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Homogeneous Rank One Perturbations

Jan Dereziński

Abstract. A holomorphic family of closed operators with a rank one per-
turbation given by the function x

m
2 is studied. The operators can be used

in a toy model of renormalization group.

1. Introduction

Rank one perturbations can be used to illustrate various interesting mathe-
matical concepts. For instance, they can be singular: the perturbation is not
an operator, and an infinite renormalization may be needed. Rank one pertur-
bations are often applied to model physical phenomena.

Our paper is devoted to a special class of exactly solvable rank one per-
turbations, which are both singular and physically relevant. We consider the
Hilbert space L2[0,∞[. The starting point is the operator of multiplication
by x ∈ [0,∞[, denoted by X. We try to perturb it by a rank one operator
involving the function x

m
2 . Thus, we try to define an operator formally given

by

X + λ|xm
2 〉〈xm

2 |. (1.1)

Note that we allow m and λ to be complex. In particular, (1.1) is usually
non-Hermitian. The function x

m
2 is never square integrable, and therefore, the

perturbation is always singular.
(1.1) is very special. Formally, X is homogeneous of degree 1 and its

perturbation is homogeneous of degree m. We will see that in order to define
a closed operator on L2[0,∞[ one needs to restrict m by the condition −1 <
Rem < 1. Besides, a special treatment is needed in the case m = 0. One
obtains two holomorphic families of closed operators, Hm,λ and Hρ

0 . λ and ρ
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can be interpreted as coupling constants, which in the case 0 ≤ Rem < 1 need
an infinite renormalization.

The families of the operators that we introduce are exactly solvable in
a rather strong sense: one can compute their resolvents, spectral projections
and Møller (wave) operators. One can also describe their spectra, which can
be quite curious.

In our opinion, the families Hm,λ and Hρ
0 that we constructed are quite

instructive. One can argue that they provide excellent material for exercises
in a semi-advanced course on operator theory, or even quantum physics. They
illustrate various sophisticated concepts related to operators in Hilbert spaces
(singular perturbations of various kinds, scattering theory). They can also be
treated as toy models of some important ideas of theoretical physics such as
renormalization group flows and breaking of scaling symmetry.

We believe that in some form these operators show up in many contexts
in mathematics and theoretical physics, especially when we deal with scaling
symmetry. Below we briefly describe one situation where these operators are
present.

As shown in [4], for Rem > −1 one can define a holomorphic family
of closed Schrödinger operators on L2[0,∞[ homogeneous of degree −2 given
formally by

H̃m = −∂2
x +

(
− 1

4
+ m2

) 1
x2

. (1.2)

(As compared with the notation of [4], we add a tilde to distinguish from the
operators considered in this paper). These operators have continuous spectrum
in [0,∞[ of multiplicity 1. They can be diagonalized with help of the so-called
Hankel transformation Fm, whose kernel has a simple expression in terms of
the Bessel function Jm.

As shown in [7], for −1 < Rem < 1 there exists a two-parameter holo-
morphic family of closed operators that can be associated with the differential
expression on the right-hand side of (1.2). They correspond to mixed bound-
ary conditions at zero and are denoted H̃m,κ. The case m = 0 needs special
treatment, and one introduces a family of H̃ν

0 . As we show in our paper, the
operators H̃m,κ, resp. H̃ν

0 , are equivalent (similar) to the operators Hm,λ and
Hρ

0 , where κ and ν are linked by a simple relation with λ and ρ, see Theorems
4.1 and 4.2.

The operators H̃m,κ and H̃ν
0 are very well motivated—they constitute

natural classes of Schrödinger operators, which are relevant for many problems
in mathematical physics. However, their theory looks complicated—it requires
the knowledge of some special functions, more precisely, Bessel-type functions
and the Gamma function. On the other hand, the theory of Hm,λ and Hρ

0 does
not involve special functions at all—it uses only trigonometric functions and
the logarithm.

The paper is organized as follows. In Sect. 2 we recall the theory of sin-
gular rank one perturbations. It is sometimes called the Aronszajn–Donoghue
theory and goes back to [2,3,5]. It is described in particular in [1,6,12]. We
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discuss also the scattering theory in the context of rank one perturbations.
Here the basic reference is [13].

Note, however, that we do not assume that the perturbation is self-
adjoint, and most of the literature on this subject is restricted to the self-
adjoint case. A notable exception is the articles [10,11], where nonself-adjoint
perturbations of self-adjoint operators are studied.

Section 3 is the main part of our paper. Here we construct and study the
operators Hm,λ and Hρ

0 .
In Sect. 4 we describe the relationship of the operators Hm,λ and Hρ

0

with Schrödinger operators with inverse square potentials H̃m,κ and H̃ν
0 . There

exists large literature for such Schrödinger operators, see e.g., [8], it is, however,
usually restricted to the self-adjoint case. The general case is studied in [4] and
especially [7].

In “Appendix” we collect some integrals that are used in our paper.

2. General Theory of Rank One Perturbations

2.1. Preliminaries

We consider the Hilbert space L2[0,∞[ with the scalar product

(f |g) :=
∫ ∞

0

f(x)g(x)dx. (2.1)

In addition, it is also equipped with the bilinear form

〈f |g〉 :=
∫ ∞

0

f(x)g(x)dx. (2.2)

Thus, we use round brackets for the sesquilinear scalar product and angular
brackets for the closely related bilinear form. Note that in some sense the
latter plays a more important role in our paper (and in similar exactly solvable
problems) than the former.

If B is an operator then B∗ denotes the usual Hermitian adjoint of B,
whereas B# denotes the transpose of B, that is, its adjoint w.r.t. the (2.2).
Clearly, if B is a bounded linear operator with

(
Bf

)
(k) :=

∫ ∞

0

B(k, x)f(x)dx,

then
(
B∗f

)
(x) =

∫ ∞

0

B(k, x)f(k)dk,

while
(
B#f

)
(x) =

∫ ∞

0

B(k, x)f(k)dk.

An operator B is self-adjoint if B = B∗. We will say that it is self-
transposed if

B# = B. (2.3)
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It is useful to note that a holomorphic function of a self-transposed operator
is self-transposed.

It is convenient to use sometimes Dirac’s “bra-ket” notation. For a func-
tion f ∈ L2[0,∞[, we have the operator |f〉 : C → L2[0,∞[ given by

C � z 	→ |f〉z := zf ∈ L2[0,∞[ (2.4)

and its transpose 〈f | := |f〉# : L2[0,∞[→ C given by

L2[0,∞[� v 	→ 〈f |v =
∫

f(x)v(x)dx. (2.5)

We will also use the same notation in the case f is not square integrable—
then 〈f | is an unbounded operator and |f〉 is an unbounded form with appro-
priate domains.

Note that (2.4) and (2.5) are consistent with the notation for (2.2)—both
use angular brackets. In principle, we could also use the Dirac’s bras and kets
suggested by the scalar product (2.1), involving round brackets,

|f) := |f〉, (f | := 〈f |, (2.6)

but we prefer to use the notation associated with (2.2).

2.2. Construction

Let X denote the (unbounded) operator on L2[0,∞[ given by

Xv(x) := xv(x), (2.7)

v ∈ Dom(X) =
{

v ∈ L2[0,∞[
∣∣∣∣

∫
|v(x)|2x2dx < ∞

}
. (2.8)

Let h2, h1 be measurable functions on [0,∞[. Consistently with the nota-
tion introduced in (2.4) and (2.5), we will write |h2〉〈h1| for the (possibly
unbounded) quadratic form given by

(
w|h2〉〈h1|v

)
:=

∫
w(x)h2(x)dx

∫
h1(y)v(y)dy, (2.9)

for w, v in the (obvious) domain of |h2〉〈h1|. (Note the absence of the complex
conjugation on h1).

It is well known that in some situations

Hλ := X + λ|h2〉〈h1| (2.10)

can be interpreted as an operator, possibly after an appropriate renormal-
ization of the coupling constant λ. This is sometimes called the Aronszajn–
Donoghue theory and is described, e.g., in [1,6,12]. We will need a somewhat
nonstandard version of this theory, because our rank one perturbation does
not have to be Hermitian. Therefore, we describe it in some detail.

One can consider three cases of the Aronszajn–Donoghue theory, with an
increasing level of difficulty. The first case is elementary:

Assumption I. h1, h2 ∈ L2.
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Then |h2〉〈h1| is a bounded operator. Therefore, Hλ is well defined on
Dom(X), and we can easily compute the resolvent of Hλ. In fact, define

g∞(z) := 〈h1|(z − X)−1|h2〉 =
∫ ∞

0

h1(x)(z − x)−1h2(x)dx, (2.11)

gλ(z) = −λ−1 + g∞(z). (2.12)

Then

spHλ ⊂ {z : gλ(z) = 0} ∪ [0,∞[, (2.13)

and for z such that gλ(z) �= 0, z �∈ [0,∞[,

(z − Hλ)−1 = Rλ(z), (2.14)

where

Rλ(z) = (z − X)−1 (2.15)

− gλ(z)−1(z − X)−1|h2〉〈h1|(z − X)−1, λ �= 0; (2.16)

R0(z) := (z − X)−1. (2.17)

Consider now

Assumption II. h1
1+X , h2

1+X ∈ L2, h1h2
1+X ∈ L1.

Then it is easy to check that gλ and Rλ(z) are still well defined. Besides,
Rλ(z) satisfies the resolvent equation, has zero kernel and dense range. Hence,
by the theory of pseudoresolvents [9], there exists a closed operator Hλ such
that (2.14) is true. Note that H0 = X and often we can include λ = ∞.

Finally, consider

Assumption III. h1
1+X , h2

1+X ∈ L2.

Then gλ is in general ill defined. Instead, we consider the equation

∂zg(z) = −〈h1|(z − X)−2|h2〉. (2.18)

If one of solutions of (2.18) is called g0, then all other are given by

gρ(z) := ρ + g0(z), (2.19)

for some ρ ∈ C. We set

Rρ(z) := (z − X)−1 (2.20)

− gρ(z)−1(z − X)−1|h2〉〈h1|(z − X)−1, (2.21)

R∞(z) := (z − X)−1. (2.22)

Again, Rρ(z) is a pseudoresolvent and by Kato [9] there exists a unique family
of operators Hρ such that

(z − Hρ)−1 = Rρ(z). (2.23)

We have thus constructed a family of operators. Under Assumption I
or II, it can be written as Hλ, where λ ∈ C ∪ {∞} has the meaning of a
coupling constant. Under Assumption III, in general, the coupling constant
may lose its meaning, and we may be forced to use the parametrization Hρ,
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where again ρ ∈ C ∪ {∞}. (In practice, however, as we will see, the notation
Hλ could be natural even if Assumption II does not hold).

2.3. Point Spectrum

Until the end of this section we suppose that Assumption III is satisfied. We
consider an operator H of the form Hλ or Hρ, as described above. Thus,

(z − H)−1 = (z − X)−1 (2.24)

− g(z)−1(z − X)−1|h2〉〈h1|(z − X)−1, (2.25)

where g = gλ or g = gρ.
It is easy to see that the spectrum of H consists of [0,∞[ and eigenvalues

at

{w ∈ C\[0,∞[ : 0 = g(w)}. (2.26)

If w ∈ C\[0,∞[ is an eigenvalue with 〈h1|(w − X)−2|h2〉 �= 0, then it is simple
and the corresponding eigenprojection is given by the formula

1l{w}(H) =
(w − X)−1|h2〉〈h1|(w − X)−1

〈h1|(w − X)−2|h2〉 . (2.27)

2.4. Dilations

Before we continue, let us say a few words about the group of dilations

Uτf(x);= e
τ
2 f(eτx), τ ∈ R. (2.28)

It can be written as Uτ = eiτA, where the generator of dilations is

A :=
1
2i

(x∂x + ∂xx). (2.29)

We say that H is homogeneous of degree p if UτHU∗
τ = eptH. For instance, X

is homogeneous of degree 1.
It is easy to see that an operator B on L2(R+) has the integral kernel

B(x, y) =
1√
xy

φ
(

ln
x

y

)
, (2.30)

iff B = φ̂(A), where

φ̂(ξ) =
∫

φ(t)e−itξdt, (2.31)

, see e.g., [4]. For example, by (A.3),

±2πi
(e±2πA + 1l)

has the kernel
1

(x − y ∓ i0)
. (2.32)
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2.5. Essential Spectrum

It follows from the Weyl Theorem that the essential spectrum of H is [0,∞[.
Detailed study of the essential spectrum requires technical assumptions on
the perturbation [13]. In this section, we will limit ourselves to a heuristic
theory, without specifying precise assumptions. It will be possible to justify
these formulas in the concrete situation considered in our paper.

First, we will check that the kernel of 1l[0,∞[(H), that is, of the spectral
projection of H onto [0,∞[ is given by the following formula:

1l[0,∞[(H)(x, y) = δ(x − y) (2.33)

+
h2(x)h1(y)

(x − y − i0)

(
1

g(y + i0)
− 1

g(x + i0)

)

+
1

2πi

h2(x)h1(y)

(x − y − i0)

∫
ds

h1(s)h2(s)

g(s + i0)g(s − i0)

(
1

(x − s − i0)
+

1

(s − y − i0)

)
.

(2.34)

To see this we use the Stone formula

1l[0,∞[(H) = w− lim
ε↘0

1
2πi

∫ ∞

0

ds
(
(s − iε − H)−1 − (s + iε − H)−1

)
.

(2.35)

Thus,

1l[0,∞[(H)(x, y)

=
1

2πi

∫ ∞

0

ds

(
1

(s − i0 − x)
δ(x − y) − 1

(s + i0 − x)
δ(x − y)

)

+
1

2πi

∫ ∞

0

ds

(
h2(x)h1(y)

g(s − i0)(s − i0 − x)(s − i0 − y)

− h2(x)h1(y)
g(s + i0)(s + i0 − x)(s + i0 − y)

)

=
∫ ∞

0

dsδ(s − x)δ(x − y)

+
1

2πi

∫ ∞

0

ds
h2(x)h1(y)

g(s − i0)(s − i0 − x)

(
1

(s − i0 − y)
− 1

(s + i0 − y)

)

+
1

2πi

∫ ∞

0

ds

(
1

(s − i0 − x)
− 1

(s + i0 − x)

)
h2(x)h1(y)

(s + i0 − y)g(s + i0)

+
1

2πi

∫ ∞

0

ds

(
1

g(s − i0)
− 1

g(s + i0)

)
h2(x)h1(y)

(s − i0 − x)(s + i0 − y)

= δ(x − y)

−
∫ ∞

0

ds

(
h2(x)h1(y)

g(s − i0)(s − i0 − x)
δ(s − y) + δ(s − x)

h2(x)h1(y)
(s + i0 − y)g(s + i0)

)

+
1

2πi

∫ ∞

0

ds
h1(s)h2(s)

g(s − i0)g(s+i0)
h2(x)h1(y)
(x − y+i0)

(
1

(s − i0 − x)
− 1

(s+i0 − y)

)
.
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2.6. Møller Operators I

For the purpose of our paper, we define the Møller operators between X and
H, denoted W±(H,X) and W±(X,H), by describing their kernels:

W±(H,X;x, y) = δ(x − y) +
h2(x)h1(y)

(x − y ± i0)g(y ∓ i0)
, (2.36)

W±(X,H;x, y) = δ(x − y) +
h2(x)h1(y)

g(x ± i0)(y − x ∓ i0)
. (2.37)

To motivate the definitions (2.36) and (2.37) recall that in the literature on sta-
tionary scattering theory, e.g., [13], the Møller operators are often introduced
as follows:

W±(H,X) := w− lim
ε↘0

ε

π

∫
ds(s ∓ iε − H)−1(s ± iε − X)−1, (2.38)

W±(X,H) := w− lim
ε↘0

ε

π

∫
ds(s ∓ iε − X)−1(s ± iε − H)−1. (2.39)

If (2.38) and (2.39) exist, then a formal computation shows that their kernels
are given by (2.36) and (2.37).

In general, there is no guarantee that W±(H,X) and W±(X,H) exist as
bounded operators. If this is the case, we expect the following properties:

W±(X,H)W±(H,X) = 1l, (2.40)

W±(H,X)W±(X,H) = 1l[0,∞[(H), (2.41)

W±(H,X)X = HW±(H,X). (2.42)

A rigorous derivation of (2.40), (2.41) and (2.42) for some classes of per-
turbations can be found in [13]. It is not very difficult to derive these identities
on a formal level.

Let us give a formal derivation of (2.40):

W±(X,H)W±(H,X)(x, y) (2.43)

= δ(x − y) +
h2(x)h1(y)

gλ(x ± i0)(y − x ∓ i0)
+

h2(x)h1(y)
(x − y ± i0)gλ(y ∓ i0)

(2.44)

+
∫

dt
h2(x)h1(t)h2(t)h1(y)

gλ(x ± i0)(t − x ∓ i0)(t − y ± i0)gλ(y ∓ i0)
. (2.45)

Now ∫
dt

h1(t)h2(t)
(t − x ∓ i0)(t − y ± i0)

(2.46)

=
∫

dt
h1(t)h2(t)

(y − x ∓ i0)

(
− 1

(t − x ∓ i0)
+

1
(t − y ± i0)

)
(2.47)

=
1

(y − x ∓ i0)
( − gλ(x ± i0) + gλ(y ∓ i0)

)
. (2.48)

Therefore, (2.43) is δ(x − y).
We omit the derivation of (2.41), which is similar to that of (2.40),

although somewhat more difficult, since we need to use (2.33).
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To obtain (2.42), we will compute that

W±(H,X)(z − X)−1 = (z − H)−1W±(H,X). (2.49)

Indeed,

(z − H)−1W±(H,X)(x, y) (2.50)

=
δ(x − y)
(z − x)

− h2(x)h1(y)
gλ(z)(z − x)(z − y)

(2.51)

+
h2(x)h1(y)

(z − x)(x − y ± i0)gλ(y ∓ i0)
(2.52)

−
∫

h2(x)h1(t)h2(t)h1(y)
gλ(z)(z − x)(z − t)(t − y ± i0)gλ(y ∓ i0)

dt (2.53)

=
δ(x − y)
(z − y)

− h2(x)h1(y)
gλ(z)(z − x)(z − y)

(2.54)

+
h2(x)h1(y)

(z − x)(z − y)gλ(y ± i0)
(2.55)

+
h2(x)h1(y)

(x − y ± i0)(z − y)gλ(y ∓ i0)
(2.56)

−
∫

h2(x)h1(t)h2(t)h1(y)
gλ(z)(z − x)(z − t)(z − y)gλ(y ∓ i0)

dt (2.57)

−
∫

h2(x)h1(t)h2(t)h1(y)
gλ(z)(z − x)(t − y ± i0)(z − y)gλ(y ∓ i0)

dt. (2.58)

To handle (2.57) + (2.58) we note that
∫

h1(t)h2(t)
(z − t)

dt −
∫

h1(t)h2(t)
(y − t ∓ i0)

dt = gλ(z) − g(y ∓ i0). (2.59)

Therefore, (2.57) + (2.58) cancels the second term of (2.54) and (2.55). Thus,
(2.50) equals

δ(x − y)
(z − y)

+
h2(x)h1(y)

(x − y ± i0)(z − y)gλ(y ∓ i0)
(2.60)

= W±(H,X)(z − X)−1(x, y), (2.61)

which proves (2.49).

2.7. Møller Operators II

Let us now consider H = Hλ.
We can rewrite (2.36) in terms of W±(H0,X) = 1l and W±(H∞,X):

W±(Hλ,X) =
1(

1 − λg∞(X ∓ i0)
)

− W±(H∞,X)
λg∞(X ∓ i0)(

1 − λg∞(X ∓ i0)
) . (2.62)
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Then we consider Hρ. In general, there is no analog of (2.62). Instead,
using (2.32) one obtains the following compact formula for W±(Hρ,X):

W±(Hρ,X) = 1l ∓ h2(X)
2πi

(e±2πA + 1l)
h1(X)(

ρ + g0(X ∓ i0)
) . (2.63)

2.8. Self-Transposed and Self-Adjoint Cases

In applications, it often happens that one of the following two conditions holds:

h1 = h2 =: h, resp. h1 = h2 =: h, (2.64)

(The former is the case of our paper; the latter is in most of the literature).
Then Assumptions I, II, III slightly simplify and can be rewritten in terms of
the scale of Hilbert spaces associated with the positive operator 1 + X:

Assumption I. h ∈ L2[0,∞[.

Assumption II. h ∈ (1 + X)
1
2 L2[0,∞[.

Assumption III. h ∈ (1 + X)L2[0,∞[.

Moreover, the family Hλ is self-transposed, resp. self-adjoint, that is

H#
λ = Hλ, resp. H∗

λ = Hλ,

and the Møller operators satisfy
(
W±(H,X)

)# = W∓(X,H), resp.
(
W±(H,X)

)∗ = W±(X,H). (2.65)

To see (2.65) it is enough to look at the kernels (2.36) and (2.37).

3. Family of Rank One Perturbations

3.1. Construction

We still consider L2[0,∞[ with the operator X defined as in (2.8). Let m ∈ C

and

hm(x) := x
m
2 .

We would like to define an operator formally given by

Hm,λ := X + λ|hm〉〈hm|. (3.1)

We check that for −1 < Rem < 0 Assumption II is satisfied. Therefore, the
construction described in Sect. 2 allows us to define a closed operator Hm,λ for
m in this range and λ ∈ C ∪ {∞}. Using (A.4), we compute for z ∈ C\[0,∞[:



Vol. 18 (2017) Homogeneous Rank One Perturbations 3259

〈hm|(z − X)−1|hm〉−1 (3.2)

=
∫ ∞

0

xm(z − x)−1dx (3.3)

= −(−z)m

∫ ∞

0

( x

−z

)m(
1 +

x

(−z)

)−1 dx

(−z)
(3.4)

= (−z)m π

sin πm
. (3.5)

Next note that Assumption III is satisfied for −1 < Rem < 1. Moreover,
equation

∂zg(z) = −〈hm|(z − X)−2|hm〉−1 = −(−z)m−1 πm

sin πm
can be solved, obtaining the following solutions

gλ(z) := −λ−1 + (−z)m π

sin πm
, m �= 0, (3.6)

gρ(z) = ρ − ln(−z), m = 0. (3.7)

Note that only for m = 0 we use the “superindex notation” and we do not use
the “coupling constant” λ. For m �= 0 we keep the “coupling constant” λ, even
though for Rem ≥ 0 it has lost its meaning described by (3.1).

The following theorem summarizes our construction:

Theorem 3.1. (1) For any −1 < Rem < 1, m �= 0, λ ∈ C∪ {∞}, there exists
a unique closed operator Hm,λ such that

(z − Hm,λ)−1 = (z − X)−1

+
(
λ−1 − (−z)m π

sin πm

)−1

(z − X)−1|hm〉〈hm|(z − X)−1.

(3.8)

In particular, Hm,0 = X.
(2) For any ρ ∈ C∪ {∞}, there exists a unique closed operator Hρ

0 such that

(z − Hρ
0 )−1 = (z − X)−1

− (
ρ + ln(−z)

)−1(z − X)−1|h0〉〈h0|(z − X)−1. (3.9)

In particular, H∞
0 = X.

Note that the operators Hm,λ and Hρ
0 are self-transposed.

It will be convenient to introduce the shorthand

ς(m,λ) = ς := λ
π

sin πm
. (3.10)

Then we can rewrite (3.8) as

(z − Hm,λ)−1 =
1

1 − ς(−z)m
(z − X)−1

− ς(−z)m

1 − ς(−z)m
(z − Hm,∞)−1. (3.11)

It is possible to include both Hm,λ and Hρ
0 in a single analytic family of

closed operators (see [9]).
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Theorem 3.2. For m �= 0, set λ(m, ρ) := m
1−mρ . Then

(ρ,m) 	→
{

Hm,λ(m,ρ), m �= 0;
Hρ

0 , m = 0;
(3.12)

is an analytic family (their resolvents depend analytically on (ρ,m)).

Proof. We have

ρ(m,λ) := m−1 − λ−1. (3.13)

Hence, for small m

gλ(z) = −λ−1 + em ln(−z) π

sin πm
(3.14)

= −λ−1 +
(
1 + m ln(−z)

)
m−1 + O(m) (3.15)

= ρ(m,λ) + ln(−z) + O(m). (3.16)

�

3.2. Toy Model of the Renormalization Group

The group of dilations (“the renormalization group”) acts on our operators in
a simple way:

UτHm,λU−1
τ = eτHm,eτmλ, (3.17)

UτHρ
0U−1

τ = eτHρ+τ
0 . (3.18)

We will show that an appropriately renormalized operator of the form X
plus a rather arbitrary rank one perturbation is driven by the scaling to one
of the operators that we consider in our paper.

Theorem 3.3. Suppose that h ∈ L2[0,∞[ has a compact support and h = x
m
2

close to x = 0. Set

H(λ) := X + λ|h〉〈h|. (3.19)

We then have the following statements, (where lim denotes the norm resolvent
limit):
(1) For −1 < Rem < 0,

lim
τ→−∞ e−τUτH(λe−mτ )U−1

τ = Hm,λ. (3.20)

(2) For m = 0,

lim
τ→−∞ e−τUτH

(
1
τ

)
U−1

τ = Hν
0 , (3.21)

where

ν :=
∫ ∞

0

ln(y)(h2)′(y)dy. (3.22)
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(3) For 0 ≤ Rem < 1, m �= 0,

lim
τ→−∞ e−τUτH

(
λ

emτ − αλ

)
U−1

τ = Hm,λ, (3.23)

where

α :=
∫ ∞

0

h2(x)
x

dx. (3.24)

Proof. We will prove only the case 0 ≤ Rem < 1, m �= 0. The other cases are
easier. Set λτ := λ

emτ −αλ .
(
z − e−τUτH(λτ )U−τ

)−1

= eτUτ

(
zeτ − H(λτ )

)−1
U−τ

= eτUτ

(
zeτ − X

)−1
U−τ

−
(

− λ−1
τ +

∫ ∞

0

h(x)2(zeτ − x)−1dx
)−1

× eτUτ (zeτ − X
)−1|h〉〈h|(zeτ − X

)−1
U−τ

= I − II−1 × III.

Clearly,

I = (z − X)−1,

e−τmIII = e−τ(m+1)(z − X)−1|Uτh〉〈Uτh|(z − X)−1

→ (z − X)−1|hm〉〈hm|(z − X)−1,

e−mτ II + λ−1 = e−mτ

∫ ∞

0

h(x)2
(
(eτz − x)−1 + x−1

)
dx

= e−mτ (−z)eτ

∫ ∞

0

h(x)2dx

x(x − zeτ )

= e−mτ

∫ ∞

0

h(eτ (−z)y)2dy

y(y + 1)

→ (−z)m

∫ ∞

0

ym−1dy

(y + 1)

= −(−z)m π

sin π(m − 1)

= (−z)m π

sin πm
.

�

3.3. Point Spectrum

The following theorem is analogous to the characterization of the point spec-
trum of the Bessel operator described in Theorem 5.2 of [7] and is the conse-
quence of the same computation.
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Theorem 3.4. (1) w ∈ C\[0,∞[ belongs to the point spectrum of Hm,λ iff it
satisfies the equation

(−w)−m = ς. (3.25)

The corresponding eigenprojection has the kernel

1l{w}(Hm,λ)(x, y) =
sin πm

πm
(−w)−m+1(w − x)−1x

m
2 y

m
2 (w − y)−1. (3.26)

(2) Hρ
0 possesses an eigenvalue iff −π < Imρ < π, and then it is w = −eρ.

The corresponding eigenprojection has the kernel

1l{w}(H
ρ
0 )(x, y) = −w(w − x)−1(w − y)−1. (3.27)

Let us stress that σp(Hm,λ) depends in a complicated way on the param-
eters m and λ. There exists a complicated pattern of phase transitions, when
some eigenvalues “disappear.” This happens if

π ∈ Re
1
m

Ln(ς), or − π ∈ Re
1
m

Ln(ς), (3.28)

where Ln denotes the multivalued logarithm function. A pair (m,λ) satisfying
(3.28) will be called exceptional. For m = 0, we need a different condition. We
say that (0, ρ) is exceptional if

Imρ = −π or Imρ = π. (3.29)

For a given m,λ all eigenvalues form a geometric sequence that lie on a
logarithmic spiral. This spiral should be viewed as a curve on the Riemann
surface of the logarithm, and only its “physical sheet” gives rise to eigenvalues.
For m which are not purely imaginary, only a finite piece of the spiral is on
the “physical sheet,” and therefore the number of eigenvalues is finite.

If m is purely imaginary, this spiral degenerates to a half-line starting at
the origin. Either the whole half line is on the “physical sheet,” and then the
number of eigenvalues is infinite, or the half line is “hidden on the non-physical
sheet of the complex plane,” and then there are no eigenvalues.

If m is real, the spiral degenerates to a circle. But then the operator has
at most one eigenvalue.

Below we provide a characterization of #σp(Hm,λ), i.e., of the number of
eigenvalues of Hm,λ. It is proven in [7, Proposition 5.3].

Proposition 3.5. Let m = mr + imi ∈ C
× with |mr| < 1.

(i) Let mr = 0.
(a) If ln(|ς|)

mi
∈] − π, π[, then #σp(Hm,λ) = ∞,

(a) if ln(|ς|)
mi

�∈] − π, π[ then #σp(Hm,λ) = 0.

(ii) If mr �= 0 and if N ∈ N satisfies N <
m2

r+m2
i

|mr| ≤ N + 1, then

#σp(Hm,λ) ∈ {N,N + 1}.
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3.4. Møller Operators

First consider m �= 0. We define the Møller operator

W±
m,λ := W±(Hm,λ,X), (3.30)

as the operator with the kernel (2.36). Note that

W∓#
m,λ = W±(X,Hm,λ). (3.31)

For m �= 0 we have two distinct λ with Hm,λ homogeneous of degree one.
One of them is obviously Hm,0 = X. The other is Hm,∞. Therefore, the Møller
operators W±

m,∞ are functions of A. The Møller operators Wm,λ for all λ can
be expressed in terms of W±

m,∞ and X. All this is described in the following
theorem:

Theorem 3.6. W±
m,∞ exist as bounded operators and

W±
m,∞ =

e∓2πA + e∓imπ1l
e∓2πA + e±imπ1l

. (3.32)

Besides, if (m,λ) is not exceptional, then W±
m,λ exist as bounded operators and

are given by

W±
m,λ =

1(
1l − ςe±iπmXm

) (3.33)

− W±
m,∞

ςe±iπmXm

(
1l − ςe±iπmXm

) . (3.34)

They satisfy

W∓#
m,λ W±

m,λ = 1l, (3.35)

W±
m,λ W∓#

m,λ = 1l[0,∞[(Hm,λ), (3.36)

W±
m,λX = Hm,λW±

m,λ. (3.37)

Proof. By (2.36), the kernel of W±
m,∞ is given by

W±
m,∞(x, y) = δ(x − y) +

e±iπm sinπm
π x− m

2 y
m
2

x − y ∓ i0

= δ(x − y) +
e±iπm sinπm

π√
xy

(y

x

)m
2
((x

y

) 1
2 −

(y

x

) 1
2 ∓ i0

)−1

.

(3.38)

Now, by Sect. 2.4 and formula (A.2), the operator with the kernel

1√
xy

(y

x

)m
2
((x

y

) 1
2 −

(y

x

) 1
2 ∓ i0

)−1

equals
±2πi

e∓πim±2πA + 1l
. (3.39)
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Therefore,

W±
m,∞ = 1l ± e±iπm sin πm

π

±2πi
e∓πim±2πA + 1l

(3.40)

=
e∓2πA + e∓imπ

e∓2πA + e±imπ
. (3.41)

To see that (3.41) is bounded, we use −1 < Rem < 1.
If (m,λ) is not exceptional, then 1

(1l−ςe±iπmXm) and ςe±iπmXm

(1l−ςe±iπmXm) are
bounded, and therefore formula (2.62) defines W±

m,λ as a bounded operator.
(2.40), (2.41) and (2.42) rewritten using (3.30) and (3.31) yield (3.35),

(3.36) and (3.37). �

Next, consider m = 0. We set

W ρ,±
0 := W±(Hρ

0 ,X).

Note that

W ρ,∓#
0 = W±(X,Hρ

0 ).

For m = 0, only X = H∞
0 is homogeneous of degree 1; therefore, we do

not have an analog of (3.34).

Theorem 3.7. Suppose that ρ is not exceptional. Then the Møller operators
W ρ,±

0 exist as bounded operators and are given by

W ρ,±
0 = 1l ∓ 2πi

(e±2πA + 1l)
1

(ln X ∓ iπ − ρ)
. (3.42)

They satisfy

W ρ,∓#
0 W ρ,±

0 = 1l, (3.43)

W ρ,±
0 W ρ,∓#

0 = 1l[0,∞[(H
ρ
0 ), (3.44)

W ρ,±
0 X = Hρ

0W ρ,±
0 . (3.45)

Proof. Using the assumption that ρ is non-exceptional, we check that
1

(lnX∓iπ−ρ) is bounded. Now, the formula (2.63) proves (3.42) and the bound-

edness of W ρ,±
0 . �

4. Equivalence with Schrödinger Operators with Inverse Square
Potentials

Recall that in [4] a holomorphic family of closed operators Hm was introduced.
We change slightly the notation for these operators, and we will denote them
by H̃m in this paper.

Thus, for Rem > −1, H̃m is the unique closed operators on L2[0,∞[
given on C∞

c ]0,∞[ by the differential expression

H̃m = −∂2
x +

(
− 1

4
+ m2

) 1
x2

, (4.1)
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such that functions in its domain behave as x
1
2+m around zero. H̃m can be

diagonalized with help of the so-called Hankel transformation Fm, which is a
bounded invertible involutive operator such that

FmH̃mF−1
m = X2, (4.2)

FmAF−1
m = −A. (4.3)

For −1 < Rem < 1, two more general families of operators Hm,κ and Hν
0

were constructed in [7]. In this paper they will be denoted by H̃m,κ and H̃ν
0 .

H̃m,κ is given by the differential expression on the right-hand side of (4.1)
with the boundary condition at zero κx

1
2−m + x

1
2+m. H̃ν

0 is defined by (4.1)
with m = 0 and the boundary conditions x

1
2 log(x) + νx

1
2 . Note that

H̃m = H̃m,0 = H̃−m,∞, H̃0 = H̃∞
0 .

Define the unitary operator

(If)(x) := x− 1
4 f(2

√
x). (4.4)

Its inverse is

(I−1f)(y) :=
(y

2

) 1
2

f

(
y2

4

)
. (4.5)

Note that

I−1XI =
X2

4
, (4.6)

I−1AI =
A

2
. (4.7)

Theorem 4.1. We have

F−1
m I−1Hm,λIFm =

1
4
H̃m,κ, (4.8)

where the pairs (m,λ) and (m,κ) are linked by the relation

λ
π

sin(πm)
= κ

Γ(m)
Γ(−m)

. (4.9)

(The relation (4.9) is equivalent to saying that the parameter ς introduced in
[7, (5.2)] coincides with the parameter ς introduced in (3.10).)

Proof. To avoid notational collision, we denote by W̃±
m′m the Møller operators

denoted by W±
m,m′ in [7]. We quote some identities from [7] contained in Prop.
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4.11, Prop. 4.9 and Equation (6.3):

W̃±
−m,m =

e±πA + e∓iπm

e±πA + e±iπm
, (4.10)

(
k2 + H̃−m

)−1 = W̃±
−m,m

(
k2 + H̃m

)−1
W̃±−1

−m,m, (4.11)
(
k2 + H̃m,κ

)−1 =
1

1 − ς(k
2 )2m

(
k2 + H̃m

)−1

− ς
(

k
2

)2m

1 − ς(k
2 )2m

(
k2 + H̃−m

)−1
. (4.12)

On the other hand, by Theorem 3.6 we have

W±
m,∞ =

e∓2πA + e∓imπ1l
e∓2πA + e±imπ1l

, (4.13)

(z − Hm,∞)−1 = W±
m,∞(z − X)−1W±−1

m,∞ , (4.14)

(z − Hm,λ)−1 =
1

1 − ς(−z)m
(z − X)−1

− ς(−z)m

1 − ς(−z)m
(z − Hm,∞)−1. (4.15)

Now (4.3), (4.7), (4.10) and (4.13) imply

F−1
m I−1W±

m,∞IFm = W̃±
−m,m. (4.16)

Setting −z = k2

4 , using (4.14), (4.16), (4.2), (4.6) and (4.11) we check that

F−1
m I−1(z − Hm,∞)−1IFm =

(
z − H̃−m

4

)−1

. (4.17)

Finally, (4.12) and (4.15) yield

F−1
m I−1(z − Hm,λ)−1IFm =

(
z − H̃m,κ

4

)−1

. (4.18)

�

Theorem 4.2. We have

F−1
0 I−1Hρ

0 IF0 =
1
4
H̃ν

0 , (4.19)

where ρ = −2ν.

Proof. The m = 0 case will be reduced to m �= 0.
First note that the family

(m, ν) 	→
{

H̃m, mν−1
mν+1

, m �= 0

H̃ν
0 , m = 0;

(4.20)

is analytic (see [7, Remark 2.5]). Hence, for m → 0,

H̃m,−1+2mν → H̃ν
0 . (4.21)



Vol. 18 (2017) Homogeneous Rank One Perturbations 3267

Similarly, by Theorem 3.2, the family

(m, ρ) 	→
{

Hm, m
1−mρ

, m �= 0
Hρ

0 , m = 0
(4.22)

is analytic. Hence, for m → 0,

Hm,m+m2ρ → Hρ
0 . (4.23)

Around m = 0, the condition (4.9) becomes
λ

m
� −κ

(
1 + O(m)

)
. (4.24)

Therefore, around m = 0, (4.8) implies

F−1
m I−1Hm,m+m2ρIFm =

1
4
H̃m,−1+2mν+O(m2), (4.25)

where ρ = −2ν. Passing to the limit m → 0 in (4.25) we obtain (4.19). �

Appendix: Some Integrals

• For − 1
2 < Rea < − 1

2 ,
∫ ∞

−∞

eatdt

e
t
2 + e− t

2
=

π

cos πa
. (A.1)

Indeed, we integrate the analytic function f(t) := eat

e
t
2 +e− t

2
over the

rectangle −R,R,R + 2πi,−R + 2πi, use f(t ± 2πi) = −e2πiaf(t) and
Resf(πi) = 1

i e
πia.

• For the same a, ∫ ∞

−∞

eatdt

e
t
2 − e− t

2 ∓ i0
=

±2πi
e±2πia + 1

. (A.2)

To see this we shift the integration in (A.1) from R to R ± iπ without
crossing the singularity at ±πi.

• Setting a = −iξ in (A.2) we obtain the following Fourier transform:

h(t) =
1(

e
t
2 − e− t

2 ∓ i0
) , ĥ(ξ) =

±2πi
(e±2πξ + 1)

. (A.3)

• For −1 < Rem < 0,∫ ∞

0

sm(1 + s)−1ds = − π

sin πm
. (A.4)

Indeed, we set m = a − 1
2 and s = et in (A.1).
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