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Lieb–Thirring Inequalities for Finite
and Infinite Gap Jacobi Matrices

Jacob S. Christiansen and Maxim Zinchenko

Abstract. We establish Lieb–Thirring power bounds on discrete eigen-
values of Jacobi operators for Schatten class perturbations under very
general assumptions. Our results apply, in particular, to perturbations of
reflectionless Jacobi operators with finite gap and Cantor-type essential
spectrum.

1. Introduction

Let A be a self-adjoint operator on some Hilbert space H and define

Sp(A) =
∑

λ∈σd(A)

dist (λ, σess(A))p
, p ≥ 0, (1.1)

where σd is the discrete and σess the essential spectrum. Each term in the sum
is repeated according to the multiplicity of the eigenvalue λ. Upper bounds
on Sp(A) for various choices of A and values of p have shown to be useful in
studies of quantum mechanics, differential equations, and dynamical systems.
The reader is referred to, e.g., [9] for history and reviews.

The original Lieb–Thirring inequalities deal with perturbations of the
Laplacian on L2(Rd) and assert that

Sp(−Δ + V ) ≤ Lp,d

ˆ
Rd

V−(x)p+d/2dx, (1.2)

where V− = max{0,−V } and Lp,d is a constant independent of V . This was
proved by Lieb and Thirring in 1976 for p > 1/2 if d = 1 and for p > 0 if d ≥ 2.
Their motivation was a rigorous proof of the stability of matter, see [14,15].
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When d = 1, the bound in (1.2) fails to hold for p < 1/2 and the endpoint
result for p = 1/2 was proved by Weidl [24] some 20 years later.

In this paper, we consider self-adjoint Jacobi operators on �2(Z) repre-
sented by the tridiagonal Jacobi matrices

J =

⎛

⎜⎜⎜⎜⎜⎜⎝

. . . . . . . . .
a0 b1 a1

a1 b2 a2

a2 b3 a3

. . . . . . . . .

⎞

⎟⎟⎟⎟⎟⎟⎠
(1.3)

with bounded parameters an > 0 and bn ∈ R. Our main goal is to obtain Lieb–
Thirring inequalities for perturbations of almost periodic Jacobi matrices. In
the general setting of almost periodic parameters, the spectrum is typically a
Cantor set. We are motivated by the recent developments in spectral theory
of Jacobi matrices, see [2,3,6,7], and in particular by the finite gap results of
Frank and Simon [8] and also Hundertmark and Simon [11].

Before explaining our new results, let us briefly go through what is already
known. The spectral theory for perturbations of the free Jacobi matrix, J0,
(i.e., the case of an ≡ 1 and bn ≡ 0) is well understood and developed in
much detail, see [21]. When J = {an, bn}∞

n=1 is a compact perturbation of J0,
Hundertmark and Simon [10] proved that

Sp(J) ≤ Lp, J0

∞∑

n=1

4|an − 1|p+1/2 + |bn|p+1/2, p ≥ 1/2, (1.4)

with some explicit constants Lp, J0 that are independent of J . As in the con-
tinuous case, the inequality is false for p < 1/2. More recently, the p = 1/2
case of (1.4) was extended to finite gap Jacobi matrices in [5,8,11]. In the
setting of periodic and almost periodic parameters, the role of J0 as a natural
limiting point is taken over by the so-called isospectral torus, denoted TE. See,
e.g., [3,4,22] for a deeper discussion of this object. The finite gap version of
(1.4) with p = 1/2 says that if E is a finite gap set (i.e., a finite union of
disjoint, compact intervals) and J is a trace class perturbation of an element
J ′ = {a′

n, b′
n}∞

n=−∞ in TE, then

S1/2(J) ≤ L1/2, E

∞∑

n=−∞
|an − a′

n| + |bn − b′
n|. (1.5)

As before, the constant L1/2, E is independent of J , J ′ and only depends on
the underlying set E. In comparison with previous attempts, the novelty of [8]
lies in a clever reduction of the Lieb–Thirring bound for eigenvalues in a single
gap to the previously known case of no gaps. However, the method yields little
information about the constants that come with each gap. As a result, this
approach is hard to generalize to sets with infinitely many gaps.

In the present paper, we improve and extend the eigenvalue bounds of [11]
to infinite gap Jacobi matrices and obtain Lieb–Thirring bounds for Schatten
class perturbations (i.e., nontrace class perturbations) of finite and infinite gap
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matrices. Our new abstract results can be described in the following way. Let
J ′ be a two-sided Jacobi matrix with σ(J ′) = σess(J ′) and suppose J = J ′+δJ
is a compact perturbation of J ′. While compact perturbations do not change
the essential spectrum, they usually produce a number of discrete eigenvalues.
By a general result of Kato [12] specialized to the present setting, we have the
following bound

S1(J) ≤ ‖δJ‖1 ≤
∞∑

n=−∞
4|δan| + |δbn|, (1.6)

where ‖ · ‖1 denotes the trace norm. In contrast to the Lieb–Thirring bounds,
the power on the eigenvalues in (1.6) is the same as on the perturbation. Kato’s
inequality is optimal for perturbations with large sup norm. On the other
hand, the Lieb–Thirring bound with p = 1/2 is optimal for perturbations with
small sup norm (cf. [10]). Our first main result (Theorem 3.1) in Sect. 3 can
be thought of as an interpolation between Kato’s bound (1.6) and the Lieb–
Thirring bound (1.5). More precisely, we show that under certain assumptions
on the unperturbed matrix J ′, a Lieb–Thirring bound of the form

Sp(J) ≤ Lp, J ′

∞∑

n=−∞
4|δan| + |δbn|, 1/2 < p < 1, (1.7)

holds for any trace class perturbation J . The constant Lp, J ′ is independent of
δJ and can be specified explicitly. Our second main result (Theorem 3.2) is
more general, but has slightly stronger assumptions on J ′. We show that

Sp(J) ≤ Lp, J ′

∞∑

n=−∞
4|δan|p+1/2 + |δbn|p+1/2, p > 1/2, (1.8)

whenever δJ = J − J ′ belongs to the Schatten class Sp+1/2. As before, the
explicit constant Lp, J ′ does not depend on δJ . We mention in passing that for
trace class perturbations and 1/2 < p < 1, one has both (1.7) and (1.8) since
S1 ⊂ Sp+1/2. The latter bound is slightly better for small perturbations.

As for the classical Lieb–Thirring bounds, our proofs of (1.7) and (1.8)
rely on a version of the Birman–Schwinger principle and a new estimate for

‖D1/2(J ′ − x)−1D1/2‖1 (1.9)

with D ≥ 0 being a diagonal matrix. We establish the latter in Sect. 2. Using
the functional calculus, one can express the positive and negative parts of
(J ′ − x)−1 as Cauchy-type integrals. This fact enables us (see Theorem 2.1)
to give an upper bound on (1.9) in terms of ‖D‖1 and a slight variation of the
m-functions for the spectral measures dρn of (J ′, δn). To estimate further, we
impose absolute continuity of dρn and the reflectionless condition (to be defined
in Sect. 2). If E is a homogeneous set in the sense of Carleson [1] (i.e., there is an
ε > 0 so that |(x−δ, x+δ)∩E| ≥ δε for all x ∈ E and all δ < diam(E)), then both
conditions are fulfilled for every J ′ in the isospectral torus TE. Theorem 2.2
then gives an upper bound that only involves the ordinary m-function, but for
all reflectionless measures on E. This result is the key to our Lieb–Thirring
bounds.
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The second part of the paper focuses on explicit examples of infinite gap
sets for which our results apply. This has so far been unexplored territory
although the issue is quite natural from an almost periodic point of view.
In Sect. 4, a detailed study of infinite band sets with one accumulation point
is followed by a thorough investigation of fat Cantor sets. For both types
of structure, which are defined from a sequence {εk}∞

k=1 with 0 < εk < 1,
we obtain Lieb–Thirring bounds as in (1.7)–(1.8) for perturbations of Jacobi
matrices from the isospectral tori. This is done under various assumptions on
{εk}∞

k=1 in Theorems 4.2 and 4.10. A typical result in this direction is (1.7)
for perturbations of J ′ ∈ TE, where E is an infinite band set with parameters
{εk}∞

k=1 satisfying
∑∞

k=1 εk < ∞. The summability condition in question is
nearly optimal as it is, in fact, a necessary condition for the Lieb–Thirring
bound in the case p = 1/2.

We also provide alternative versions of our bounds where the distance to
the essential spectrum is measured by the potential theoretic Green function.
Since the infinite gap sets discussed in Sect. 4 are homogeneous and hence
regular for potential theory, the Green function g is the unique continuous
function which is positive and harmonic in C�E, vanishes on E, and for which
g(z)− log |z| is harmonic at ∞. Our alternative Lieb–Thirring bounds hold for
J = J ′ + δJ with J ′ from the isospectral torus TE and take the form

∑

λ∈σ(J)\E
g(λ)p ≤ Lp, E

∞∑

n=−∞
|δan|(p+1)/2 + |δbn|(p+1)/2, p > 1, (1.10)

where the constant Lp, E is independent of J , J ′ and only depends on p and
the underlying set E. In the case of an infinite band set, a sufficient condition
for (1.10) is

∑∞
k=1 εk < ∞. This, in turn, is shown to be a necessary condition

for the alternative bound (1.10) in the case p = 1. For the middle ε-Cantor
sets of Sect. 4.2, a stronger condition seems to be needed and we show that
(1.10) is satisfied provided εk ≤ C/2k for all large k.

2. Trace Norm Estimates

In this section, we obtain trace norm estimates which will play a crucial role
in the proofs of our main results.

Theorem 2.1. Suppose D ≥ 0 is a diagonal matrix of trace class and J ′ is a
self-adjoint Jacobi matrix. Let E = σ(J ′), then

‖D1/2(J ′ − x)−1D1/2‖1 ≤ ‖D‖1 sup
n∈Z

ˆ
E

dρn(t)
|t − x| , x ∈ R�E, (2.1)

where dρn is the spectral measure of (J ′, δn), that is, the measure from the
Herglotz representation of the nth diagonal entry of (J ′ − z)−1,

〈
δn, (J ′ − z)−1δn

〉
=
ˆ
E

dρn(t)
t − z

, z ∈ C�E. (2.2)
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Proof. Fix x ∈ R�E and let E± = E ∩ (x,±∞). In addition, let R± be the
positive and negative parts of (J ′ − x)−1 defined by

R± = ±PE±(J ′)(J ′ − x)−1PE±(J ′), (2.3)

where PE±(J ′) are the spectral projections of J ′ onto the sets E±. Then,

(J ′ − x)−1 = R+ − R−, R± ≥ 0, (2.4)

and hence, D1/2R±D1/2 ≥ 0. This yields the trace norm estimate,

‖D1/2(J ′ − x)−1D1/2‖1 = ‖D1/2(R+ − R−)D1/2‖1
≤ ‖D1/2R+D1/2‖1 + ‖D1/2R−D1/2‖1
= tr
[
D1/2R+D1/2

]
+ tr
[
D1/2R−D1/2

]
. (2.5)

Let Γ± be nonintersecting rectangular contours around E±. Using the func-
tional calculus, we can express the RHS of (2.3) as a Cauchy-type integral,

R± =
±1
2πi

ffi
Γ±

1
z − x

(z − J ′)−1dz. (2.6)

Multiplying by D1/2 from the left and from the right and taking the trace then
give

tr
[
D1/2R±D1/2

]
=

±1
2πi

ffi
Γ±

1
z − x

tr
[
D1/2(z − J ′)−1D1/2

]
dz

=
±1
2πi

∑

n∈Z

〈δn,Dδn〉
ffi

Γ±

1
z − x

〈
δn, (z − J ′)−1δn

〉
dz. (2.7)

Finally, deforming the contours Γ± into E± traversed twice in the opposite
directions and noting that

1
2πi

(〈
δn, (t − iε − J ′)−1δn

〉
−
〈
δn, (t + iε − J ′)−1δn

〉)

=
1
π

Im
〈
δn, (J ′ − t − iε)−1δn

〉 w−−−→ dρn(t) as ε → 0+, (2.8)

we obtain

tr[D1/2R±D1/2] =
∑

n∈Z

〈δn,Dδn〉
ˆ
E±

dρn(t)
|t − x| . (2.9)

Combining (2.9) with (2.5) yields (2.1). �

A natural question is how to estimate the integrals in (2.1), but first
some notation. Throughout the paper, E ⊂ R will denote a compact set. We
let β0 = inf E and α0 = supE. Since [β0, α0]�E is an open set, it can be written
a disjoint union of open intervals; hence,

E = [β0, α0] �
⋃

j≥1

(αj , βj) . (2.10)

For convenience, we define (α, β) with β < α by

(α, β) = (−∞, β) ∪ (α,∞). (2.11)
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With this convention, we shall refer to (αj , βj), j ≥ 0, as the gaps of E. We
also call (αj , βj), j ≥ 1, the inner gaps and (α0, β0) the outer gap of E.

For a probability measure dρ supported on E, define the associated Her-
glotz function by

m(z) =
ˆ
E

dρ(t)
t − z

, z ∈ C�E. (2.12)

The measure dρ is called reflectionless (on E) if

Re[m(x + i0)] = 0 for a.e. x ∈ E. (2.13)

When E is essentially closed, we will denote the set of all reflectionless proba-
bility measures supported on E by RE. Reflectionless measures appear promi-
nently in spectral theory of finite and infinite gap Jacobi matrices (see, e.g.,
[3,19,21,22]). In particular, the isospectral torus TE associated with E is the set
of all Jacobi matrices J ′ that are reflectionless on E (i.e., the spectral measure
of (J ′, δn) belongs to RE for every n ∈ Z) and for which σ(J ′) = E. It is well
known (see for example [22]) that dρ is a reflectionless probability measure on
E if and only if m(z) is of the form

m(z) =
−1√

(z − β0)(z − α0)

∏

j≥1

z − γj√
(z − αj)(z − βj)

, (2.14)

for some γj ∈ [αj , βj ], j ≥ 1.
For absolutely continuous reflectionless measures, we have the following

upper bound (2.15) for the integrals that appear on the RHS of our trace
norm estimate (2.1). This result is the key to our Lieb–Thirring bounds for
perturbations of reflectionless Jacobi matrices in Sect. 4.

Theorem 2.2. Let E ⊂ R be an essentially closed compact set and suppose dρ
is a reflectionless absolutely continuous probability measure on E. Denote the
gaps of E as in (2.10). Then, for every k ≥ 1,ˆ

E

dρ(t)
|t − x| ≤ Ck sup

dμ∈RE

∣∣∣∣
ˆ
E

dμ(t)
t − x

∣∣∣∣ , x ∈ (αk, βk), (2.15)

where

Ck = 9 + 2min
{

log
βk − β0

βk − αk
, log

α0 − αk

βk − αk

}
. (2.16)

Equivalently, if for fixed x ∈ (αk, βk) we define γ̃j ∈ {αj , βj} such that

|x − γ̃j | = max {|x − αj |, |x − βj |} , j ≥ 1, (2.17)

then ˆ
E

dρ(t)
|t − x| ≤ Ck√

|x − β0||x − α0|
∏

j≥1

|x − γ̃j |√
|x − αj ||x − βj |

. (2.18)

Proof. Fix k ≥ 1 and take a point x ∈ (αk, βk). Define E± = E ∩ (x,±∞).
Since dρ is absolutely continuous, we have

dρ(t) =
1
π

Im[m(t + i0)]dt (2.19)
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with m(z) as in (2.14). By the reflectionless assumption, Im[m(t + i0)]
= |m(t + i0)| a.e. on E, and hence,

dρ(t) =
1
π

|m(t + i0)|χE(t)dt. (2.20)

Let w(t) = |m(t + i0)|, that is,

w(t) =
1√

|t − β0||t − α0|
∏

j≥1

|t − γj |√
|t − αj ||t − βj |

, t ∈ R, (2.21)

and define

p±(t) =
∏

j≥1
αj≷αk

|t − γj |√
|t − αj ||t − βj |

, t ∈ R. (2.22)

Then,

w(t) =
p−(t)√

|t − β0||t − αk|
|t − γk| p+(t)√

|t − βk||t − α0|
, t ∈ R. (2.23)

Define w̃(t) and p̃±(t) as above, but with γk replaced by γ̃k. Then,

p±(t) ≤ p̃±(t) ≤ p̃±(x), t ∈ [x,∓∞). (2.24)

Since |t − γk| ≤ |t − x| + |x − γ̃k|, we haveˆ
E+

dρ(t)
t − x

≤ 1
π

ˆ
E+

p−(t)|x − γ̃k|p+(t)√
|t − β0||t − αk|

√
|t − βk||t − α0|

dt

t − x

+
1
π

ˆ
E+

p−(t)|t − x|p+(t)√
|t − β0||t − αk|

√
|t − βk||t − α0|

dt

t − x

≤ p̃−(x)|x − γ̃k|
π
√

|x − β0||x − αk|

ˆ
E+

p+(t)√
|t − βk||t − α0|

dt

t − x

+
p̃−(x)

π

ˆ
E+

|t − x|p+(t)√
|t − β0||t − αk||t − βk||t − α0|

dt

t − x
. (2.25)

The fact that
p+(t)χE+(t)dt

π
√

|t − βk||t − α0|
(2.26)

is a reflectionless probability measures on E+ then gives

1
π

ˆ
E+

p+(t)√
|t − βk||t − α0|

dt

t − x
=

p+(x)√
|x − βk||x − α0|

. (2.27)

Similarly, noting that

|t − x|p+(t)χ[β0,αk]∪E+(t)dt

π
√

|t − β0||t − αk||t − βk||t − α0|
(2.28)

is a reflectionless probability measure on [β0, αk] ∪ E+ yields

1
π

ˆ
[β0,αk]∪E+

|t − x|p+(t)√
|t − β0||t − αk||t − βk||t − α0|

dt

t − x
= 0. (2.29)
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Thus, combining (2.27) and (2.29) with (2.25) gives
ˆ
E+

dρ(t)
t − x

≤ p̃−(x)√
|x − β0||x − αk|

|x − γ̃k| p+(x)√
|x − βk||x − α0|

− p̃−(x)
π

ˆ αk

β0

|t − x|p+(t)√
|t − β0||t − αk||t − βk||t − α0|

dt

t − x

≤w̃(x) +
p̃−(x)p̃+(x)
π
√

|x − α0|

ˆ αk

β0

dt√
|t − β0||t − αk||t − βk|

. (2.30)

We estimate the integral by considering two cases. If αk − β0 ≤ βk − αk, then
we have x − β0 ≤ βk − β0 ≤ 2(βk − αk), and hence,

ˆ αk

β0

dt√
|t − β0||t − αk||t − βk|

≤ 1√
|αk − βk|

ˆ αk

β0

dt√
|t − β0||t − αk|

≤
√

2π√
x − β0

. (2.31)

Otherwise, αk − β0 > βk − αk in which case we let c = (β0 + αk)/2. Then,
x − β0 ≤ βk − β0 ≤ 2(αk − β0) = 4(c − β0) and we have

ˆ αk

β0

dt√
|t − β0||t − αk||t − βk|

≤

´ c

β0

dt√
|t−β0|√

|c − αk||c − βk|
+

´ αk

c
dt√

|t−αk||t−βk|√
|c − β0|

=
2
√

t − β0

∣∣t=c

t=β0√
(αk − c)(βk − c)

+
−2 log

(√
αk − t +

√
βk − t

) ∣∣t=αk

t=c√
c − β0

≤ 2√
βk − c

+
2 log
(√

2(βk − β0)/
√

βk − αk

)

√
c − β0

≤ 2√
x − β0

[
2 + log 2 + log

βk − β0

βk − αk

]
. (2.32)

In the next to last inequality, we utilized the Cauchy–Schwarz inequality in
the form

√
a +

√
b ≤
√

2(a + b). Combining (2.30) with (2.31)–(2.32), and
noting that the estimate in (2.32) is larger than the one in (2.31) and that
2 + log 2 < 3, then gives

ˆ
E+

dρ(t)
t − x

≤ w̃(x) +
p̃−(x)p̃+(x)√

|x − α0||x − β0|

[
3 + log

βk − β0

βk − αk

]
. (2.33)

Since |x − γ̃k|/
√

|x − αk||x − βk| ≥ 1, we therefore have
ˆ
E+

dρ(t)
t − x

≤ w̃(x)
[
4 + log

βk − β0

βk − αk

]
. (2.34)
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In a similar way, one obtains an upper bound for the integral over E−,ˆ
E−

dρ(t)
x − t

≤ w̃(x)
[
4 + log

α0 − αk

βk − αk

]
. (2.35)

The final step is to note that the integral on the LHS of (2.15) and (2.18) can
be estimated in two ways, namely

ˆ
E

dρ(t)
|t − x| =

∣∣∣∣∣2
ˆ
E±

dρ(t)
t − x

−
ˆ
E

dρ(t)
t − x

∣∣∣∣∣ ≤ 2

∣∣∣∣∣

ˆ
E±

dρ(t)
t − x

∣∣∣∣∣+ w̃(x). (2.36)

Combining these estimates with (2.34) and (2.35), respectively, and choosing
the better bound then yield the result. �

3. Abstract Lieb–Thirring Bounds

In this section, we obtain Lieb–Thirring bounds for trace class and, more
generally, Schatten class perturbations of a wide range of Jacobi matrices. In
particular, our results apply to perturbations of periodic and finite gap Jacobi
matrices as well as to several infinite gap Jacobi matrices.

Theorem 3.1. Let J and J ′ be two-sided Jacobi matrices such that δJ = J −J ′

is in the trace class, that is,
∑

n∈Z

|δan| + |δbn| < ∞. (3.1)

Let E = σ(J ′) and denote the gaps of E as in (2.10). In addition, suppose there
exist nonnegative constants {Ck}k≥0 such that for some 1/2 < p < 1,

∑

k≥1

Ck(βk − αk)p−1/2 < ∞ (3.2)

and such that the spectral measures dρn of (J ′, δn) satisfy

sup
n∈Z

ˆ
E

dρn(t)
|t − x| ≤

⎧
⎪⎪⎨

⎪⎪⎩

C0

|x − α0|1/2|x − β0|1/2
, x ∈ (α0, β0),

Ck

dist(x,E)1/2
, x ∈ (αk, βk), k ≥ 1.

(3.3)

Then, σess(J) = E and the discrete eigenvalues of J satisfy the Lieb–Thirring
bound, ∑

λ∈σ(J)\E
dist(λ,E)p ≤ Lp, J ′

∑

n∈Z

4|δan| + |δbn|, (3.4)

where the constant Lp, J ′ is independent of δJ and explicitly given by

Lp, J ′ =
p

2p − 1

⎛

⎝ C0

(1 − p)(α0 − β0)1−p
+ 2
∑

k≥1

Ck

(
βk − αk

2

)p−1/2
⎞

⎠ . (3.5)
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Proof. Assumption (3.3) implies that the spectral measures dρn of J ′ cannot
have point masses at the endpoints of E (i.e., {αk, βk}k≥0). Thus, J ′ has no
isolated eigenvalues, and hence, σess(J ′) = σ(J ′) = E. Weyl’s theorem then
yields σess(J) = E since J is a compact perturbation of J ′.

Let (c)± = max(±c, 0) and define tridiagonal matrices δJ± and diagonal
matrices D± by

(δJ±)n,n−1 = ±1
2
δan−1, (δJ±)n,n+1 = ±1

2
δan,

(δJ±)n,n = (δbn)± +
1
2
|δan| +

1
2
|δan−1|, (3.6)

(D±)n,n = (δbn)± + |δan| + |δan−1|, n ∈ Z. (3.7)

Then, δJ = δJ+ − δJ− and 0 ≤ δJ± ≤ D± since
(

0 δan

δan 0

)
=

1
2

(
|δan| δan

δan |δan|

)
− 1

2

(
|δan| −δan

−δan |δan|

)
, (3.8)

0 ≤ 1
2

(
|δan| ±δan

±δan |δan|

)
≤
(

|δan| 0
0 |δan|

)
. (3.9)

Let N(J ∈ I) denote the number of eigenvalues of J contained in an
interval I ⊂ R�E. Then, by a version of the Birman–Schwinger principle
[8, Theorem 1.4], for a.e. γ± such that [γ−, γ+] ⊂ R�E,

N (J ∈ (γ−, γ+)) = N (J ′ + δJ+ − δJ− ∈ (γ−, γ+))

≤ N
(
δJ

1/2
+ (J ′ − γ−)−1δJ

1/2
+ < −1

)

+N
(
δJ

1/2
− (J ′ − γ+)−1δJ

1/2
− > 1

)

≤ ‖δJ1/2
+ (J ′ − γ−)−1δJ

1/2
+ ‖1 + ‖δJ

1/2
− (J ′ − γ+)−1δJ

1/2
− ‖1

≤ ‖D1/2
+ (J ′ − γ−)−1D

1/2
+ ‖1 + ‖D

1/2
− (J ′ − γ+)−1D

1/2
− ‖1,

(3.10)

where the last inequality follows from the fact that D± ≥ δJ± ≥ 0. By as-
sumption (3.3) and Theorem 2.1, we get that

‖D
1/2
± (J ′ − x)−1D

1/2
± ‖1 ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C0‖D±‖1
|x − α0|1/2|x − β0|1/2

, x ∈ (α0, β0),

Ck‖D±‖1
dist(x,E)1/2

, x ∈ (αk, βk), k ≥ 1.

(3.11)

Let �0 = ∞, �k = (βk − αk)/2 for k ≥ 1, and set d = |α0 − β0|. Then, writing
the LHS of (3.4) as

∑

λ∈σ(J)\E
dist(λ,E)p =

∑

k≥0

ˆ �k

0

(xp)′N (J ∈ (αk + x, βk − x)) dx, (3.12)
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we can estimate using (3.10) and (3.11) to get
∑

λ∈σ(J)\E
dist(λ,E)p ≤ (‖D+‖1 + ‖D−‖1)

×

⎛

⎝C0

ˆ ∞

0

pxp−1

x1/2(x + d)1/2
dx +

∑

k≥1

Ck

ˆ �k

0

pxp−1

x1/2
dx

⎞

⎠ . (3.13)

As the first integral is bounded by
ˆ d

0

pxp−1

x1/2d1/2
dx +

ˆ ∞

d

pxp−1

x1/2x1/2
dx, (3.14)

we have
∑

λ∈σ(J)\E
dist(λ,E)p ≤ (‖D+‖1 + ‖D−‖1)

×

⎛

⎝ p

p − 1/2
C0d

p−1 +
p

1 − p
C0d

p−1 +
p

p − 1/2

∑

k≥1

Ck�
p−1/2
k

⎞

⎠ . (3.15)

Combining this with (3.7) then yields (3.4). �

In the next theorem, we extend our Lieb–Thirring bounds to nontrace
class perturbations.

Theorem 3.2. Let J and J ′ be two-sided Jacobi matrices such that δJ = J −J ′

is in the Schatten class Sp for some p > 1, that is, (cf. [13, Lemma 2.3])
∑

n∈Z

|δan|p + |δbn|p < ∞. (3.16)

Let E = σ(J ′) and denote the gaps of E as in (2.10). In addition, suppose there
exist nonnegative constants {Ck}k≥0 such that

∑

k≥0

Ck < ∞ (3.17)

and such that the spectral measures dρn of (J ′, δn) satisfy

sup
n∈Z

ˆ
E

dρn(t)
|t − x| ≤ Ck

dist(x,E)1/2
, x ∈ (αk, βk), k ≥ 0. (3.18)

Then, σess(J) = E and the discrete eigenvalues of J satisfy the Lieb–Thirring
bound ∑

λ∈σ(J)\E
dist(λ,E)p−1/2 ≤ Lp, J ′

∑

n∈Z

4|δan|p + |δbn|p, (3.19)

where the constant Lp, J ′ is independent of δJ and explicitly given by

Lp, J ′ = 2p−3/23p−1 2p − 1
p − 1

∑

k≥0

Ck. (3.20)
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Proof. As in the previous theorem, assumption (3.18) implies that J ′ has no
isolated eigenvalues. Since J is a compact perturbation of J ′, it follows that
σess(J) = E.

Define compact operators δJ± and D± as in (3.6)–(3.7). Then, δJ =
δJ+ − δJ− and 0 ≤ δJ± ≤ D±. Let N(J ∈ I) denote the number of eigen-
values of J contained in an interval I ⊂ R�E. For λ ∈ R�E, we denote by
N±

λ (J ′, δJ±) the number of eigenvalues of J ′ ± xδJ± that pass through λ as x
runs through the interval (0, 1). By a version of the Birman–Schwinger prin-
ciple [8, Theorem 1.4]), for a.e. γ± such that [γ−, γ+] ⊂ R�E,

N (J ∈ (γ−, γ+)) ≤ N+
γ−(J ′, δJ+) + N−

γ+
(J ′, δJ−), (3.21)

N±
λ (J ′, δJ±) = N

(
δJ

1/2
± (J ′ − λ)−1δJ

1/2
± ≶ ∓1

)
. (3.22)

Since D± ≥ δJ± ≥ 0, we have N±
λ (J ′, δJ±) ≤ N±

λ (J ′,D±), and hence,

N (J ∈ (γ−, γ+)) ≤ N+
γ−(J ′,D+) + N−

γ+
(J ′,D−). (3.23)

To handle nontrace class perturbations, we estimate further in terms of finite
rank truncated versions of D±. For this, let 0 < r < dist(λ,E) and define the
finite rank diagonal matrices D±,r by

(D±,r)n,n = ((D±)n,n − r)+. (3.24)

Then, ‖D± − D±,r‖ ≤ r so the eigenvalues of J ′ + D±,r + x(D± − D±,r) can
move a distance of no more than r as x ranges from 0 to 1. Thus,

N±
λ (J ′,D±) ≤ N±

λ∓r(J
′,D±,r) = N

(
D

1/2
±,r(J

′ − λ ± r)−1D
1/2
±,r ≶ ∓1

)
.

(3.25)
Estimating the RHS by the trace norm, applying Theorem 2.1, and using the
assumption (3.18) then yield

N±
λ (J ′,D±) ≤ ‖D1/2

±,r(J
′ − λ ± r)−1D

1/2
±,r‖1 ≤ Ck‖D±,r‖1

dist(λ ∓ r,E)1/2
(3.26)

whenever λ ∓ r ∈ (αk, βk), k ≥ 0.
Let �0 = ∞, �k = (βk − αk)/2 for k ≥ 1, and d±

n = (D±)n,n for n ∈ Z.
Applying (3.23) to an interval [αk + x, βk − x] and using (3.26) with r = x/2
then gives for a.e. x ∈ (0, �k), k ≥ 0,

N (J ∈ (αk + x, βk − x)) ≤ N+
αk+x(J ′,D+) + N−

βk−x(J ′,D−)

≤ Ck

(
‖D+, x

2
‖1 + ‖D−, x

2
‖1
)
(x/2)−1/2

≤ Ck

∑

n∈Z

(
(2d+n − x)+ + (2d−

n − x)+
)
(2x)−1/2.

(3.27)
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Write the LHS of (3.19) as an integral and estimate by use of (3.27) to get
∑

λ∈σ(J)\E
dist(λ,E)p−1/2 =

∑

k≥0

ˆ �k

0

(xp−1/2)′N (J ∈ (αk + x, βk − x)) dx

≤ 2p − 1
23/2

∑

k≥0

Ck

ˆ �k

0

∑

n∈Z

(
(2d+n − x)+

+(2d−
n − x)+

)
xp−2dx. (3.28)

Rearranging the integral and the sum over n by the monotone convergence
theorem and estimating the integrals by

ˆ �k

0

(2d±
n − x)+xp−2dx ≤

ˆ 2d±
n

0

2d±
n xp−2dx ≤ (2d±

n )p

p − 1
, (3.29)

give
∑

λ∈σ(J)\E
dist(λ,E)p−1/2 ≤ 2p−3/2 2p − 1

p − 1

∑

k≥0

Ck

∑

n∈Z

(d+n )p + (d−
n )p. (3.30)

Recalling (3.7) and using Jensen’s convexity inequality lead to (3.19). �

Several remarks pertaining to the previous two theorems are in order.

Remark 3.3. (a) The Jacobi matrix J ′ is not required to be reflectionless, that
is, J ′ is not necessarily from the isospectral torus TE. The only restrictions
on J ′ are the conditions (3.2)–(3.3) in Theorem 3.1 and (3.17)–(3.18) in
Theorem 3.2, respectively.

(b) If E is a finite gap set and J ′ ∈ TE, then the assumptions (3.2)–(3.3) and
(3.17)–(3.18) are trivially satisfied. In this case, the first theorem extends
a result of [11] by providing an explicit constant for the RHS of (3.4) and
the second theorem complements a recent result of [8] for p = 1/2.

(c) If E is a homogeneous set and J ′ ∈ TE, then the spectral measures dρn of
J ′ are absolutely continuous (cf., e.g., [17,18]), and hence, by Theorem 2.2
it is possible to replace

sup
n∈Z

ˆ
E

dρn(t)
|t − x| by sup

dμ∈RE

∣∣∣∣
ˆ
E

dμ(t)
t − x

∣∣∣∣ (3.31)

while simultaneously changing

Ck to Ck/ log
α0 − β0

βk − αk
, k ≥ 1, (3.32)

in (3.3) and (3.18), respectively. In this case, the constants Lp, J ′ in (3.4)
and (3.19) are replaced by a constant Lp, E which is uniform in J ′ ∈ TE

and only depends on p and E.
(d) Theorems 3.1–3.2 also extend to perturbations of Jacobi matrices J ′ that

exhibit a different behavior near the gaps edges. For example, if J ′ satisfies
(3.3) and (3.18) with power 1/2 replaced by 1/2 + q for some q ≥ 0, then
the Lieb–Thirring bounds continue to hold with p replaced by p+ q on the
LHS of (3.4) and (3.19) and appropriately adjusted constants Lp, J ′ .



1962 J. S. Christiansen and M. Zinchenko Ann. Henri Poincaré

(e) By the Aronszajn–Donoghue theory of rank one perturbations (see, for
example, [20, Sect. 12.2]), λ ∈ R�E is an eigenvalue of a rank one per-
turbation J = J ′ + δbn〈δn, · 〉δn if and only ifˆ

E

dρn(t)
t − λ

=
〈
δn, (J ′ − λ)−1δn

〉
= − 1

δbn
. (3.33)

Thus, a necessary condition for the following Lieb–Thirring bound
∑

λ∈σ(J)\E
dist(λ,E)p ≤ Lp, q

∑

n∈Z

|δan|q + |δbn|q, q > p > 0, (3.34)

to hold is ∣∣∣∣
ˆ
E

dρn(t)
t − λ

∣∣∣∣ =
1

|δbn| ≤ L
1/q
p, q

dist(λ,E)p/q
. (3.35)

Moreover, since ˆ
E

dρn(t)
|t − x| −

∣∣∣∣
ˆ
E

dρn(t)
t − x

∣∣∣∣ (3.36)

is bounded in each gap, the conditions

sup
n∈Z

ˆ
E

dρn(t)
|t − x| ≤ Ck

dist(x,E)p/q
, x ∈ (αk, βk), k ≥ 0, (3.37)

for some constants Ck > 0 are necessary for (3.34) to hold. Thus, the
assumptions (3.3) and (3.18) in our theorems are close to being necessary.

4. Examples

In this section, we obtain Lieb–Thirring bounds for perturbations of Jacobi
matrices from the isospectral tori, TE, for two explicit classes of homogeneous
infinite gap sets. The isospectral torus associated with a homogeneous set E is
known to consist of almost periodic Jacobi matrices, see [3,22]. We also recall
that reflectionless measures on homogeneous sets are necessarily absolutely
continuous [17,18].

4.1. Infinite Band Example

In this subsection, we consider an explicit example of a compact set E which
consists of infinitely many disjoint intervals that accumulate at inf E. Suppose
{εk}∞

k=1 ⊂ (0, 1) and let

E =
∞⋂

k=0

Ek, (4.1)

where E0 = [β0, α0] and Ek is the compact set obtained from Ek−1 by removing
the middle εk portion from the first of the k bands in Ek−1. We will denote
the gap at level k by (αk, βk), that is,

(αk, βk) = Ek−1�Ek, k ≥ 1. (4.2)

It is easy to see that E is a homogeneous set if and only if supk≥1 εk < 1.
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Theorem 4.1. Suppose E is the infinite band set constructed in (4.1).
If
∑∞

k=1 εk < ∞, then for some constant C > 0,

sup
dρ∈RE

∣∣∣∣
ˆ
E

dρ(t)
t − x

∣∣∣∣ ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C

|x − α0|1/2|x − β0|1/2
, x ∈ (α0, β0),

C
√

εk

dist(x,E)1/2
, x ∈ (αk, βk), k ≥ 1.

(4.3)

Conversely, if

lim sup
x↗β0

|x − β0|1/2 sup
dρ∈RE

∣∣∣∣
ˆ
E

dρ(t)
t − x

∣∣∣∣ < ∞, (4.4)

then
∑∞

k=1 εk < ∞.

Proof. First assume
∑∞

k=1 εk < ∞ and let dρ be a reflectionless probability
measure on E. Fix k ≥ 1 and define

p+(x) =
k−1∏

j=1

|x − γj |√
|x − αj ||x − βj |

, p−(x) =
∞∏

j=k+1

|x − γj |√
|x − αj ||x − βj |

, (4.5)

where γj ∈ [αj , βj ], j ≥ 1, are chosen in such a way that

dρ(t) =
p−(t)|t − γk|p+(t)χE(t)dt

π
√

|t − β0||t − αk||t − βk||t − α0|
. (4.6)

Equivalently,
∣∣∣∣
ˆ
E

dρ(t)
t − x

∣∣∣∣ =
p−(x)|x − γk|p+(x)√

|x − β0||x − αk||x − βk||x − α0|
, x ∈ R�E. (4.7)

In addition, let b0 = α0 − β0 and

bj = αj − β0 = αj−1 − βj , gj = βj − αj , j ≥ 1, (4.8)

be the band and gap lengths at level j. Then, it follows from the construction
of Ej that

bj =
1 − εj

2
bj−1, gj = εjbj−1 =

2εj

1 − εj
bj , j ≥ 1. (4.9)

Letting c = minj≥1(1 − εj)(1 − εj+1), we can estimate p±(x) as follows

p+(x) ≤
k−1∏

j=1

√
|x − βj |
|x − αj |

≤
k−1∏

j=1

√
βj − βk

αj − βk
≤ exp

⎧
⎨

⎩
1
2

k−1∑

j=1

βj − αj

αj − βk

⎫
⎬

⎭

≤ exp

⎧
⎨

⎩
1
2

k−1∑

j=1

gj

bj+1

⎫
⎬

⎭ ≤ exp

⎧
⎨

⎩
2
c

k−1∑

j=1

εj

⎫
⎬

⎭ , x ≤ βk, (4.10)
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and similarly,

p−(x) ≤
∞∏

j=k+1

√
|x − αj |
|x − βj |

≤
∞∏

j=k+1

√
αk − αj

αk − βj
≤ exp

⎧
⎨

⎩
1
2

∞∑

j=k+1

βj − αj

αk − βj

⎫
⎬

⎭

≤ exp

⎧
⎨

⎩
1
2

∞∑

j=k+1

gj

bj

⎫
⎬

⎭ ≤ exp

⎧
⎨

⎩
1
c

∞∑

j=k+1

εj

⎫
⎬

⎭ , x ≥ αk. (4.11)

Now suppose x ∈ (αk, βk). Then, since γk ∈ [αk, βk] and

βk − αk =
2εk

1 − εk
(αk − β0), (4.12)

the estimates (4.10)–(4.11) combined with (4.7) yield

∣∣∣∣
ˆ
E

dρ(t)
t − x

∣∣∣∣ ≤
exp
{

2
c

∑∞
j=1 εj

}

√
|x − β0||x − α0|

|x − γk|√
|x − αk||x − βk|

≤
exp
{

2
c

∑∞
j=1 εj

}

√
|αk − β0||βk − α0|

√
βk − αk

dist(x,E)
≤ C

√
εk

dist(x,E)1/2
, (4.13)

where C is a constant that depends only on E. This proves the second and
more involved part of (4.3).

To handle the case of x ∈ (α0, β0), let p+(x) and p−(x) be defined as in
(4.5) but with k = ∞ and k = 0, respectively. Then,

∣∣∣∣
ˆ
E

dρ(t)
t − x

∣∣∣∣ =
p+(x)√

|x − β0||x − α0|
=

p−(x)√
|x − β0||x − α0|

(4.14)

and just as for the above estimates, we get p+(x) ≤ exp
{

2
c

∑∞
j=1 εj

}
for

x ≤ β0 and p−(x) ≤ exp
{

1
c

∑∞
j=1 εj

}
for x ≥ α0. Thus, (4.3) follows.

For the converse direction, assume that (4.4) holds. Let dρ be the reflec-
tionless measure on E that corresponds to γj = βj for every j ≥ 1 and let
p+(t) be defined as in (4.5) with k = ∞. Then, p+(x) → p+(β0) as x↗β0, and
since 1 + x ≥ exp(x/2) for x ∈ [0, 2], we have

p+(β0) =
∞∏

j=1

√
βj − β0

αj − β0
=

∞∏

j=1

√
1 +

gj

bj

≥
∞∏

j=1

√
1 + 2εj ≥ exp

⎧
⎨

⎩
1
2

∞∑

j=1

εj

⎫
⎬

⎭ . (4.15)

Thus,
∑∞

j=1 εj < ∞ follows from (4.15), (4.14), and (4.4). �

Our abstract results in Theorems 3.1 and 3.2 combined with the estimate
derived in Theorems 4.1 and 2.2 yield the following Lieb–Thirring bounds.
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Theorem 4.2. Let E be the infinite band set constructed in (4.1) and suppose
J , J ′ are two-sided Jacobi matrices such that J ′ ∈ TE and J = J ′ + δJ is a
compact perturbation of J ′. If

∑∞
k=1 εk < ∞, then

∑

λ∈σ(J)\E
dist(λ,E)p ≤ Lp, E

∑

n∈Z

|δan| + |δbn| (4.16)

for 1/2 < p < 1. If, in addition,
∑∞

k=1

√
εk log(1/εk) < ∞, then

∑

λ∈σ(J)\E
dist(λ,E)p ≤ Lp, E

∑

n∈Z

|δan|p+1/2 + |δbn|p+1/2 (4.17)

for every p > 1/2. In either case, the constant Lp, E is independent of J and
J ′ and only depends on p and E.

Proof. Recall that every reflectionless measure on E is absolutely continuous
since E is a homogeneous set. By construction of E,

βk − β0

βk − αk
= 1 +

αk − β0

βk − αk
= 1 +

1 − εk

2εk
≤ 1

εk
, k ≥ 1. (4.18)

Thus, (4.3) combined with (2.15) yields (3.3) and (3.18) for the gap at level
k ≥ 1 with a constant

Ck = C
√

εk log(1/εk), (4.19)

where C > 0 is sufficiently large and independent of k. Since

βk − αk ≤ 21−kεk(α0 − β0), k ≥ 1, (4.20)

(3.2) is satisfies due to the exponential decay of (βk − αk)p−1/2. Moreover,
(3.17) holds by assumption. Thus, (4.16) and (4.17) follow from Theorems 3.1
and 3.2, respectively. �

In addition to Theorem 4.2, we have the following result in which the
distance to the essential spectrum is measured by the potential theoretic Green
function g instead of the usual distance function. The proof relies on the well-
known relation between the Green function and the equilibrium measure for
E, denoted dμE,

g(z) = γ(E) −
ˆ

log |z − t|−1
dμE(t), z ∈ C�E, (4.21)

where γ(E) = − log (cap(E)) is the so-called Robin constant for E.

Theorem 4.3. Let E be the infinite band set constructed in (4.1) and suppose
J , J ′ are two-sided Jacobi matrices such that J ′ ∈ TE and J = J ′ + δJ is a
compact perturbation of J ′. If

∑∞
k=1 εk < ∞, then for every p > 1,

∑

λ∈σ(J)\E
g(λ)p ≤ Lp, E

∑

n∈Z

|δan|(p+1)/2 + |δbn|(p+1)/2, (4.22)

where the constant Lp, E is independent of J , J ′ and only depends on p and E.
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Proof. Let ∂ = 1
2 ( ∂

∂x − i ∂
∂y ), then for any analytic function f(z) we have

2∂ (Ref(z)) = f ′(z) by the Cauchy–Riemann equations. Combining this ob-
servation with (4.21) yields

2∂g(z) =
ˆ
E

dμE(t)
z − t

, z ∈ C�E. (4.23)

For convenience, we define ε0 = 1/e. Then, since the equilibrium measure
dμE is reflectionless on E, it follows from (4.3) that

|∂g(x)| ≤ C
√

εk

dist(x,E)1/2
, x ∈ (αk, βk), k ≥ 0. (4.24)

Recalling that the Green function vanishes on E, integration over the gaps then
gives

g(x) ≤ C
√

εk dist(x,E)1/2, x ∈ (αk, βk), k ≥ 0. (4.25)

As in the proofs of Theorems 3.2 and 4.2, we hence get
∑

λ∈σ(J)∩(αk,βk)

dist(λ,E)p/2 ≤ Ck

∑

n∈Z

|δan|(p+1)/2 + |δbn|(p+1)/2, (4.26)

where Ck = C
√

εk log(1/εk). Thus, for each k ≥ 0,
∑

λ∈σ(J)∩(αk,βk)

g(λ)p ≤ Cε
(p+1)/2
k log(1/εk)

∑

n∈Z

|δan|(p+1)/2 + |δbn|(p+1)/2,

(4.27)
and since ε

(p−1)/2
k log(1/εk) is a bounded sequence, summing over k yields

(4.22). �

Remark 4.4. It is an interesting open question if one can extend Theorems 4.2
and 4.3 to also cover the endpoint results p = 1/2, respectively, p = 1. In this
regard, we point out that

∑∞
k=1 εk < ∞ is a necessary condition. Indeed, let

J ′ ∈ TE be such that the spectral measure dρ of (J ′, δ0) has the form (4.6) with
γj = βj for all j ≥ 1, equivalently,

∣∣∣∣
ˆ
E

dρ(t)
t − λ

∣∣∣∣ = sup
dμ∈RE

∣∣∣∣
ˆ
E

dμ(t)
t − λ

∣∣∣∣ , λ < β0, (4.28)

and consider the rank one perturbation J = J ′ + δb0〈δ0, · 〉δ0. Then, as in
(3.33), λ ∈ R�E is an eigenvalue of J if and only ifˆ

E

dρ(t)
t − λ

= 〈δ0, (J ′ − λ)−1δ0〉 = − 1
δb0

. (4.29)

Assume that δb0 < 0 and denote by λ0 the eigenvalue of J below β0 = inf E.
It is known (cf. [23]) that the Green function satisfies

g(x) ≥ c|β0 − x|1/2 (4.30)

for some c > 0 and all x < β0 sufficiently close to β0. Hence, it follows from
(4.17) with p = 1/2, respectively, (4.22) with p = 1 that |λ0 − β0|1/2 ≤ C|δb0|
for some constant C < ∞ and all δb0 < 0 sufficiently close to zero. Thus,
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lim sup
λ↗β0

|λ − β0|1/2

∣∣∣∣
ˆ
E

dρ(t)
t − λ

∣∣∣∣ = lim sup
δb0↗0

|λ0 − β0|1/2

|δb0|
≤ C < ∞, (4.31)

and hence,
∑∞

k=1 εk < ∞ follows from the converse direction of Theorem 4.1.
The above considerations also lead to the new insight that there are several

homogeneous sets for which the endpoint Lieb–Thirring bounds (i.e., (4.17)
with p = 1/2, respectively, (4.22) with p = 1) cannot hold. For example, every
infinite band set of the form (4.1) with

sup
k≥1

εk < 1 and
∞∑

k=1

εk = ∞. (4.32)

Moreover, we see that the endpoint results do not even need to hold for homo-
geneous sets with optimally smooth Green function (i.e., Hölder continuous of
order 1/2). Indeed, in our setting a result of Totik [23, Corollary 3.3] implies
that g ∈ Lip(1/2) precisely when

∑∞
k=1 ε2k < ∞. So the infinite band set E with

εk = 1/(k + 1) is homogeneous and the Green function for C�E is optimally
smooth. Yet, the endpoint Lieb–Thirring bounds do not hold for perturbations
of some element in TE.

4.2. ε-Cantor Set Example

In this subsection, we consider fat Cantor sets (i.e., those of positive Lebesgue
measure). Suppose {εk}∞

k=1 ⊂ (0, 1) and let

E =
∞⋂

k=0

Ek (4.33)

be the middle ε-Cantor set, that is, E0 = [β0, α0] and Ek is obtained from Ek−1

by removing the middle εk portion from each of the 2k−1 bands in Ek−1. It
is known (cf. [16, p. 125]) that E is a homogeneous set (in particular, E is of
positive measure) if and only if

∑∞
k=1 εk < ∞.

Our first main result is

Theorem 4.5. Suppose E is the middle ε-Cantor set constructed in (4.33). If∑∞
k=1 kεk < ∞, then for some constant C > 0,

sup
dρ∈RE

∣∣∣∣
ˆ
E

dρ(t)
t − x

∣∣∣∣ ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C

|x − α0|1/2|x − β0|1/2
, x ∈ R�E0,

C
√

εk

dist(x,E)1/2
, x ∈ Ek−1�Ek, k ≥ 1.

(4.34)

Conversely, if

lim sup
x↗β0

|x − β0|1/2 sup
dρ∈RE

∣∣∣∣
ˆ
E

dρ(t)
t − x

∣∣∣∣ < ∞, (4.35)

then
∑∞

k=1 kεk < ∞.

Remark 4.6. By symmetry, the condition in (4.35) is equivalent to

lim sup
x↘ α0

|x − α0|1/2 sup
dρ∈RE

∣∣∣∣
ˆ
E

dρ(t)
t − x

∣∣∣∣ < ∞. (4.36)
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Proof. Assume that
∑∞

k=1 kεk < ∞. Since the first inequality in (4.34) follows
directly from Lemma 4.7 below (with i = 0 and m = 0), we merely focus
on establishing the estimate for the inner gaps. As for notation, denote by
(αj , βj), j ≥ 0, the gaps of E and let γj be an arbitrary point in [αj , βj ] for
j ≥ 1. Moreover, let

bk =
(1 − ε1) · · · (1 − εk)(α0 − β0)

2k
, k ≥ 0, (4.37)

and

gk =
εk(1 − ε1) · · · (1 − εk−1)(α0 − β0)

2k−1
, k ≥ 1, (4.38)

be the band and gap lengths at level k. Fix a gap, say (αjk
, βjk

), at level k ≥ 1
(i.e., an interval in Ek−1�Ek). We claim that it suffices to show that

1√
|x − β0||x − α0|

∏

j �=jk

|x − γj |√
|x − αj ||x − βj |

≤ C√
bk

(4.39)

when x ∈ (αjk
, βjk

). For it readily follows that

|x − γjk
|√

|x − αjk
||x − βjk

|
≤

√
gk

dist(x,E)1/2
(4.40)

and
gk

bk
=

2εk

1 − εk
. (4.41)

Suppose that x ∈ (αjk
, βjk

) and set B0 = E0. If k > 1, then x belongs
to precisely one of the two bands in E1. Denote this band by B1. Similarly, if
k > 2, denote by B2 the unique band in E2 ∩ B1 which contains x. We may
continue in this way to obtain a finite sequence of bands

B0 ⊃ B1 ⊃ B2 ⊃ . . . ⊃ Bk−1, (4.42)

each of which contains x. As for further notation, let (αji
, βji

) denote the gap
in Ei ∩Bi−1 for i = 1, . . . , k−1. Note that (αjk

, βjk
) precisely matches the gap

in Ek ∩ Bk−1. A possible scenario when k = 4 is illustrated below.

β0 α0x

B1

αj1 βj1

B2

αj2 βj2

B3

αj3 βj3

We observe that Bi and Bi+1 always have precisely one endpoint in common.
Our estimation now splits into three parts. We start by estimating the

product corresponding to all the gaps of E which are contained in (Ei ∩
Bi−1)�Bi for i = 1, . . . , k−1. As follows from Lemma 4.8, this infinite product
is bounded as long as

∑∞
k=1 kεk < ∞. Then, we estimate the finite product cor-

responding to the endpoints α0, β0 and the gaps (αji
, βji

) for i = 1, . . . , k − 1.
This product is bounded by some constant divided by

√
bk, see Lemma 4.9

below. The final step is to estimate the product corresponding to the gaps
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in Bk−1�(αjk
, βjk

). But this can be done as in Lemma 4.7 (with i = k and
m = 0).

For the converse direction, we mimic the proof of Theorem 4.1 and take
dρ to be the reflectionless measure on E which corresponds to γj = βj for all
j ≥ 1. It then suffices to show that

∞∏

j=1

βj − β0

αj − β0
< ∞ =⇒

∞∑

k=1

kεk < ∞. (4.43)

Convergence of the above product implies that the factors are bounded. Hence,

βj − β0

αj − β0
= 1 +

βj − αj

αj − β0
≥ exp

{
1
d

βj − αj

αj − β0

}
(4.44)

for some constant d > 0 and all j ≥ 1. Our aim is thus to show that
∞∑

j=1

βj − αj

αj − β0
≥ c

∞∑

k=1

kεk (4.45)

for some constant c > 0. This will immediately imply (4.43). For the sake of
clarity, we shall refer to the following figure.

β0 α0

D1

αj1 βj1

D2

αj2 βj2

· · · D3

The idea is to estimate the terms from all the gaps in D1, all the gaps in D2,
etc., as well as the term from the gap between D1 and D2, the gap between
D2 and D3, etc. Start by noting that

∑

j: (αj ,βj)⊂Dn

βj − αj

αj − β0
≥ 1

bn−1

(
gn+1 + 2gn+2 + · · · + 2k−1gn+k + · · ·

)

=
(1 − εn)εn+1

2
+

(1 − εn)(1 − εn+1)εn+2

2
+ · · ·

≥ 1
2

∞∏

i=n

(1 − εi)
∞∑

k=n+1

εk (4.46)

for every n ≥ 1. If (αjn
, βjn

) denotes the gap between Dn and Dn+1, it follows
from (4.41) that

∞∑

n=1

βjn
− αjn

αjn
− β0

=
∞∑

k=1

gk

bk
≥ 2

∞∑

k=1

εk. (4.47)

Hence, we obtain (4.45) with 2c =
∏∞

i=1(1 − εi) > 0. This completes the
proof. �

We now formulate and prove the three technical lemmas that are needed
in the proof of Theorem 4.5.
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Lemma 4.7. Suppose
∑∞

j=1 jεj < ∞ and consider the infinite products

Ri(x) =
∏

j: (αj ,βj)⊂Ai

|x − γj |√
|x − αj ||x − βj |

, i = 0, 1, . . . , k, (4.48)

where Ai is a band in Ei. When dist(x,Ai) ≥ mbi, we have

Ri(x) ≤ exp

⎧
⎨

⎩
1
c

∞∑

j=i+1

(
j−i∑

n=1

1
1 + m2n

)
εj

⎫
⎬

⎭ , (4.49)

where c =
∏∞

j=1(1 − εj).

Proof. Let us assume that the point x lies to the left of the band Ai. Then,

Ri(x) ≤
∏

j: (αj ,βj)⊂Ai

√

1 +
βj − αj

αj − x
≤ exp

⎧
⎨

⎩
1
2

∑

j: (αj ,βj)⊂Ai

βj − αj

αj − x

⎫
⎬

⎭ . (4.50)

With the figure below in mind, the idea is for every n ≥ 1 to estimate the term
from the gap Gn and the terms from all the gaps in Fn.

β0 α0

x

Ai

F1

G1

F2

G2

· · · F3

· · G3

If dist(x,Ai) ≥ mbi and Gn = (αn, βn), we have

βn − αn

αn − x
≤ gi+n

bi+n + mbi
≤ 2εi+n

c + m2n
(4.51)

and
∑

j: (αj ,βj)⊂Fn

βj − αj

αj − x
≤ 1

bi+n + mbi

∑

j>n

2j−n−1gi+j

≤ 1
c(1 + m2n)

∑

j>n

εi+j . (4.52)

It hence follows that

Ri(x) ≤ exp

⎧
⎨

⎩
1
c

∞∑

n=1

⎛

⎝ 1
1 + m2n

∑

j≥n

εi+j

⎞

⎠

⎫
⎬

⎭ (4.53)

and (4.49) is obtained by interchanging the order of summation. �

Lemma 4.8. Suppose
∑∞

j=1 jεj < ∞ and let A denote the set given by

A =
k−1⋃

i=1

(Ei ∩ Bi−1)�Bi. (4.54)



Vol. 18 (2017) Lieb–Thirring Inequalities for Jacobi Matrices 1971

When x ∈ (αjk
, βjk

), we have

∏

j: (αj ,βj)⊂A

|x − γj |√
|x − αj ||x − βj |

≤ exp

⎧
⎨

⎩
2
c

∞∑

j=2

(j − 1)εj

⎫
⎬

⎭ , (4.55)

where c =
∏∞

j=1(1 − εj).

Proof. The set A is the union of 2k−1 − 1 bands in Ek−1 (namely all band-
s except for Bk−1) and 2i−1 − 1 gaps at level i for i = 2, . . . , k − 1. Let
F1, F2, . . . , F2k−1−1 be an ordering of the bands in Ek−1�Bk−1 so that

dist(x, F1) ≤ . . . ≤ dist(x, F2k−1−1). (4.56)

By construction,

dist(x, F2m+1) ≥ mbk−1 for m = 0, 1, . . . , 2k−2 − 1, (4.57)

and since
j+1−k∑

n=1

1
1 + m2n

≤ 1
2i

when m ≥ 2i, (4.58)

we have
2k−2−1∑

m=0

(
j+1−k∑

n=1

1
1 + m2n

)
≤ j + 1 − k +

k−3∑

i=0

(
2i · 1

2i

)
= j − 1. (4.59)

Here, the term j + 1 − k comes from m = 0 and the inner sum is bounded by
1/2i for the 2i terms corresponding to m = 2i, . . . , 2i+1 − 1. When i runs from
0 to k − 3, we get the entire sum for m ≥ 1. By Lemma 4.7, it follows that

∏

j: (αj ,βj)⊂Ek−1\Bk−1

|x − γj |√
|x − αj ||x − βj |

≤ exp

⎧
⎨

⎩
2
c

∞∑

j=k

(j − 1)εj

⎫
⎬

⎭ . (4.60)

To finish the proof, fix a level i ∈ {2, . . . , k−1} and order the 2i−1−1 gaps
at this level according to their distance to x. The mth gap in this ordering,
say Gm = (αm, βm), then satisfies that

dist(x,Gm) ≥ mbi. (4.61)

Since
|x − γm|√

|x − αm||x − βm|
≤
√

1 +
gi

mbi
≤
√

1 +
2εi

cm
(4.62)

and
2i−1−1∑

m=1

1
m

≤ 1 +
(

1
2

+
1
2

)
+ · · · +

(
1

2i−2
+ · · · +

1
2i−2

)
= i − 1, (4.63)

it follows that
2i−1−1∏

m=1

|x − γm|√
|x − αm||x − βm|

≤ exp
{

1
c
(i − 1)εi

}
. (4.64)
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The proof of (4.55) is now an immediate consequence of (4.60) and (4.64) for
i = 2, . . . , k − 1 . �

Lemma 4.9. Suppose
∑∞

j=1 εj < ∞ and consider the finite product

Q(x) =
1√

|x − β0||x − α0|

k−1∏

i=1

|x − γji
|√

|x − αji
||x − βji

|
. (4.65)

When x ∈ (αjk
, βjk

), we have

Q(x) ≤
√

2
α0 − β0

exp

{
2
c

k∑

i=1

εi

}
1√
bk

, (4.66)

where c =
∏∞

j=1(1 − εj).

Proof. As in Theorem 2.2, we pick γ̃ji
∈ {αji

, βji
} so that

|x − γ̃ji
| = max{|x − αji

|, |x − βji
|}, i = 1, . . . , k − 1. (4.67)

The other point in {αji
, βji

} will be denoted by γ̄ji
. Since |x − γ̄jk−1 | ≥ bk, it

follows directly that

Q(x) ≤ 1√
|x − β0||x − α0|

k−1∏

i=1

√
|x − γ̃ji

|
|x − γ̄ji

|

≤
√

2
α0 − β0

k−1∏

i=1

√
|x − γ̃ji

|
|x − γ̄ji−1 |

1√
bk

, (4.68)

where γ̄j0 ∈ {α0, β0} is chosen so that

|x − γ̄j0 | = min{|x − α0|, |x − β0|}. (4.69)

Note that γ̄j0 , γ̄j1 , . . . , γ̄jk−1 coincide with the endpoints of B1, . . . , Bk−1 (count-
ing the common endpoints only once). The ordering, however, can be arbitrary.

In order to estimate the product over i in (4.68), we rearrange the factors
in the denominator. Let γ̄jσ(i) be the endpoint of Bi which is farthest from
x (this happens to be the endpoint of Bi which is not an endpoint of Bi+1).
Then, x is closer to the other endpoint of Bi and we have

|x − γ̃ji
|

|x − γ̄jσ(i) |
≤ gi + bi/2

bi/2
≤ 1 +

4εi

c
(4.70)

for i = 1, . . . , k − 2. Since γ̄jσ(k−1) is an endpoint of Bk−1, we also have

|x − γ̃jk−1 |
|x − γ̄jσ(k−1) |

≤ gk−1 + bk + gk

bk
≤ 1 +

4εk−1

c
+

2εk

c
. (4.71)

Hence,
k−1∏

i=1

|x − γ̃ji
|

|x − γ̄ji−1 |
=

k−1∏

i=1

|x − γ̃ji
|

|x − γ̄jσ(i) |
≤

k∏

i=1

(
1 +

4εi

c

)
, (4.72)

and the result follows from (4.68). �
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As a direct consequence of Theorems 4.5, 2.2, 3.1, and 3.2, we get the
following Lieb–Thirring bounds.

Theorem 4.10. Let E be the middle ε-Cantor set constructed in (4.33) and
suppose J , J ′ are two-sided Jacobi matrices such that J ′ ∈ TE and J = J ′ +δJ
is a compact perturbation of J ′. If εk ≤ C/4k for some C > 0 and all large k,
then ∑

λ∈σ(J)\E
dist(λ,E)p ≤ Lp, E

∑

n∈Z

|δan| + |δbn| (4.73)

for 1/2 < p < 1. If εk ≤ C/ak for some a > 4, C > 0, and all large k, then
∑

λ∈σ(J)\E
dist(λ,E)p ≤ Lp, E

∑

n∈Z

|δan|p+1/2 + |δbn|p+1/2 (4.74)

for all p > 1/2. In either case, the constant Lp, E is independent of J and J ′

and only depends on p and E.

Proof. By construction of E, we have

gk ≥ 21−kεk(α0 − β0)
∞∏

j=1

(1 − εj). (4.75)

So (4.34) combined with (2.15) yields (3.3) and (3.18) for all the gaps at level
k ≥ 1 with a constant

Ck = Ck
√

εk log(1/εk). (4.76)

Here, C > 0 is sufficiently large and independent of k. Since there are 2k−1

gaps at level k, each of length gk ≤ 21−kεk(α0 − β0), the exponential decay
assumptions on εk yield (3.2) and (3.17). The result now follows from Theo-
rems 3.1 and 3.2. �

As before, let g denote the potential theoretic Green function for the
domain C�E with logarithmic pole at infinity. The counterpart of Theorem 4.3
for middle ε-Cantor sets reads

Theorem 4.11. Let E be the middle ε-Cantor set constructed in (4.33) and
suppose J , J ′ are two-sided Jacobi matrices such that J ′ ∈ TE and J = J ′ +δJ
is a compact perturbation of J ′. If εk ≤ C/2k for some C > 0 and all large k,
then for every p > 1,

∑

λ∈σ(J)\E
g(λ)p ≤ Lp, E

∑

n∈Z

|δan|(p+1)/2 + |δbn|(p+1)/2, (4.77)

where the constant Lp, E is independent of J , J ′ and only depends on p and E.

Proof. As in the proof of Theorem 4.3, we use (4.23) and the fact that the equi-
librium measure for E is reflectionless. Hence, (4.34) combined with integration
over the gaps yields the estimate

g(x) ≤ C
√

εk dist(x,E)1/2, x ∈ Ek−1�Ek, k ≥ 0, (4.78)
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where E−1 = R and ε0 = 1/e. Recall now that E has 2k−1 gaps at level k ≥ 1,
that is, Ek−1�Ek consists of 2k−1 identical intervals. So as in the proofs of
Theorems 3.2 and 4.10, we obtain

∑

λ∈σ(J)∩(Ek−1\Ek)

dist(λ,E)p/2 ≤ 2k−1Ck

∑

n∈Z

|δan|(p+1)/2 + |δbn|(p+1)/2, (4.79)

where Ck = Ck
√

εk log(1/εk). Thus, for each k ≥ 0,
∑

λ∈σ(J)∩(Ek−1\Ek)

g(λ)p ≤C2kkε
(p+1)/2
k log(1/εk)

∑

n∈Z

|δan|(p+1)/2+|δbn|(p+1)/2.

(4.80)
Since p > 1 and εk decays no slower than C/2k, summing over k yields (4.77).
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[21] Simon, B.: Szegő’s Theorem and Its Descendants. Spectral Theory for L2 Pertur-
bations of Orthogonal Polynomials. M.B. Porter Lectures, Princeton University
Press, Princeton (2011)

[22] Sodin, M., Yuditskii, P.: Almost periodic Jacobi matrices with homogeneous
spectrum, infinite-dimensional Jacobi inversion, and Hardy spaces of character-
automorphic functions. J. Geom. Anal. 7(3), 387–435 (1997)

[23] Totik, V.: Metric properties of harmonic measures. Mem. Am. Math. Soc.
184(867), vi+163 (2006)

[24] Weidl, T.: On the Lieb–Thirring constants Lγ,1 for γ ≥ 1/2. Commun. Math.
Phys. 178, 135–146 (1996)



1976 J. S. Christiansen and M. Zinchenko Ann. Henri Poincaré

Jacob S. Christiansen
Centre for Mathematical Sciences
Lund University
Box 118
22100 Lund
Sweden
e-mail: stordal@maths.lth.se

Maxim Zinchenko
Department of Mathematics and Statistics
University of New Mexico
Albuquerque
NM 87131
USA
e-mail: maxim@math.unm.edu

Communicated by Jan Dereziński.
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