗

uavΦ(n)
E 〉
∣∣∣ � Ae−cn (1 + |u|2) exp (−μ|u − v|) (1.16)

where a∗
u, av denote the particle creation and annihilation operators. This fol-

lows immediately from (1.15), see, e.g., [6, Ch. 7.1].

1.3. Relation to the XXZ Spin Chain

The class of Hamiltonians introduced in (1.4) is intimately related to the dis-
ordered XXZ spin chain in its Ising phase. This subsection aims at bridging
the gap between the two formulations. The Hilbert space for a chain of N spins
1/2 is the N -fold tensor product of C2, denoted by

Hxxz
n =

N⊗

k=1

C
2
k,

and endowed with the inner product on tensor product spaces. The indices 1 �
k � N merely identify the single factors in the product. The XXZ Hamiltonian
without disorder,

Hxxz
n :=

N−1∑

k=1

hk,k+1,
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is the sum of nearest-neighbor interactions

hk,k+1 := − 1
Δ
(
Sx

k ⊗ Sx
k+1 + Sy

k ⊗ Sy
k+1

)
+
(1
4
1k ⊗ 1k+1 − Sz

k ⊗ Sz
k+1

)
,

acting on C
2
k ⊗ C

2
k+1 and extended by unity to Hxxz

n . Here, Δ−1 is a real
constant and Sx,y,z are the spin matrices, normalized to have eigenvalues ± 1

2 .
The constant term 1/4 · 1 merely serves normalization purposes. The regime
where Δ−1 = 0 corresponds to the (ferromagnetic) Ising model, while the Ising
phase of the XXZ Hamiltonian is described by 1 > Δ−1 > 0.

The dynamics generated by Hxxz
n conserves the total z-component of

the spin. It thus suffices to consider restrictions Hxxz
n,n to superselection sectors

Hxxz
n,n with a constant number n of, say, down-spins. This property persists upon

addition of nonvanishing fields in the z-direction. In the sequel, we concentrate
on the so-called droplet Hamiltonian with disorder,

H++
n := Hxxz

n +
γ

2
(
1 − Sz

1 − Sz
n

)
+

λ

2Δ

N∑

k=1

ω(k)

(
1
2
1 − Sz

k

)
, (1.17)

where γ � 0 and {ω(k)}N
k=1 is the given family of iid random variables. The

superscript ++ reflects the fact that having up-spins at both boundary sites
is energetically most favorable. The Hamiltonian (1.4) with n hard-core parti-
cles on Λ is, up to a multiplicative constant, unitarily equivalent to the XXZ
Hamiltonian (1.17) restricted to the sector with n down-spins on Λ, and with
constants set to Δ = g and γ = 1. This unitary equivalence is the object of
the following proposition. It provides a dictionary which allows one to trans-
late results for hard-core particles to the XXZ system. In particular, two-point
functions such as in (1.16) relate to spin correlation functions.

Proposition 1.5. Let Hn,Λ(g) ≡ HΛ and H++
n,n (Δ, γ) ≡ H++

n,n be as in (1.4) and
(1.17). Then, there exists a unitary operator U : Hn

Λ → Hxxz
n,|Λ| such that

U Hn,Λ(g)U∗ = 2g H++
n,|Λ|(g, 1), (1.18)

where |Λ| stands for the number of sites in Λ.

For the reader’s convenience, a proof is given in Appendix C. Many-
body localization (MBL) has received extensive attention from the physics
community [7,20,26] including early on the case of the XXZ quantum spin
chain [29]. The definition of the term MBL varies from Fock-space localization
to local integrals of motions (LIOM’s). It is an interesting question to further
clarify the validity and relations of these notions even in the above situation.

2. Controlling Cluster Breakup

The main technical difference between the situation in [5] and the present
setup lies in the presence of an additional spectral threshold. The spectrum
of the Hamiltonian restricted to at least two clusters, Q(2)HΛQ(2), is ener-
getically higher than the regime of interest defined by essentially one cluster,
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cf. Lemma 1.1. By the Combes–Thomas estimate stated below, the corre-
sponding Green function thus decays deterministically in this regime. To avoid
cluttered expressions, we henceforth use the two shorthand notations:

H
(k)
Λ := Q(k)HΛQ(k), G

(k)
Λ (x,y; z) := 〈δx,

(
H

(k)
Λ − z
)−1

δy〉.
The operator H

(k)
Λ − z is implicitly understood to act on the subspace Q(k)H.

The main result of this section is the following theorem.

Theorem 2.1. For any g > 1, μt > 0 and E � 0 satisfying

4g − E > 12 eμt , (2.1)

there exists a constant Ct ≡ Ct(g, μt, E) ∈ (0,∞) such that for all n �
2,Λ, λ � 0, and all x,y ∈ X n

Λ\C:
|G(2)

Λ (x,y;E)| � Cte
−μtd(x,y). (2.2)

Remarks. 1. For any 2 � k � n, the condition (2.1) entails

δk(E) := 2k(g − eμt) − E > 4keμt . (2.3)

As an immediate consequence of Lemma 1.1, this definition implies the follow-
ing inequality on Q(k)H:

H
(k)
Λ − E > δk(E) + 2k(eμt − 1). (2.4)

2. The subsequent proof yields:

Ct ≡ Ct(g, μt, E) =
2

δ2(E)

(
1 − 8eμt

δ2(E)

)−1

∈ (2/δ2(E),∞) ,

where the inclusion is a direct consequence of (2.3). For g → ∞ and fixed
(μt, E), the bound Ct tends to 0.

3. Energies E satisfying (2.1) are always below the two-cluster threshold 4(g −
1), but may be chosen arbitrarily close to it, provided g is sufficiently large.
Namely, for E < 4α(g − 1) with α < 1, condition (2.1) is satisfied if (1−α)g +
α > 3eμt .

We follow the basic idea for the standard Combes–Thomas bound in
[3] augmented by an inductive analysis using the Schur complement formula
on k-cluster subspaces P(k)Hn

Λ. We fix y ∈ X n
Λ and consider the following

(bounded and invertible) multiplication operator Myδx := eμtd(x,y)δx on Hn
Λ,

which commutes with all of the projections P(k),Q(k).

Lemma 2.2. In the setup of Theorem 2.1, for any j, k ∈ {2, . . . , n} and any
y ∈ X n

Λ :

‖P(k)MyR(l)(E)M−1
y P(j)‖ � 2

δl(E)
, l ∈ {j, k}, (2.5)

‖P(k)MyR(2)(E)M−1
y P(j)‖ � Ct, (2.6)

where R(k)(E) :=
(
H

(k)
Λ − E

)−1.
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Proof of Theorem 2.1. We assume without loss of generality that x ∈ C(k)
Λ and

y ∈ C(j)
Λ . Since G

(2)
Λ (x,y;E) eμtd(x,y) =

〈
δx,P(k)MyR(2)(E)M−1

y P(j)δy
〉
, the

claim is immediate from (2.6). �

It hence remains to give a proof of Lemma 2.2.

Proof of Lemma 2.2. Since y is fixed throughout the proof, we drop it from
the notation, M ≡ My. Note that (2.5) is only non-trivial for l = j � k or
l = k � j. It is first proven for k = j = l, inductively from the maximal
number of clusters down to k = 2. We spell out the argument in case the
maximal number of clusters is k = n, corresponding to n � L + 1. If L � n, a
similar argument applies.
Base case, k = n. The operator B(n) := MH

(n)
Λ M−1 − H

(n)
Λ is bounded

through the Schur bound:

‖B(n)‖ �
√

sup
x

∑

x′
|B(n)(x,x′)|

√
sup
x′

∑

x

|B(n)(x,x′)|

� sup
x

∑

x′
|H(n)

Λ (x,x′)|(eμtd(x,x′) − 1
)

� 2n
(
eμt − 1

)
. (2.7)

The last inequality used that only neighboring configurations x,x′ contribute
to the sum, and for such: |H(n)

Λ (x,x′)| = |〈δx,H
(n)
Λ δx′〉| = 1. Moreover, for any

given x ∈ C(n)
Λ , there are at most 2n neighboring x′. By (2.4), we thus have

dist(E, σ(H(n)
Λ )) − ‖B(n)‖ � δn(E) > 0, and hence, the operator M(H(n)

Λ −
E)M−1 = H

(n)
Λ − E + B(n) is invertible on Q(n)H with bounded inverse:

∥∥∥MR(n)(E)M−1
∥∥∥ =
∥∥∥∥
(
H

(n)
Λ − E + B(n)

)−1
∥∥∥∥

�
(
dist(E, σ(H(n)

Λ )) − ‖B(n)‖
)−1

� δn(E)−1.

Induction step, k + 1 → k. Assume that (2.5) holds for j + 1 = k + 1 � n.
Using the orthogonal decomposition of Q(k) into P(k) + Q(k+1), the Schur
complement formula yields

P(k)MR(k)(E)M−1P(k)

= P(k)M
(P(k)(HΛ − E)P(k) − S(k)(E)

)−1
M−1P(k)

= P(k)
(P(k)(HΛ − E)P(k) + B(k)(E)

)−1P(k),

where

S(k)(E) := TkR(k+1)(E)T ∗
k , with Tk := P(k)HΛP(k+1),

B(k)(E) := MP(k)HΛP(k)M−1 − P(k)HΛP(k) − MS
(k)
Λ (E)M−1. (2.8)

In the definition of S(k)(E), the operator Tk and its adjoint T ∗
k arise from

P(k)HΛQ(k+1) = P(k)HΛP(k+1), since the hopping induced by HΛ only con-
nects configurations whose number of clusters are at most one apart.
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By (2.4), we have P(k)(HΛ − E)P(k) � δk(E) + 2k(eμt − 1) on P(k)H.
The claimed bound now follows (by reasoning analogous to the base case) if
δk(E) + 2k(eμt − 1) − ‖B(k)(E)‖ � δk(E)/2, or equivalently, ‖B(k)(E)‖ �
2k(eμt − 1) + δk(E)/2. In fact, splitting (2.8) into two additive terms and
arguing as in (2.7), we have on the one hand,
∥∥MP(k)HΛP(k)M−1 − P(k)HΛP(k)

∥∥ � sup
x

∑

x′
|H(k)

Λ (x,x′)|(eμtd(x,x′) − 1
)

� 2(k − 1)(eμt − 1),

and on the other hand,
∥∥MTkM−1

∥∥,
∥∥MT ∗

k M−1
∥∥ � 2keμt . (2.9)

Together with the induction hypothesis, this guarantees
∥∥MS

(k)
Λ (E)M−1

∥∥ � (2keμt)2
2

δk+1(E)
� (4keμt)2

2δk+1(E)
<

δk(E)
2

,

where the last inequality is by (2.3). This concludes the proof of (2.5) for
j = k.

In the remainder of the proof, we assume (2 �) j � k. The other case
follows analogously. The arguments are by iteration, based on the following
resolvent formula for (2 �)m < k :

P(k)R(m)(E) = P(k)R(k)(E) − P(k)R(k)(E)T ∗
k−1 P(k−1) R(m)(E), (2.10)

where we used that

Q(k)
(
H

(m)
Λ − H

(k)
Λ

)
= Q(k)HΛ

(
Q(m) − Q(k)

)
=

k−1∑

j=m

Q(k)HΛP(j) = T ∗
k−1.

For a proof of (2.5) for 2 � l = j < k, we set m = j in (2.10) and note that
the first term on the right-hand side does not contribute. Together with the
Schur bound (2.9), (2.5) with j = k and (2.3), this yields:
∥∥P(k)MR(j)(E)M−1P(j)

∥∥ =
∥∥P(k)MR(k)(E)T ∗

k−1P(k−1)R(j)(E)M−1P(j)
∥∥

� 4(k−1)eμt

δk−1(E)
δk−1(E)
δk(E)

∥∥P(k−1)MR(j)(E)M−1P(j)
∥∥

� r
∥∥P(k−1)MR(j)(E)M−1P(j)

∥∥, r :=
8eμt

δ2(E)
< 1.

Since r < 1, iteration reduces the claim to the case k = j and thus concludes
the proof of (2.5).

For a proof of (2.6), we only consider j, k � 3, since the other cases are
covered by (2.5), and again assume j � k. By the adjoint of the resolvent
formula (2.10) with k = j and m = 2, combined with (2.5) and the Schur
bound (2.9), we obtain
∥∥P(k)MR(2)(E)M−1P(j)

∥∥

� 2
δj(E)

+
4(j − 1)eμt

δj−1(E)
δj−1(E)
δj(E)

∥∥P(k)MR(2)(E)M−1P(j−1)
∥∥
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� 2
δ2(E)

+ r
∥∥P(k)MR(2)(E)M−1P(j−1)

∥∥.

Iteration until j − 1 = 2 yields the bound
(
2/δ2(E)

)
(1 − r)−1. �

3. Bound on the Green Function’s Fractional Moments

The main result, Theorem 1.3, will follow by proving bounds on fractional
moments of the Green function,

GΛ(x,y; z) := 〈δx,
(
HΛ − z

)−1
δy〉.

Our assumptions guarantee that such moments are finite. In fact, integration
over just (one or) two variables associated with sites u, v suffices provided these
sites belong to the considered configurations (a fact, which we denote by u ∈ x
and v ∈ y). In the following, such conditional expectations will be denoted by
E
[· | ω �={u,v}

]
:=
∫

(·)�(ω(u)) �(ω(v))dω(u) dω(v).

Proposition 3.1. (Theorem 2.1 in [5]) Let s ∈ (0, 1). Under Assumptions A1–
A2, there exists a constant Cs < ∞ such that for all n ∈ N,Λ, and all x,y ∈
X n

Λ with u ∈ x and v ∈ y:

sup
z∈C

E
[|GΛ(x,y; z)|s | ω �={u,v}

]
� Cs

λs
. (3.1)

The Combes–Thomas estimate shown in the previous section yields a
deterministic exponential bound on G

(2)
Λ , i.e., when restricted to ran(Q(2)).

What is left is to localize the clusters. This is done by adopting a standard
high-disorder localization technique for one-particle models using geometric
decoupling.

Theorem 3.2. Let I ⊂ [0, E(g, μt)) be a compact interval, d the function defined
in (1.12), s ∈ (0, 1) and μ ∈ (0, μt). Under Assumptions A1–A2, there exist
constants C

(1)
s , C

(2)
s ∈ (0,∞) and λ0 > 0 such that for all n � 2,Λ, and all

λ > λ0, E ∈ I:

S(1)
μ (E) := sup

Λ′⊆Λ
sup

x∈CΛ′

∑

y∈CΛ′

esμ|x1−y1|
E
[|GΛ′(x,y;E)|s] � C(1)

s , (3.2)

S(2)
μ (E) := sup

Λ′⊆Λ
sup

x∈CΛ′

∑

y∈X n
Λ′

esμd(x,y)
E
[|GΛ′(x,y;E)|s] � C(2)

s , (3.3)

where CΛ ≡ C(1)
Λ abbreviates clustered configurations in X n

Λ .

The proof of Theorem 3.2 mainly relies on Theorem 2.1, some properties
of d and a standard resolvent expansion, which for the convenience of the
reader we summarize in:

Proposition 3.3. Let H be a Hamiltonian on some separable Hilbert space with
orthonormal basis {δx} and let (Q,P ) be a pair of non-trivial complementary
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orthogonal projections on H. Then, for any δx ∈ ran(Q), δy ∈ ran(P ) and
E ∈ C\σ(H), we have

|G(x, y)| �
∑

δu∈ran(Q)
δv∈ran(P )

|G(x, u)||H(u, v)||〈δv, (P (H − E)P )−1δy〉|, (3.4)

where G(x, y) := 〈δx, (H − E)−1δy〉 and H(x, y) := 〈δx,Hδy〉.
Remark. Using the resolvent identity and the Combes–Thomas estimate once
more, one may also show that for any x,y ∈ X n

Λ :

E
[|GΛ(x,y;E)|s] � Cs e−sμD(x,y), (3.5)

where

D(x,y) := min
{
d(x,y), d(x,y)

}
. (3.6)

In contrast to d,D is a distance function, as shown in Lemma B.1(i).

We are now ready to give a

Proof of Theorem 3.2. The dependence of quantities on the energy E shall be
omitted throughout the proof. Nevertheless, note that

Ct(I) := sup
E∈I

Ct(g, μt, E) = Ct(g, μt, sup I) ∈ (0,∞).

Let first x,y ∈ C. Such configurations satisfy either x1 < y1,x = y or x1 > y1.
In the middle case, the summand is bounded using (3.1), while the remaining
two cases may by symmetry be treated in a similar manner. We thus only
present the case x1 < y1. Let Λx := Λ ∩ [x1 + 1,∞) and Xx (Cx) be the subset
of (clustered) configurations to the right of x1, i.e.,

Xx := {z ∈ X n
Λ : x1 < z1} ≡ X n

Λx
, Cx := C ∩ Xx.

Let Px be the projection onto Hn
Λx

≡ l2(Xx) and Qx its orthogonal complement
in Hn

Λ. Applying the resolvent Eq. (3.4), we obtain the expansion

|GΛ(x,y)| �
∑

u/∈Xx
v∈Xx

|GΛ(x,u)||HΛ(u,v)||GΛx(v,y)|.

The matrix element HΛ(u,v) is only nonvanishing for u = v or d(u,v) = 1.
Combined with the imposed conditions, u /∈ Xx and v ∈ Xx, the sum is
restricted to pairs {u,v} with u1 = x1, v1 = x1 + 1, and uk = vk, 2 � k � n.
Hence, for any such v, there is a unique neighboring u ≡ u(v). Only one such
v is also fully clustered; we shall denote it by v0 ∈ C. We may thus bound
|GΛ(x,y)| by

|GΛ(x,u(v0))||GΛx(v0,y)| +
∑

v/∈C
v1=x1+1

|GΛ(x,u(v))||GΛx(v,y)|. (3.7)
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By Proposition 3.3 applied to the complementary projections (P(1),Q(2)), the
last resolvent factor, |GΛx(v,y)| with y ∈ C, may now be expanded into

|GΛx(v,y)| �
∑

w∈Xx\Cx

z∈Cx

|G(2)
Λx

(v,w)||HΛx(w, z)||GΛx(z,y)|

� 2Cte
μt

∑

z∈Cx

e−μtd(v,z)|GΛx(z,y)|. (3.8)

The second inequality is by the Combes–Thomas estimate (2.2) and the obser-
vation that, for any w 	∈ Cx, either HΛ(w, z) = 0 or d(w, z) = 1 and
|HΛ(w, z)| = 1. The factor 2 follows from the fact that, for any z ∈ C, at
most two w satisfy d(w, z) = 1.

The resolvent GΛx is independent of ω(x1). Taking the fractional moment
of (3.7), conditioning on the random potential at all sites but x1, and using
(3.1) (with u = v = x1) thus yields:

E
[|GΛ(x,y)|s] �Cs

λs
E
[|GΛx(v0,y)|s]

+
(
2Cte

μt
)s Cs

λs

∑

v/∈C
v1=x1+1

∑

z∈Cx

e−sμtd(v,z)
E
[|GΛx(z,y)|s].

By |x1 − y1| = 1+ |v1 − y1| � 1+ |v1 − z1|+ |z1 − y1| and Lemma B.2, we then
obtain for any μ < μt the bound

∑

y∈CΛx

esµ|x1−y1|
E
[|GΛ(x,y)|s] � Cs

λs
esµS(1)

µ +
(
2Cte

µt
)s Cs

λs
esµ

×
∑

v/∈C
v1=x1+1

∑

z∈Cx

e−s(µt−µ)|v1−z1|e−sµt

∑n
j=2 |vj−zj | ∑

y∈CΛx

esµ|z1−y1|[|GΛx(z,y)|s]

� Cs

λs
esµ
(

1 +
(
2Cte

µt
)s C∞(sμt)

1 − e−s(µt−µ)

)
S(1)
µ ,

which in turn implies the following estimate of (3.2):

S(1)
μ � Cs

λs
+ 2

Cs

λs
esμ

(
1 +
(
2Cte

μt
)s C∞(sμt)

1 − e−s(μt−μ)

)
S(1)

μ .

The first term arises from the case y = x and the factor 2 accounts for the two
cases x1 < y1 and x1 > y1. Hence, if λ is chosen so large that the coefficient
of S

(1)
μ on the right-hand side is strictly less than 1, S(1)

μ (which is finite) is
uniformly bounded as claimed.

Let x ∈ C and y ∈ X . We have shown that the terms with clustered y ∈
CΛ′ in (3.3) are bounded as in (3.2), and therefore, we henceforth concentrate
on the case x ∈ CΛ′ and y /∈ CΛ′ . Applying Proposition 3.3 with the pair
of complementary projections (P(1),Q(2)) and in turn the Combes–Thomas
estimate (2.2), we have the following upper bound for |GΛ(x,y)|:



Vol. 18 (2017) Fock-Space Localization for Hard-Core Particles 3157

∑

u∈CΛ
v �∈CΛ

|GΛ(x,u)||HΛ(u,v)||G(2)
Λ (v,y)| � 2Cte

μt

∑

u∈CΛ

e−μtd(u,y)|GΛ(x,u)|.

As in (3.8), the second inequality uses that nonvanishing contributions have
d(u,v) = 1 and |HΛ(u,v)| = 1, and the factor 2 reflects the fact that at most
two v satisfy d(u,v) = 1. By (3.2) and Lemma B.1(iv), this yields:

sup
Λ′⊆Λ

sup
x∈CΛ′

∑

y �∈CΛ′

esμd(x,y)
E
[|GΛ′(x,y)|s]

� sup
Λ′⊆Λ

sup
x∈CΛ′

(
2Cte

μt
)s ∑

y �∈CΛ′

∑

u∈CΛ′

esμd(u,y)−sμtd(u,y)esμd(x,u)
E
[|GΛ′(x,u)|s]

�
(
2Cte

μt
)s

C∞
(
s(μt − μ)

)
C(1)

s ,

where the uniform boundedness of C∞ is by Lemma B.2. �

4. From Fractional Moments to Eigenfunction Correlators

As explained in [3,6], in order to relate the configurational eigenfunction cor-
relator to the fractional moment of the Green function, it is useful to consider
the family of interpolated eigenfunction correlators with parameter s ∈ [0, 1]:

Q
(n)
Λ (x,y, I, s) :=

∑

E∈σ(HΛ)∩I

∣∣〈δx, P{E}(HΛ)δx〉∣∣1−s ∣∣〈δx, P{E}(HΛ)δy〉∣∣s .

The following bounds, which are taken from [6, Ch. 7.3.2] (see also [5]), hold
for any s ∈ [0, 1]:

Q
(n)
Λ (x,y, I) �

√
Q

(n)
Λ (x,y, I, s)Q

(n)
Λ (y,x, I, s), Q

(n)
Λ (x,y, I, s) � 1. (4.1)

In [5], a general relation concerning the eigenfunction correlator was
derived which in our situation reads:

Proposition 4.1. (Thm. 4.5 in [5]) Let s ∈ (0, 1), λ > 0 and I ⊂ R be an
interval. Under Assumptions A1–A2, there exists a constant C ∈ (0,∞) such
that for all n ∈ N,Λ and all x,y ∈ X n

Λ with u ∈ x :

E

[
Q

(n)
Λ (x,y, I, s)

]
� C
∑

w∈X n
Λ

u∈w

∫

I

E [|GΛ(w,y;E)|s] dE. (4.2)

The proposition will be used to conclude localization bounds in case
x,y ∈ C. The remaining case x 	∈ C and y ∈ X n

Λ is dealt with perturbatively.

Lemma 4.2. In the setup of Theorem 1.3, for any x 	∈ C and y ∈ X n
Λ :

Q
(n)
Λ (x,y, I) � 2Ct(I) eμt

∑

w∈C
e−μtd(x,w) Q

(n)
Λ (w,y, I). (4.3)
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Proof. The inequality is based on the following singular relation [6, Prop. 7.9]
between the eigenfunction correlator and the Green function:

Q
(n)
Λ (x,y, I) = lim

s↗1

1 − s

2

∫

I

|GΛ(x,y;E)|s dE. (4.4)

Using x 	∈ C, the resolvent identity (3.4) and the Combes–Thomas esti-
mate (2.2) yield the following upper bound for |GΛ(x,y;E)|s :

|G(2)
Λ (x,y;E)|s 1{y �∈C} +

∑

u �∈C
v∈C

|G(2)
Λ (x,u;E)|s|HΛ(u,v)|s|GΛ(v,y;E)|s

� Cs
te

−sμtd(x,y) + 2
(
Cte

μt
)s∑

v∈C
e−sμtd(x,v)|GΛ(v,y, E)|s.

The factor 2 on the right side is due to the fact that for a given v ∈ C there
are at most two configurations u 	∈ C for which 0 	= |HΛ(u,v)| = 1. In the
singular limit (4.4), the first term on the right side vanishes and the last term
yields the claim. �

We are now ready to prove our main result:

Proof of Theorem 1.3. We treat the three cases 1. x,y ∈ C, 2. x 	∈ C, y ∈ C
and 3. x,y 	∈ C separately.

1. For x,y ∈ C, we assume without loss of generality that x1 � y1. The
bound (4.1) and a Hölder estimate yield for any s ∈ [0, 1]:

E

[
Q

(n)
Λ (x,y, I)

]
� E

[
Q

(n)
Λ (x,y, I, s)

] 1
2
E

[
Q

(n)
Λ (y,x, I, s)

] 1
2

.

Now, Proposition 4.1 (with u = x1) together with Lemma B.1(v) (by which
y1 − x1 � d(w,y) for any w  x1) implies:

E

[
Q

(n)
Λ (x,y, I, s)

]
� C e−sμ|x1−y1|

∫

I

∑

w∈X n
Λ

x1∈w

esμd(w,y)
E [|GΛ(w,y;E)|s] dE

� C |I| sup
E∈I

S(2)
μ (E) e−sμ|x1−y1|.

The finiteness of supE∈I S
(2)
μ (E) � C

(2)
s is by (3.3). Exchanging x and y, and

using the second statement of Lemma B.1(v), the same bound holds since
|xn − yn| = |x1 − y1| for clustered x and y. Hence, we obtain

E

[
Q

(n)
Λ (x,y, I)

]
� C |I|C(2)

s e−sμ|x1−y1|. (4.5)

2. For x 	∈ C and y ∈ C, we use Lemma 4.2 together with the previous esti-
mate (4.5) to conclude

E

[
Q

(n)
Λ (x,y, I)

]
� C
∑

w∈C
e−μtd(x,w)e−sμ|w1−y1|.
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3. In the remaining case x,y 	∈ C, we use an iterated version of Lemma 4.2:

Q
(n)
Λ (x,y, I) � (2Ct(I)eμt)2

∑

w,v∈C
e−μt(d(x,w)+d(v,y)) Q

(n)
Λ (w,v, I).

Averaging over the disorder and inserting (4.5) thus yields

E

[
Q

(n)
Λ (x,y, I)

]
� C
∑

w,v∈C
e−μt(d(x,w)+d(v,y))e−sμ|w1−v1|. �
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Appendix A. Proof of Thresholds

The proof of Lemma 1.1 requires some preliminary considerations. Let α 	=
β, α, β ∈ Λ be two sites and the operators πα and πα,β be defined on Hn

Λ

through

πα δx :=

{
δx, if α ∈ x,

0, otherwise,
πα,β δx :=

{
δx, if either α ∈ x or β ∈ x,

0, otherwise.

It is worthwhile noting that a basis element δx is only in the range of πα,α+1

if the configuration x has a cluster ending on α or beginning on α + 1. The
operators πα,α+1 are related to transitions between occupied and empty sites.
A second operator τα,β is defined on Λn as

τα,β(x)i :=

⎧
⎪⎨

⎪⎩

α, if xi = β,

β, if xi = α,

xi, otherwise.

After reordering, this also defines an operator on X n
Λ which we denote by the

same symbol. The action of τα,β then amounts to exchanging the sites α and
β together with their occupancy. In particular, τα,β(x) = x if α, β ∈ x or
α, β /∈ x. By the embedding x �→ δx, τα,β is extended to an operator on Hn

Λ

through τα,β δx := δτα,β(x). In the special case β = α + 1, the operator τα,α+1

describes the hopping between the neighboring sites α and α + 1.

Proposition A.1. Let A and U be defined as in (1.1) resp. (1.3) on Hn
Λ and set

Λ− := [−L,L − 1] ∩ Z. Then:
(i) 2U =

∑
α∈Λ−

πα,α+1 + π−l + πl,

(ii) −A =
∑

α∈Λ−

(
1 − πα,α+1 − τα,α+1

)
.
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Proof. Each claim is established by proving that both sides of the equalities
coincide when applied to the basis vectors δy,y ∈ X n

Λ .

(i) From the preliminary considerations above,
∑

α∈Λ− πα,α+1δy = Cy δy,
where Cy is the number of transitions in y between occupied and empty sites;
or equivalently the number of other configurations that can be obtained from
y by moving one particle to an adjacent empty site. Comparing with definition
(1.3) of U shows that 2Uδy =

(
Cy + π−l + πl

)
δy.

(ii) We have

(1 − πα,α+1 − τα,α+1) δy =

{
−τα,α+1δy, if either α ∈ y or α + 1 ∈ y,

0, otherwise.

Comparing with definition (1.1) of A, we obtain the claimed identity. In fact,
any neighboring pair {x,y} is uniquely written as {τα,α+1(y),y} for some
α ∈ Λ− with either α ∈ y or α + 1 ∈ y. �

Proof of Lemma 1.1. By assumption, λV � 0. From Proposition A.1, we have

HΛ �
∑

α∈Λ−

[(
1 − τα,α+1

)
+ (g − 1)πα,α+1

]
+ g
(
π−l + πl

)
.

By their definition, τα,β are Hermitian and unitary so that 1 − τα,β � 0 and
hence

HΛ � (g − 1)
∑

α∈Λ−
πα,α+1 + g

(
π−l + πl

)
.

As said,
∑

α∈Λ− πα,α+1 counts the number of transitions between occupied and
empty sites. A configuration in ran(Q(k)) features either 2(k − 1), 2k − 1 or 2k
such transitions, depending on whether it encompasses two, one or no bound-
ary clusters. Each boundary cluster being however penalized by g

(
π−l + πl

)
,

the configurations with no boundary clusters are energetically most favorable,
establishing the lower bound on Q(k)HΛQ(k) at 2k(g − 1). �

Appendix B. Distance functions and summability

This appendix is dedicated to proving three technical, but important lemmas
on properties of the (distance) functions d, d and D = min{d, d} as defined
in (1.2), (1.12) and (3.6).

Lemma B.1. (i) D(·, ·) is a distance function on X n
Λ ,

(ii) d(x,y) = D(x,y) = |x1 − y1| for all x,y ∈ C,
(iii) d(x,y) = D(x,y) = minv∈C{|x1 − v1| + d(v,y)} for all x ∈ C,y ∈ X n

Λ ,
(iv) d(x,y) � d(x,u) + d(u,y) for all x,u ∈ C,y ∈ X n

Λ ,
(v) d(w,y) � y1 − x1 for all y ∈ C and w ∈ X n

Λ such that x1 � y1 and
x1 ∈ w; and similarly, d(w,x) � yn − xn for all x ∈ C and w ∈ X n

Λ such
that yn � xn and yn ∈ w,
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(vi) d
(
x,y
)

� dist(U, V ) − (n − 1) for all x ∩ U 	= ∅ and y ∩ V 	= ∅ with
disjoint U, V ⊂ Λ.

Proof. To establish property (i), we extend the natural graph of X n
Λ with

�1-distance by edges connecting pairs (x,y) of clustered configurations with
|x1 − y1| = 1. As the function minimizing the distance on this graph, D is
a distance function. Properties (ii) and (iii) are immediate, by definition or
|x1 − y1| � d(x,y). Property (iv) follows from (i)–(iii).

(v) We use (iii): d(w,y) = minv∈C{d(w,v) + |v1 − y1|}. Since x1 ∈ w, there
is some j such that d(v,w) � |vj − x1|. By distinguishing the three cases,
v1 > y1, y1 � v1 � x1 and x1 > v1, one concludes from x1 � y1 and v1 � vj

that |vj − x1| + |v1 − y1| � y1 − x1. The second statement of (v) follows by
left-right symmetry.

(vi) Let 1 � j, k � n be such that xj ≡ u ∈ U and yk ≡ v ∈ V . Then, for any
w, z ∈ C, we have by the triangle inequality

d(x,w) + |w1 − z1| + d(z,y)
}

� |u − wj | + |wj − zj | + |zk − v|
� |u − v| − |zj − zk|.

Here, we used that |w1 − z1| = |wj − zj | for any 1 � j � n. The claim thus
follows by |zj − zk| � n − 1. �

The next lemma is the key observation regarding summability.

Lemma B.2. For any μ > 0 and n ∈ N, we have

sup
x∈C(1)

Z

∑

v∈X n
Z

e−μd(x,v) � 1
1 − e−μ

( ∞∏

k=1

1
1 − e−kμ

)2

=: C∞(μ). (B.1)

Remark. The product in the parenthesis is known in partition theory as
Euler’s generating function evaluated at x = e−μ and, as an instance of
q−Pochhammer symbol, often written as (e−μ, e−μ)−1

∞ .

Proof. Notice first that C∞(μ) is a well-defined strictly decreasing function of
μ > 0. It diverges to +∞ for μ → 0 and converges to 1 for μ → +∞.

The sum on the left-hand side of (B.1) is translation invariant in x ∈ C(1)
Z

,
which may therefore be chosen arbitrarily. Setting xk = k and subsequently
substituting yk := vk − k, 1 � k � n, we obtain the expression

∑

y1∈Z

e−μ|y1|
∞∑

y2=y1

e−μ|y2| · · ·
∞∑

yn=yn−1

e−μ|yn|.

Notice that {y1, y2, . . . , yn} is a non-decreasing sequence. Hence, there exists
0 � j � n such that y1, . . . , yj ∈ R<0 and yj+1, . . . , yn ∈ R�0. For j = 0
resp. j = n, the former resp. the latter set are considered empty. Reordering
the terms in the sums according to their j yields

n∑

j=0

⎛

⎝
∑

y1�···�yj�−1

eμ(y1+···+yj)

⎞

⎠

⎛

⎝
∑

0�yj+1�···�yn

e−μ(yj+1+···+yn)

⎞

⎠ .
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The claimed result now follows by the geometric series. In fact, the first paren-
thesis is bounded by e−jμ · (e−μ, e−μ)−1

∞ and the second by (e−μ, e−μ)−1
∞ . �

An immediate consequence of the last lemma is

Lemma B.3. Let Fμ be as in (1.11) and U, V ⊂ Λ be two connected, disjoint
subsets. For any μ > 0, there exists a constant Cμ ∈ (0,∞) such that for all
n � 2,Λ:

∑

x∈X n
Λ

x∩U �=∅

∑

y∈X n
Λ

y∩V �=∅

Fμ(x,y) � Cμ(n + 1). (B.2)

Proof. Assume without loss of generality that U < V , that is u < v for all
u ∈ U and v ∈ V . Let umax be the maximal element of U and vmin the
minimal element of V . To simplify notation, let henceforth CA be the clustered
configurations with at least one particle in A ⊂ Λ. We shall split the sum into
four terms, according to whether x and y are clustered or not, and bound
them separately. The emphasis of this proof lies on its shortness rather than
on optimal bounds.

1. x,y ∈ C. Here, we have Fμ(x,y) = exp
[−μ|x1 − y1|

]
. Since by assumption

umax � vmin − 1, the following bound holds:
∑

x1�umax
y1�umax−(n−2)

e−μ|x1−y1| � e−μ

(1 − e−μ)2
+ (n − 1) coth

(μ
2

)
. (B.3)

The first term on the right-hand side is the contribution for y1 > umax and
the second term an estimate of the remainder.

2. x ∈ C,y 	∈ C. We estimate the sum
∑

x∈CU

∑

y∈X n
Λ \C

y∩V �=∅

∑

w∈C
e−μ|x1−w1|e−μd(w,y). (B.4)

For clustered x and w, |x1 − w1| = |xk − wk| for any k. Moreover, since x has
a particle in U , and y a particle in V , we have the lower bound

|x1 − w1| + d(w,y) � 1
2
(|x1 − w1| + dist(U,w) + dist(w, V ) + d(w,y)

)
.

In fact, for any x ∈ CU , there exist u ∈ U and 1 � k(x) � n such that
|x1 − w1| = |u − wk(x)| � min{|u − wj | : u ∈ U, 1 � j � n} =: dist(U,w); and
similarly, d(w,y) � dist(w, V ). Hence, we may decouple the sum in (B.4) and
arrive at the bound
∑

x∈CU

∑

y∈Xn
Λ \C

y∩V �=∅

∑

w∈C
e− μ

2 |x1−w1|e− μ
2

(
dist(U,w)+dist(w,V )

)
e− μ

2 d(w,y) (B.5)

�
(
∑

w∈C
e− μ

2

(
dist(U,w)+dist(w,V )

))
sup
w∈C

⎛

⎜⎜⎝
∑

x∈CU

e− μ
2 |x1−w1| ∑

y∈Xn
Λ \C

y∩V �=∅

e− μ
2 d(w,y)

⎞

⎟⎟⎠ .
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By Lemma B.2 and the geometric series, the last term on the right side is
bounded by coth(μ/4)C∞(μ/2). To bound the first parenthesis, note that
there only exist clustered w with dist(U,w) + dist(w, V ) = 0 if U and V
are not too far apart, and in the worst-case scenario where vmin = umax + 1,
there are at most (n−1) such w. By the geometric series, the first parenthesis
on the right- hand side of (B.5) is thus bounded by (n − 2) + coth(μ/4). By
symmetry of Fμ, the case x 	∈ C and y ∈ C satisfies the same bound.

3. x,y 	∈ C. The sum to be bounded reads
∑

x∈X n
Λ \C

x∩U �=∅

∑

y∈X n
Λ \C

y∩V �=∅

∑

w,z∈C
e−μd(x,w)e−μ|w1−z1|e−μd(z,y). (B.6)

As in item 2, the estimate relies on decoupling the sums by giving lower bounds
on d(x,w), |w1 − z1|, d(z,y) or sums thereof which are independent of one
variable. Here, we have

d(x,w) � 1
2
(
d(x,w) + dist(U,w)

)
, d(z,y) � 1

2
(
dist(z, V ) + d(z,y)

)
.

Combined with |w1 − z1| + 1
2dist(z, V ) � 1

2 |w1 − z1| + 1
2dist(w, V ), the same

bounds as in item 2 apply and yield
∑

x∈X n
Λ \C

x∩U �=∅

∑

y∈X n
Λ \C

y∩V �=∅

Fμ(x,y) �
(
(n − 2) + coth

(μ
4

))
coth
(μ

4

)
C∞
(μ

2

)2
,

(B.7)

concluding the proof. �

Remark. For U and V not disjoint, the factor (n − 1) appearing for instance
on the right-hand side of (B.3) is typically replaced by |U ∩ V | + (n − 1) and
the expression Cμ(n + 1) then depends on the size of the overlap.

Appendix C. Proof of relation to XXZ

Proof of Proposition 1.5. For C
2, we introduce the basis of eigenvectors {e±}

of Sz satisfying Sze± = ± 1
2e±. Basis elements of Hxxz

|Λ| are |Λ|-fold tensor
products of e± and uniquely determined through the number and positions
of their down-spins, which may be summarized in a configuration x ∈ X n

Λ for
some appropriate 0 � n � |Λ|. Denoting any such basis element by ex, this
induces a unitary operator

U : Hxxz
n,|Λ| → Hn

Λ, ex �→ δx

between the superselection sector with exactly n down-spins and the space of
n hard-core particles.

Next, we define the ladder operators S± := Sx ± iSy and the down-spin
number operator N := S−S+ = 1/2−Sz. They satisfy the following relations:
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S+e+ = 0, S−e+ = e−, Ne+ = 0, S+e− = e+, S−e− = 0, Ne− = e−. The
right-hand side of (1.18) may be recast as

2Hxxz
n,|Λ|(g, 1) = −

∑

k∈Λ−
Ak + 2g

(
∑

k∈Λ−
Uk +

1
2
(N-l + Nl)

)
+

λ

g

∑

k∈Λ

ω(k)Nk,

where

Ak:=S+
k ⊗ S−

k+1+S−
k ⊗ S+

k+1, Uk :=
1
4

· 1 −
(

Nk − 1
2
1

)
⊗
(

Nk+1 − 1
2
1

)
,

and Λ− = [−L,L−1]∩Z. Observe that both Ak and Uk vanish on e+
k ⊗e+

k+1 and
e−
k ⊗ e−

k+1. Moreover, when applied on e+
k ⊗ e−

k+1 or e−
k ⊗ e+

k+1, Ak exchanges
the spins, while Uk counts 1/2, reminiscent of the actions of A and U . A
notable difference lies in that U counts 1 per cluster, while

∑
k∈Λ− Uk counts

1/2 per interface between up- and down-spins. The additional potential term
(N-l + Nl)/2 accounts for the lacking interface whenever a cluster sits at a
boundary. The claim now follows by verifying that the actions of

∑
k∈Λ− Ak

and
∑

k∈Λ− Uk + (N-l + Nl)/2 on basis elements ex indeed coincide with that
of A and U on δx. �
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