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Anderson Localization for Periodically
Driven Systems

Raphael Ducatez and François Huveneers

Abstract. We study the persistence of localization for a strongly disor-
dered tight-binding Anderson model on the lattice Z

d, periodically driven
on each site. Under two different sets of conditions on the driving, we show
that Anderson localization survives if the driving frequency is higher than
some threshold value. We discuss the implication of our results for recent
development in condensed matter physics, we compare them with the pre-
dictions issuing from adiabatic theory, and we comment on the connection
with Mott’s law, derived within the linear response formalism.

1. Introduction

In this paper, we study the fate of Anderson localization in periodically driven
systems. Let H0 be the tight-binding Anderson Hamiltonian on the lattice
Z

d. At strong enough disorder, it is well known that all eigenstates of H0 are
exponentially localized (see [5,6,15] as well as [13] for more references). Let us
then consider a periodic time-dependent Hamiltonian of the form

H(t) = H0 + gH1(t) (1)

with H1(t) = H1(t + T ) for some period T , and with g some coupling con-
stant. We assume that H1(t) acts everywhere locally: There exists R such that
|(x,H1(t)y)| = 0 for all x, y ∈ Z

d, and all time t, as soon as |x − y| > R (with
the notation (x,Ay) = (δx, Aδy) = A(x, y) for an operator A).

The time evolution of an initial wave function ψ(0) is governed by the
time-dependent Schrödinger equation:

i
dφ(t)

dt
= H(t)φ(t).

The long time properties of the solutions of this equation are best understood
through the Floquet eigenstates of H(t) [19,32]. The question addressed in this
paper can then be rephrased as follows: Under suitable regularity conditions
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on the time dependence of H1(t), is there a range of values for g and T such
that the structure of the eigenfunctions of H0 is only weakly affected by the
periodic potential H1(t), so that the Floquet eigenstates of H(t) are themselves
localized? We answer this question positively in Theorem 1 below, for two
different regularity conditions on H1, leading to different allowed values for g
and T .

Localization and Floquet physics. The above question has already received
some attention in the mathematical physics community. The connection with
the discrete nonlinear Schrödinger equation (DNLS) constituted a first moti-
vation, see [7,28]. In this context, the more general case of a quasi-periodic
driving shows up naturally: In a first approximation, the non-linearity in the
DNLS equation can be replaced by a quasi-periodic perturbation. On the other
hand, in this perspective, it is natural to restrict oneself to spatially localized
perturbations ((x,H1(t)y) decays fast as x or y goes to infinity and not only as
|x − y| goes to infinity as we consider); indeed, stability results for the DNLS
equation all deal with originally localized wave packets.

More recently, periodically driven Hamiltonian systems have been studied
intensively in condensed matter theory. For two reasons at least:

First, from a theoretical perspective, driven systems constitute the first
examples of dynamics out of equilibrium, lacking even energy conservation.
The natural question that arises is whether the system will absorb energy un-
til it reaches an infinite temperature state (i.e., a state with maximal entropy),
as it would be the case for a chaotic system, or whether some extensive effec-
tively conserved quantity emerges, forbidding energy absorption after some
transient regime [1–4,9,10]. For non-interacting particles on a lattice, as we
consider in this paper, this issue becomes trivial and fully independent of the is-
sue of Anderson localization, once the driving frequency becomes higher than
the bandwidth of individual particles, see [2,4]. Nevertheless, thanks to the
Anderson localization phenomenon, our results guarantee the existence of an
effective extensive conserved quantity for frequencies much below this trivial
threshold, see Proposition 2 below.

Second, from a more practical point of view, driven systems furnish a
way to engineer topological states of matter [25,27]. Though this possibility
is not a priori related to the phenomenon of Anderson localization, it turns
out that, for interacting many-body systems, localization makes it possible to
“lift” phase transitions from the ground state to the full spectrum [20]. This
observation is at the heart of very recent investigations of new phases of matter
inside the many-body localized phase [22,29,30].

Hence, in view of the increasing role played by localized Floquet systems
in modern condensed matter physics, it appeared useful to bring some firm
mathematical foundations to the theory of Anderson localization in periodi-
cally driven systems, even though the need for mathematical rigor forces us to
restrict the setup to non-interacting particles. Results in this direction already
appeared in [18], where the localization for some random unitary operators is
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established; this question is directly related to ours since the long time evo-
lution of a periodically system is governed by the spectral properties of the
unitary U(T ), where U(t) solves idU(t)/dt = H(t)U(t). However, for a Hamil-
tonian as in (1), we do not recover the particular form for U studied in [18].

Before stating our results, we now introduce two more specific aspects
that deserved clarification and motivated the present article.

Adiabatic Theory. Time-dependent Hamiltonian systems varying smoothly
and slowly enough with time can be described through the use of adiabatic
theory. Here, adapting the analysis from [3], we argue that localization emerges
when level crossings in the system become typically non-adiabatic, and we
determine the threshold frequency above which this happens.

Let us first remind the theory of the Landau–Zener effect for a time-
dependent two-level Hamiltonian G(t) [24,33]. To make the connection with
our problem, let us assume that G(t) is of the form G(t) = PH(t)P where
P projects on two eigenstates of H0. Moreover, we assume that G(t) varies
smoothly on the scale of one period, i.e., we can write G(t) = G̃(νt) for some
smooth 2π-periodic function G̃ and ν = 2π

T . It is then convenient to move to
the basis of the eigenstates of H0, i.e., the basis where P is diagonal, and to
decompose

G(t) = Gdia(t) + Goff(t),

as a sum of the diagonal and off-diagonal part. We notice that the time-
dependent part of Gdia(t) is of order g. We set (1, Goff(t)2) =: g′, where g′

depends mainly on the distance between the two localization centers of the
two states projected on by P and is typically much smaller than g. Finally,
we assume that the two levels of PH0P are close enough (g-close in fact) to
each other so that the system undergoes an avoided crossing as time evolves:
At some time, the levels of Gdia(t) cross, while Goff(t) induces level repulsion,
leading to an avoided crossing for G(t).

If the system is initially (i.e., before the crossing) prepared in an eigen-
state of Gdia(t), Landau–Zener theory tells us that, after the crossing, the state
in which the systems end up depends on the value of

|(1, Goff2)|2
v12

∼ (g′)2

gν
, (2)

where v12 is the rate of change in the energy of Hdia(t) at the crossing. At high
frequency, when this value is much smaller than 1, the crossing is non-adiabatic
and the system remains in the original state; at intermediate frequency, when
this value is of order 1, the system ends up in a superposition of the eigenstates
of Gdia(t); and finally at low frequency, when this value is much smaller than
1, the crossing is adiabatic and the system ends up in the other eigenstate of
Gdia(t).

The above scenario, valid for a two level systems, may be seen as a car-
icature of the localization–delocalization transition: Non-adiabatic crossings
do not entail hybridization of unperturbed eigenstates, while intermediate and
adiabatic crossings, present at low enough frequency, allow the system to move
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from one state to the other and constitute a possible mechanism for delocaliza-
tion. Based on this picture, let us try to determine a critical value of ν above
which localization survives. Let us fix g in (1) as well as W characterizing the
strength of the disorder. Let us then pick a point a ∈ Z

d. We first determine a
minimal length L∗ so that there is typically at least one crossing between the
state centered around a and an other state with localization center in a ball
of radius L∗ around a. Since the probability of finding a crossing in a ball of
radius L is of the order of Ld g

W , we find

L∗ ∼
(W

g

)1/d

.

The effective coupling between a state centered around a and a state at a
distance L of a, corresponding to g′ in (2), is of the order of

g′ ∼ ge−L/ξ,

where ξ is the localization length of H0. Hence, from (2), we find that local-
ization will survive if

g2e−2L∗/ξ

gν
� 1 ⇔ ν

g
� e− 2

ξ ( W
g )1/d

. (3)

In Theorem 1 below, for a smooth driving (condition (C1)), we prove
localization for ν larger than some threshold value comparable to what we
obtain in (3). We notice that the Landau–Zener theory proceeds through non-
perturbative arguments. Instead, our proof is based on the multi-scale analysis
developed in [15], which is mainly a perturbative approach. It is thus somehow
remarkable that the same upshot can be recovered in two a priori very different
ways.

Finally, we notice that the approach through adiabatic theory outlined
above is only expected to work for H1(t) depending smoothly on time. Unfor-
tunately, both in theoretical and experimental physics works, it is a common
protocol to just shift between two Hamiltonians periodically. This leads obvi-
ously to a non-smooth time dependence. As we wanted to cover this case as
well, we also derived a result for H1 being only in square integrable in time;
see Theorem 1 below with the condition (C2). The lack of smoothness forced
us to increase significantly the threshold on ν with respect to (3).

Mott’s law. Mott’s law asserts that the ac-conductivity of an Anderson insu-
lator behaves as

σ(ν) ∼ ν2
(
log(1/ν)

)d+1 as ν → 0

([26], see also [17] for the case of interacting electrons). An upper bound on
σ(ν) was rigorously established in [23] (with d + 1 replaced by d + 2). The
conductivity σ(ν) is derived within the linear response (LR) formalism; in our
setup, this corresponds to fixing ν and taking the limit g → 0 while observing
the dynamics over a time of order ν/g2. In such a regime, the hypotheses
of Theorem 1 below are satisfied (we consider a monochromatic perturbation
with frequency ν so that condition (C1) holds): The dynamics is localized for
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g small enough once ν has been fixed.1 It may thus come as a surprise that
still σ(ν) > 0.

This puzzling behavior was recently analyzed in detail for many-body
systems in [16]. As it was pointed out to us by [12], the conductivity σ(ν) is
computed for a system in equilibrium at zero or finite temperature. Moreover,
as can be expected from its definition, for g > 0, LR should in general furnish
only an accurate description of the dynamics for a transient regime in time
of order ν/g2. It is true though that, for “generic” or “ergodic” systems, it
is reasonable to think that the predictions from LR remain valid for much
longer timescales: While heating, the system remains approximately in equi-
librium and LR can be applied iteratively until the infinite temperature state
is reached. This is manifestly not true for localized systems as long as g is
small enough compared to ν: The conductivity σ(ν) > 0 represents mainly
the Rabi oscillation of rare resonant spots (“cat states”) in the Hamiltonian
H0, but these oscillations do not need to entail delocalization on the longer
timescales described by the Floquet physics.

Organization of the paper. The precise definition of the model studied in
this paper together with our results is presented in Sect. 2. The main steps
of the proof of our main theorem are contained in Sect. 3, while some more
technical intermediate results are shown in Sects. 4 to 6. The two corollaries are
shown in Sect. 7. In several places, the proof of our results proceeds through
a straightforward adaptation of delicate but well-known methods; as much as
possible, we choose to describe in detail only the steps where some significant
amount of new material was required.

2. Models and Results

2.1. The Models

We consider a lattice model on Z
d and we note |x| = supi=1..d |xi|. Our results

could be of course extended to more general lattices. We are interested in the
long time behavior of the Schrödinger equation:

i
d
dt

φ(t) = H(t)φ(t), (4)

where the function φ(t) is defined on L2(Zd) for any t, and the Hamiltonian
H(t) is a periodic function with frequency ν = 2π/T . The operator H(t) is
an idealized version of (1): We move to the basis where H0 is diagonal and
we replace it by an uncorrelated random potential Vω, while we assume that
H1(t) is still a nearest neighbor hopping (Anderson model):

H(t) = −gΔ(t) + Vω. (5)

1 Strictly speaking, our model does not coincide with that studied in, e.g., [23], as we do
not explicitly include an electric field. However, it could be incorporated without affecting
our conclusions.
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Here −Δ(t) is Hermitian operator for any t such that −Δ(t)(x, y) = 0 if
|x − y| > 1 and

‖ − Δ(t)(x, y)‖L2([0;T ]) ≤ 1 (6)

for any x, y. We use the notation −Δ because in the usual time-independent
Anderson model, −Δ(t) is the usual discrete Laplacian on 	(Zd)

−Δφ(x) =
1
2d

∑
|y−x|=1

φ(y),

There exists a unitary operator U(t), with U(0) = Id such that φ(t) = U(t)φ(0)
and satisfying

i
d
dt

U(t) = H(t)U(t), (7)

Existence and uniqueness of solution of (4) and (7) can be proved using a
usual fixed point technique.

(RP) Potential regularity. We assume the following form for the random
potential which are widely used in the literature:

Vω =
∑
x∈Zd

vxδx (8)

where vx are i.i.d. random variables, with a bounded density ρ, such that
‖ρ‖∞ < ∞ defined on a bounded support [−M ;M ]. Furthermore, we will
assume that the density ρ is piecewise C1.

The time-dependent term −gΔ(t) is considered to be a perturbation of
order g � 1, usually referred to as the strong disorder regime. We treat this
model in two particular cases.

(C1) Smooth driving. We suppose that −Δ(t)(x, y) is a monochromatic
signal: For any x and y,

− Δ(t)(x, y) = ax,y + bx,y cos(νt) + b′
x,y sin(νt) (9)

with ax,y = ay,x, b′
x,y = b′

y,x and bx,y = by,x. In this regime, we are able to
prove localization for frequencies ν up to a threshold comparable to the one
given in (3). Moreover, we claim that the result can then be extended to a
hopping −Δ(t) with Fourier coefficients that decay fast enough, but we focus
on the case of single Fourier mode for simplicity.

(C2) L2 driving. We only assume (6). In this case, a much larger threshold
value for ν is needed, actually ν ≥ 1. We refer to [3] for the optimality of this
condition.

Remark 1. Between these two extreme cases, one could obviously consider
intermediate regularity cases, depending on the decay of the Fourier coefficients
of −Δ(t). This should lead to other conditions on ν that are not investigated
in this paper.
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2.2. The Floquet Operator

We will work in the Fourier space instead of the time domain, and we denote
by x̂ = (x, k) a point of Z

d × Z. Let us introduce the central object of our
paper:

Definition 1. Let
Ĥ = −gΔ̂ + V̂ω (10)

be a Hamiltonian on Z
d × Z, with

− Δ̂ψ̂(x, k) = −
∑

|y−x|≤1

∑
k′

Δ̂x,y(k′)ψ̂(y, k − k′) (11)

where Δ̂x,y(k) = 1
T

∫ T

0
Δx,y(t)e−iνktdt and

V̂ω = Vω + kν. (12)

In the monochromatic case (C1), the Laplacian −Δ̂ is explicitly given by

−Δ̂ψ̂(x, k) =
∑

|y−x|≤1

[
ax,yψ̂(y, k) +

bx,y + ib′
x,y

2
ψ̂(y, k + 1)

+
bx,y − ib′

x,y

2
ψ̂(y, k − 1)

)]

We remark that it is a local operator, meaning it connects only sites x̂, ŷ such
that |x̂ − ŷ| = 1 in the space Fourier graph Z

d × Z. In the general L2 case
(C2), this is no longer true. Indeed, points (x, k), (y, k′) could be connected
with |k − k′| arbitrary large.

Let H1 = {f̂ ∈ L2(Zd × Z) :
∑

(x,k)∈Zd×Z
|f̂(x, k)|2(1 + k2) < +∞}.

Proposition 1. The operator Ĥ is well defined and self-adjoint on L2(Zd × Z)
with domain H1.

Proof. The multiplication operator by νk is a self-adjoint operator from
L2(Zd × Z) to itself with domain H1. Let us show that Ĥ is also self-adjoint
with domain H1: By Theorem 4.3 in [21], it suffices to show that H1 ⊂ dom(Δ̂)
and that there exists a constant a ∈ R and b < 1 such that ‖gΔ̂f̂‖2

2 ≤
a‖f̂‖2

2 + b‖νkf̂‖2
2 for all f̂ ∈ H1. There exists a constant C < +∞ such that,

for any f̂ ∈ H1 and any s ∈]1/2, 1],

‖Δ̂f̂‖2
2 =

∑
x,k

∣∣∣
∑

y:|y−x|≤1,k′
Δ̂x,y(k − k′)f(y, k′)

∣∣∣
2

≤ (2d + 1)
∑
x,k

∑
y:|y−x|≤1

∑
k′

|Δ̂x,y(k − k′)|2
(1 + (k′)2)s

∑
k′′

|f(y, k′′)|2(1 + (k′′)2)s

≤ C
∑
x,k

|f(x, k)|2(1 + k2)s.

Therefore, f̂ ∈ dom(Δ̂). Let us now fix 1/2 < s < 1. For any 0 < b′ < 1, there
exists a′ ∈ R, such that (1+k2)s ≤ a′ + b′k2 for all k ∈ Z. Therefore, taking b′
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small enough, one gets ‖gΔ̂f̂‖2
2 ≤ a‖f̂‖2

2 + b‖νkf̂‖2
2 for some a ∈ R and some

b < 1. �
The new Hamiltonian Ĥ gives the evolution of the “finite time Fourier

series” of φ(t) defined as follows

φ̌(x, k, t) =
1
T

∫ t+T

t

φ(x, u)e−iνkudu. (13)

We get formally a time-independent Schrödinger equation governed by the
Hamiltonian Ĥ:

Proposition 2.
i∂tφ̌(x, k, t) = Ĥφ̌(x, k, t) (14)

Proof.

i∂tφ̌(x, k, t) =
1
T

∫ t+T

t

i∂u

[
φ(x, u)e−iνku

]
du

=
1
T

∫ t+T

t

(
kν + H(u)

)
φ(x, u)e−iνkudu

=
1
T

∫ t+T

t

(kν + Vω)φ(x, u)e−iνk

+ g
∑

|y−x|≤1

∑
k′

(−Δ̂x,y(k′))φ(y, u)e−iν(k−k′)udu

= (Vω + kν)φ̌(x, k, t) + g
∑

|y−x|≤1

∑
k′

(−Δ̂x,y(k′))φ̌(y, k − k′, t)

= Ĥφ̌(x, k, t).

�
The time evolution of φ̌ is deduced from the eigenvectors of Ĥ:

λ̄ψ̂ =
(− gΔ̂ + V̂ω

)
ψ̂ (15)

Looking for the eigenvectors of Ĥ is equivalent to the search of solution of the
form φ(t) = eiλ̄tψ(t) with ψ a T -periodic function (Floquet theory). Indeed,
in the Fourier variables, (4) is equivalent to (15). In particular, as we will see,
localization for Ĥ implies the absence of diffusion for φ.

Remark 2. Because ψ(t)eiλ̄t = ψ(t)e−inνtei(nν+λ̄)t, if (ψ, λ̄) is a solution then
(ψ(t)e−inνt, nν + λ̄) is a solution as well for any n ∈ Z. Hence, it is enough to
consider the case λ̄ ∈ [0; ν].

2.3. Results

Our main theorem states Anderson localization for Ĥ.

Theorem 1. There exists ε > 0 such that, if g < ε, and if ν ≥ e−g
− 1

4p+8d for
some p > 2d under the condition (C1), or if ν ≥ 1 under the condition (C2),
then Ĥ exhibits localization: Its spectrum is pure point and its eigenvectors
decay exponentially in space, P a.s.
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Remark 3. Under (C1), we will see that the eigenvectors are also determinis-
tically exponentially localized along the frequency axis.

In the above theorem, the constant ε depends on M (the size of the
support of the distribution of the disorder). However, for a uniform distribution
on [−M,M ], one best replaces g by g/M and ν by ν/M everywhere; doing
so, the value of ε becomes a dimensionless parameter that depends only on
the dimension d. As a price to pay for mathematical rigor, we do not obtain
good numerical estimates on ε. Nevertheless, it is worth pointing out that our
estimate for ε is not worth than what is obtained for the most usual time-
independent Anderson model in the tight-binding approximation, see, e.g.,
[13]. Indeed, in the time-independent case, the initialization of the multi-scale
analysis requires to fix some large enough length scale L0 ∼ 10, and then take
ε ∼ L−8d

0 . In our case, when the frequency ν goes to 0, the size of L0 diverges.
However, the constraint g ≤ [− log(ν)]−4p−8d ensures precisely that no change
in ε is needed.

In dimension d = 1, 2, we expect that the spectrum of Ĥ is actually
exponentially localized at any value of g, ν. For the time-independent Anderson
model, this is known to be the case in d = 1 (through the use of the transfer
matrix formalism), and it is conjectured to be true in d = 2. The presence of a
periodic dependence on time does not truly modify the dimensionality of the
model: In the (x, k)-coordinates, the dimension becomes d+1 but the νk term
forces eigenstates to be localized in a band of width 1/ν in the k direction.
Obviously, in d > 2, we expect mobility edges to appear at moderate disorder
strengths.

The two following corollaries do not logically follow from Theorem 1,
but rather from a refinement of its proof. The first one shows the absence of
diffusion for solutions of (4) (dynamical localization):

Corollary 1. There exist ε > 0 and q > 0 (and one may take q → ∞ as ε → 0)

such that, if g < ε and ν ≥ e−g
− 1

4p+8d for some p > 2d under (C1), or ν ≤ 1
under (C2), then

E

⎛
⎝sup

t>0

∑
x∈Zd

|x|q|φ(x, t)|2
⎞
⎠ < ∞ (16)

for any solution φ(x, t) of (4) with initial condition φ(x, 0) defined on a bounded
support.

The second one deals with the existence of a local effective Hamiltonian,
i.e., an Hamiltonian Heff such that

U(T ) = e−iTHeff

and such that Heff (x, y) decays fast as |x − y| → ∞. Under the conditions of
Theorem 1, given λ̄ ∈ [0, ν[ and a corresponding eigenfunction ψ̂λ̄ of Ĥ, and
given t ∈ R, let us denote by Pψλ̄(·,t) the projector

L2(Zd) → L2(Zd), f → (
ψλ̄(·, 0), f

)
ψλ̄(·, t)
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(since ψ̂λ̄ ∈ H1 by Proposition 1, ψλ̄ is continuous in time so that the above
projector is well defined for all t ∈ R). The representation

U(t) =
∑

λ̄∈[0,ν[

e−iλ̄tPψλ̄(·,t)

holds. Hence, since the functions ψλ̄ are T -periodic in time, we may set

Heff =
∑

λ̄∈[0,ν[

λ̄Pψλ̄(·,0), (17)

which defines an operator on L2(Zd). Under condition (C1), we have more:2

Corollary 2. There exist ε > 0 and q > 0 (and one may take q → ∞ as ε → 0)

such that, if g < ε, ν ≥ e−g
− 1

4p+8d for some p > 2d, and under condition (C1),
then

E
(|x − y|q|Heff (x, y)|) < ∞.

with Heff as defined by (17).

3. Proof of Theorem 1

We will prove that the Hamiltonian Ĥ reveals localization by applying the
classical tools of the multi-scale analysis (MSA). Thanks to the huge literature
on MSA, it we will be enough for us to prove a probability estimate, usually
referred to as Wegner estimate, and the initialization of the MSA to show the
localization (as well as some extra technical results when dealing with the L2

case, i.e., under assumption (C2)).
We start with the Wegner estimate. Below we call columns sets of the

form Λ0 × I ⊂ Z
d × Z, for some finite spatial box Λ0 and some frequency

interval I. Given Λ ⊂ Z
d × Z and given H ∈ L2(Zd × Z), we denote by H|Λ

the operator acting on L2(Λ) such that H|Λ(x̂, ŷ) = H(x̂, ŷ) for all x̂, ŷ ∈ Λ.

Proposition 3 (Wegner estimate). Let Λ0 ⊂ Z
d be finite. Then

1. (The finite column case) For any K ∈ N, k0 ∈ Z so that Λ0× [k0−K; k0+
K] ⊂ Z

d × Z, we have

∀E,P(∃λ̄ eigenvalue of Ĥ|Λ0×[k0−K;k0+K] : λ̄ ∈ [E − ε, E + ε])
≤ 2πε(2K + 1)|Λ0|||ρ||∞. (18)

2. (The infinite column case) There exists a constant C which depends only
on ‖ρ‖L∞ and ‖ρ′‖L∞ , such that for Λ0 × Z ⊂ Z

d × Z, we also have

P(∃λ̄ eigenvalue of Ĥ|Λ0×Z : λ̄ ∈ [E − ε, E + ε])

≤ 2π
√

ε|Λ0|||ρ||∞ max
(

1,
M

ν

)
. (19)

2 The result would be of little interest under condition (C2), since at high frequency, the
existence of a local effective Hamiltonian follows from much more general considerations,
see [4].
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The proof of this proposition will be carried over in Sect. 4. Part 1 will be
needed to establish Theorem 1 under the assumption (C1) and Part 2 under
the assumption (C2). The crucial property that allows to show the second
part of this proposition is contained in Remark 2: If ψ̂(x, k) is an eigenvector
with eigenvalue λ̄ of Ĥ|Λ0×Z, then ψ̂(x, k − k0) is also an eigenvector with
eigenvalue λ̄ + νk0 for any k0 ∈ Z. Therefore, the eigenvalues are of the form
{λ̄i : i = 1, . . . , |Λ0|} + νZ, allowing to use |Λ0| in the RHS of (19) instead of
the cardinal of the column which in this case is infinite.

The second ingredient in the MSA consists in proving the exponential
decay of the resolvent (Ĥ − λ)−1 with high probability for a given λ ∈ R. We
will follow [13]. To initialize the MSA, we need to show that, given a point
x̂ ∈ Z

d ×Z, there exists with high probability a finite domain around x̂, called
“good box,” where the resolvent decay exponentially. From now on we fix some
λ ∈ [0, ν]. Indeed, it is enough to consider values of λ in this interval, because
of the symmetry described in Remark 2.

For Λ ⊂ Z
d × Z, we will write

∂inΛ = {x̂ ∈ Λ : ∃ŷ /∈ Λ, Δ̂(x̂, ŷ) �= 0} (20)

∂extΛ = {x̂ /∈ Λ : ∃ŷ ∈ Λ, Δ̂(x̂, ŷ) �= 0} (21)

3.1. Smooth Driving (C1)

Definition 2 (Good box). Under the assumption (C1), we say that (x+[−L,L]d)
× [k0 − K, k0 + K] is a μ-good box, for some μ > 0, if, for any (y, k) ∈
∂in

(
x + [−L,L]d) × [k0 − K, k0 + K]

)
,

|((x, k0),
(
Ĥ|(x+[−L,L]d)×[k0−K,k0+K] − λ

)−1(y, k))| ≤ e−μ|(x,k1)−(y,k2)| (22)

where |(x, k1) − (y, k2)| = |k2 − k1| +
∑d

i=1 |xi − yi|.
The difference between our model and the classical Anderson model is

the absence of independence along the frequency axis. However, we have the
following proposition.

Proposition 4. If |k0| >
M+

√
g

ν +K then for any Λ0 ⊂ Z
d,Λ0× [k0−K; k0+K]

is a − ln(2(d + 1)g) good box.

The proof of this proposition will appear as a simple case of the proof
of Proposition 5 below (see Sect. 5 after the proof of Proposition 7). Thanks
to this proposition, it is now enough then to study boxes close to the k =
0 axis. Once we restrict ourselves to such boxes, non-intersecting boxes are
stochastically independent, and we can proceed with the usual MSA approach.
So the idea of the proof is to show initialization of the MSA for boxes like
Λ0 × [− 2(M+

√
g)

ν ; 2(M+
√

g)

ν ].

Remark 4. For any x ∈ Z
d, there exists k such that |V̂ (x, k) − λ| ≤ ν

Hence, there is no way avoiding a resonance of order ν for all x, and we
cannot look for good boxes as free of any resonances. Nevertheless, we prove
that good boxes appear with high probability when g � 1. Let p > d.
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Proposition 5 (Initialization of the MSA under the assumption (C1)). Assume
that (C1) holds. For any μ > 0, L∗ ∈ N, there exist ε > 0 and L ≥ L∗ such
that for any g < ε, such that if ν > exp(− 1

g
1

8d+4p
) then

P(BL(x) is a μ-goog box) > 1 − 1
L2p

(23)

where BL(x) = x + [−L;L]d × [−M
ν ; M

ν ].

The proof of this proposition will be carried over in Sect. 5. For the usual
Anderson model, Theorem 1 would follow from (see Theorem 8.3 in [13]):

1. MSA initialization (Theorem 11.1 in [13]),
2. Wegner estimate (Theorem 5.23 in [13]),
3. Independence of these two properties for two distinct boxes (obvious in

the usual model).

As already said, the only peculiarity of our model under assumption (C1) is
the special form of the potential. In our case, it will thus be enough to prove

1. MSA initialization: Proposition 5,
2. Wegner estimate: Eq. (18) in Proposition 3,
3. Independence: Proposition 4.

Theorem 1 is then obtained as Theorem 8.3 in [13].

3.2. L2 Driving (C2)

A new problem appears here: For which distance on Z
d×Z should we prove the

exponential decay? In the smooth case, Δ̂ was a local operator, so the usual
distance on works fine. But because g(k′ − k) is nonzero for k − k′ large if the
driving is only in L2([0, T ]), the operator Δ̂ connects now points (x̂, ŷ) that are
not close to each other in Z

d × Z and there is no exponential decay along the
frequency k. In order to prove exponential decay on Z

d, we introduce a new
decay function on Z

d × Z, which can actually easily be used in the “random
walk expansion” that appears in the MSA.

Definition 3. Let G :
(
Z

d × Z
)2 → R such that for all any x̂0 ∈ Z

d ×
Z, G(x̂0, .) ∈ L1(Zd×Z) with ‖G(x̂0, .)‖L1 < 1/2. We define the decay function
dG by

dG(x̂, ŷ) = − ln

⎛
⎝ ∑

C(x̂→ŷ)

∏
i

|G(ẑi, ẑi+1)|
⎞
⎠ (24)

for any x̂,ŷ ∈ Z
d × Z if x̂ �= ŷ, and 0 otherwise, where C(x̂ → ŷ) is the set of

all finite sequences of the type (x̂ = ẑ0, ẑ1, ẑ2, . . . , ẑk = ŷ) (or “paths” from x̂
to ŷ).

Let P : Zd × Z → R be defined by

P ((x, k)) =

{
1/

√
g if kν ∈ [−M − √

g,M +
√

g],
1

ν(|k|−1)−M if kν /∈ [−M − √
g,M +

√
g].
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We say that x̂ is a resonant site if |V̂ω(x̂) − λ| <
√

g. We have defined the
function P (x̂) such that if there is no resonant site on x × Z, then P (x̂) >

1
|V̂ω(x̂)−λ| .

Definition 4. Under assumption (C2), we say that CL(x) = (x+[−L,L]d)×Z ⊂
Z

d × Z is a μ-good column if there exists a decay function d̃G such that

|(x̂, (Ĥ|CL(x) − λ)−1ŷ)| ≤ P (x̂)e−d̃G(x̂,ŷ)

for all ŷ ∈ ∂inCL(x), and such that∑
ŷ∈∂inCL(x)

e−d̃G(x̂,ŷ) < e−μL.

Proposition 6 (Initialization of the MSA under the assumption (C2)). Assume
that (C2) holds. For any μ > 0, L∗ ∈ N, there exist ε > 0 and L ≥ L∗ such
that for any g < ε, such that if ν > 1 then

P
(
CL(x) is a μ-good column

)
> 1 − 1

L2p
. (25)

As in the smooth case (C1), Theorem 1 will follow from the Wegner esti-
mate (Eq. (19) in Proposition 3) the initialization of the MSA (Proposition 6),
and the stochastic independence of distinct columns (obvious here). But there
is still one difference: The MSA has to be performed with infinite columns. This
issue will be addressed in Sect. 6.4, where we explain the technical adaptations
to perform in the proof in [13].

4. Wegner Estimate

In this section, we prove Proposition 3 (Wegner estimate). For (18) (finite
column), we closely follow [31], while for (19) (infinite column), we follow [14]
(see also [8]). Thanks to the resolvent formula, we have the Shur formula: For
any P projector and B = PBP ,

P (A + B)−1P = ((PA−1P )−1 + B)−1 (26)

where the two last “·−1” in the right-hand side correspond to the inverse for
operators restricted to Im(P ).

Proof of (18). We follow the proof from [13]. Let Λ ⊂ Z
d × Z, E ∈ R. Let

Px, x ∈ Z
d the projectors on the subspace {x}× [k0 −K, k0 +K] and Λ0 ⊂ Z

d

the projection of Λ on its first parameters.

P

(
∃λ̄ eigenvalue of Ĥ|Λ : λ̄ ∈ [E − ε, E + ε]

)

≤ E

(
Tr(1[E−ε,E+ε](Ĥ|Λ))

)

≤ E

(
2ε�(Tr(Ĥ|Λ − E − iε)−1)

)

= E

[
2ε�(

∑
x∈Λ0

Tr
(
Px(Ĥ|Λ − E − iε)−1Px)

)
]
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= 2ε�
(∑

x∈Λ0

E

[
Tr
((

(Px(Ĥ|Λ − vxPx − E − iε)−1Px)−1 + vxPx

)−1)]
)

= 2ε
∑

x∈Λ0

EVy:y 	=x

×
[∫

�
(
Tr
((

(Px(Ĥ|Λ − vxPx − E − iε)−1Px)−1 + vxPx

)−1)
ρ(x)dvx

)]

= 2ε
∑

x∈Λ0

EVy:y 	=x

×
⎡
⎣
∫ ⎛
⎝ ∑

μi∈σ((Px(Ĥ|Λ−vxPx−E−iε)−1Px)−1)

�(
(
μi + vx

)−1)ρ(x)dvx

⎞
⎠
⎤
⎦

≤ 2ε
∑

x∈Λ0

EVy:y 	=x

(
π‖ρ‖∞(2K + 1)

)

≤ 2πε(2K + 1)|Λ0|‖ρ‖∞,

where, to get the last equality, we used that Px acts as the identity on the
subspace generated by Px. �

Proof of (19). Let Λ0 be a finite subset of Zd. We make a change of variable
for the potential α = 1

|Λ0|
∑

x∈Λ0
Vω(x). As in [14] (see also [8]), the conditional

probability of α knowing Ṽ (x) = Vω(x) − α for all x ∈ Λ0, admits a density
ξṼ (α) and there exists a constant C such that, on a set U belonging to the
sigma-algebra generated by Ṽ (x) for all x ∈ Λ0, and with probability larger
that 1 − C

√
ε,

‖ξṼ ‖∞ ≤ C√
ε

(
(2M)1/2‖ρ‖∞ + (2M)3/2‖ρ′‖∞

)
(27)

Because of the symmetry described in Remark 2, for any realization
(Ṽ , α0), there exist λ̄1, .., λ̄|Λ0| ∈ [0, ν] such that σ(ĤṼ ,α0

) = {λ̄1, . . . , λ̄|Λ0|} +
νZ. Now, keeping Ṽ fixed and changing α, one gets σ(ĤṼ ,α) = {λ̄1 + (α −
α0), . . . , λ̄|Λ0| + (α − α0)} + νZ. Then, for any E ∈ R,

P(d(σ(Ĥ), E) < ε)

≤ C
√

ε + P({d(σ(Ĥ), E) < ε} ∩ U)

≤ C
√

ε + EṼ

(
1U

Λ0∑
i=1

∑
k∈Z

∫
1(|λ̄i + kν + (α − α0) − E| < ε)ξṼ (α)dα

)

≤ C
√

ε + 2ε
1√
ε
C
(
(2M)1/2‖ρ‖∞ + (2M)3/2‖ρ′‖∞

)
K0

where K0 is the maximum number of eigenvalue λ̄ in σ(ĤṼ ,α0
) such that there

exists α ∈ [−M,M ] such that |λ̄ + α − α0 − E| < ε with nonzero probability.
In particular, we have K0 ≤ 2|Λ0|M

ν + 1. �
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5. Smooth Driving (C1)

Proof of Proposition 5. Proposition 5 is deduced from Propositions 7 and 8
below. �

The key tool for the MSA is the following formula:

(v̂0, (Ĥ − λ)−1ẑ) =
∑

û∈∂inΛ,v̂∈∂extΛ

(v̂0, (Ĥ|Λ − λ)−1û)(û, gΔ̂v̂)(v̂, (Ĥ − λ)−1ẑ)

(28)
for any v̂0 ∈ Λ and ẑ /∈ Λ, and Λ ⊂ Z

d × Z with z /∈ Λ, which is a direct
application of the well-known resolvent formula. We will repeat it as many
times as we can, replacing v for v0 and choosing correctly the new Λ. The next
subsection deals with this question.

5.1. Resonant Sites, Security Box and Propagation Decay

Remind that v̂ = (x, k) ∈ Z
d×Z is a resonant site if |V̂ω(v̂)−λ| = |vx+νk−λ| <√

g. Obviously, for any x there exits a segment Kx ⊂ Z so that (x, k) is a
resonant site for k ∈ Kx, where Kx is of the form Kx = Z ∩ [k0 − √

g/ν, k0 +√
g/ν] for some k0 that depends on Vω(x) (see Fig. 1). Around each segment of

resonant sites Kx, we define a security box ΛKx
= {z ∈ Z

d×Z : d(z,Kx) < N},
where N is an integer that will be defined later and d is the usual graph distance
on Z

d × Z.
We will say that a set of the form Λ0×I ⊂ Z

d×Z is not strongly resonant
if d(σ(Ĥ|Λ0×I), λ) > ν2α(g), where α(g) is a function which will be defined at
the end of the proof of Proposition 8 below.

Proposition 7. Let L ∈ N. If no security boxes intersect, if no security box is
strongly resonant, and if (x + [−L,L]d) × Z is not strongly resonant, then for

Figure 1. Resonant sites
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any y ∈ ∂in(x + [−L,L]d), k1, k2 ∈ Z,

(
(x, k1),

(
Ĥ|(x+[−L,L]d)×[k0−K,k0+K] − λ

)−1(y, k2)) ≤ 2(
√

g
N
2 )n0

(ν2α(g))2
(29)

where n0 = �d((x,k1),(y,k2))
2N �.

In particular, this proposition implies that (x+[−L,L]d)×[k0−K, k0+K]
is a μ-good box with

μ = −
(

ln(g)
4

− 2 ln(ν2α(g))
L

)
.

Proof. For this proof, we work inside the space L2((x+[−L,L]d)×[k0−K, k0+
K]) and we write simply Ĥ instead of Ĥ|(x+[−L,L]d)×[k0−K,k0+K].

Iterating (28), we obtain the usual random walk expansion for the resol-
vent (see, e.g., [13]): Given x̂, ŷ ∈ Z

d × Z, we get

(x̂, (Ĥ − λ)−1ŷ) =
∑

ûi∈∂in
i Λ(v̂i−1),v̂i∈∂extΛ(v̂i−1)

(x̂, (Ĥ|Λ(v̂0) − λ)−1, û1)(û1, gΔ̂v̂1)(v̂1, (Ĥ|Λ(v̂1) − λ)−1

û2)(û2, gΔ̂v̂2) . . . (v̂n, (Ĥ − λ)−1ŷ). (30)

In this writing, we need to specify when we stop iterating (28) and how Λ(v̂i−1)
is defined. The following choice will guarantee the desired exponential decay:

1. If |v̂ − ŷ| ≤ N , we stop iterating (28).
2. If v̂ is not a resonant site, we choose Λ(v̂) = {v̂}. There are then at most

6d + 2 points in ∂extΛ(v̂).
3. If v̂ is a resonance site, we choose Λ(v̂) = ΛKx

. There are at most
CdNd−1(N +

√
g/ν) points in ∂extΛ(v̂) for some numerical constant

C > 0.

See Fig. 2 for a typical path from x̂ to ŷ.
From (30), we obtain

|(x̂, (Ĥ − λ)−1ŷ)| ≤
∑∣∣(x̂, (Ĥ|Λ(v̂0) − λ)−1, û1)(û1, gΔ̂v̂1)

∣∣
∣∣(v̂1, (Ĥ|Λ(v̂1) − λ)−1û2)(û2, gΔ̂v2)

∣∣ . . . ‖(Ĥ − λ)−1‖. (31)

The factors in each term in this sum are bounded in two different ways, de-
pending on whether they are resonant or not:

1. If v̂i = (x, k) is not a resonant site, then (Ĥ|Λ − λ) = (vx + kν − λ)δ(x,k)

so that
∣∣((x, k), (Ĥ|Λ(v̂i) − λ)−1(x, k)

)(
(x, k), gΔ̂(x′, k′)

)∣∣

≤
∣∣((x, k), gΔ̂(x′, k′)

)∣∣
√

g
≤ √

g. (32)



Vol. 18 (2017) Anderson Localization for Periodically Driven Systems 2431

Figure 2. A typical path from x̂ to ŷ. In red the resonant
sites and in yellow the security boxes with N = 2 (color figure
online)

2. If v̂i = (x, k) belongs to Kx, then
∣∣((x, k), (Ĥ|Λ(v̂i) − λ)−1(x′, k′)

)(
(x′, k′), gΔ̂(x′′, k′′)

)∣∣
≤ g

d(σ(Ĥ|ΛKx
), λ)

. (33)

The sum in (31) will be small, if for every path joining x̂ to ŷ, the number
n of non-resonant sites is large enough to dominate the resonant terms (indexed
by J), i.e.,

(2(d + 1)
√

g)n �
∏
j∈J

d
(
σ(Ĥ|Λj

), λ
)

(34)

We can now understand the reason why we have introduced the security boxes:
Assuming that no security boxes intersect one another, then ui is a resonant
site implies that ui+1 is not resonant and its distance to any resonant sites is
at least larger than N . From this we can deduce that for any path joining x̂ to
ŷ, every resonant term is followed by at least N non-resonant ones. Let N ∈ N

such that
Nd−1((2N +

√
g

ν ))(2d + 2)N+1(
√

g)
N−1

2

ν2α(g)
< 1 (35)

Then, if ûi is resonant, and assuming that, there is no strongly resonant secu-
rity box, and no intersecting security boxes, we find that the following product
of N + 1 consecutive factors can be bounded as∣∣(v̂i, (Ĥ|Λ(v̂i) − λ)−1ûi+1)(ûi+1, gΔ̂vi+1)

∣∣
. . .

∣∣(v̂i+N , (Ĥ|Λ(v̂i+N ) − λ)−1ûi+N+1)(ûi+N+1, gΔ̂vi+N+1)
∣∣

≤ (
√

g)N

d(σ(Ĥ|ΛKx
), λ)

≤ (
√

g)
N+1

2

Nd−1((2N +
√

g

ν ))(2(d + 1))N
.
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Hence, for a path connecting x̂ to ŷ in l = k(N + 1) + s steps (s < N + 1), we
obtain

∣∣(x̂, (Ĥ|Λ(v̂i) − λ)−1û1)(û1, gΔ̂v1)
∣∣ . . . ∣∣

(
v̂i+l−1, (Ĥ|Λ(v̂l−1) − λ)−1ûl

)
(ûl, gΔ̂vl)

∣∣

≤
( (

√
g)

N+1
2

Nd−1((2N +
√

g

ν
))(2(d + 1))N

)k (
√

g)s−1

ν2α(g)
.

We can now conclude the proof. Indeed, any path connecting x̂ to ŷ
contains at least (d((x, k1), (y, k2)) − N)/2 steps. Denoting by Al the set of
paths connecting x̂ to ŷ in l steps, we find

|(x̂, (Ĥ − λ)−1ŷ)| ≤
∞∑

l=(d((x,k1),(y,k2))−N)/2

|Al|

(
(
√

g)
N+1

2

Nd−1((2N +
√

g

ν ))(2(d + 1))N

)k
(
√

g)s−1

ν2α(g)
1

ν2α(g)

≤
∞∑

l=(d((x,k1),(y,k2))−N)/2

√
g

l/2 1
(ν2α(g))2

≤
(√

g
N
2

)n0

(
1 − √

g
)
(ν2α(g))2

�

Proof of Proposition 4. For any x̂ ∈ Λ0 × [k0 − K; k0 + K], |V̂ (x̂) − λ| ≥ √
g.

One can now do the random walk development as previously with no resonant
term. �

Proposition 8. The probability of the event “there is no strongly resonant se-
curity box, and no intersecting security boxes” is smaller than 1/L2d when g

goes to 0 assuming N = O( ln(ν)
ln(g) ), L = m1N , with m1 a fixed large integer and

| ln(ν)| ≤ g− 1
8d+4p .

Proof. To deal with the strongly resonant boxes, we use the Wegner-type es-
timate (18) with ε = ν2α(g):

P(ΛKx
is strongly resonant ) ≤

M/ν∑
k0=−M/ν

P(ΛKx
is strongly resonant and

(36)

Kx = Z ∩ [k0 − 1/(ν
√

g), k0 + 1/(ν
√

g)])

≤
M/ν∑

k0=−M/ν

P(ΛZ∩[k0−1/(
√

gν),k0+1/(
√

gν)]

is strongly resonant)
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≤ 2M

ν
2πν2α(g)

(
Nd

(
2
√

g

ν
+ 2N

))
‖ρ‖∞

≤ 4M

(
Nd

(
2
√

g

ν
+ 2N

))
να(g) (37)

We deal now with the probability of non-intersecting security boxes: For
any x, y ∈ [−L,L]d,ΛKx

∩ΛKy
= ∅. This will be satisfied if there is no |k| ≤ 2N

such that |vx − vy + kν| ≤ √
g. If ν ≤ √

g, the probability P of intersecting
security boxes is bounded by:

P ≤ (2L)d
(
(2L)d − 1

)
2

P
(|vx − vy| < 2(Nν +

√
g)
)

≤ 2(2L)d
(
(2L)d − 1

)
(Nν +

√
g)‖ρ‖∞ (38)

and in any case (when ν >
√

g) by

P ≤ 2(2L)d
(
(2L)d − 1

)
(N + 1)

√
g‖ρ‖∞ (39)

From (38) (or (39)) and Proposition 7 we conclude the proof of our the-
orem. We need:⎧

⎪⎪⎨
⎪⎪⎩

4M
(
Nd

(
2
√

g

ν + 2N
))

να(g) ≤ 1
2L2p

2(2L)d
(
(2L)d − 1

) (
Nν +

√
g
) ‖ρ‖∞ ≤ 1

2L2p

−
(

ln(g)
4 − 2 ln(ν2α(g))

L

)
> μ

(40)

or (when ν >
√

g)
⎧
⎪⎪⎨
⎪⎪⎩

4M
(
Nd

(
2
√

g

ν + 2N
))

να(g) ≤ 1
2L2p

2(2L)d
(
(2L)d − 1

)
(N + 1)

√
g||ρ||∞ ≤ 1

2L2p

−
(

ln(g)
4 − 2 ln(ν2α(g))

L

)
> μ

(41)

and (35). We set α(g) = 1 in case of ν <
√

g and α(g) = g in case of ν >
√

g.

1. N = n1
ln(ν)√

g with n1 > 7.
2. L = m1N with m1 a large enough integer.

We have then −( ln(g)
4 − ln(ν2α(g))

L ) > | ln(g)|(1
4 − 1

m1
). Then assume | ln(ν)| ≤

g− 1
8d+4p . So we get L4d+2p√g = O(g1/4). Finally, the three conditions of (40)

are satisfied in the limit g → 0 and this is the end of the proof of 5. �

6. L2 Driving (C2)

We now consider the case of an L2 driving. In this setup, we will work on
infinite columns CL(x) = (x + [−L,L]d) × Z, so that distinct columns are
independent with respect to the disorder. Instead, one should be careful in the
random walk expansion since infinite sums appear. That this is not a problem
comes from the decay of the Green function at the large frequencies:
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6.1. Decay of the Green Function Along the Frequency Axes

Proposition 9. Let φ̂ be an eigenfunction of Ĥ with eigenvalue λ̄. Then
∑
x,k

||kν − λ|φ̂(x, k)|2 ≤ (g + M)2. (42)

In particular,

|φ̂(x, k)| ≤ 1 + M + g

1 + |kν − λ̄| (43)

for any x.

Proof. We use the time representation of φ̂. Recall that φ(t) = eiλtψ(t) with
ψ solution of (4). Since the evolution is unitary, for all t ∈ [0, T ], ‖φ(t)‖ =
‖ψ(t)‖ = ‖ψ(0)‖ = ‖φ(0)‖. So

∑
x,k

||kν − λ|φ̂(x, k)|2 =
1
T

∫ T

0

‖(i∂t − λ̄)φ(t)‖2dt

=
1
T

∫ T

0

‖(−gΔ(t) + V )φ(t)‖2dt

≤ 1
T

∫ T

0

‖(gΔ(t) + V )‖2dt

≤ g2 + 2M
1
T

∫ T

0

‖(gΔ(t)‖dt + M2

≤ (g + M)2,

and we deduce that (1 + (|kν − λ|))φ̂(x, k) is square integrable. �

From this we can deduce an estimate for the resolvent:

Proposition 10. There exists a constant C depending only on ν so that we have

|(ẑ, (Ĥ|CL(x) − λ)−1ŷ)| ≤ (2L + 1)d/2(2 + M)P (x̂)
1 + |kz − ky|

(
sup

i

1
|λ − λ̄i|

+ C
)

for any ẑ = (z, kz), ŷ = (y, ky) ∈ CL(x), where λ̄i are the eigenvalue of Ĥ|CL(x).

Proof. We decompose Ĥ|CL(x) into its eigenvectors and we apply Cauchy–
Schwarz. The eigenvalues of Ĥ|CL(x) are all of the form λ̄i + kν, where we can
assume that λ̄i are such that |λ̄i + kν − λ| ≥ ν/2 if k �= 0. Then

(ẑ, (Ĥ|CL(x) − λ)−1ŷ)

=
|Λ|∑
i=1

∑
k∈Z

1
λ̄i + νk − λ

φλ̄i+νk(ẑ)φλ̄i+νk(ŷ)

≤
⎛
⎝

|Λ|∑
i=1

∑
k∈Z

(1 + |λ̄i + ν(k − kz)|)2|φλ̄i+νk(ẑ)|2
⎞
⎠

1/2

.



Vol. 18 (2017) Anderson Localization for Periodically Driven Systems 2435

⎛
⎝

|Λ|∑
i=1

∑
k∈Z

1
|λ̄i + νk − λ|2

1
(1 + |λ̄i + ν(k − kz)|)2

|φλ̄i+νk(ŷ)|2
⎞
⎠

1/2

=

⎛
⎝

|Λ|∑
i=1

∑
k∈Z

(1 + |λ̄i + ν(k − kz)|)2|φλ̄i
(z, kz − k)|2

⎞
⎠

1/2

.

⎛
⎝

|Λ|∑
i=1

∑
k∈Z

1
|λ̄i + νk − λ|2

1
(1 + |λ̄i + ν(k − kz)|)2

|φλ̄i+νk(ŷ)|2
⎞
⎠

1/2

We use now (42) to control the first factor, and (43) to get an estimate on
|φλ̄i+νk(ŷ)| in the second one:

(ẑ, (Ĥ|CL(x) − λ)−1ŷ) ≤ (1 + M + g)2

×
⎛
⎝

|Λ|∑
i=1

∑
k∈Z

1
|λ̄i+νk−λ|2

1
(1+|λ̄i+ν(k−kz)|)2

1
(1+|λ̄i + ν(k − ky)|)2

⎞
⎠

1/2

= (1 + M + g)2

⎛
⎝

|Λ|∑
i=1

1
|λ̄i − λ|2

1
(1 + |λ̄i + ν(k − kz)|)2

1
(1 + |λ̄i + νky|)2

+
|Λ|∑
i=1

∑
k∈Z∗

1
|λ̄i+νk−λ|2

1
(1+|λ̄i+ν(k−kz)|)2

1
(1 + |λ̄i + ν(k − ky)|)2

⎞
⎠

1/2

≤ |Λ|1/2(1 + M + g)2
(

sup
i

1
|λ − λ̄i|

+ C

)
P (ẑ)

1
(1 + |kz − ky|) ,

where the last inequality comes from the estimate of the integral
∫

dk
1

1 + k2

1
1 + (k − kz)2

1
1 + (k − ky)2

∼ 1
(1 + |kz|)2

1
(1 + |kz − ky|)2 .

�

Definition 5. We say that CL(x) is not strongly resonant if

inf
λ̄i∈σ(Ĥ|CL(x))

{|λ̄i − λ|} > e−√
L. (44)

In particular, if CL(x) is not strongly resonant, we have

|(ẑ, (Ĥ|CL(x) − λ)−1ŷ)| ≤ CLd/2P (ẑ)
1 + |kz − ky|e

√
L

where C is a constant.
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6.2. The Decay Function

If Anderson localization is most of the time studied over Zd, the problem could
be raised on any set of point X. It is indeed easy to define a random poten-
tial V (x), x ∈ X and a “Laplacian” Δ(x1, x2) without assuming a particular
geometry of the system. But to recover the decay, one should then first define
a decay function, and Δ is the only object that we can use to construct such
a decay function. We first give a general definition.

Definition 6. Let G : X × X → R+, for any x̂, ŷ ∈ X,

dG(x̂, ŷ) = − ln

⎛
⎝ ∑

C(x̂→ŷ)

∏
i

|G(ẑi, ẑi+1)|
⎞
⎠ (45)

if x̂ �= ŷ, and 0 otherwise, where C(x̂ → ŷ) is the set of all paths x̂ =
ẑ0, ẑ1, ẑ2, ..., ẑk = ŷ from x̂ to ŷ.

Proposition 11. If for any z ∈ X,
∑

z1
|G(z, z1)| < 1/2, then dG is positive and

satisfies the triangle inequality.

Proof. We first check that dG is positive. Let x̂, ŷ∑
C(x̂→ŷ)

∏
i

|G(ẑi, ẑi+1)|

≤
∑
ŷ′

∑
C(x̂→ŷ′)

∏
i

|G(ẑi, ẑi+1)|

≤
∑
n>0

n∏
i=0

(
max

ẑi

∑
ẑi+1∈X

|G(ẑi, ẑi+1)|
)

=
∑
n>0

(
max

x̂

∑
ŷ∈X

|G(x̂, ŷ)|)n

=

(
maxx̂

∑
ŷ∈X |G(x̂, ŷ)|)

1 − (
maxx̂

∑
ŷ∈X |G(x̂, ŷ)|)

< 1.

We now check the triangle inequality. Let ẑ be another point in X.

dG(x̂, ŷ) + dG(ŷ, ẑ)

= − ln
( ∑

C(x̂→ŷ)

∏
i

|G(ẑi, ẑi+1)|
)

− ln
( ∑

C(ŷ→ẑ)

∏
j

|G(ẑj , ẑj+1)|
)

= − ln
( ∑

C(x̂→ŷ)

∑
C(ŷ→ẑ)

∏
i

|G(ẑi, ẑi+1)|
∏
j

|G(ẑj , ẑj+1)|
)

≥ − ln

⎛
⎝ ∑

C(x̂→ẑ)

∏
i

|G(ẑi, ẑi+1)|
⎞
⎠

= dG(x̂, ẑ).

�
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6.3. Initialization of the Multi-scale

Proof of Proposition 6. Proposition 6 follows from Propositions 13 and 14 be-
low. �

Definition 7. We will use dG with X = Z
d × Z and

G(x̂, ŷ) = g|Δ̂(x̂, ŷ)P (ŷ)| (46)

Remark that we also have Δ(ẑ, .)P (.) ∈ L1 because Δ(ẑ, .) ∈ L2 and
P (.) ∈ L2. We will write ‖G‖�1max = supx

∑
y G(x, y). This quantity goes to

zero as g → 0. The decay function is related to usual distance on Z
d through

the following proposition:

Proposition 12. For any x̂ = (x, kx),∑
z:|x−z|=L

∑
k

e−dG((x,kx),(z,k)) ≤ eL ln((‖G‖�1max)−ln(1−‖G‖�1max) (47)

in particular ẑ = (z, kz), |x − z| > L.

dG(x̂, ẑ) ≥ L(− ln(‖G‖�1max)) + ln(1 − ‖G‖�1max) (48)

Proof. Because no path of length smaller than L connects x̂ with the boundary
of {(z, k) : |x − z| > L},

∑
C(x̂→ẑ)

∏
i

|G(ẑiẑi+1)| ≤
∑
n>L

‖G‖n
�1max ≤ ‖G‖L

�1max

1 − ‖G‖�1max
. (49)

So
dG(x̂, ẑ) ≥ −L ln((‖G‖�1max) + ln(1 − ‖G‖�1max).

�

Proposition 13. If there is no resonant site at all in CL(x), and if Ĥ|CL(x) has
no eigenvalue λ̄i with |λ̄i − λ| ≤ √

g, then CL(x) is a (μ′, d̃G) good column

Proof. We use here again the resolvent formula:

(x̂, (Ĥ|CL(x) − λ)−1ŷ) =
∑

ẑ

gΔ̂(x̂, ẑ)

V̂ (x̂) − λ
(ẑ, (Ĥ|CL(x) − λ)−1ŷ).

Applying it several times yields the usual random walk expansion:

(x̂, (Ĥ|CL(x) − λ)−1ŷ) =
∑

ẑ,ẑ1,ẑ2,...,ẑn

gΔ̂(x̂, ẑ1)
V̂ (x̂) − λ

gΔ̂(ẑ1, ẑ2)
V̂ (ẑ1) − λ

. . .
gΔ̂(ẑn−1, ẑn)
V̂ (ẑn−1) − λ

(ẑn, (Ĥ|CL(x) − λ)−1ŷ)

Because there is no resonant site, 1
V̂ (ẑ)−λ

≤ P (ẑ) for any ẑ ∈ CL(x). So

|(x̂, (Ĥ|CL(x) − λ)−1ŷ)|
= P (x̂)

∑
ẑ,ẑ1,ẑ2,...,ẑn

|gΔ̂(x̂, ẑ1)P (ẑ1)gΔ̂(ẑ1, ẑ2) . . . P (ẑn−1)
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× gΔ̂(ẑn, ẑn−1)(ẑn, (Ĥ|CL(x) − λ)−1ŷ)|
≤ CP (x̂)

∑
ẑ,ẑ1,ẑ2,...,ẑn

|gΔ̂(x̂, ẑ1)P (ẑ1)gΔ̂(ẑ1, ẑ2) . . . P (ẑn−1)

× gΔ̂(ẑn, ẑn−1)P (ẑn)|L
d/2

√
g

≤ CLd/2 P (x̂)√
g

∑
C(x→y)

∏
i

g|Δ̂(ẑi, ẑi+1)|P (ẑi+1)

where the first inequality is obtained through Proposition 10 and the hypoth-
esis on the eigenvalues λ̄i. So one has

|(x̂, (Ĥ|CL(x) − λ)−1ŷ)| ≤ CLd/2 P (x̂)√
g

e−d̃G(x̂,ŷ)

�

Proposition 14. The probability of the event “there is no resonant site at all
in CL(x), and Ĥ|CL(x) has no eigenvalue λi with |λi −λ| ≤ √

g” goes to 0 with
g → 0.

Proof. First,

P(there is no resonant site in CL(x)) ≤ ||ρ||∞ 2M

ν
(2L + 1)d

√
2g. (50)

Next, thanks to Wegner estimate,

P(CL(x) is not strongly resonant ) ≤ ||ρ||∞ 2M

ν
(2L + 1)d

√
2g. (51)

This gives the proposition for g → 0. �

6.4. Technical Results for the Iteration of the MSA

We have proved that for a fixed L,CL(x) is a good column with high probabil-
ity. MSA induces that the property is valid for all Lk with Lk+1 = Lα

k , L0 = L,
but some adaptations with wrt. [13] are needed, due to the long range hopping
along the frequency axis. It turns out that only Theorems 10.14 and 10.20
need to be re-investigated. Here we prove Proposition 16 below that will play
the role of Theorem 10.14 in [13] (the equivalent of Theorem 10.20 in [13] can
then be obtained without any new idea).

Thanks to the estimates on Green function obtained in Sect. 6.1, we
obtain

Proposition 15.

sup
x̂,y

∑
ky

∑
ẑ

1
1 + |kx − ky| |Δ(ŷ, ẑ)P (ẑ)| < ∞ (52)

In particular, G(x̂, .) =
∑

ky

1
1+|kx−ky| |Δ(ŷ, .)P (.)| is in L1 uniformly in x.
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Proof. We have
√|Δ(ŷ, .)| ∈ L4, with a norm that can be bounded uniformly

in ŷ, 1
1+|.| ∈ L

4
3 and P (.) ∈ L

4
3 .

sup
x̂,y

∑
ky

∑
ẑ

1
1 + |kx − ky| |Δ(ŷ, ẑ)P (ẑ)|

≤
(

sup
x̂,y,ẑ

∑
ky

1
1 + |kx − ky|

√
|Δ(ŷ, ẑ)|

)(
sup

ŷ

∑
ẑ

√
|Δ(ŷ, ẑ)|P (z)

)

≤ (‖ 1
1 + |.| ‖L

4
3
‖
√

|Δ(ŷ, .)|‖L4

)(‖
√

|Δ(ŷ, .)|‖L4‖P (.)‖
L

4
3

)

< ∞

�

Proposition 16. If there is no two distinct small-scale columns CLk
(y) ⊂ CLk+1

(x) which are not μ-good, and there is no columns C2Lk
(y′) ⊂ CLk+1(x) that are

strongly resonant and CLk+1(x) is not strongly resonant, then
CLk+1(x) is μ′ good with μ′ > μ − 3Lk

Lk+1
.

Proof. Let dG be the decay function used for the small-scale good boxes. In
the case of CLk

is a bad column, we use the resolvent development twice

|(x̂, (Ĥ|CLk+1 (x) − λ)−1ŷ)|
≤

∑

ẑ1∈∂inCL2k
(x),

ẑ2∈∂extCL2k
(x)

|(x̂, (Ĥ|C2Lk
(x) − λ)−1ẑ1)gΔ̂(ẑ1, ẑ2)

(ẑ2, (Ĥ|CLk+1 (x) − λ)−1ŷ)|
≤

∑

ẑ1∈∂inCL2k
(x)

ẑ2∈∂extCL2k
(x)

∑

ẑ3∈∂inCLk
(z2)

ẑ4∈∂extCLk
(z2)

|(x̂, (Ĥ|C2Lk
(x) − λ)−1ẑ1)gΔ̂(ẑ1, ẑ2)

(ẑ2, (Ĥ|CLk
(x) − λ)−1ẑ3)gΔ̂(ẑ3, ẑ4)(ẑ4, (Ĥ|CLk+1 (x) − λ)−1ŷ)|

≤ P (x̂)
∑

ẑ1∈∂inCL2k
(x)

ẑ2∈∂extCL2k
(x)

∑

ẑ3∈∂inCLk
(z2)

ẑ4∈∂extCLk
(z2)

e
√

Lk
C(2Lk)d/2

1 + |kx̂ − kẑ1 |
|gΔ̂(ẑ1, ẑ2)|

P (ẑ2)e−dG(ẑ2,ẑ3)g|Δ̂(ẑ3, ẑ4)(ẑ4, (Ĥ|CLk
(x) − λ)−1ŷ)|

So let us define G′ as follows:

G′(x̂, ŷ) = e−dG(x̂,ŷ)

if CLk
(x) is a μ good box and ŷ ∈ ∂extCLk

(x), and
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G′(x̂, ŷ) =
∑

ẑ1∈∂inCL2k
(x)

ẑ2∈∂extCL2k
(x)

ẑ3∈∂inCLk
(z2)

e
√

Lk
C(2Lk)d/2

1 + |kx̂ − kẑ1 |

×|gΔ̂(ẑ1, ẑ2)|P (ẑ2)e−dG(ẑ2,ẑ3)|gΔ̂(ẑ3, ŷ)|P (ŷ)

if CL(x) is a bad box.
Thanks to Proposition 15, there is a constant C independent of Lk such

that for the second case: ‖G′‖L1 ≤ C ′e2
√

Lke−μLk . We can then recover the
usual tools, using that e−μLk dominate the other terms for Lk large. In par-
ticular because for any path from x to ∂CL(x) there is at least (Lk+1

Lk
− 3) μ

good boxes. So, with the same argument as in the proof of Proposition 12,
∑

ŷ∈∂inCL(x)

e−dG′ (x̂,ŷ) ≤ e−μ(Lk+1−3Lk)−ln(1−‖G′‖�1max)

�

7. Proof of the Corollaries

As said, Corollaries 1 and 2 do not follow logically from Theorem 1; instead,
one should go through the MSA once again and refine several estimates. This
work has been carried over in [11], and one indicates here only the main steps
as well as the few needed extra adaptations.

Let us start with Corollary 1.

Proposition 17. There exists p > 0 (and one can take p → ∞ as ε → 0) such
that:

E

⎛
⎝sup

t>0

∑
x∈Zd

∑
k

|x|p|φ̌(x, k, t)|2
⎞
⎠ < ∞ (53)

for any φ̌(x, k, 0) defined on a bounded support.

Proof. Thanks to the MSA carried over in this paper, one can check that the
results of [11] holds; in particular, the assumptions of Theorem 3.1 in [11] are
satisfied. �

In order to recover φ from φ̌ we use the following proposition. Remind
that, thanks to (6), we have ‖H(t)‖L1[0;T ] ≤ √

T‖H(t)‖L2[0;T ].

Proposition 18. Let ψ(t) ∈ L2(Zd) satisfying ‖ψ(t)‖L2 = 1 for all t ∈ R be a
solution of

i∂tψ(t) = A(t)ψ(t) (54)

where for any tA(t) is Hermitian, C = ‖A(.)‖L1([0,T ]) < ∞ and (x,A(t)y) = 0
if |x − y| > 1. For any t ∈ [0, T ] and any x0 ∈ Z

d, we have
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∑
|z−x0|<R

|ψ(z, t)|2 ≥ |ψ(x0, 0)|2
⎛
⎝1 − eC

∑
k≥R

(2dC)k

k!

⎞
⎠

−eC
∑
k≥R

(2dC)k

k!
|ψ(x0)|. (55)

Proof. Let us separate ψ(0) = 1x=x0ψ(0) + 1x	=x0ψ(0). Because the A(t) is
Hermitian, there exists U(t) unitary such that

ψ(t) = U(t)ψ(0) = U(t)(1x=x0ψ(0)) + U(t)(1x	=x0ψ(0)) (56)

Calling ψ1 = U(t)(1x=x0ψ(0)), ψ2 = U(t)(1x	=x0ψ(0)) we have (ψ1, ψ2) = 0
and ‖ψ1‖2 + ‖ψ2‖2 = 1. Because 1|z−x0|<R is a projector,

(
ψ1 + ψ2,1|z−x0|<R(ψ1 + ψ2)

)

=
(
ψ1,1|z−x0|<Rψ1

)
+
(
ψ2,1|z−x0|<Rψ2

)
+ 2

(
ψ1,1|z−x0|<Rψ2

)

≥ (
ψ1,1|z−x0|<Rψ1

)− 2|(ψ2,1|z−x0|≥Rψ1

)|
≥ ‖ψ1‖2 − ‖1|z−x0|≥Rψ1‖2 − 2|(ψ2,1|z−x0|≥Rψ1)|
≥ ‖ψ1‖2 − ‖1|z−x0|≥Rψ1‖2 − 2‖1|z−x0|≥Rψ1‖

We now proof that the locality of A(t) implies that ‖1|z−x0|≥Rψ1‖2 is small.

i
d
dt

ψ1(y, t) = A(t)ψ1(y, t) =
∑

|y′−y|≤1

Ay,y′(t)ψ1(y′, t).

Hence,

d
dt

|ψ1(y, t)| ≤
∑

|y′−y|≤1

|Ay,y′(t)||ψ1(y′, t)| ≤ ‖A(t)‖
∑

|y′−y|≤1

|ψ1(y′, t)|

Let a(y, t) be solution of the system
⎧
⎨
⎩

d
dt

a(y, t) = ‖A(t)‖∑|y′−y|≤1 a(y′, t)

a(y, 0) = |ψ1(x0, 0)|1y=x0

(57)

We have then for any (y, t)

|ψ1(y, t)| ≤ a(y, t) (58)

We can evaluate a with the following remark: Let X(t) be the classical Mar-
kovian random walk on Z of variable rate ‖A(t)‖ and starting at point x0. Its
generator is

d
dt

Px0(X(t) = y) = ‖A(t)‖
∑

|y′−y|
(Px0(X(t) = y′) − Px0(X(t) = y)) (59)

and then we have

e−(2d+1)
∫ t
0 ‖A(u)‖dua(y, t) = a(x0, 0)Px0(X(t) = y) (60)
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We can then deduce∑
y≥R

a(y, t) ≤ a(x0, 0)e(2d+1)
∫ t
0 ‖A(u)‖du

P(N2d
∫ t
0 ‖A(u)‖du ≥ R) (61)

where N
2d

∫ t
0 ‖A(u)‖du

is the Poisson process of parameter 2d
∫ t

0
‖A(u)‖du. So

for any t ≤ T
∑
y≥R

a(y, t) ≤ a(x0, 0)eC
∑
k≥R

(2dC)k

k!
(62)

We can now conclude∑
|z−x0|<R

|ψ(z, t)|2 =
(
ψ1 + ψ2,1|z−x0|<R(ψ1 + ψ2)

)

≥ ‖ψ1‖2 − ‖1|z−x0|≥Rψ1‖2 − ‖1|z−x0|≥Rψ1‖

≥ |ψ(x0, 0)|2 − |ψ(x0, 0)|2
⎛
⎝eC

∑
k≥R

(2dC)k

k!

⎞
⎠

2

− |ψ(x0, 0)|
⎛
⎝eC

∑
k≥R

(2dC)k

k!

⎞
⎠

�

The above proposition and the dynamical localization of φ̌ enable us to
conclude:

Proposition 19. For any ε > 0, there exist some constants Cε,Dε such that

Cε

∑
x∈Zd

∑
k

|x|p|φ̌(x, k, t)|2 + Dε ≥
∑

x0∈Zd

|x0|p−ε|φ(x0, t)|2 (63)

Proof. Let ε > 0. Let R : Zd → R, x → R(x0) be a function satisfying the four
following conditions:

∑
x0∈Zd

|x0|p
∑

k≥R(x0)

(2dC)k

k!
< ∞, (64)

for all x0 ∈ Z
d,

eC
∑

k≥R(x0)

(2dC)k

k!
<

1
2
, (65)

for all x, x0 ∈ Z
d such that |x−x0| < R(x0), it holds that |x−x0| < (1+ε)R(x),

there exists a constant Cε such that
∑

|x−x0|≤(1+ε)R(x)

|x0|p−ε ≤ Cε|x|p (66)

for |x0| > 1. For example, we can take R defined by R(x) = ln2(|x|) for |x| > a
and R(x) = In2(a) for a large enough.
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E

⎛
⎝sup

t>0

∑
x∈Zd

∑
k

|x|p|φ̌(x, k, t)|2
⎞
⎠

= E

⎛
⎝sup

t>0

∑
x∈Zd

|x|p 1
T

∫ t+T

t

|φ(x, u)|2du

⎞
⎠

≥ 1
Cε

E

⎛
⎝sup

t>0

∑
x∈Zd

∑
|x−x0|≤(1+ε)R(x)

1
T

∫ t+T

t

|x0|p−ε|φ(x, u)|2du

⎞
⎠

≥ 1
Cε

E

⎛
⎝sup

t>0

∑
x0∈Zd

|x0|p−ε 1
T

∫ t+T

t

∑
|x−x0|≤R(x0)

|φ(x, u)|2du

⎞
⎠

≥ 1
Cε

E

⎛
⎝sup

t>0

∑
x0∈Zd

|x0|p−ε 1
T

∫ t+T

t

|φ(x0, t)|2 − |φ(x0, t)|2
⎞
⎠

×
⎛
⎝eC

∑
k≥R

(2dC)k

k!

⎞
⎠

2

− |φ(x0, t)|
⎛
⎝eC

∑
k≥R

(2dC)k

k!

⎞
⎠du

≥ 1
2Cε

E
(
sup
t>0

∑
x0∈Zd

|x0|p−ε|φ(x0, t)|2
)

− eC 1
Cε

∑
x0∈Zd

|x0|p
∑

k≥R(x0)

(2dC)k

k!

So

E

⎛
⎝sup

t>0

∑
x0∈Zd

|x0|p−ε|φ(x0, t)|2
⎞
⎠ < ∞ (67)

�

Let us now come to Corollary 2:

Proof of Corollary 2. Since

ψλ(·, 0) =
∑
k∈Z

ψ̂λ(·, k),

we can write

Heff (x, y) =
∑

(k,l)∈Z2

∑

λ̄∈[0,ν[

λ̄ψλ̄(x, k)ψ̄λ̄(y, l)

=
∑
k,l

(
(x, k), η(Ĥ)(y, k)

)

with

η : R → R, s → η(s) = 1[0,ν[(s)s.
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Again, thanks to the MSA shown in this paper, and the deterministic expo-
nential decay along the frequency axis of the eigenfunctions under Assumption
(C1), we can reuse the methods leading to Theorem 3.1 in [11], to get our re-
sult. �
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et synthèses. Société mathématique de France (2008)

[14] Ducatez, R.: Anderson localisation for infinitely many interacting particles in
Hartree-Fock theory. ArXiv e-prints (2016)



Vol. 18 (2017) Anderson Localization for Periodically Driven Systems 2445
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