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Poisson Algebras for Non-Linear Field
Theories in the Cahiers Topos
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Abstract. We develop an approach to construct Poisson algebras for non-
linear scalar field theories that is based on the Cahiers topos model for
synthetic differential geometry. In this framework, the solution space of
the field equation carries a natural smooth structure and, following Zuck-
erman’s ideas, we can endow it with a presymplectic current. We formu-
late the Hamiltonian vector field equation in this setting and show that
it selects a family of observables which forms a Poisson algebra. Our ap-
proach provides a clean splitting between geometric and algebraic aspects
of the construction of a Poisson algebra, which are sufficient to guarantee
existence, and analytical aspects that are crucial to analyze its properties.

1. Introduction and Summary

Classical field theory is the study of solutions to geometric partial differential
equations (PDEs) on manifolds, which are typically equipped with some extra
structures such as Lorentzian (or Riemannian) metrics and fiber bundles. If
the PDE of interest arises as the Euler-Lagrange equation of some local La-
grangian, it is well-known that there is a canonical presymplectic form on the
space of solutions [18], see also [10] for a recent review. An interesting task is
then to quantize the solution space along this presymplectic form and thereby
achieve the transition from classical to quantum field theory.

Even though the program sketched above admits this very simple formu-
lation, it is usually hard to construct examples in a mathematically rigorous
fashion. The main technical problems are: (1) The spaces of field configurations
and solutions are typically infinite-dimensional, and therefore, they are not de-
scribed by ordinary manifolds. As a consequence, one has to work in a broader
geometric framework which is capable to describe such infinite-dimensional
spaces. (2) The presymplectic form is typically not strictly symplectic, but at
best weakly symplectic. This complicates the transition to a Poisson algebra
of functions on the solution space, which is the starting point for deformation
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quantization. (3) There is currently no systematic way to study the defor-
mation quantization of Poisson algebras of functions on infinite-dimensional
spaces, even though there are some recent attempts in this direction [5]. Hence,
the transition from classical to quantum field theory is very hard, which is of
course a well-known fact.

In this paper, we focus on problem (1) and (2) and propose a solution in
terms of synthetic differential geometry [12,15,17]. The basic idea of synthetic
differential geometry is to introduce a category of “generalized smooth spaces”
that contains ordinary manifolds and is closed under forming (co)limits and
exponential objects. Limits and colimits include and generalize common geo-
metric constructions like forming subspaces, intersections, unions, products
or quotients, while exponential objects correspond to “spaces of mappings”.
Many of the above operations in general do not exist in ordinary approaches to
differential geometry,1 while they always make sense in synthetic differential
geometry. This flexibility constitutes an evident advantage of the category of
“generalized smooth spaces” that is relevant to synthetic differential geome-
try. This category is also required to contain certain “infinitesimal spaces”,
which allow for an intrinsic definition of differential geometric constructions
such as the formation of tangent bundles without going through limiting pro-
cedures. It is worth to explain in non-technical terms how the framework of
synthetic differential geometry allows us to solve problems (1) and (2) above:
Concerning problem (1), the key point is that a typical field configuration
space is (a subspace of) a mapping space between manifolds, hence it exists
as a generalized smooth space. A solution space is the subspace of all field
configurations satisfying a (possibly non-linear) field equation and thus is a
generalized smooth space as well. The synthetic framework is, therefore, flex-
ible enough to do geometry on the spaces relevant for classical field theory.
Concerning problem (2), the key point is that we can use infinitesimal spaces
to obtain natural definitions of tangent vectors, vector fields and differential
forms on the generalized smooth spaces appearing in classical field theory. This
allows us to study the (pre)symplectic geometry of solution spaces and to for-
mulate a natural Hamiltonian vector field equation. The space of solutions of
the Hamiltonian vector field equation is again a generalized smooth space and
we show that it carries a natural Poisson algebra structure, even in the case
where the presymplectic form degenerate.

To simplify our presentation, we shall use the Cahiers topos [6] as a
(well-adapted) model for synthetic differential geometry. The choice of a well-
adapted model ensures that the standard constructions allowed in ordinary
differential geometry (e.g. formation of tangent bundles and transversal in-
tersections) are faithfully reproduced by synthetic differential geometry. We
shall focus on a class of examples of non-linear classical field theories, namely
real scalar fields on Lorentzian manifolds with PDE given by the sum of the
d’Alembert operator and a (possibly non-polynomial) interaction term. This

1 For example, intersections of manifolds are typically no longer manifolds. Moreover, map-
ping spaces between two manifolds are infinite-dimensional manifolds and mapping spaces
between two infinite-dimensional manifolds cannot be defined in general, see e.g. [14].
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includes Φ4-theory, as well as the sine-Gordon model. Nevertheless, the ap-
proach we propose can be vastly generalized to more complicated non-linear
field theories, e.g. those formulated in terms of sections of generic vector bun-
dles or even in terms of maps between smooth manifolds, such as the wave
map equation (σ-model). We decided to stick to the case of scalar field theory
not to obscure the construction of a Poisson algebra with a more involved geo-
metric structure on the field theoretic side. We shall also avoid using abstract
arguments based on internal topos logic and often write out our constructions
in more elementary terms. On the one hand, this will simplify the comparison
with other approaches to classical field theory and, on the other hand, it will
make our paper better accessible to readers without any background on topos
theory.

It is important to mention that our construction of Poisson algebras for
non-linear classical field theories does not rely on PDE-analytical properties of
the field equation or its linearization. The construction we perform holds inter-
nally to the Cahiers topos without any further requirement and independently
of any analytical property of the field equation at hand. Only when one wants
to study properties of the resulting Poisson algebra in more detail, a good con-
trol of the Cauchy problem for the field equation or its linearization becomes
crucial. We see this as an advantage compared to other recent approaches [3],
where analytic, geometric and algebraic techniques have to be mixed to con-
struct Poisson algebras. One can say that our synthetic approach introduces
a clean splitting between abstract geometric/algebraic constructions, which
are enough to construct Poisson algebras, and PDE-analytical considerations,
which are necessary afterwards for analyzing additional properties. See our
discussion in Sect. 8 for more details on this point. Another advantage of
our synthetic approach to classical field theory is that it is a suitable start-
ing point for generalizations to gauge theories. In particular, the groupoids
of gauge field configurations appearing in our recently proposed homotopy
theoretic approach to gauge theories [2] can be easily promoted to groupoid
objects in the Cahiers topos, i.e. “generalized smooth groupoids”. The rele-
vant homotopy theoretical concepts used in [2] generalize to such “generalized
smooth groupoids” [8], while locally convex Lie groupoids (which arise in the
framework of [3]) are not suitable for homotopy theory.

The outline of the remainder of this paper is as follows: In Sect. 2 we give
a gentle introduction to the Cahiers topos and synthetic differential geometry.
In Sect. 3 we analyze the synthetic geometry of the configuration space of a
scalar field theory and in particular compute its tangent bundle. The synthetic
geometry of the solution space of non-linear scalar field equations on Lorentzian
manifolds is studied in Sect. 4. In Sect. 5 we formalize the relevant techniques of
[18] within our framework and in particular construct a presymplectic current
on the solution space. Our main results are presented in Sects. 6 and 7, where
we construct Poisson algebras for our class of non-linear classical field theories
by solving suitable Hamiltonian vector field equations. Section 8 contains some
concluding remarks on the Cauchy problem within our framework, which we
believe to be a good tool for proving additional properties of our Poisson
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algebras, e.g. the validity of the classical versions of the axioms of locally
covariant quantum field theory [4]. Appendix provides some technical details
of constructions which are used in the main text.

2. Preliminaries

In this section, we provide a gentle introduction to the Cahiers topos model
for synthetic differential geometry [6], see also [12,17]. The Cahiers topos is a
category of “generalized smooth spaces” that exhibits good categorical prop-
erties, e.g. existence of (co)limits and exponential objects, and also contains
“infinitesimal spaces” which allow for an intrinsic definition of many differ-
ential geometric constructions, e.g. the formation of tangent bundles. We do
not assume the reader to be familiar with the theory of (pre)sheaves. All nec-
essary standard concepts (e.g. Yoneda embedding, Yoneda Lemma and the
functor of points perspective) will be explained explicitly to the extent needed
for understanding our constructions using our particular example of (pre)sheaf
category. For readers who are familiar with (pre)sheaves and synthetic differ-
ential geometry this section should serve to fix our notations.

Definition of the Cahiers Topos The building blocks for the spaces in the
Cahiers topos C are (finite-dimensional and paracompact) manifolds N and
infinitesimal spaces �W given by the locus of a Weil algebra W over R. Recall
that a Weil algebra W is a unital and commutative algebra over R with the
following three properties: (1) W is local with maximal ideal I and W/I � R.
(2) W is finite dimensional as a vector space. (3) I is nilpotent, i.e. there
exists n ≥ 1 such that In = 0. It follows that W = R ⊕ I, so any element
w ∈ W admits a decomposition w = w + ŵ, where w ∈ R is the scalar
prefactor of the unit and ŵ ∈ I is nilpotent. An important example of a Weil
algebra is the algebra of dual numbers R[ε] := R ⊕ εR with product given by
(a + ε b) (a′ + ε b′) = a a′ + ε (a b′ + b a′), i.e. ε2 = 0. We follow the standard
notations of synthetic differential geometry and denote the locus of R[ε] by
D := �R[ε]. Loosely speaking, the infinitesimal space D is an infinitesimally
short line, so short that all smooth functions on D (which are described by R[ε])
are fully determined by their first-order Taylor expansion (given by a, b ∈ R).

Spaces of the form N ×�W are called formal manifolds and we denote the
category of such spaces by FMan. To give a precise definition of the category
FMan, we need some basic terminology from C∞-rings, see e.g. [9,17]. A C∞-
ring is a set A together with maps

Af : An = A × · · · × A
︸ ︷︷ ︸

n-times

−→ Am = A × · · · × A
︸ ︷︷ ︸

m-times

, (2.1)

for all smooth maps f : Rn → R
m and n,m ≥ 0. These maps must satisfy

the following conditions: (1) For any f : Rn → R
m and g : Rm → R

l smooth,
Ag◦f = Ag ◦ Af . (2) For any n ≥ 0, AidRn = idAn . (3) For any projection πi :
R

n → R, where 1 ≤ i ≤ n and n ≥ 1, Aπi
= πi : An → A, (a1, . . . , an) 	→ ai.

A morphism between two C∞-rings is a map (of sets) κ : A → B such that
the diagram
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An

Af

��

κn
�� Bn

Bf

��

Am
κm

�� Bm

(2.2)

commutes, for all smooth maps f : Rn → R
m.2 We denote the category of

C∞-rings by C∞Ring. Notice that any C∞-ring A is in particular a unital
and commutative algebra over R; all algebra operations can be realized as
polynomial mappings f : Rn → R

m (which are smooth maps), e.g. the product
μA : A × A → A is given by μA = AμR

, where μR : R × R → R, (c, c′) 	→ c c′

is the product on R, and the unit element ηA : {∗} → A is given by ηA = AηR
,

where ηR : {∗} → R, ∗ 	→ 1 is the unit in R. Moreover, scalar multiplication
on A by λ ∈ R is given by Aλ : A → A, where λ : R → R, c 	→ λ c.

We give some important examples of C∞-rings which will play a major
role in our work: Given any manifold N , the set of smooth functions C∞(N)
from N to R is a C∞-ring with

C∞(N)f : C∞(N)n −→ C∞(N)m, (h1, . . . , hn) 	−→ f ◦ (h1, . . . , hn), (2.3)

for all f : Rn → R
m smooth. Regarding Cartesian spaces R

k as manifolds, we
obtain that C∞(Rk) are C∞-rings. Even more, C∞(Rk) are the free C∞-rings
with k generators, i.e. HomC∞Ring(C∞(Rk), A) � Ak for any other C∞-ring
A. Given any Weil algebra W , then there exists a unique C∞-ring structure
on W which extends its algebra structure, see e.g. [6, Proposition 1.5] or [12,
Theorem III.5.3]. Explicitly,

Wf : Wn −→ Wm, (w1, . . . , wn) 	−→ f(w1, . . . , wn), (2.4)

for all f : R
n → R

m smooth, where the right-hand-side is understood in
terms of Taylor expansion of f in all nilpotents ŵi at the point (w0, . . . , wn) ∈
R

n. (Notice that the Taylor expansion in nilpotents terminates at some finite
order).

With these preparations we can now give a precise definition of the cat-
egory FMan. It is the opposite of the full subcategory of C∞Ring with objects
given by C∞(N) ⊗∞ W , where N is any (finite-dimensional and paracom-
pact) manifold and W is any Weil algebra. Here ⊗∞ denotes the coproduct
in C∞Ring. To simplify notations, we shall also denote formal manifolds by
symbols like t = N × �W and t′ = N ′ × �W ′. By definition, the morphisms in
FMan are given by

HomFMan(t, t′) := HomC∞Ring

(

C∞(N ′) ⊗∞ W ′, C∞(N) ⊗∞ W
)

. (2.5)

2 Notice that this definition of C∞-ring is equivalent to saying that a C∞-ring is a finite-
product preserving functor A : Cart → Set from Cartesian spaces to sets. (More precisely,
Cart is the category with objects given by all Cartesian spaces R

k, k ∈ Z≥0, and morphisms

given by all smooth maps between Cartesian spaces.) The set A in our first definition is
obtained by evaluating this functor on the one-dimensional Cartesian space R

1, i.e. A =
A(R1). In this picture, a morphism of C∞-rings is simply a natural transformation between
finite-product preserving functors.
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We can equip the category FMan with a Grothendieck topology by declaring
a covering family to be a family of morphisms of the form

{

Ui × �W
ρi×id�W �� N × �W

}

, (2.6)

where {Ui
ρi−→ N} is an ordinary open cover of the manifold N . The Cahiers

topos is then by definition the category of sheaves on this site, i.e.

C := Sh
(

FMan
)

. (2.7)

Objects in C are sheaves, i.e. functors X : FManop → Set to the category of
sets (also called presheaves) which satisfy the sheaf condition with respect to
the notion of covering described above. Morphisms f : X → Y in C are natural
transformations between such functors.

Embedding of Manifolds into the Cahiers Topos The Cahiers topos C is a
category of generalized smooth spaces that includes, as we shall see later,
various kinds of infinite-dimensional spaces. Moreover, C also contains (in a
suitable way to be specified below) various objects which describe well-known
spaces such as manifolds and infinitesimal spaces. The key point is that the
Yoneda embedding allows us to embed formal manifolds into the Cahiers topos.
Explicitly, given any object t = N × �W in FMan, its Yoneda embedding
ι(t) : FManop → Set is the Set-valued presheaf on FMan that acts on objects
t′ = N ′ × �W ′ as

ι(t)(t′) := HomFMan(t′, t) = HomC∞Ring

(

C∞(N) ⊗∞ W,C∞(N ′) ⊗∞ W ′),
(2.8a)

and on morphisms f : t′ → t′′ as

ι(t)(f) : HomFMan(t′′, t) −→ HomFMan(t′, t),
(

g : t′′ → t
) 	−→ (

g ◦ f : t′ → t
)

.
(2.8b)

The fact that the presheaf ι(t) defined above is actually a sheaf on FMan, i.e.
that the site is subcanonical, is due to [6]. As a consequence, the (presheaf)
Yoneda embedding t 	→ ι(t) factors through C and defines a functor ι : FMan →
C from formal manifolds to the Cahiers topos, which we also call Yoneda
embedding. This functor is fully faithful, i.e. the set of morphisms (in FMan)
between two objects t and t′ is isomorphic to the set of morphisms (in C)
between ι(t) and ι(t′). Loosely speaking, this means that the theory of formal
manifolds together with their morphisms can be equivalently described within
the Cahiers topos C. The interpretation of the sheaf ι(t) defined in (2.8) is
that of the functor of points of the formal manifold t = N × �W . Again loosely
speaking, (2.8) tells us all possible ways in which any other formal manifold t′

maps smoothly into t and this is enough information to know everything about
the smooth structure on t. A similar interpretation is used for generic objects X
in C: The sets X(t′) obtained by evaluating the functor X : FManop → Set on
t′ tell us all possible ways in which t′ is mapped smoothly to the generalized
smooth space X. This is formalized by Yoneda’s Lemma, which states that
there is an isomorphism
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HomC

(

ι(t′),X
) � X(t′), (2.9)

for any object t′ in FMan. Hence, it is justified to call elements in X(t′) gen-
eralized points (of type t′) of X.

Regarding manifolds N as formal manifolds of the form N × �R, the
Yoneda embedding restricts to a fully faithful embedding ι : Man → C of
the category of (finite-dimensional and paracompact) manifolds Man into the
Cahiers topos. The same holds true for infinitesimal spaces �W , which can be
regarded as formal manifolds of the form {∗} × �W , where {∗} is any one-
point manifold. To simplify notation, we shall drop the embeddings ι and
simply write N , �W and t = N × �W for the objects in C which are given by
embedding manifolds, infinitesimal spaces and formal manifolds.

Categorical Properties of the Cahiers Topos As any category of sheaves (tech-
nically called a Grothendieck topos), the Cahiers topos C has good categorical
properties, see e.g. [16, Chapter III]. All (small) limits and colimits exist in
C and the former can be computed object-wise (i.e. like in the category of
presheaves). Computing colimits in C is more complicated as one first forms
the colimit in the category of presheaves (which is computed object-wise) and
then applies the sheafification functor to the result. Special instances of limits,
which will be of major importance below, are products: Given two objects X
and Y in C, their product X × Y in C is the sheaf specified by the functor
X × Y : FManop → Set that acts on objects as

(X × Y )(t) := X(t) × Y (t), (2.10)

where on the right-hand-side × denotes the Cartesian product in Set. Notice
also that C has a terminal object {∗} which is the sheaf specified by the functor
{∗} : FManop → Set that acts on objects as

{∗}(t) := {∗}, (2.11)

where on the right-hand-side {∗} denotes the terminal object in Set, i.e. a
singleton. The embedding ι : FMan → C of formal manifolds into the Cahiers
topos preserves the terminal object and products (and also transversal pull-
backs of manifolds).

Another good categorical property of C is the existence of exponential
objects (also called mapping spaces): Given two objects X and Y in C, the
exponential object Y X in C (interpreted as the object of mappings from X
to Y ) is the sheaf specified by the functor Y X : FManop → Set that acts on
objects as

Y X(t) := HomC(t × X,Y ), (2.12)

where on the right-hand-side t is interpreted as an object in C via the Yoneda
embedding. We recall that (−)X : C → C and Y (−) : Cop → C are functors:
Explicitly, given any morphism f : Y → Z in C, then fX : Y X → ZX

is the morphism in C which is specified by the natural transformation with
components
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fX : HomC(t × X,Y ) −→ HomC(t × X,Z),
(

h : t × X → Y
) 	−→ (

f ◦ h : t × X → Z
)

. (2.13)

Similarly, given any morphism g : X → Z in C, then Y g : Y Z → Y X is the
morphism in C which is specified by the natural transformation with compo-
nents

Y g : HomC(t × Z, Y ) −→ HomC(t × X,Y ),
(

h : t × Z → Y
) 	−→ (

h ◦ (idt × g) : t × X → Y
)

. (2.14)

Finally, as in any category admitting finite products and exponential objects
(i.e. a Cartesian closed category), there exist natural isomorphisms

{∗}X � {∗}, X{∗} � X, (Y × Z)X � Y X × ZX , XY ×Z � (XY )Z ,
(2.15)

for all objects X,Y,Z in C.

Basic Aspects of Synthetic Differential Geometry By the Yoneda embedding
ι : FMan → C, we can regard the infinitesimal spaces �W � {∗} × �W as
objects in C, i.e. as generalized smooth spaces. An important example of such
an infinitesimal space is D = �R[ε], which, as we have argued above, should be
interpreted as an infinitesimally short line. More precisely, the Cahiers topos
has a line object R := ι(R) which is given by embedding (via Yoneda) the real
line R into C and there is a monomorphism D → R in C; explicitly, D → R
is given by the C∞Ring-morphism C∞(R) → R[ε] which Taylor expands a
function h ∈ C∞(R) to first order around 0, i.e. h 	→ h(0) + ε h′(0). Moreover,
D contains the zero element, which is the point 0 : {∗} → D specified by the
C∞Ring-morphism R[ε] → R, a + ε b 	→ a.

Using the object D, we can define (the total space of) the tangent bundle
of any object X in C in terms of the exponential object TX := XD. One
should think of TX as the space of infinitesimally short curves in X, which
contain the information of a base point (the image of the zero element) and a
tangent vector at this base point (the direction of the curve). The projection
π : TX → X is given by exponentiation with the zero element 0 : {∗} → D,
i.e.

TX = XD
π:=X0

�� X{∗} � X. (2.16)

Because (−)D : C → C is a functor, the assignment of the total spaces of the
tangent bundles is functorial. Moreover, from (2.13) and (2.14) it follows that
for any morphism f : X → Y in C the diagram

TX = XD

π

��

Tf :=fD

�� Y D = TY

π

��

X
f

�� Y

(2.17)
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commutes. An important result [17, Proposition II.1.12] is that the tangent
bundles defined as above coincide in the case of finite-dimensional manifolds
with the ordinary tangent bundles: Explicitly, given any object N in Man,
then Tι(N) = ι(N)D � ι(TN), where on the right-hand-side TN denotes the
ordinary tangent bundle of N . In particular, our convention to suppress all ι
is consistent with the formation of tangent bundles TN .

The synthetic construction of tangent bundles is just one example of how
infinitesimal spaces can be used to simplify constructions in differential geom-
etry and also to generalize them to the generalized smooth spaces described
by the Cahiers topos. For a more complete presentation of the synthetic ap-
proach to differential geometry we refer the reader to the standard textbook
references [12,15,17].

3. Configuration Space of a Scalar Field Theory

Let M be a finite-dimensional manifold which we interpret as spacetime. The
field configurations of a real scalar field on M are given by all smooth map-
pings Φ : M → R from M to the real numbers, i.e. by the set C∞(M). Making
use of the Cahiers topos, we can define a generalized smooth space of scalar
field configurations by considering the exponential object RM in C, where M
is regarded as an object in C via the Yoneda embedding. The advantage of
the object RM in C compared to the set C∞(M) is that RM is a general-
ized smooth space, hence we can do synthetic differential geometry on it. The
functor RM : FManop → Set describing the object RM in C has the following
more elementary description: given any object t = N × �W in FMan, we have
isomorphisms

RM (t) = HomC(t × M,R)

= HomFMan(t × M,R)

= HomC∞Ring

(

C∞(R), C∞(N × M) ⊗∞ W
)

� C∞(N × M) ⊗∞ W

� C∞(N × M) ⊗R W. (3.1)

In the first step, we have used the definition of exponential objects (2.12)
and in the second step that both objects t × M = (N × M) × �W and R
in C are representable, i.e. obtained by the fully faithful Yoneda embedding
ι : FMan → C. Step three is simply the definition of morphisms in FMan, see
(2.5), and step four uses that C∞(R) is the free C∞-ring with one generator.
The last isomorphism is due to the fact that the coproduct in C∞Ring with
a Weil algebra is isomorphic to the coproduct of algebras over R (cf. [12,
Theorem III.5.3]). Hence, generalized points (of type t = N × �W ) of RM are
given by elements Φ ∈ C∞(N ×M)⊗R W , i.e. they are Weil algebra W -valued
fields on the product N × M of spacetime M and a manifold N . Notice that
global points, i.e. morphisms Φ : {∗} → RM in C or equivalently elements of
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RM ({∗}), are simply given by ordinary scalar fields Φ ∈ C∞(M). Using (2.14),
we obtain that the configuration spaces are functorial, i.e. R(−) : Manop → C.

We now compute the tangent bundle of our configuration spaces RM .
Using the definition from the previous section, the total space of the tangent
bundle of RM is given by TRM := (RM )D, with D = �R[ε] the infinitesimally
short line. Using (2.15), there exist isomorphisms

TRM = (RM )D � RM×D � (RD)M � (TR)M , (3.2)

i.e. the total space of the tangent bundle of the space of R-valued fields is
the space of TR-valued fields. Similar to (3.1), we have a more elementary
description of the functor TRM : FManop → Set, which is given by

TRM (t) � HomC(t × M × D,R) � C∞(N × M) ⊗R W ⊗R R[ε], (3.3)

for any object t in FMan. Hence, a generalized point of TRM is given by an
element C∞(N × M) ⊗R W ⊗R R[ε], which we can write as Φ + εΨ, where
Φ,Ψ ∈ C∞(N × M) ⊗R W are generalized points of RM . The role of Φ is that
of a base point and Ψ is a tangent vector at Φ.

We finish this section by noting that RM is a C∞-ring object in C.3 This
will be used in the next section to define (possibly non-polynomial) interaction
terms in field equations on RM , e.g. the sine-Gordon term. The fact that RM

is a C∞-ring object in C follows immediately once one notices that both the
Yoneda embedding ι : FMan → C and the functor (−)M : C → C preserve
products. Nevertheless, we provide explicit formulas for this C∞-ring structure
as they will be needed later to write out the non-linear field equations. As
already mentioned above, the line object R = ι(R) in C is a C∞-ring object
in C because the Yoneda embedding ι : FMan → C preserves products and R

is a C∞-ring (valued in sets). We denote the C-morphisms corresponding to
smooth maps f : Rn → R

m by Rf : Rn → Rm. Given f : Rn → R
m smooth,

we define a C-morphism

(RM )n � (R × · · · × R
︸ ︷︷ ︸

n-times

)M (RM )f :=Rf
M

��
(R × · · · × R
︸ ︷︷ ︸

m-times

)M � (RM )m

,

(3.4)

where we have used the fact that (−)M : C → C is a functor which preserves
products, see (2.15). This structures RM as a C∞-ring object in C. For later
use, we shall also provide an explicit formula for (RM )ρ : RM → RM in the case
where ρ : R → R is a smooth map between one-dimensional Cartesian spaces.
Using (2.13), we obtain that (RM )ρ : RM → RM is the natural transformation
with components

(RM )ρ : HomC(t × M,R) −→ HomC(t × M,R),
(

h : t × M → R
) 	−→ (

Rρ ◦ h : t × M → R
)

, (3.5)

3 Following the point of view of Footnote 2, a C∞-ring object in C is by definition a finite-
product preserving functor A : Cart → C.
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for all objects t in FMan. Using the elementary description of RM (t) given in
(3.1), we can further simplify (3.5) as

(RM )ρ : C∞(N × M) ⊗R W −→ C∞(N × M) ⊗R W, Φ 	−→ ρ ◦ Φ, (3.6)

where the right-hand-side is understood in terms of Taylor expansion of ρ in
the nilpotent terms of Φ. Explicitly, we can write Φ = Φ + ̂Φ, where Φ ∈
C∞(N × M) is the prefactor of the unit in W and ̂Φ ∈ C∞(N × M) ⊗R I
is nilpotent, and (3.6) is given by expanding at each point (x, p) ∈ N × M

the expression ρ
(

Φ(x, p) + ̂Φ(x, p)
)

in the nilpotent ̂Φ(x, p) around the point
Φ(x, p) ∈ R.

4. Field Equation and Solution Space

In this section, we study dynamical aspects of a class of non-linear scalar
field theories. Let M be an oriented and time-oriented globally hyperbolic
Lorentzian manifold. The d’Alembert operator on the configuration space RM

is the C-morphism �M : RM → RM given by the natural transformation with
components

�M := �vert
M ⊗R idW : C∞(N × M) ⊗R W −→ C∞(N × M) ⊗R W, (4.1)

where we have used the elementary description of RM (t) given in (3.1). More-
over, the vertical d’Alembert operator �vert

M : C∞(N × M) → C∞(N × M)
is defined with respect to the vertical Lorentzian geometry of the trivial bun-
dle N × M → N (in particular, it involves only derivatives along M). More
explicitly, (4.1) lifts the ordinary d’Alembert operator �M from C∞(M) to
C∞(N × M) ⊗R W in the following way: Choosing a basis {ei} of W , we can
expand each Φ ∈ C∞(N ×M)⊗RW as Φ =

∑

i Φi ei, where Φi ∈ C∞(N ×M),
and �M acts on Φ by acting with �vert

M on each component Φi without mixing
them.

Given now any smooth map ρ : R → R, we add (4.1) and (3.6) to obtain
an equation of motion operator PM : RM → RM on the configuration space
RM which is in general non-linear. (In the following we shall keep ρ fixed and
suppress it from the notations.) Explicitly, the C-morphism PM : RM → RM

is the natural transformation with components

PM : C∞(N × M) ⊗R W −→ C∞(N × M) ⊗R W, Φ 	−→ �MΦ + ρ ◦ Φ.
(4.2)

For example, we could choose in (4.2) the function ρ : R → R, x 	→ λx3, for
some coupling constant λ ∈ R, to obtain the equation of motion of Φ4-theory.
As another example, we could choose ρ : R → R, x 	→ sinx to obtain the
sine-Gordon equation.

The space of solutions to the equation of motion (4.2) is constructed by
the pullback
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Sol(M)

��
�
�
�

��������� RM

PM

��

{∗} � {∗}M

0M

�� RM

(4.3)

in C. Because pullbacks (as special kinds of limits) in C exist, the solution
space Sol(M) to any (non-linear) field equation is always a generalized smooth
space (i.e. an object in C). This is a clear advantage of the synthetic frame-
work over ordinary approaches to infinite-dimensional differential geometry,
such as locally convex manifolds, where the spaces of solutions to non-linear
field equations in general do not carry a natural smooth structure. Using the
elementary description of RM (t) given in (3.1), we observe that generalized
points of Sol(M) are given by elements Φ ∈ C∞(N × M) ⊗R W which satisfy
PM (Φ) = 0, i.e.

Sol(M)(t) �
{

Φ ∈ C∞(N × M) ⊗R W : PM (Φ) = 0
}

, (4.4)

for all objects t in FMan.
The solution spaces are functorial: Let Loc denote the category with

objects given by oriented and time-oriented globally hyperbolic Lorentzian
manifolds M (of a fixed dimension, say m) and morphisms given by causal
embeddings f : M → M ′.4 Then R(−) : Locop → C is a functor and the
equation of motion operator (4.2) is a natural transformation P : R(−) → R(−)

between functors from Locop to C. As a consequence, the pullback diagram
(4.3) which defines the solution spaces is functorial, and by universality of
limits we obtain that the solution spaces are given by a functor

Sol : Locop −→ C. (4.5)

We now shall compute the tangent bundle of the solution space Sol(M),
for any object M in Loc. As the tangent functor is given by exponentiation
T (−) = (−)D : C → C with the object D = �R[ε], it is a right adjoint functor
(of the functor (−)×D : C → C) and as such it preserves limits. In particular,
applying the tangent functor to the pullback diagram (4.3), we obtain that
TSol(M) = Sol(M)D is given by the pullback

TSol(M)

��
�
�
�

��������� TRM

TPM

��

{∗} � T{∗}M

T0M

�� TRM

(4.6)

in C. Using the elementary description of TRM (t) given in (3.3), we obtain
that generalized points of TSol(M) are elements Φ + εΨ ∈ C∞(N × M) ⊗R

4 A causal embedding f : M → M ′ is an orientation and time-orientation preserving iso-
metric embedding, whose image is open and causally compatible, i.e. J±

M′ (f(p)) ∩ f(M) =

f(J±
M (p)) for all p ∈ M . Here J±

M (p) denotes the causal future/past of p ∈ M consisting of
all points of M which can be reached by a future/past-directed smooth causal curve in M
stemming from p, see e.g. [1].
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W ⊗R R[ε], with Φ,Ψ ∈ C∞(N × M) ⊗R W , which satisfy PM (Φ + εΨ) = 0.
Expanding the latter equation in the nilpotent ε (with ε2 = 0), we obtain the
two equations PM (Φ) = 0 and

P lin
M, ΦΨ := �MΨ +

(

ρ′ ◦ Φ
)

Ψ = 0, (4.7)

where ρ′ : R → R is the derivative of ρ : R → R. Notice that (4.7) is the
linearization of the equation of motion operator (4.2) around the solution Φ,
i.e. Ψ satisfies a linear equation of motion. In summary, the functor TSol(M) :
FManop → Set has an elementary description given by

TSol(M)(t) �
{

Φ+ε Ψ ∈ C∞(N×M)⊗RW⊗RR[ε] : PM (Φ) = 0, P lin
M, ΦΨ = 0

}

,

(4.8)

for all objects t in FMan.

5. Zuckerman’s Presymplectic Current

In [18], Zuckerman has shown that any field theory specified by a local La-
grangian admits an associated presymplectic current specified on an appro-
priately defined solution space of the Euler-Lagrange equation. Notice that
our field equation (4.2) is the Euler-Lagrange equation of the scalar field La-
grangian LM given by the sum of the usual kinetic term − 1

2dMΦ ∧ ∗MdMΦ
and the potential term (V ◦ Φ) volM , where V :=

∫ ·
ρ : R → R is any prim-

itive of the smooth map ρ : R → R and volM ∈ Ωm(M) is the volume form
on the oriented Lorentzian manifold M (of dimension m). Loosely speaking,
Zuckerman’s presymplectic current is constructed as follows: One first takes
the differential d (along the field configuration space) of the Lagrangian and
notices that it can be written as dLM = ELM + dMθM , where ELM is the
Euler-Lagrange equation, dM is the differential along spacetime and θM is a
Ωm−1(M)-valued 1-form on the field configuration space. Pulling back θM to a
Ωm−1(M)-valued 1-form on the solution space, one obtains a Ωm−1(M)-valued
2-form on the solution space, the presymplectic current, by taking the differ-
ential uM = dθM along the solution space. An essential property of uM is that
it takes values in the space Ωm−1

d (M) of closed m−1-forms on M . We shall
now formalize the relevant part of this construction for our model in terms of
the Cahiers topos.

The 1-Form θM The Ωm−1(M)-valued 1-form θM on the solution space Sol(M)
is given by a C-morphism

θM : TSol(M) −→ Ωm−1(M), (5.1)

which we shall now describe in some detail.
The target of (5.1) is the generalized smooth space of m−1-forms on M ,

which is the sheaf specified by the functor Ωm−1(M) : FManop → Set that acts
on objects as

Ωm−1(M)(t) := Ω0,m−1(N × M) ⊗R W, (5.2)
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where Ω0,m−1(N × M) denotes the vector space of (0,m−1)-forms on the
product manifold N × M and ⊗R is the tensor product of real vector spaces.5

(Elements in Ω0,m−1(N × M) are differential forms on N × M which are of
degree zero in N and of degree m−1 in M , see e.g. [18] for more details on
this bi-grading.)

In the case under analysis, namely the non-linear scalar field, the com-
ponents of (5.1) are given by

θM : TSol(M)(t) −→ Ω0,m−1(N × M) ⊗R W, Φ + εΨ 	−→ −Ψ ∗M dMΦ,
(5.3)

where the differential

dM := dvert
M ⊗R idW : Ω0,p(N × M) ⊗R W −→ Ω0,p+1(N × M) ⊗R W (5.4a)

and the Hodge operator

∗M := ∗vert
M ⊗R idW : Ω0,p(N × M) ⊗R W −→ Ω0,m−p(N × M) ⊗R W (5.4b)

are defined in analogy to (4.1). From the definition (5.3), we observe that (5.1)
is R-linear with respect to the fiber R-module structure on TSol(M) given by
the C-morphisms

+ : TSol(M) ×Sol(M) TSol(M) −→ TSol(M),

· : R × TSol(M) −→ TSol(M), (5.5a)

with components

+ :
(

Φ + εΨ1,Φ + εΨ2

) 	−→ (

Φ + ε (Ψ1 + Ψ2)
)

,

· :
(

c,Φ + εΨ
) 	−→ (

Φ + ε cΨ
)

. (5.5b)

The term cΨ appearing in the definition of · is the multiplication of Ψ ∈
C∞(N × M) ⊗R W by c ∈ R(t) � C∞(N) ⊗R W , which is regarded as an
element in C∞(N × M) ⊗R W that is constant along M . The fiber product
TSol(M) ×Sol(M) TSol(M) is defined as usual by the pullback diagram

TSol(M) ×Sol(M) TSol(M)

��
�
�
�

�������� TSol(M)

π

��

TSol(M)
π

�� Sol(M)

(5.6)

in C.

Vector Fields on Sol(M) The space of vector fields on Sol(M) is described
by the generalized smooth space Γ∞(TSol(M)) of sections of the tangent

5 The object Ωm−1(M) in C defined by (5.2) can also be obtained by equipping the usual set
of forms Ωm−1(M) with its canonical convenient vector space structure (cf. [14]) and using
the fully faithful embedding j : ConVec → C of the category of convenient vector spaces into
the Cahiers topos, see [11] and in particular [13].
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bundle π : TSol(M) → Sol(M), which is carved out of the exponential object
TSol(M)Sol(M) by the following pullback

Γ∞(TSol(M))

��
�
�
�

�������� TSol(M)Sol(M)

πSol(M)

��

{∗}
e

�� Sol(M)Sol(M)

(5.7)

The C-morphism e : {∗} → Sol(M)Sol(M) is the identity element in
Sol(M)Sol(M), which is given explicitly by the components

e : {∗} −→ HomC

(

t × Sol(M),Sol(M)
)

, ∗ 	−→ prSol(M), (5.8)

where prSol(M) : t × Sol(M) → Sol(M) denotes the projection C-morphism
on the factor Sol(M).

A generalized point of Γ∞(TSol(M)) is, therefore, given by a C-morphism
v : t × Sol(M) → TSol(M) for which the diagram

t × Sol(M)

prSol(M)
����������������

v �� TSol(M)

π

��

Sol(M)

(5.9)

in C commutes. In other words, Γ∞(TSol(M)) is specified by the functor
Γ∞(TSol(M)) : FManop → Set that acts on objects as

Γ∞(TSol(M))(t) =
{

v ∈ HomC

(

t×Sol(M), TSol(M)
)

: π ◦ v = prSol(M)

}

,

(5.10)

for all objects t in FMan.

The Global 1-Form θM It will be convenient for our constructions to take the
global point of view on differential forms on Sol(M), see e.g. [15, Chapter
6.1]. In this perspective, the Ωm−1(M)-valued 1-form (5.1) is promoted to a
C-morphism (denoted with abuse of notation by the same symbol)

θM : Γ∞(TSol(M)) −→ Ωm−1(M)Sol(M), (5.11)

which is an assignment of Ωm−1(M)-valued functions on Sol(M) to vector
fields on Sol(M). At the level of components, (5.11) assigns to each generalized
point of Γ∞(TSol(M)), i.e. each C-morphism v : t × Sol(M) → TSol(M)
satisfying the section condition π ◦ v = prSol(M), the C-morphism

θM (v) := θM ◦ v : t × Sol(M) −→ Ωm−1(M). (5.12)

Using (5.3), we observe that (5.11) is an RSol(M)-module morphism for the
following ‘point-wise’ RSol(M)-module structures on Γ∞(TSol(M)) and Ωm−1

(M)Sol(M): The sum C-morphisms

+ : Γ∞(TSol(M)) × Γ∞(TSol(M)) −→ Γ∞(TSol(M)), (5.13a)

+ : Ωm−1(M)Sol(M) × Ωm−1(M)Sol(M) −→ Ωm−1(M)Sol(M), (5.13b)
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are obtained from (5.5) via (2.13). Explicitly, they are specified on generalized
points v, v′ : t × Sol(M) → TSol(M), satisfying the section condition (5.9),
and ω, ω′ : t × Sol(M) → Ωm−1(M) by the commutative diagrams

t × Sol(M)

(v,v′)
���������������

v+v′
�� TSol(M) t × Sol(M)

(ω,ω′)
��������������

ω+ω′
�� Ωm−1(M)

TSol(M) ×Sol(M) TSol(M)

+

��

Ωm−1(M) × Ωm−1(M)

+

��

(5.14)

where we have used the notation (f, g) : X → Y ×Z for the unique morphism
defined out of f : X → Y and g : X → Z and universality of the product.
Similarly, the RSol(M)-action C-morphisms

· : RSol(M) × Γ∞(TSol(M)) −→ Γ∞(TSol(M)), (5.15a)

· : RSol(M) × Ωm−1(M)Sol(M) −→ Ωm−1(M)Sol(M), (5.15b)

are obtained from (5.5) via (2.13). Explicitly, for generalized points F : t ×
Sol(M) → R, v : t × Sol(M) → TSol(M) and ω : t × Sol(M) → Ωm−1(M),
the above-mentioned RSol(M)-action C-morphisms are specified by the com-
mutative diagrams

t × Sol(M)

(F,v)
�������������

F ·v �� TSol(M) t × Sol(M)

(F,ω)
�������������

F ·ω �� Ωm−1(M)

R × TSol(M)

·
��

R × Ωm−1(M)

·
��

(5.16)

In the terminology of [15, Chapter 6.1.2], this shows that θM given in (5.11)
is a (classical) Ωm−1(M)-valued global 1-form on Sol(M).

The Presymplectic Current uM The presymplectic current uM is by definition
the exterior derivative (along the solution space) of θM . Explicitly, uM is the
C-morphism

uM := dθM : Γ∞(TSol(M)) × Γ∞(TSol(M)) −→ Ωm−1(M)Sol(M) (5.17)

that is defined on generalized points v, v′ : t×Sol(M) → TSol(M), satisfying
the section condition (5.9), by Koszul’s formula

uM (v, v′) = v
(

θM (v′)
) − v′(θM (v)

) − θM

(

[v, v′]
)

, (5.18)

where the first two terms involve the action of v, and respectively, v′ on
Ωm−1(M)Sol(M) in terms of directional derivatives and the third term involves
the Lie bracket on Γ∞(TSol(M)), see [15, Chapter 6.1.2] and Appendix for
details. By construction, uM = dθM is an exact global 2-form on Sol(M) and
hence in particular closed, i.e. duM = 0. An explicit expression for uM (v, v′)
is derived in Appendix (see in particular (A.15)), from which we observe that
uM is a C-morphism to the generalized smooth space Ωm−1

d (M)Sol(M), i.e.

uM : Γ∞(TSol(M)) × Γ∞(TSol(M)) −→ Ωm−1
d (M)Sol(M). (5.19)



Vol. 18 (2017) Poisson Algebras for Non-Linear Field Theories 1451

Here Ωm−1
d (M) denotes the subsheaf of Ωm−1(M) : FManop → Set that is

specified by

Ωm−1
d (M)(t) := Ker

(

dM : Ω0,m−1(N × M) ⊗R W → Ω0,m(N × M) ⊗R W
)

,

(5.20)

for all objects t in FMan.

6. Poisson Algebra for Compact Cauchy Surfaces

In this section we assume that M is an m-dimensional oriented and time-
oriented globally hyperbolic Lorentzian manifold (i.e. an object in Loc) which
admits a compact Cauchy surface Σ ↪→ M . This will simplify the construction
of a Poisson algebra of observables for the non-linear field theory specified by
the field equation (4.2) and its corresponding presymplectic current (5.19).
The case of not necessarily compact Cauchy surfaces requires some additional
care and will be discussed in Sect. 7.

Our strategy is as follows: We introduce an integration C-morphism
∫

Σ
:

Ωm−1(M) → R, which, after composition with the Zuckerman current (5.19),
defines a presymplectic form ωM (i.e. a closed R-valued global 2-form) on
Sol(M). By considering a suitable pullback diagram in the Cahiers topos C, we
construct a generalized smooth space describing those pairs (F, v) of smooth
functions F and vector fields v on Sol(M) which satisfy the Hamiltonian
vector field equation. Loosely speaking, the latter equation is given by dF =
ωM (v,−). It is important to stress that in general there exist F which do not
admit a Hamiltonian vector field, because ωM is not strictly non-degenerate.
Hence, the Hamiltonian vector field equation selects a suitable class of smooth
functions F , which we may call admissible. We will then show that the space of
pairs (F, v) consisting of admissible functions F and their Hamiltonian vector
fields v can be equipped with a Poisson algebra structure.

Presymplectic Form In analogy to (4.1), we define a C-morphism
∫

Σ
: Ωm−1(M) → R by setting for its components
∫

Σ

:=
∫ vert

Σ

⊗RidW : Ω0,m−1(N × M) ⊗R W −→ C∞(N) ⊗R W, (6.1)

where
∫ vert

Σ
is the vertical integration on the trivial fibration N × M → N .

Notice that this is where the requirement of a compact Cauchy surface en-
ters. The restriction of the integration morphism to closed forms, i.e.

∫

Σ
:

Ωm−1
d (M) → R, just depends on the homology class [Σ] ∈ Hm−1(M) and hence

it is independent of the choice of Cauchy surface. As a consequence, compos-
ing the Zuckerman current (5.19) with the integration morphism

∫

Σ

Sol(M) :
Ωm−1

d (M)Sol(M) → RSol(M) defines a C-morphism

ωM :=
∫

Σ

Sol(M)

◦ uM : Γ∞(TSol(M)) × Γ∞(TSol(M)) −→ RSol(M),

(6.2)



1452 M. Benini and A. Schenkel Ann. Henri Poincaré

which does not depend on the choice of Cauchy surface. Because uM is a closed
Ωm−1

d (M)-valued 2-form on Sol(M) and integration is R-linear, it follows that
ωM is a closed global 2-form on Sol(M), i.e. a presymplectic form.

Hamiltonian Vector Field Equation We can now formalize the Hamiltonian
vector field equation, which at the level of generalized points F : t → RSol(M)

and v : t → Γ∞(TSol(M)) is given by

dF = ιv(ωM ), (6.3)

as an equation in Ω1(Sol(M))(t). Here d denotes the differential and ιv(ωM )
the interior product, see [15, Chapter 6.1.2] for more details. The generalized
space P(M) of solutions to Eq. (6.3) is then given by the pullback

P(M)

��
�
�
�

�������� Γ∞(TSol(M))

ι( · )(ωM )

��

RSol(M)
d

�� Ω1(Sol(M))

(6.4)

in C. Explicitly, the generalized smooth space P(M) is specified by the functor
P(M) : FManop → Set that acts on objects as

P(M)(t) =
{

(F, v) ∈ RSol(M)(t) × Γ∞(TSol(M))(t) : dF = ιv(ωM )
}

,

(6.5)

for all objects t in FMan. We call F an admissible observable and v a Hamil-
tonian vector field corresponding to F .

Poisson Algebra Structure on P(M) As the Hamiltonian vector field equa-
tion (6.3) is R-linear, it follows that P(M) is an R-module. The R-module
structure on P(M) is inherited from the R-module structures on RSol(M) and
Γ∞(TSol(M)) via universality of the pullback.

The R-module P(M) carries an R-algebra structure with product and
unit C-morphisms

· : P(M) × P(M) −→ P(M), 1 : {∗} −→ P(M), (6.6a)

defined on generalized points by

· :
(

(F, v), (F ′, v′)
) 	−→ (

F · F ′, F · v′ + F ′ · v
)

, 1 : ∗ 	−→ (1, 0). (6.6b)

Here F ·F ′ denotes the product on RSol(M), and F ·v′ and F ′ ·v the RSol(M)-
module structure on Γ∞(TSol(M)), see (5.15). Using the (graded) Leibniz
rule for the differential and RSol(M)-linearity of the interior product (see [15,
Chapter 6.1.2]), we can confirm that the product closes on P(M), i.e.

d(F · F ′) = F · (dF ′) + F ′ · (dF )

= F · ιv′(ωM ) + F ′ · ιv(ωM ) = ιF ·v′+F ′·v(ωM ). (6.7)

The unit element lies in P(M) because d1 = 0 = ι0(ωM ).
Finally, we equip P(M) with a Poisson bracket C-morphism

{ ·, ·} : P(M) × P(M) −→ P(M), (6.8a)
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which is defined on generalized points by
{ ·, ·} :

(

(F, v), (F ′, v′)
) 	−→ (

ιvιv′(ωM ), [v, v′]
)

. (6.8b)

Using the Cartan calculus properties [15, Chapter 6.1.2, Proposition 6], we can
confirm that the Poisson bracket closes on P(M), i.e.

dιvιv′(ωM ) = (Lv − ιvd)ιv′(ωM )

= ι[v,v′](ωM ) + ιv′Lv(ωM ) − ιvLv′(ωM ) = ι[v,v′](ωM ), (6.9)

where Lv = ιv d + d ιv is the Lie derivative. In the second equality we have
used that dωM = 0 and in the last equality that Lv(ωM ) = dιvωM = ddF = 0
(and similar for (F ′, v′)). The Poisson bracket is clearly antisymmetric and,
using again the Cartan calculus, one easily confirms the derivation property

{

(F, v), (F ′, v′) · (F ′′, v′′)
}

=
{

(F, v), (F ′, v′)
} · (F ′′, v′′)

+(F ′, v′) · {

(F, v), (F ′′, v′′)
}

(6.10)

and the Jacobi identity
{

(F, v),
{

(F ′, v′), (F ′′, v′′)
}}

+ cycl = 0. (6.11)

In these calculations one also has to use that the Lie bracket [ ·, · ] on
Γ∞(TSol(M)) satisfies the derivation property [v, F ·v′] = F ·[v, v′]+Lv(F )·v′

and the Jacobi identity, see e.g. [15, Chapter 3]. Summing up, we have obtained

Theorem 1. Let M be an object in Loc which admits a compact Cauchy surface
Σ ↪→ M . Then P(M), defined as the pullback in (6.4), is a Poisson algebra ob-
ject in the Cahiers topos C when equipped with the R-module structure inherited
via pullback, the R-algebra structure (6.6) and the Poisson bracket (6.8).

7. Poisson Algebra for Arbitrary Cauchy Surfaces

If M is any object in Loc, i.e. an m-dimensional oriented and time-oriented
globally hyperbolic Lorentzian manifold with not necessarily compact Cauchy
surfaces Σ ↪→ M , then the integration of the presymplectic current in (6.2)
is ill-defined. We shall resolve this issue by restricting the tangent bundle π :
TSol(M) → Sol(M) to what we call the “spacelike compact tangent bundle”
π : TscSol(M) → Sol(M). Loosely speaking, the fibers of TscSol(M) will be
the solutions of the linearized equation of motion (4.7) that are of spacelike
compact support. The restriction of the presymplectic current to spacelike
compact vector fields Γ∞(TscSol(M)) takes values in the generalized smooth
space Ωm−1

sc, d (M)Sol(M) of functions on Sol(M) with values in closed m−1-
forms on M with spacelike compact support. As a consequence, the restriction
of uM to spacelike compact vector fields (at least in one argument) can be
integrated over a not necessarily compact Cauchy surface, and we can formalize
the Hamiltonian vector field equation for arbitrary objects in Loc. Using similar
arguments as in Sect. 6, this will lead to a Poisson algebra for all objects M
in Loc.
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The Spacelike Compact Tangent Bundle Let M be any object in Loc and let
us denote by KM the directed set of compact subsets K ⊆ M with preorder
relation given by subset inclusion K ⊆ K ′. For any K ∈ KM , the open subman-
ifold M\JM (K) of M is an object in Loc, where JM (K) := J+

M (K) ∪ J−
M (K)

is the union of the causal future and past of K. We denote the canonical Loc-
morphism by j : M\JM (K) → M . By functoriality, j induces a C-morphism
Sol(j) : Sol(M) → Sol(M\JM (K)) and hence by functoriality of the tangent
bundle a C-morphism

TSol(j) : TSol(M) −→ TSol(M\JM (K)). (7.1)

We define the generalized smooth space TJM (K)Sol(M) by the pullback

TJM (K)Sol(M)

��
�
�
�

��������������� TSol(M)

TSol(j)

��

Sol(M\JM (K))
Sol(M\JM (K))D→{∗}

�� TSol(M\JM (K))

(7.2)

in C, where the lower horizontal arrow is the zero section. Using (4.8), gen-
eralized points of TJM (K)Sol(M) are given by those elements Φ + εΨ ∈
TSol(M)(t) which satisfy supp(Ψ) ⊆ N × JM (K). (In other words, the re-
striction of Ψ to N × M\JM (K) is zero.) The total space of the spacelike
compact tangent bundle is defined as the colimit

TscSol(M) := colim
(

TJM (−)Sol(M) : KM → C
)

(7.3)

in C. It is important to recall from Sect. 2 that colimits in C can be computed
as the sheafification of the presheaf colimit (i.e. object-wise colimit). As a
result, we obtain that the generalized points of TscSol(M) are given by those
elements Φ+εΨ ∈ TSol(M)(t) (cf. (4.8)) such that for any x ∈ N there exists
an open neighborhood U ⊆ N of x and a compact subset K ⊆ M with the
property that ΨU ∈ C∞(U × M) ⊗R W (the restriction of Ψ to U × M) has
support in U × JM (K). (It is important that both K and U are allowed to
change with x ∈ N . In particular, the uniform condition that Ψ has support
in some N ×JM (K), which results from the presheaf colimit, does not define a
sheaf.) In other words, TscSol(M) is the subsheaf of TSol(M) : FManop → Set
that is specified by

TscSol(M)(t) =
{

Φ + εΨ ∈ TSol(M)(t) :

∀x∈N∃U � x open, K ∈ KM :supp(ΨU ) ⊆ U × JM (K)
}

,

(7.4)

for all objects t in FMan. Clearly, TscSol(M) is the total space of a bundle
over Sol(M) with projection C-morphism

π : TscSol(M) −→ Sol(M) (7.5)
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induced by the tangent bundle π : TSol(M) → Sol(M), i.e. π : TscSol(M) →
Sol(M) is a subbundle of the tangent bundle. The fiber R-module structure
on TSol(M) given in (5.5) restricts to TscSol(M). As a consequence, the
generalized smooth space Γ∞(TscSol(M)) of sections of π : TscSol(M) →
Sol(M) is an RSol(M)-module and in particular an RSol(M)-submodule of the
module of vector fields Γ∞(TSol(M)) on Sol(M). (See (5.13) and (5.15) for
the relevant module structure.) Finally, Γ∞(TscSol(M)) is a Lie subalgebra of
Γ∞(TSol(M)), i.e. the Lie bracket of vector fields restricts to Γ∞(TscSol(M)),

[ ·, · ] : Γ∞(TscSol(M)) × Γ∞(TscSol(M)) −→ Γ∞(TscSol(M)). (7.6)

This can be confirmed using the explicit formula for the Lie bracket on
Γ∞(TSol(M)) that is given in Appendix, see in particular (A.14).

Presymplectic Form Restricting the global Ωm−1(M)-valued 1-form θM

given in (5.11) and (5.12) to Γ∞(TscSol(M)), it induces a C-morphism

θM : Γ∞(TscSol(M)) −→ Ωm−1
sc (M)Sol(M), (7.7)

where Ωm−1
sc (M) is the subsheaf of Ωm−1(M) : FManop → Set that is specified

by

Ωm−1
sc (M)(t) :=

{

ω ∈ Ωm−1(M)(t) :

∀x ∈ N ∃U � x open, K ∈ KM : supp(ωU ) ⊆ U × JM (K)
}

,

(7.8)

for all objects t in FMan. (Compare this with (7.4).) This claim can be easily
confirmed using (5.3). In analogy to (5.19), we define the presymplectic current

uM : Γ∞(TscSol(M)) × Γ∞(TscSol(M)) −→ Ωm−1
sc, d (M)Sol(M) (7.9)

on generalized points v, v′ : t × Sol(M) → TscSol(M), satisfying the section
condition π ◦ v(′) = prSol(M), by Koszul’s formula

uM (v, v′) := dθM (v, v′) = v
(

θM (v′)
) − v′(θM (v)

) − θM

(

[v, v′]
)

. (7.10)

The explicit calculation performed in Appendix is basically left unchanged by
the restriction to spacelike compact vector fields. In particular, the formula
for uM (v, v′) provided in (A.15) is still valid, however, the result inherits the
support restriction from the spacelike compact vector fields. Notice further
that the same formula is still valid if we remove the support restriction on one
of the arguments of uM and that this does not affect the spacelike compact
support property of the differential forms Ωm−1

sc, d (M). In this way we obtain
extensions (denoted by the same symbol)

uM : Γ∞(TscSol(M)) × Γ∞(TSol(M)) −→ Ωm−1
sc, d (M)Sol(M), (7.11a)

uM : Γ∞(TSol(M)) × Γ∞(TscSol(M)) −→ Ωm−1
sc, d (M)Sol(M), (7.11b)
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where only one factor is required to have spacelike compact support. We may
now compose (7.9) with the integration C-morphism associated to a (not nec-
essarily compact) Cauchy surface Σ ↪→ M and obtain a presymplectic form

ωM :=
∫

Σ

Sol(M)

◦ uM : Γ∞(TscSol(M)) × Γ∞(TscSol(M)) −→ RSol(M),

(7.12)

which does not depend on the choice of Cauchy surface. Composing the ex-
tensions (7.11) of uM with the integration C-morphism provides extensions
(denoted by the same symbol)

ωM : Γ∞(TscSol(M)) × Γ∞(TSol(M)) −→ RSol(M), (7.13a)

ωM : Γ∞(TSol(M)) × Γ∞(TscSol(M)) −→ RSol(M), (7.13b)

where only one factor is required to have spacelike compact support. Notice
that this support restriction is crucial to make sense of (7.13) as (7.12) involves
integration over a (possibly) non-compact Cauchy surface Σ.

Hamiltonian Vector Field Equation and Poisson Algebra The extension (7.13a)
of the presymplectic form can be adjoined to a C-morphism ι( · )(ωM ) :
Γ∞(TscSol(M)) → Ω1(Sol(M)), which we use to define the generalized smooth
space P(M) as the pullback

P(M)

��
�
�
�

�������� Γ∞(TscSol(M))

ι( · )(ωM )

��

RSol(M)
d

�� Ω1(Sol(M))

(7.14)

in C. The Poisson algebra structure which we developed in Sect. 6 for the
case of compact Cauchy surfaces (cf. (6.6) and (6.8)) applies to the present
case. In particular, all computations we performed to confirm the Poisson
algebra properties involve at most one non-spacelike compact vector field, so all
occurring vector field insertions into ωM are well-defined due to the extensions
(7.13). Summing up, we obtain

Theorem 2. Let M be any object in Loc. Then P(M), defined as the pullback in
(7.14), is a Poisson algebra object in the Cahiers topos C when equipped with
the R-module structure inherited via pullback, the R-algebra structure (6.6)
and the Poisson bracket (6.8).

In the special case, when M admits a compact Cauchy surface Σ ↪→
M , the spacelike compact tangent bundle TscSol(M) coincides with the full
tangent bundle TSol(M). In particular, the Poisson algebra P(M) given by
Theorem 1 coincides with the one given by Theorem 2.

Remark 1. 6In (7.14) we defined the vertical solid arrow by adjoining the ex-
tension (7.13a) of the presymplectic form. Similarly, we may as well adjoin the
extension (7.13b) and consider the pullback

6 We are grateful to the anonymous referee for the observation contained in this remark.
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M(M)

��
�
�
�

�������������� Γ∞(TSol(M))

ι( · )(ωM )

��

RSol(M)
d

�� Ω1(Sol(M)) �� Ω1
sc(Sol(M))

(7.15)

in C. This is similar to (7.14), however, without the requirement that Hamil-
tonian vector fields are spacelike compact. As a consequence, their insertion
in (7.13b) provides 1-forms Ω1

sc(Sol(M)) only defined with respect to the
RSol(M)-submodule Γ∞(TscSol(M)) of Γ∞(TSol(M)) (the submodule inclu-
sion induces the displayed C-morphism Ω1(Sol(M)) → Ω1

sc(Sol(M))). If M
does not admit compact Cauchy surfaces, then the formula in (6.8) does not
make sense on M(M) because it involves an evaluation of the presymplectic
form on two not necessarily spacelike compact vector fields. However, we no-
tice that M(M) defined in (7.15) is a Poisson module [7] over the Poisson
algebra P(M) of Theorem 2. The Poisson module structure is given by the
explicit formulas (6.6) and (6.8) after realizing that these are still well-defined
when only one vector field is spacelike compact (cf. the extensions in (7.13)).
Of course, M(M) becomes a Poisson algebra canonically isomorphic to P(M)
whenever M admits compact Cauchy surfaces.

8. Concluding Remarks

Our construction of the Poisson algebras P(M) in Theorem 2 is rather ab-
stract and in particular it does not use any PDE-analytical properties of the
field equation (4.2) or its linearization (4.7). The existence of Poisson algebras
corresponding to non-linear field equations and their associated presymplec-
tic currents is, therefore, a generic feature of working in a topos theoretic
setting. However, analyzing and proving additional properties of the Poisson
algebras, e.g. the validity of the classical versions of the axioms of locally
covariant quantum field theory [4] including functoriality of the assignment
M 	→ P(M), requires a deeper analytical understanding of the field equation
and its linearization.

One of the main tools available to analyze such additional properties is
the Cauchy problem of the field equation (4.2) and its linearization. We shall
briefly explain how these are formalized in our framework: Given any object
M in Loc and any Cauchy surface Σ, with embedding denoted by j : Σ → M ,
we define a C-morphism

dataΣ :=
(

Rj , ∗Σ ◦ Ωm−1(j) ◦ ∗M ◦ dM

)

: RM −→ RΣ × RΣ, (8.1)

which assigns to a field configuration its “initial position” and “initial velocity”
on Σ. Denoting the C-morphisms Rj : RM → RΣ and Ωm−1(j) : Ωm−1(M) →
Ωm−1(Σ) for notational simplicity by j∗, the components of this natural trans-
formation are given by

dataΣ : RM (t) −→ RΣ(t) × RΣ(t), Φ 	−→ (

j∗(Φ), ∗Σ j∗(∗MdMΦ)
)

. (8.2)
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We say that the Cauchy problem of the non-linear field equation (4.2) is well-
posed on M if

dataΣ : Sol(M) −→ RΣ × RΣ (8.3)

is an isomorphism in C, for any Cauchy surface j : Σ → M .
Well-posedness of the Cauchy problem in our framework is thus equiv-

alent to solve the field equation PM (Φ) = 0 for Φ ∈ C∞(N × M) ⊗R W
for any given initial datum φ, π ∈ C∞(N × Σ) ⊗R W . Notice that these are
Cauchy problems on M , where the field equation and initial conditions are
smoothly parametrized by N and W . As a consequence, the solution theory of
such equations requires a detailed understanding of the smooth parameter and
initial-value dependence of solutions to the ordinary field equation PM (Φ) = 0,
for Φ ∈ C∞(M).

The linearized Cauchy problem can be formalized as follows: Consider
the commutative diagram

TSol(M)
∃!

����������

π

��

TdataΣ

��

data∗
ΣT (RΣ × RΣ)

��
�
�
�

�������� T (RΣ × RΣ)

π

��

Sol(M)
dataΣ

�� RΣ × RΣ

(8.4)

in C, where data∗
ΣT (RΣ × RΣ) → Sol(M) is the pullback along dataΣ of the

tangent bundle of the generalized smooth space of initial data RΣ × RΣ. The
unique C-morphism to data∗

ΣT (RΣ ×RΣ) that is depicted in the diagram (8.4)
has components given by

TSol(M)(t) −→ data∗
ΣT (RΣ × RΣ)(t),

Φ + εΨ 	−→ (

Φ,dataΣ(Φ) + εdataΣ(Ψ)
)

. (8.5)

We say that the linearized Cauchy problem of the non-linear field equation
(4.2) is well-posed on M if this arrow is an isomorphism in C, for any Cauchy
surface j : Σ → M .

Well-posedness of the linearized Cauchy problem can be formulated equiv-
alently in the following more elementary terms: Given any generalized point
Φ : t → Sol(M), then there exists for each generalized point (ψ, χ) : t →
RΣ × RΣ a unique Ψ ∈ C∞(N × M) ⊗R W which satisfies the linearized
equation of motion P lin

M, ΦΨ = 0 around Φ (cf. (4.7)) and the initial condition
dataΣ(Ψ) = (ψ, χ). Again, these are Cauchy problems on M , where the field
equation and initial conditions are smoothly parametrized by N and W .

It is easy to see that if the Cauchy problem is well-posed, then also the
linearized Cauchy problem is well-posed: If dataΣ is an isomorphism, then so
is TdataΣ. The claim then follows from data∗

ΣT (RΣ ×RΣ) � T (RΣ ×RΣ) and
the commutative diagram (8.4).
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A detailed investigation of linearized and in particular non-linear Cauchy
problems in our framework is beyond the scope of this paper and will be
addressed in a future work. There we will also attempt to confirm the classical
versions of the axioms of locally covariant quantum field theory [4] for simple
examples of non-linear field equations (4.2).
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Appendix: Explicit Expression for the Presymplectic Current

In this appendix we compute explicitly the presymplectic current (5.18). This
result is needed to confirm that uM takes values in the generalized smooth
space Ωm−1

d (M)Sol(M).
Let

v : t × Sol(M) −→ TSol(M) (A.1a)

be a generalized point of Γ∞(TSol(M)), i.e. a C-morphism which satisfies the
section condition π ◦ v = prSol(M). The components of v are maps of sets

vt′ : HomFMan(t′, t) × Sol(M)(t′) −→ TSol(M)(t′),

(f,Φ) 	−→ Φ + εΨt′(f,Φ), (A.1b)

where the tangent vectors Ψt′ depend on FMan-morphisms f : t′ → t and the
base point Φ.

Recalling that TSol(M) = Sol(M)D is an exponential object, we can
adjoin D and equivalently regard the generalized point v : t × Sol(M) →
TSol(M) as a C-morphism

ṽ : t × Sol(M) × D −→ Sol(M). (A.2a)

By a short calculation involving Yoneda’s Lemma, we obtain that the compo-
nents of ṽ are given by

ṽt′ : HomFMan(t′, t) × Sol(M)(t′) × HomFMan(t′,D) −→ Sol(M)(t′),

(f,Φ, δ) 	−→ Φ + δ(ε)Ψt′(f,Φ),
(A.2b)
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where on the right-hand-side we have used that the FMan-morphism δ : t′ →
D is by definition a C∞-ring morphism δ : R[ε] → C∞(N ′) ⊗R W ′, where
t′ = N ′ × �W ′.

Next, we address the action of vector fields as directional derivatives on
the generalized smooth space Ωm−1(M)Sol(M) of Ωm−1(M)-valued functions
on Sol(M). A generalized point of Ωm−1(M)Sol(M) is a C-morphism

ζ : t × Sol(M) −→ Ωm−1(M), (A.3a)

and we shall denote its components by

ζt′ : HomFMan(t′, t) × Sol(M)(t′) −→ Ωm−1(M)(t′), (f,Φ) 	−→ ζt′(f,Φ),
(A.3b)

where according to (5.2) ζt′(f,Φ) is an element in Ω0,m−1(N ′ ×M)⊗R W ′, for
t′ = N ′×�W ′. We can compose (A.3) with (A.2) according to the commutative
diagram

t × Sol(M) × D

(prt,ṽ)

��

ζ•ṽ
�� Ωm−1(M)

t × Sol(M)
ζ

																	

(A.4a)

in C. Explicitly, the components of ζ • ṽ are given by

(ζ • ṽ)t′ : HomFMan(t′, t) × Sol(M)(t′) × HomFMan(t′,D) −→ Ωm−1(M)(t′),

(f,Φ, δ) 	−→ ζt′
(

f,Φ + δ(ε)Ψt′(f,Φ)
)

. (A.4b)

Using naturality of the components of ζ, we observe that

ζt′
(

f,Φ + δ(ε)Ψt′(f,Φ)
)

= δ
(

ζt′×D

(

f ◦ prt′ ,Φ + εΨt′(f,Φ)
))

. (A.5)

More explicitly, we expand ζt′×D(f ◦prt′ ,Φ+εΨt′(f,Φ)) ∈ Ω0,m−1(N ′×M)⊗R

W ′ ⊗R R[ε] in terms of ε as

ζt′×D

(

f ◦ prt′ ,Φ + εΨt′(f,Φ)
)

= ζt′
(

f,Φ
)

+ ε v(ζ)t′
(

f,Φ
)

, (A.6)

where the explicit form of the ε0-term follows from the section condition of v
and the ε1-term is defined by this expansion. Then (A.4) is given by

ζt′
(

f,Φ + δ(ε)Ψt′(f,Φ)
)

= ζt′
(

f,Φ
)

+ δ(ε) v(ζ)t′
(

f,Φ
)

, (A.7)

and we define the directional derivative

v(ζ) : t × Sol(M) −→ Ωm−1(M) (A.8a)

of ζ along v by the components

v(ζ)t′ : HomFMan(t′, t) × Sol(M)(t′) −→ Ωm−1(M)(t′),

(f,Φ) 	−→ v(ζ)t′
(

f,Φ
)

. (A.8b)

We can now compute the first term v(θM (v′)) of the presymplectic current
(5.18). The components of

θM (v′) : t × Sol(M) −→ Ωm−1(M) (A.9a)
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can be easily computed by (5.3) and are given by

θM (v′)t′ : HomFMan(t′, t) × Sol(M)(t′) −→ Ωm−1(M)(t′),

(f,Φ) 	−→ −Ψ′
t′(f,Φ) ∗M dMΦ, (A.9b)

where we have used a notation similar to (A.1) for the components v′
t′ :

(f,Φ) 	→ Φ + εΨ′
t′(f,Φ) of v′. Motivated by (A.5) we compute

θM (v′)t′×D

(

f ◦ prt′ ,Φ + εΨt′(f,Φ)
)

= −Ψ′
t′×D

(

f ◦ prt′ ,Φ + εΨt′(f,Φ)
) ∗M dM

(

Φ + εΨt′(f,Φ)
)

= −(

Ψ′
t′(f,Φ) + ε v(Ψ′)t′(f,Φ)

) ∗M dM

(

Φ + εΨt′(f,Φ)
)

, (A.10)

where in the last equality we have used a notation for Ψ′ similar to the one
used in (A.6) for ζ to denote the expansion in ε. Using (A.8), we thus obtain
that the components of the C-morphism

v
(

θM (v′)
)

: t × Sol(M) −→ Ωm−1(M) (A.11a)

are given by

v
(

θM (v′)
)

t′ : HomFMan(t′, t) × Sol(M)(t′) −→ Ωm−1(M)(t′),

(f,Φ) 	−→ −Ψ′
t′(f,Φ) ∗M dMΨt′(f,Φ) − v(Ψ′)t′(f,Φ) ∗M dMΦ. (A.11b)

Simply exchanging v and v′ one gets also the second term in the presymplectic
current (5.18).

It remains to understand the Lie bracket

[ ·, · ] : Γ∞(TSol(M)) × Γ∞(TSol(M)) −→ Γ∞(TSol(M)) (A.12)

involved in the definition of the presymplectic current (5.18). Given two gen-
eralized points v, v′ : t → Γ∞(TSol(M)), we regard them as in (A.2) as
C-morphisms ṽ, ˜v′ : t×Sol(M)×D → Sol(M). Following [15, Chapter 3.2.2],
we define a C-morphism (depending on v and v′)

τ : t × Sol(M) × D × D −→ Sol(M), (A.13a)

by setting for its components

τt′ : HomFMan(t
′, t) × Sol(M)(t′)×HomFMan(t

′, D)×HomFMan(t
′, D) −→ Sol(M)(t′),

(f, Φ, δ1, δ2) �−→ ˜v′
t′

(

f, ṽt′
(

f, ˜v′
t′

(

f, ṽt′
(

f, Φ, δ1

)

, δ2

)

, δ1

)

, δ2

)

, (A.13b)

where δ : R[ε] → C∞(N ′)⊗RW ′, a+ε b 	→ a−δ(ε) b is the C∞-ring morphism
induced by δ : R[ε] → C∞(N ′) ⊗R W ′, a + ε b 	→ a + δ(ε) b and flipping the
sign in front of ε. Using (A.2) and arguments similar to (A.5) and (A.6),
we can expand the components of τ in terms of δ1(ε) and δ2(ε). Using that
δ1(ε)2 = δ1(ε2) = 0 and similarly δ2(ε)2 = δ2(ε2) = 0, this expansion stops at
order δ1(ε) δ2(ε). The component [v, v′]t′ of the Lie bracket is then defined by
setting δ = δ1 · δ2 : R[ε] → C∞(N ′) ⊗R W ′ and then going back from (A.2) to
(A.1). We explicitly obtain that the components of the Lie bracket

[v, v′] : t × Sol(M) −→ TSol(M), (A.14a)
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are given by

[v, v′]t′ : HomFMan(t′, t) × Sol(M)(t′) −→ TSol(M)(t′),

(f,Φ) 	−→ Φ + ε
(

v(Ψ′)t′(f,Φ) − v′(Ψ)t′(f,Φ)
)

, (A.14b)

where v(Ψ′) and v′(Ψ) are defined as in (A.11). With reference to (7.6), we
stress that, for v, v′ generalized points of Γ∞(TscSol(M)), the restriction on
the support is preserved by the Lie bracket. This fact can be directly read off
from the formula and it means that the Lie bracket closes on Γ∞(TscSol(M)).

Combining (A.11) and (A.14), we obtain the following expression for the
components of the presymplectic current (5.18):

uM (v, v′)t′ : HomFMan(t′, t) × Sol(M)(t′) −→ Ωm−1(M)(t′),

(f,Φ) 	−→ Ψt′(f,Φ) ∗M dMΨ′
t′(f,Φ) − Ψ′

t′(f,Φ) ∗M dMΨt′(f,Φ). (A.15)

Applying dM on this expression and recalling that both Ψ′
t′(f,Φ) and

Ψt′(f,Φ) satisfy the linearized field equation (4.7) around the same Φ, it is
easy to confirm that uM (v, v′) is a C-morphism to the generalized smooth
space of closed forms Ωm−1

d (M). For completeness, we add below the rele-
vant calculation using a compact notation where all indices and arguments are
omitted:

d
(

Ψ ∗ dΨ′ − Ψ′ ∗ dΨ
)

= dΨ ∧ ∗dΨ′ + Ψ d ∗ dΨ′ − dΨ′ ∧ ∗dΨ − Ψ′ d ∗ dΨ

=
(

Ψ�Ψ′ − Ψ′ �Ψ
)

vol

= −(

Ψ ρ′(Φ)Ψ′ − Ψ′ ρ′(Φ)Ψ
)

vol = 0. (A.16)

In the first step, we used the Leibniz rule and in the second step the linearized
equation of motion �Ψ(′) + ρ′(Φ)Ψ(′) = 0 and the property dΨ ∧ ∗dΨ′ =
dΨ′ ∧ ∗dΨ of the Hodge operator.
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