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Abstract. Recently, a correspondence has been proposed between spec-
tral theory and topological strings on toric Calabi–Yau manifolds. In this
paper, we develop in detail this correspondence for mirror curves of higher
genus, which display many new features as compared to the genus one
case studied so far. Given a curve of genus g, our quantization scheme
leads to g different trace class operators. Their spectral properties are
encoded in a generalized spectral determinant, which is an entire function
on the Calabi–Yau moduli space. We conjecture an exact expression for
this spectral determinant in terms of the standard and refined topological
string amplitudes. This conjecture provides a non-perturbative definition
of the topological string on these geometries, in which the genus expansion
emerges in a suitable ’t Hooft limit of the spectral traces of the operators.
In contrast to what happens in quantum integrable systems, our quanti-
zation scheme leads to a single quantization condition, which is elegantly
encoded by the vanishing of a quantum-deformed theta function on the
mirror curve. We illustrate our general theory by analyzing in detail the
resolved C

3/Z5 orbifold, which is the simplest toric Calabi–Yau mani-
fold with a genus two mirror curve. By applying our conjecture to this
example, we find new quantization conditions for quantum mechanical
operators, in terms of genus two theta functions, as well as new number-
theoretic properties for the periods of this Calabi–Yau.

1. Introduction

It has been conjectured in [1] that there is a precise correspondence between
the spectral theory of certain operators and local mirror symmetry. This cor-
respondence postulates that the Weyl quantization of mirror curves to toric
Calabi–Yau (CY) threefold leads to trace class operators on L2(R), and that
the spectral determinant of these operators is captured by topological string
amplitudes on the underlying CY. As a corollary, one finds an exact quanti-
zation condition for their spectrum, in terms of the vanishing of a (deformed)
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theta function. The correspondence unveiled in [1] builds upon previous work
on the quantization of mirror curves [2,3] and on the relation between super-
symmetric gauge theories and quantum integrable systems [4]. It incorporates,
in addition, key ingredients from the study of the ABJM matrix model at
large N [5–10]. These ingredients are necessary for a fully non-perturbative
treatment, beyond the perturbative WKB approach of [3] and of other recent
works on the quantization of spectral curves.

The correspondence of [1] between spectral theory and topological
strings can be used to give a non-perturbative definition of the standard topo-
logical string. The (un-refined) topological string amplitudes appear as quan-
tum mechanical instanton corrections to the spectral problem, and due to their
peculiar form, they can be singled out by a ’t Hooft-like limit of the so-called
fermionic spectral traces of the operator. In addition, using the integral ker-
nel of the operator, which was determined explicitly in [11] in many cases,
one can write down a matrix model whose 1/N expansion gives exactly the
genus expansion of the topological string [12,13]. Therefore, one can regard
the correspondence of [1] as a large N Quantum Mechanics/topological string
correspondence, with many features of large N gauge/string dualities. In par-
ticular, it is a strong/weak duality, since the Planck constant in the quantum
mechanical problem, �, is identified as the inverse string coupling constant.

All the examples of the correspondence that have been studied so far
involve local del Pezzo CYs, and their mirror curve has genus one [1,12–14].
It was pointed out in [1] that the relationship between the spectral theory of
trace class operators and topological string amplitudes should hold for gen-
eral toric CYs, i.e., it should hold for mirror curves of arbitrary genus. In this
paper, we present a compelling picture for the spectral theory/mirror symme-
try correspondence in the higher genus case. This generalization involves some
new ingredients. In the theory developed in [1] for the genus one case, the
basic object is the spectral determinant of the trace class operator obtained
by quantization of the mirror curve. It turns out that a curve of genus gΣ leads
to gΣ different operators, which are related by explicit transformations.1 As we
show in this paper, there is, nevertheless, a single, generalized spectral deter-
minant, which is an entire function on the moduli space of the CY manifold.
The spectra of the different operators associated with a higher genus mirror
curve are encoded in a single quantization condition, which is given, as in [1],
by the vanishing of the generalized spectral determinant. This quantization
condition can be formulated in an elegant way as the vanishing of a quantum-
deformed Riemann theta function on the mirror curve; it determines a family
of codimension one submanifolds in moduli space.

The fact that we obtain a single quantization condition from a curve of
genus gΣ might be counter-intuitive to readers familiar with quantum inte-
grable systems, like for example the quantum Toda chain and its generaliza-
tions. In those systems, the quantization of the spectral curve leads to gΣ

1 In this paper, we will denote by gΣ the genus of the mirror curve, which should not be
confused with the genus g appearing in the genus expansion. The former is a spacetime
genus, while the latter is a worldsheet genus.
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quantization conditions. This is of course due to the fact that the underlying
quantum mechanical system is gΣ-dimensional, and there are gΣ commuting
Hamiltonians that can (and should) be diagonalized simultaneously. It should
be noted, however, that the spectral curve by itself does not carry this addi-
tional information. In fact, in the case of quantum mechanical problems on
the real line it is quite common that the quantization of a higher genus curve
leads to a single quantization condition. This is what happens, for example,
for the Schrödinger equation with a confining, polynomial potential of higher
degree.

As we have just mentioned, one of the main consequences of the conjec-
ture of [1] is that it provides a non-perturbative definition of topological string
theory. This can be also generalized to the higher genus case: as we show in
this paper, the generalized spectral determinant leads to fermionic spectral
traces Z(N ; �), depending on gΣ non-negative integers N = (N1, . . . , NgΣ). In
the ’t Hooft limit

� → ∞, Ni → ∞,
Ni

�
= λi fixed, i = 1, . . . , gΣ, (1.1)

these traces have the asymptotic expansion

log Z(N ; �) ∼
∑

g≥0

Fg(λ)�2−2g, (1.2)

where Fg(λ) are the genus g free energies of the topological string, in an appro-
priate conifold frame. In particular, we can regard these fermionic spectral
traces, which are completely well-defined objects, as non-perturbative comple-
tions of the topological string partition function.

The theory of quantum mirror curves of higher genus is relatively intri-
cate, and we develop it in full detail for what is probably the simplest genus two
mirror curve, namely the total resolution of the C

3/Z5 orbifold. We perform
a detailed study of the associated spectral theory, and in particular we deter-
mine the vanishing locus of the spectral determinant on the two-dimensional
moduli space, in the so-called maximally supersymmetric case � = 2π. In addi-
tion, we give compelling evidence that the expansion of the topological string
free energies near what we call the maximal conifold locus gives the large N
expansion of the fermionic spectral traces. This provides a non-perturbative
completion of the topological string on this background. As a bonus, we obtain
non-trivial identities for the values of the periods of this CY at the maximal
conifold locus in terms of the dilogarithm, in the spirit of [15,16].

The organization of this paper is as follows. In Sect. 2, we develop the
theory of quantum operators associated with higher genus mirror curves and we
construct the appropriate generalization of the spectral determinant. In Sect. 3,
we present an explicit, conjectural expression for the spectral determinant in
terms of topological string amplitudes, and we explain how the large N limit
of the spectral traces provides a non-perturbative definition of the all-genus
topological string free energy. In Sect. 4, we test these ideas in detail in the
example of the resolved C

3/Z5 orbifold. In Sect. 5, we conclude and present
some problems for future research. The Appendix summarizes information
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about the special geometry of the resolved C
3/Z5 orbifold which is needed in

Sect. 4.

2. Quantizing Mirror Curves of Higher Genus

2.1. Mirror Curves

In this paper, we will consider mirror curves to toric CY threefold, and we
will promote them to quantum operators. Let us first review some well-known
facts about local mirror symmetry [17,18] and the corresponding algebraic
curves. The toric CY threefold which we are interested in can be described as
symplectic quotients,

X = C
k+3�G, (2.1)

where G = U(1)k. The quotient is specified by a matrix of charges Qα
i , i =

0, . . . , k+2, α = 1, . . . , k. The CY condition requires the charges to satisfy [19]

k+2∑

i=0

Qα
i = 0, α = 1, . . . , k. (2.2)

The mirrors to these toric CYs were constructed in [17,20,21]. They can be
written in terms of 3+ k complex coordinates Y i ∈ C

∗, i = 0, . . . , k +2, which
satisfy the constraint

k+2∑

i=0

Qα
i Y i = 0, α = 1, . . . , k. (2.3)

The mirror CY manifold X̂ is given by

w+w− = WX , (2.4)

where

WX =
k+2∑

i=0

xieYi . (2.5)

The complex parameters xi, i = 0, . . . , k+2, give a redundant parametrization
of the moduli space, and some of them can be set to one. Equivalently, we can
consider instead the coordinates

zα =
k+2∏

i=0

x
Qα

i
i , α = 1, . . . , k. (2.6)

The constraints (2.3) have a three-dimensional family of solutions. One of the
parameters corresponds to a translation of all the coordinates:

Y i → Y i + c, i = 0, . . . , k + 2, (2.7)

which can be used for example to set one of the Y is to zero. The remaining
coordinates can be expressed in terms of two variables which we will denote
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by x, y. There is still a group of symmetries left, given by transformations of
the form [22],

(
x
y

)
→ G

(
x
y

)
, G ∈ SL(2, Z). (2.8)

After solving for the variables Y i in terms of x, y, one finds a function

WX(ex, ey), (2.9)

which, due to the translation invariance (2.7) and the symmetry (2.8), is only
well defined up to an overall factor of the form eλx+μy, λ, μ ∈ Z, and a trans-
formation of the form (2.8). The equation

WX(ex, ey) = 0 (2.10)

defines a Riemann surface Σ embedded in C
∗ × C

∗. We will call (2.10) the
mirror curve to the toric CY threefold X. All the information about the closed
string amplitudes on X̂ is encoded in Σ, as shown in [23–25].

The equation of the mirror curve (2.10) can be written down in detail as
follows. Given the matrix of charges Qα

i , we introduce the vectors,

ν(i) =
(
1, ν

(i)
1 , ν

(i)
2

)
, i = 0, . . . , k + 2, (2.11)

satisfying the relations
k+2∑

i=0

Qα
i ν(i) = 0. (2.12)

In terms of these vectors, the function (2.9) can be written as

WX(ex, ey) =
k+2∑

i=0

xi exp
(
ν

(i)
1 x + ν

(i)
2 y
)

. (2.13)

Clearly, there are many sets of vectors satisfying these constraints, but they
differ in reparametrizations and overall factors (as we explained above) and,
therefore, they define the same Riemann surface. The genus of this Riemann
surface, gΣ, depends on the toric data, encoded in the matrix of charges, or
equivalently in the vectors νi. Among the parameters (2.6), there will be gΣ

“true” moduli of the geometry, and in addition there will be rΣ “mass parame-
ters”, which lead typically to rational mirror maps (this distinction has been
emphasized in [26,27]).

2.2. Quantization

The quantization of mirror curves studied in [1], building on [2,3], is simply
based on Weyl quantization of the function (2.9), i.e., the variables x, y are
promoted to Heisenberg operators x, y satisfying

[x, y] = i�. (2.14)

In the genus one case, when the CY is the canonical bundle over a del Pezzo
surface S,

X = O(KS) → S, (2.15)
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the function (2.9) can be written in a canonical form, as

WS(ex, ey) = OS(x, y) + u, (2.16)

where u is the modulus of the Riemann surface. The quantum operator associ-
ated with the toric CY threefold, OS , is obtained by Weyl quantization of the
function OS(x, y), and u plays the rôle of (minus) the exponentiated energy,
or the fugacity.

The higher genus case is much richer, due to the fact that there are gΣ

different moduli for the curve. As a consequence, there will be gΣ different
“canonical” forms for the curve, which we will write as

Oi(x, y) + κi = 0, i = 1, . . . , gΣ. (2.17)

Here, κi is a modulus of Σ, and in practice it is one of the xjs appearing in
(2.13). Of course, the different canonical forms of the curves are related by
reparametrizations and overall factors, so we will write

Oi + κi = Pij (Oj + κj) , i, j = 1, . . . , gΣ, (2.18)

where Pij is a monomial of the form eλx+μy. Equivalently, we can write

Oi = O(0)
i +

∑

j �=i

κjPij . (2.19)

We can now perform a standard Weyl quantization of the operators Oi(x, y).
In this way, we obtain gΣ different operators, which we will denote by Oi,
i = 1, . . . , gΣ. These operators are Hermitian. The relation (2.18) becomes,

Oi + κi = P
1/2
ij (Oj + κj)P

1/2
ij , i, j = 1, . . . , gΣ, (2.20)

where Pij is the operator corresponding to the monomial Pij . In this relation,
the “splitting” of Pij in two square roots is due to the fact that we are using
Weyl quantization, which leads to Hermitian operators. The expression (2.19)
becomes, after promoting both sides to operators,

Oi = O
(0)
i +

∑

j �=i

κjPij . (2.21)

We can regard the operator O
(0)
i as an “unperturbed” operator, while the

moduli κj encode different perturbations of it. We will also need,

ρ
(0)
i =

(
O

(0)
i

)−1

, i = 1, . . . , gΣ. (2.22)

By comparing the coefficients of κj in the relation (2.20), we find

Pij = P−1
ji (2.23)

and

Pik = P
1/2
ij PjkP

1/2
ij , i �= k. (2.24)

Amusingly, these relationships are a sort of non-commutative version of the
the relations between transition functions in the theory of bundles. We will
set, by convention,

Pii = 1, i = 1, . . . , gΣ. (2.25)
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We also have

O
(0)
i = P

1/2
ij O

(0)
j P

1/2
ij . (2.26)

Before proceeding, let us examine some examples to illustrate the considera-
tions above.

Example 2.1. The resolved C
3/Z5 orbifold. Let us consider the CY given by the

total resolution of the orbifold C
3/Z5, where the action has weights (3, 1, 1).

This geometry has been studied in detail in various references, like for example
[28–31], and (refined) topological string amplitudes on this background have
been recently calculated in [27]. The vectors of charges are given by

Q1 = (−3, 1, 1, 1, 0), Q2 = (1, 0, 0,−2, 1). (2.27)

To parametrize the moduli space, we introduce five variables x0, . . . , x5, as well
as the combinations

z1 =
x1x2x3

x3
0

,

z2 =
x0x4

x2
3

. (2.28)

A useful choice of vectors for this example is

ν(0) = (1, 0, 0),

ν(1) = (1, 1, 0),

ν(2) = (1, 0, 1),

ν(3) = (1,−1,−1),

ν(4) = (1,−2,−2), (2.29)

and the equation for the Riemann surface reads, after setting x1 = x2 = x4 =
1,

ex + ey + e−2x−2y + x3e−x−y + x0 = 0. (2.30)

However, it is easy to see that one can also choose the vectors

ν(0) = (1,−1, 0),

ν(1) = (1, 0, 1),

ν(2) = (1,−3,−1),

ν(3) = (1, 0, 0),

ν(4) = (1, 1, 0), (2.31)

which leads to the equation

ex + ey + e−3x−y + x0e−x + x3 = 0. (2.32)

In Fig. 1, we show the vectors νi for the system (2.31) (this is sometimes
called a height one slice of the fan (2.31)). Of course, although we have chosen
the same notations, the variables x, y appearing in (2.32) are not the same ones
appearing in (2.30). Rather, they are related by a canonical transformation,

− x − y → x, 2x + y → y. (2.33)
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Figure 1. A height one slice of the vectors (2.31), providing
the toric data for the resolved C

3/Z5 orbifold

In this case, the two canonical functions O1(x, y) and O2(x, y) are given by

O1(x, y) = ex + ey + e−2x−2y + x3e−x−y,

O2(x, y) = ex + ey + e−3x−y + x0e−x, (2.34)

and the moduli are

κ1 = x0, κ2 = x3. (2.35)

In the coordinates appropriate for O1(x, y), we have P12 = e−x−y, while in
the coordinates appropriate for O2(x, y), we have P21 = e−x. In terms of the
three-term operators introduced in [11],

Om,n = ex + ey + e−mx−ny, (2.36)

the unperturbed operators are

O
(0)
1 = O2,2, O

(0)
2 = O3,1. (2.37)

The theory of the operators (2.36) has been developed in some detail in [11],
and it will be quite useful to test some of our results later on. �
Example 2.2. The resolved C

3/Z6 orbifold, or A2 geometry. Let us now con-
sider the total resolution of the orbifold C

3/Z6, where the action has weights
(4, 1, 1). This is precisely the A2 geometry studied in the first papers on local
mirror symmetry [17,18], which engineers geometrically SU(3) Seiberg–Witten
theory. It has also been studied in some detail in [27]. In this case, the charge
vectors are

Q1 = (−2, 1, 0, 0, 1, 0), Q2 = (1,−2, 1, 0, 0, 0),
Q3 = (0, 0, 0, 1,−2, 1). (2.38)

Like before, we can parametrize the moduli space with six coordinates xi,
i = 0, . . . , 5, or in terms of

z1 =
x1x4

x2
0

, z2 =
x0x2

x2
1

, z3 =
x3x5

x2
4

. (2.39)

A useful choice of vectors is,

ν(0) = (1,−1, 0),

ν(1) = (1, 0, 0),
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ν(2) = (1, 1, 0),

ν(3) = (1, 0, 1),

ν(4) = (1,−2, 0),

ν(5) = (1,−4,−1), (2.40)

and after setting x2 = x3 = x5 = 1, we find the curve

ex + ey + e−4x−y + x4e−2x + x0e−x + x1 = 0. (2.41)

The true moduli of the curve are x0, x1, while x4 is a mass parameter. Note
that the Batyrev coordinate z3 depends only on x4. It is easy to see that there
is another realization of the curve above as

e2x + ey + e−y−2x + x4e−x + x1ex + x0 = 0. (2.42)

The canonical operators associated with this geometry can be obtained by
Weyl quantization of

O1(x, y) = ex + ey + e−4x−y + x4e−2x + x0e−x,

O2(x, y) = e2x + ey + e−y−2x + x4e−x + x1ex. (2.43)

They can be regarded as perturbations of O4,1, and of O1,1, respectively. �
It was noted in [1], in the genus one case, that the most interesting

operator was not really OS , but rather its inverse ρS . The reason is that ρS is
expected to be of trace class and positive definite; therefore it has a discrete,
positive spectrum, and its Fredholm (or spectral) determinant is well defined. It
was rigorously proved in [11] that, in many examples, this is the case, provided
the parameters appearing in the operators satisfy certain positivity conditions.
In analogy with the genus one case, we expect the operators

ρi = O−1
i , i = 1, . . . , gΣ (2.44)

to exist, be of trace class and positive definite. In the concrete examples that
we have considered, this actually follows from the results in [11]. In that paper,
it was shown that

ρm,n = O−1
m,n (2.45)

exists and is of trace class. It was also shown that the inverse of

Om,n + V, (2.46)

where V is positive and self-adjoint, is also of trace class. Clearly, the operators
obtained by Weyl quantization of (2.34) and (2.43) are of this type.

2.3. The Generalized Spectral Determinant

According to the conjecture of [1], when the mirror curve has genus one, many
important aspects of the spectral theory of ρX can be encoded in the topo-
logical string amplitudes on X. We would like to generalize this to mirror
curves of higher genus. What are the natural questions that we would like
to answer from the point of view of spectral theory? Clearly, we would like
to know the spectrum of the operators Oi in terms of enumerative data of
X, and in addition, as in [1], we would like to have precise formulae for the
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spectral determinants of their inverses ρi. However, one should note that, due
to (2.20), the operators ρi are closely related, and their spectra and spectral
determinants are not independent.

In a more fundamental sense, we need an appropriate multivariable gen-
eralization of the spectral determinant. In the genus one case, when X is a local
del Pezzo of the form (2.15), there is one single modulus κ, and the spectral
determinant

ΞS(κ, �) = det (1 + κρS) (2.47)

can be defined in at least three equivalent ways (see [32,33] for a detailed
discussion of this issue). The first one is as an infinite product,

ΞS(κ, �) =
∏

n≥0

(
1 + κe−En

)
, (2.48)

where we denoted the eigenvalues of the positive definite, trace class operator
ρS by e−En , n = 0, 1, . . .. A more useful definition, advocated by Grothendieck
[34] and Simon [32,33], involves the fermionic spectral traces ZS(N, �) defined
as

ZS(N, �) = Tr
(
ΛN (ρS)

)
, N = 1, 2, . . . (2.49)

In this expression, the operator ΛN (ρS) is defined by ρ⊗N
S acting on

ΛN
(
L2(R)

)
. A theorem of Fredholm [35] asserts that, if ρS(xi, xj) is the ker-

nel of ρS , the fermionic spectral trace can be computed as a multi-dimensional
integral,

ZS(N, �) =
1

N !

∫
det (ρS(xi, xj)) dNx. (2.50)

The spectral determinant is then given by the convergent series,

ΞS(κ, �) = 1 +
∞∑

N=1

ZS(N, �)κN . (2.51)

Another definition of the Fredholm determinant is based on the Fredholm–
Plemelj’s formula,

ΞS(κ, �) = exp

{
−

∞∑

�=1

(−κ)�

�
Trρ�

S

}
. (2.52)

In the higher genus case, there should exist a generalization of the spectral
determinant (2.47), depending on all the moduli κ1, . . . , κgΣ . We also expect to
have spectral traces depending on various integers Ni, i = 1, . . . , gΣ. One moti-
vation for this comes from the connection between fermionic spectral traces
and matrix models developed in [12,13]: in the higher genus case, we expect
to have a multi-cut matrix model, and there should be as many cuts as true
moduli in the model.

To construct this generalization, we consider the following operators,

Ajl = ρ
(0)
j Pjl, j, l = 1, . . . , gΣ. (2.53)
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The operators ρ
(0)
j were defined in (2.22), while the operators Pjl are defined

by (2.20). We will assume that the Ajl are of trace class (this can be verified
in concrete examples). We now define the generalized spectral determinant as

ΞX(κ; �) = det (1 + κ1Aj1 + · · · + κgΣAjgΣ) . (2.54)

This definition does not depend on the index j: from the relationships (2.26)
and (2.24), we find

Ail = P
−1/2
ij AjlP

1/2
ij . (2.55)

Different choices of the index lead to operators related by a similarity transfor-
mation, and their determinants are equal. The generalized spectral determi-
nant (2.54) can be of course regarded as the conventional spectral determinant
of the operator

κ1Aj1 + · · · + κgΣAjgΣ . (2.56)

As shown in [33], if the operators Ajl are of trace class, as we are assuming here,
(2.54) is an entire function on the moduli space parametrized by κ1, . . . , κgΣ .
This function can be expanded around the origin κ = 0 as follows:

ΞX(κ; �) =
∑

N1≥0

· · ·
∑

NgΣ≥0

ZX(N ; �)κN1
1 · · · κNgΣ

gΣ , (2.57)

with the convention that

ZX(0, . . . , 0; �) = 1. (2.58)

This expansion defines the (generalized) fermionic spectral traces ZX(N ; �),
as promised. These are crucial in our construction, since they will provide a
non-perturbative definition of the topological string partition function on X.
Fredholm’s formula (2.50) can be now used to give an explicit expression for
these traces. We have

ΞX(κ; �) =
∑

N≥0

1
N !

∑

σ∈SN

(−1)ε(σ)

∫
dNx

×
N∏

i=1

(
∑

�

κ�Aj�

(
xi, xσ(i)

)
)

, (2.59)

where SN is the permutation group of N elements, and we denote by
Ajl(xm, xn) the kernels of the operators defined in (2.53). For fixed N1, . . . NgΣ

we can count the terms in (2.59) that contribute to

κN1
1 · · · κNgΣ

gΣ . (2.60)

In particular, this means that we pick up Ni of the Aji. It follows that
ZX(N ; �) in (2.57) is given by

ZX(N ; �) =
1

N1! · · · NgΣ !

∫
detm,n (Rj(xm, xn)) dNx, (2.61)
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where

N =
gΣ∑

s=1

Ns, (2.62)

and

Rj(xm, xn) = Ajl(xm, xn) if
l−1∑

s=1

Ns < m ≤
l∑

s=1

Ns. (2.63)

As we showed above, the definition does not depend on the choice of j =
1, . . . gΣ. Note that the expansion (2.57) has detailed information about the
traces of all the operators Aji and their products.

Let us write some of the above formula in the case gΣ = 2, since we will
use them later in the paper. In this case, the fermionic spectral traces can be
written as

ZX(N1, N2; �)

=
1

N1!N2!

∫
det

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

Aj1(x1, x1) · · · Aj1(x1, xN )
...

...
Aj1(xN1 , x1) · · · Aj1(xN1 , xN )

Aj2(xN1+1, x1) · · · Aj2(xN1+1, xN )
...

...
Aj2(xN , x1) · · · Aj2(xN , xN )

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

dx1 · · · dxN . (2.64)

One finds, for example,

ZX(1, 1; �) = TrAj1 TrAj2 − Tr (Aj1Aj2)

=
∫

dx1dx2 (Aj1(x1, x1)Aj2(x2, x2)

−Aj1(x1, x2)Aj2(x2, x1)) , (2.65)

as well as

ZX(2, 1; �) = Tr
(
A2

j1Aj2

)− 1
2
Tr
(
A2

j1

)
TrAj2

+
1
2

(TrAj1)
2 TrAj2 − TrAj1 Tr (Aj1Aj2) ,

ZX(1, 2; �) = Tr
(
Aj1A

2
j2

)− 1
2
TrAj1 Tr

(
A2

j2

)

+
1
2
TrAj1 (TrAj2)

2 − Tr (Aj1Aj2) TrAj2. (2.66)

As we mentioned above, the integral (2.61) should be regarded as a generalized
multi-cut matrix model integral.

What is the motivation for the definition (2.54)? We should expect the
generalized spectral determinant to contain information about the operators
(2.44). To see that this is the case, let us consider the spectral determinant

det (1 + κ1ρ1) . (2.67)
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Using Fredholm–Plemelj’s formula (2.52), the log of this function can be com-
puted as

−
∞∑

�1=1

(−κ1)�1

�1
Tr
(
O

(0)
1 + P1

)−�1
, (2.68)

where

P1 =
∑

j �=1

κjP1j . (2.69)

We first note that

Tr
(
O

(0)
1 + P1

)−�

= Tr

⎡

⎣
(

ρ
(0)
1

1

1 + ρ
(0)
1 P1

)�
⎤

⎦ . (2.70)

By expanding each denominator in a geometric power series, we find that
(2.68) is given by

−
∑

�1≥1

∑

�2≥0

· · ·
∑

�gΣ≥0

1
�1 + · · · + �gΣ

(−κ1)�1 · · · (−κgΣ)�gΣ
∑

W∈W�

Tr(W ).(2.71)

In this equation,

� = (�1, . . . , �gΣ) (2.72)

and W� is the set of all possible “words” made of �i copies of the letters A1i

defined in (2.53). It is easy to see that (2.71) is almost identical to

JX(κ; �) = log ΞX(κ; �)

= −
∑

�≥1

(−1)�

�
Tr (κ1A11 + · · · + κgΣA1gΣ)�

= −
∑

�1≥0

∑

�2≥0

· · ·
∑

�gΣ≥0

1
�1 + · · · + �gΣ

(−κ1)�1 · · · (−κgΣ)�gΣ

×
∑

W∈W�

Tr(W ), (2.73)

except that all the terms have a strictly positive power of κ1. It follows that

det (1 + κ1ρ1) =
ΞX(κ; �)

ΞX((0, κ2, . . . , κgΣ); �)
. (2.74)

In addition, a simple inductive argument shows that

ΞX(κ; �) = det (1 + κ1ρ1)

×det
(

1 + κ2ρ2

∣∣∣
κ1=0

)

· · · det
(

1 + κgΣρgΣ

∣∣∣
κ1=···=κgΣ−1=0

)
. (2.75)
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In this derivation, we have taken as our starting point the operator ρ1 and
its spectral determinant, but it is clear that we could have used any other
operator ρi, i = 1, . . . , gΣ. In particular, we have

det (1 + κiρi) =
ΞX(κ; �)

ΞX (κ1, . . . , κi−1, 0, κi+1, . . . , κgΣ ; �)
, i = 1, . . . , gΣ.

(2.76)

If we set all moduli to zero in (2.76), except for κi, we find

det
(
1 + κiρ

(0)
i

)
= ΞX(0, . . . , 0, κi, 0, . . . , 0; �), i = 1, . . . , gΣ. (2.77)

Therefore, the generalized spectral determinant specializes to the spectral
determinant of the unperturbed operators appearing in the different canon-
ical forms of the curve. We will see, for example, that the generalized spectral
determinant associated with the resolved C

3/Z5 geometry gives, after suitable
specializations, the spectral determinants of the operators ρ3,1 and ρ2,2.

The attentive reader has probably noticed that the operators Ajl defined
in (2.53) are not Hermitian, in general. However, the generalized spectral traces
defined by (2.57) are real (for real �). This follows immediately from (2.75),
which expresses (2.54) as a product of spectral determinants of Hermitian
operators.

The generalized spectral determinant (2.54) vanishes in a codimension
one submanifold of the moduli space. This submanifold is a global analytic
set, since it is determined by the vanishing of an entire function (see [36]). It
contains all the required information about the spectrum of the operators ρi

appearing in the quantization of the mirror curve. For example, it follows from
(2.76) that it gives the spectrum of eigenvalues e−E(i)

n of a given operator ρi,
as a function of the other moduli κj , j �= i. Since this holds for the different
operators ρk, k = 1, . . . , gΣ, it follows that their spectra are closely related.
Heuristically, this can be already seen from (2.20). Let us suppose that |ψ(i)

n 〉
is an eigenstate of Oi, with eigenvalue λ

(i)
n , i.e.,

Oi|ψ(i)
n 〉 = λ(i)

n |ψ(i)
n 〉. (2.78)

Note that the operator Oi depends on the moduli κl, with l �= i. Then, using
(2.20), we find that

|ψ(j)
n 〉 = P

1/2
ij |ψ(i)

n 〉 (2.79)

satisfies

Oj |ψ(j)
n 〉 = OjP

1/2
ij |ψ(i)

n 〉
= P

−1/2
ij

(
Oi − λ(i)

n

)
|ψ(i)

n 〉 − κjP
1/2
ij |ψ(i)

n 〉
= −κj |ψ(j)

n 〉. (2.80)

The operator Oj depends on the moduli κl, with l �= j. For l �= i, the κl are
the same ones appearing in the operator Oi, while the value of κi is −λ

(i)
n . Of

course, since P
1/2
ij is not bounded, the relation (2.79) only holds if the square
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integrability of the wavefunction is not jeopardized. This is the case in the
examples that we have looked at, like the resolved C

3/Z5 orbifold.
Interestingly, the codimension one submanifold determined by the van-

ishing of the generalized spectral determinant has been recently proposed as
the natural definition of the joint spectrum of the gΣ-tuple of non-commuting
operators Aj1, . . . ,AjgΣ [36,37].

2.4. Comparison to Quantum Integrable Systems

In the theory that we have developed in the previous sections, the quantization
process leads to gΣ different operators. However, these operators are related
by reparametrizations of the coordinates and the relation (2.20). In particular,
there is a single quantization condition for all of them, given by the vanishing of
the generalized spectral determinant (2.54), as in [1]. This vanishing condition
selects a discrete family of codimension one submanifolds in the moduli space
parametrized by κ1, . . . , κgΣ . We will determine this family in some detail in
the case of the C

3/Z5 orbifold.
As we mentioned in the Introduction, our quantization scheme might

be counter-intuitive for readers familiar with quantum integrable systems, in
which the quantization of a genus gΣ spectral curve leads typically to gΣ quan-
tization conditions. To appreciate the difference between the two quantization
schemes, let us review in some detail the case of the periodic Toda chain of N
sites. This system is classically integrable, with gΣ = N − 1 Hamiltonians in
involution (see [38] for an excellent exposition of the classical chain). In the
quantum theory, the Hamiltonians can be diagonalized simultaneously and one
obtains in this way gΣ quantization conditions that determine their spectrum
completely [39,40]. An elegant way to obtain the spectrum is using Baxter’s
equation [41,42], which in the case of the Toda chain is given by,

iNQ(x + i�) + i−NQ(x − i�) = Λ(x)Q(x), (2.81)

where

Λ(x) = xN −
N−1∑

j=1

xN−1−jκj . (2.82)

The κj can be interpreted as the Hamiltonians of the Toda chain. It was shown
in [42] that, by requiring Q(x) to be an entire function which decays sufficiently
fast at infinity, one recovers the quantization conditions of [39,40].

Baxter’s equation can be obtained by formally “quantizing” the spectral
curve of the Toda chain, which can be written as

2 cosh y = Λ(x). (2.83)

The conserved Hamiltonians κ1, . . . , κgΣ are the moduli of the curve. The vari-
ables y and x can be regarded as canonically conjugate variables, in which y
plays the rôle of the momentum. To quantize (2.83), we promote x, y to Heisen-
berg operators. In the position representation, we have

y → −i�
d
dx

. (2.84)
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If we now regard (2.83) as an operator equation, acting on a wavefunction of
the form

ψ(x) = exp
(

Nπ

2�

)
Q(x), (2.85)

we recover Baxter’s equation (2.81). As already noted by Gutzwiller [39,40],
this procedure is purely formal, since the spectral curve (2.83) does not deter-
mine by itself the conditions that Q(x) has to satisfy, and one needs additional
information. A more detailed analysis [39,40,43,44] shows that this informa-
tion is provided by the standard L2(RgΣ) integrability of the original many-
body problem, which forces Q(x) to be entire and to decay at infinity in a
prescribed way.

The resulting quantization conditions can be also analyzed in a WKB
approximation [42]. If we use an ansatz for the wavefunction (2.85) of the
form,

ψ(x) ∼ exp
{

− i

�
S(x; �)

}
, (2.86)

where

S(x; �) =
∑

n≥0

�
nSn(x), (2.87)

the leading term is determined by S′
0(x) = y(x), where y(x) solves the equation

for the spectral curve (2.83), as expected. Based on the all-order WKB solution
(2.87), we can define a “quantum” differential as

λ = ∂xS(x; �)dx. (2.88)

Analyticity of Q(x) leads to all-order Bohr–Sommerfeld quantization condi-
tions,

∮

Bi

λ = 2π�ni, i = 1, . . . , gΣ, (2.89)

where Bi are appropriate cycles on the curve (2.83). It was conjectured in
[4] that these conditions can be derived from the Nekrasov–Shatashvili (NS)
limit of the instanton partition function of SU(N), N = 2 Yang–Mills theory.
This limit leads to a quantum-deformed prepotential FNS(a; �), where a =
(a1, . . . , agΣ) are flat coordinates parametrizing the Coulomb branch and gΣ =
N − 1 is the genus of the Seiberg–Witten curve. The conjecture of [4] states
that the periods appearing in (2.89) are related to this prepotential by

∂FNS

∂ai
=
∮

Bi

λ, i = 1, . . . , gΣ. (2.90)

In addition, the flat coordinates ai are related to the κ1, . . . , κgΣ through a
“quantum” mirror map,

ai =
∮

Ai

λ, i = 1, . . . , gΣ, (2.91)
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B2B2

κ2

κ1

B1

Figure 2. In the quantum Toda lattice, the quantum spec-
tral curve leads to gΣ = N −1 quantization conditions, which
select an infinite set of points in the moduli space parame-
trized by κ1, . . . , κgΣ . We show a cartoon of this situation in
the case gΣ = 2, which should be compared to the actual
calculation in Figure 4 of [48]

where Ai are appropriate cycles on the spectral curve. This conjecture was
verified, in the very first orders of the perturbative WKB expansion, in [45,46].
Additional evidence for this claim has been also provided in for example [47].

Therefore, in the case of quantum integrable systems of the Toda type,
one has gΣ quantization conditions, which in the all-order WKB quantiza-
tion can be written as in (2.89). The solution to these conditions on the gΣ-
dimensional moduli space parametrized by the Hamiltonians κ1, . . . , κgΣ is a
set of points, i.e., a submanifold of codimension gΣ. In Fig. 2, we show a car-
toon of how the quantization conditions, in the case of gΣ = 2, lead to such a
discrete spectrum. This cartoon should be compared to Figure 4 of [48], which
shows the result of the actual calculation.

As we already noted, the quantum version of the Toda spectral curve does
not lead by itself to a well-defined spectral problem: one needs additional con-
ditions that follow from a detailed analysis of the original integrable system,
which has gΣ Hamiltonians in involution and requires gΣ quantization condi-
tions. However, this does not mean that a curve of genus gΣ should always
lead, after quantization, to gΣ quantization conditions. The simplest example
showing that this is not the case is a one-dimensional particle in an (even)
confining potential, with a classical Hamiltonian

H(x, y) =
y2

2
+ V (x), V (x) = x2N + cN−1x

2(N−2) + · · · + c0. (2.92)

The curve

H(x, y) = E (2.93)

has genus gΣ = N − 1. The “quantization” of this curve leads to a standard
eigenvalue problem for a Schrödinger equation with potential V (x). For real ci,
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κ1

κ2

Figure 3. The quantization of a higher genus mirror curve
leads to a single quantization condition, which defines a dis-
crete family of codimension one submanifolds in moduli space.
Here, the κi should be understood as −eEi , where Ei are the
energies. This cartoon should be compared to the actual cal-
culation for the resolved C

3/Z5 geometry and � = 2π, in Fig. 5

i = 0, . . . , N −1, the spectrum is real and discrete, and there should be a single
quantization condition, expressing the energy E as a function of the parameter
ci and the quantum number n. Semiclassically, and for E sufficiently large, the
quantization condition is simply given by the Bohr–Sommerfeld rule,

∮

B

y(x)dx = 2π�n, n = 0, 1, . . . , (2.94)

where B is the cycle associated with the turning points of the classical motion.
Therefore, although the curve (2.92) has genus N − 1, when interpreted as
describing a particle in an even, confining potential, its quantum version should
lead to a single quantization condition, associated with the preferred cycle
B. One could think that the other cycles of the higher genus curve do not
play a rôle. However, this is not so. The reason is that, in the exact WKB
method, one should consider complex trajectories around all possible cycles
of the underlying curve, and these trajectories will lead to complex instanton
corrections to (2.94), as first pointed out in the seminal paper [49,50].

The quantization of higher genus mirror curves considered in this paper is
in fact very similar to the quantization of the curve (2.93): there is in principle
no need to specify gΣ quantization conditions, since (at least in the cases we
have considered) the relevant operators Oi have a well-defined discrete, pos-
itive spectrum which is determined by a single quantization condition. This
condition determines a discrete family of codimension one submanifolds in
moduli space. A cartoon for what we expect when gΣ = 2 is shown in Fig. 3.
At the same time, our quantization scheme leads to a genuine gΣ-dimensional
problem, as reflected in the fact that we have gΣ different operators and our
generalized fermionic spectral traces depend on gΣ different integers. Our goal
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will be to determine the quantization condition, as well as the generalized
spectral determinant (2.54) and spectral traces, from the topological string
amplitudes on X. The cartoon in Fig. 3 can be compared to the actual calcu-
lation of such a family in the example of the resolved C

3/Z5 geometry, and for
� = 2π in Fig. 5.

3. Spectral Determinants and Topological Strings

3.1. A Conjecture for the Generalized Spectral Determinant

We will now state our main conjecture, which generalizes [1] to the higher
genus case, and provides an explicit expression for the generalized spectral
determinant (2.54) in terms of topological string amplitudes. As in [1], the key
object is the (modified) grand potential introduced in [9].

To state the conjecture, let us first recall some basic geometric ingredients.
As we noted above, in the geometry there are gΣ moduli, κi, i = 1, . . . , gΣ, and
rΣ mass parameters, ξj , j = 1, . . . , rΣ. We will also parametrize the moduli
through the “chemical potentials” μi, defined by

κi = eμi , i = 1, . . . , gΣ. (3.1)

The Batyrev coordinates zi can be written as

− log zi =
gΣ∑

j=1

Cijμj +
rΣ∑

k=1

αik log ξk, i = 1, . . . , gΣ + rΣ. (3.2)

The coefficients Cij determine a (gΣ + rΣ) × gΣ matrix which can be read off
from the toric data of X. It is possible to choose the Batyrev coordinates in
such a way that, for i = 1, . . . , gΣ, the zis correspond to true moduli, while
for i = gΣ + 1, . . . , gΣ + rΣ, they correspond to mass parameters. For such a
choice, the non-vanishing coefficients

Cij , i, j = 1, . . . , gΣ, (3.3)

form an invertible matrix, which agrees (up to an overall sign) with the charge
matrix Cij appearing in [27]. The classical mirror map expresses the large
radius, Kähler parameters ti of the CY in terms of the Batyrev coordinates zi.
As first shown in [3], the classical mirror map can be promoted to a quantum
mirror map ti(�) which depends now on �. Explicit expressions for the quan-
tum mirror map can be obtained in various ways, see for instance [51,52] for
examples.

In addition to the quantum mirror map, we need various enumerative
ingredients from topological string theory. First of all, we need the conventional
genus g free energies Fg(t) of X, g ≥ 0, in the so-called large radius frame.
These free energies are given by a “classical” or perturbative part, plus a
series of worldsheet instanton corrections which can be regarded as generating
functionals for the Gromov–Witten invariants of X. The genus zero free energy
is given by
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F0(t) =
1
6
aijktitjtk +

∑

d

Nd
0 e−d·t. (3.4)

At genus one, one has

F1(t) = biti +
∑

d

Nd
1 e−d·t, (3.5)

while at higher genus one finds

Fg(t) = Cg +
∑

d

Nd
g e−d·t, g ≥ 2. (3.6)

In these formulae, Nd
g are the Gromov–Witten invariants of X at genus g and

multi-degree d. The coefficients aijk, bi in (3.4), (3.5) are cubic and linear cou-
plings characterizing the perturbative genus zero and genus one free energies,
while Cg in (3.6) is the so-called constant map contribution [53]. The total free
energy of the topological string is defined as the formal series,

FWS (t, gs) =
∑

g≥0

g2g−2
s Fg(t)

= F (p)(t, gs) +
∑

g≥0

∑

d

Nd
g e−d·tg2g−2

s , (3.7)

where

F (p)(t, gs) =
1

6g2
s

aijktitjtk + biti +
∑

g≥2

Cgg
2g−2
s (3.8)

and gs is the topological string coupling constant. As it is well known [54],
the sum over Gromov–Witten invariants in (3.7) can be resummed order by
order in exp(−ti), at all orders in gs. This resummation involves a new set
of enumerative invariants, the so-called Gopakumar–Vafa (GV) invariants nd

g .
Out of these invariants, one constructs the generating series

FGV (t, gs) =
∑

g≥0

∑

d

∞∑

w=1

1
w

nd
g

(
2 sin

wgs

2

)2g−2

e−wd·t, (3.9)

and one has, as an equality of formal series,

FWS (t, gs) = F (p)(t, gs) + FGV (t, gs) . (3.10)

One can generalize the Gopakumar–Vafa invariants to define the so-called
refined BPS invariants [55–57]. These invariants depend on the degrees d and
on two non-negative half-integers, jL, jR. We will denote them by Nd

jL,jR
, and

they are also integers. The Gopakumar–Vafa invariants are particular combi-
nations of these refined BPS invariants, and one has the following relationship
between generating functionals,

∑

jL,jR

χjL
(q)(2jR + 1)Nd

jL,jR
=
∑

g≥0

nd
g

(
q1/2 − q−1/2

)2g

, (3.11)
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where q is a formal variable and

χj(q) =
q2j+1 − q−2j−1

q − q−1
(3.12)

is the SU(2) character for the spin j. We note that the sums in (3.11) are
well defined, since for given degrees d only a finite number of jL, jR, g give a
non-zero contribution. Out of these refined BPS invariants, one can define the
so-called NS free energy,

FNS(t, �) =
1
6�

aijktitjtk + bNS
i ti�

+
∑

jL,jR

∑

w,d

Nd
jL,jR

sin �w
2 (2jL + 1) sin �w

2 (2jR + 1)
2w2 sin3 �w

2

e−wd·t. (3.13)

In this equation, the coefficients aijk are the same ones that appear in (3.4),
while bNS

i can be obtained using mirror symmetry as in [58]. This generating
functional involves a particular combination of the refined BPS invariants,
which defines the NS limit of the refined topological string. The NS limit was
first discussed in the context of gauge theory in [4]. By expanding (3.13) in
powers of �, we find the NS free energies at order n,

FNS(t, �) =
∞∑

n=0

FNS
n (t)�2n−1, (3.14)

and the expression (3.13) can be regarded as a Gopakumar–Vafa-like resum-
mation of the series in (3.14). We recall that the first term in this series,
FNS

0 (t), is equal to F0(t), the standard genus zero free energy. Note that the
term involving the coefficients bNS

i contributes to FNS
1 (t).

With all these ingredients, we are ready to define, following [9], the so-
called modified grand potential of the CY X. It is the sum of two functions.
The first one is

JWKB
X (μ, ξ, �) =

ti(�)
2π

∂FNS(t(�), �)
∂ti

+
�

2

2π

∂

∂�

(
FNS(t(�), �)

�

)

+
2π

�
biti(�) + A(ξ, �). (3.15)

Note that, in the second term, the derivative w.r.t. � does not act on the
implicit dependence of ti(�) (it is a true partial derivative). The function
A(ξ, �) is not known in closed form for arbitrary geometries, although detailed
conjectures for its form exist in some cases. It is closely related to a resummed
form of the constant map contribution appearing in (3.6). The function (3.15)
is perturbative in �, and it can be in principle obtained by performing a resum-
mation of the all-order WKB expansion, hence its name. At leading order in
�, the quantum mirror map becomes the classical mirror map ti(�) ≈ ti, and

JWKB
X (μ, ξ, �) =

1
�
JX
0 (μ, ξ) + · · · , (3.16)



580 S. Codesido et al. Ann. Henri Poincaré

where

JX
0 (μ, ξ) =

1
2π

(
ti

∂F0

∂ti
− 2F0

)
+ 2πbiti (3.17)

and F0 is the genus zero free energy.
The second function is the “worldsheet” modified grand potential, which

is obtained from the generating functional (3.9),

JWS
X (μ, ξ, �) = FGV

(
2π

�
t(�) + πiB,

4π2

�

)
. (3.18)

It involves a constant vector B (or “B-field”) which depends on the geometry
under consideration. This vector should satisfy the following requirement: for
all d, jL and jR such that Nd

jL,jR
is non-vanishing, we must have

(−1)2jL+2jR+1 = (−1)B·d. (3.19)

For local del Pezzo CY threefold, the existence of such a vector was established
in [9]. Note that the effect of this constant vector is to replace

e−t → e−t−πiB (3.20)

in the generating functional (3.9). Note as well that the string coupling con-
stant gs is related to the Planck constant of the spectral problem by

gs =
4π2

�
. (3.21)

Therefore, the strong string coupling regime corresponds to the semiclassical
limit of the spectral problem, while the weakly coupled regime of the topolog-
ical string corresponds to a highly quantum regime in the spectral problem.

The total, modified grand potential is the sum of the above two functions,

JX(μ, ξ, �) = JWKB
X (μ, ξ, �) + JWS

X (μ, ξ, �), (3.22)

and it was first considered in [9]. When the mirror curve has genus one, it
agrees with the modified grand potential of [1], although we have written it
in a slightly different way. In particular, the modified grand potential of [1]
involves a perturbative part, a membrane part, and a worldsheet part. Here,
we have put together the perturbative and the membrane part in the WKB
grand potential. The quantity (3.22) has the following structure,

JX(μ, ξ, �) =
1

12π�
aijkti(�)tj(�)tk(�)

+
(

2πbi

�
+

�bNS
i

2π

)
ti(�)

+O
(
e−ti(�), e−2πti(�)/�

)
. (3.23)

The last term stands for a formal power series in e−ti(�), e−2πti(�)/�, whose
coefficients depend explicitly on �. However, this series is a priori ill defined
when � is a rational multiple of π. This is due to the double poles in the
trigonometric functions appearing in (3.13) and (3.9). However, although the
generating functionals (3.15) and (3.18) diverge separately, the poles cancel
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in the sum [9], as in the HMO cancellation mechanism discovered in [7]. The
presence of a B-field satisfying (3.19) is crucial for this cancellation. In the
higher genus case, we have established the existence of such a B in the exam-
ples we have studied. Clearly, it would be important to determine B in full
generality for any toric geometry. Note that, in addition, our expression for
(3.22) is, as in [1], intrinsically a large radius expansion. We note that only at
large radius we have geometric tools to sum up the � corrections at all orders.

After introducing all of our ingredients, we are ready to state our main
conjecture. We claim that the generalized spectral determinant (2.54) is given
by

ΞX(κ; �) =
∑

n∈ZgΣ

exp (JX(μ + 2πin, ξ, �)) . (3.24)

It is understood that the generalized spectral determinant also depends on
the mass parameters ξ, but we will not write this dependence explicitly. As in
[1], the right-hand side of (3.24) defines a quantum-deformed (or generalized)
Riemann theta function by

ΞX(κ; �) = exp (JX(μ, ξ, �)) ΘX(κ; �). (3.25)

We note that the function A(ξ, �) appearing in (3.15) can be fixed by requiring
that the expansion of the generalized spectral determinant around κ = 0
starts with 1. The expression (3.24) looks rather formal, but in fact it can be
computed systematically (for arbitrary �) near the large radius point of moduli
space, as shown in [1] in the genus one case. Interestingly, if our conjecture
is true, the resulting expression is in fact an analytic function on the CY
moduli space. This is surprising, since the modified grand potential (3.22) is
not analytic. However, the inclusion of the quantum theta function should
cure the lack of analyticity. This is related to the observation in [59] that
including generalized theta functions in the total partition functions restores
modular invariance. Note though that, in contrast to what happened in [59],
the quantum theta function appearing in (3.25) is well defined, at least as an
asymptotic expansion. In addition, and as we will see in the next section, when
� = 2π, the quantum theta function becomes a perfectly well defined, ordinary
theta function.

3.2. The Maximally Supersymmetric Case

As in the genus one case, an important simplification in the above formulae
occurs when � = 2π. In this case, the contribution to (3.9) involving invariants
with g ≥ 2 vanishes. After carefully canceling the poles, one finds that (3.22)
becomes

JX(μ, ζ, �) =
1

4π2

⎧
⎨

⎩
1
2

gΣ+rΣ∑

i,j=1

titj
∂2F̂0

∂ti∂tj
−

gΣ+rΣ∑

i=1

ti
∂F̂0

∂ti
+ F̂0

⎫
⎬

⎭

+ F̂1 + F̂NS
1 . (3.26)

In these formulae, the generating functionals F̂0, F̂1 and F̂NS
1 are the same

ones appearing in (3.4), (3.5), (3.14), but where we perform the replacement
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(3.20) in the instanton expansion (i.e., we do not make such a replacement
in the polynomial terms in t.) In (3.26), ti denotes the quantum mirror map
evaluated at � = 2π. It turns out that this equals the classical mirror map,
up to a change of sign in the expansion in the moduli. This change of sign is
precisely the one that would lead to (3.20).

As a consequence of this simplification, the quantum-deformed theta
function becomes

ΘX(κ; 2π) =
∑

n∈ZgΣ

exp
[
πitnτn + 2πin · υ

− iπ
3

aijkCilCjmCkpnlnmnp

]
. (3.27)

In this equation, τ is a gΣ × gΣ matrix given by

τlm = − 1
2πi

CjlCkm
∂2F̂0

∂tj∂tk
, l,m = 1, . . . , gΣ, (3.28)

where the sum over k, j runs from 1 to gΣ + rΣ. As explained in [27], this
is nothing but the τ matrix of the mirror curve. It is a symmetric matrix
satisfying

Im(τ) > 0. (3.29)

In addition, the vector υ appearing in (3.27) has components

υm =
Cjm

4π2

{
∂2F̂0

∂tj∂tk
tk − ∂F̂0

∂tj

}
+ Cjm

(
bj + bNS

j

)
, m = 1, . . . , gΣ,(3.30)

where the sum over k, j runs over all the gΣ + rΣ indices. In all the examples
we have considered, the cubic terms in (3.27) can be traded by quadratic or
linear terms. This adds constant, real shifts to τ and υ. The resulting matrix
and vector will be denoted by τ̃ and υ̃. In this way, (3.27) becomes (up to an
overall constant) a conventional higher genus Riemann–Siegel theta function
on Σ, which we will write as

ΘX(κ; 2π) =
∑

n∈Zg

exp
[
πitnτ̃n + 2πin · υ̃

]
. (3.31)

Note that Im (τ̃) = Im (τ); therefore, the theta function (3.31) is still well
defined. This result is a direct generalization of the genus one case considered
in [1].

As we have discussed, the quantization condition for the operators asso-
ciated with X is obtained by looking at the vanishing locus of the generalized
spectral determinant. In the maximally supersymmetric case, this has a beau-
tiful interpretation. The vanishing locus of (3.31) on the Jacobi torus is by
definition the theta divisor DΘ. The period υ̃ can be regarded as a map from
the moduli space M parametrized by κ, to the Jacobi torus,

υ̃ : M → T
2gΣ . (3.32)
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It follows that the vanishing locus giving the quantization condition can be
geometrically interpreted as the inverse image of the theta divisor by the map
υ̃:

υ̃−1 (DΘ) ⊂ M. (3.33)

Of course, the same interpretation can be made in the genus one case. In the
generic case, one has to consider the quantum-deformed theta function, and
its vanishing locus will be a quantum deformation of the locus above.

3.3. Spectral Traces at Large N and Non-perturbative Topological Strings

One of the most surprising consequences of the correspondence between spec-
tral theory and mirror symmetry is that the conventional topological string
can be obtained from a ’t Hooft-like limit of the fermionic spectral traces. In
the case of genus one curves, this was explained in detail in [12]. First of all,
note that these traces, which appear as coefficients in the expansion (2.57),
can be written as

ZX(N ; �) =
1

(2πi)gΣ

∮

0

dκ1

κN1+1
1

· · ·
∮

0

dκgΣ

κ
NgΣ+1
gΣ

ΞX(κ; �). (3.34)

We can now use the argument first presented in [7]: the multi-contour integral
can be written as an integral over μi, from −iπ to iπ. Since, according to
our conjecture (3.24), the generalized spectral determinant can be obtained by
summing over all displacements of the μi parameters in integer steps of 2πi,
we can trade the sum over the ni by an integration along the whole imaginary
axis, and we find

ZX(N ; �) =
1

(2πi)gΣ

∫ i∞

−i∞
dμ1 · · ·

∫ i∞

−i∞
dμgΣ

× exp

{
JX(μ, ξ, �) −

gΣ∑

i=1

Niμi

}
. (3.35)

As in [12], we want to evaluate the asymptotic expansion of the fermionic
spectral traces in the ’t Hooft limit (1.1). This can be done by evaluating the
multi-integral in the saddle point approximation. To have a non-trivial limit
as � → ∞, we have to consider the modified grand potential in the limit

� → ∞, μi → ∞,
μi

�
= ζi fixed, i = 1, . . . , gΣ. (3.36)

In this limit, the quantum mirror map becomes trivial, and we can replace ti
by its leading order term (3.2). We will also assume that the mass parameters
ξ scale in such a way that

log ξj

�
, j = 1, . . . , rΣ, (3.37)

remain fixed in the ’t Hooft limit (other scaling behaviors can be considered,
as in [12]). In the study of the ’t Hooft regime, we will denote 2πt/� simply
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by t, and 2π log ξj/� by log ξj , to avoid unnecessary additional notation. From
(3.2), we find that

ti −
rΣ∑

j=1

αij log ξj = 2π

gΣ∑

j=1

Cijζj , i = 1, . . . , gΣ + rΣ. (3.38)

Then, in the limit (3.36), the modified grand potential has the genus expansion

J’t Hooft
X (ζ, ξ, �) =

∞∑

g=0

JX
g (ζ, ξ) �

2−2g, (3.39)

where

JX
0 (ζ, ξ) =

1
16π4

(
F̂0 (t) + 4π2bNS

i ti + 16π4A0 (ξ)
)

,

JX
1 (ζ, ξ) = A1 (ξ) + F̂1 (t) ,

JX
g (ζ, ξ) = Ag (ξ) − Cg + (4π2)2g−2F̂g (t) , g ≥ 2. (3.40)

The arguments ζ and ξ of the modified grand potential are related to the
Kähler parameters t by (3.38). We have assumed that the function A (ξ, �)
has the expansion

A (ξ, �) =
∞∑

g=0

Ag(ξ)�2−2g. (3.41)

In (3.40), as in (3.26), the F̂g (t) are the standard topological string free ener-
gies as a function of the Kähler parameters t, after turning on the B-field. The
saddle point of the integral (3.35) is given by

λi =
Cji

8π3

(
∂F̂0

∂tj
+ 4π2bNS

j

)
, i = 1, . . . , gΣ. (3.42)

One then finds that the fermionic spectral traces have an expansion of the form
(1.2). The leading function in this expansion is given by a Legendre transform,

F0(λ) = JX
0 (ζ, ξ) − λ · ζ. (3.43)

If we choose the Batyrev coordinates in such a way that the first gΣ corresponds
to true moduli and the remaining rΣ correspond to mass parameters, we find

∂F0

∂λi
= −ζi = −

gΣ∑

j=1

C−1
ij

2π

(
tj −

rΣ∑

k=1

αjk log ξk

)
, i = 1, . . . , gΣ, (3.44)

where C−1 denotes the inverse of the truncated matrix (3.3). The higher genus
corrections Fg(λ) in (1.2) can be computed systematically using the results of
[60]. Indeed, the integral (3.35) implements a symplectic transformation from
the large radius frame, to a particular frame which we will call the maximal
conifold frame. As in [12], the ’t Hooft coordinates λi are flat coordinates in
this frame, and the maximal conifold locus is defined by

λi = 0, i = 1, . . . , gΣ. (3.45)
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This locus has dimension rΣ, the number of mass parameters of the toric
CY. In case there are no mass parameters, as in the example of the resolved
C

3/Z5 orbifold considered in this paper, the maximal conifold locus is in fact
a point, and we will refer to it sometimes as the maximal conifold point. It
follows that the functions Fg(λ) appearing in (1.2) are the topological string
genus g free energies in the maximal conifold frame. Note that (3.42) gives
a prediction for the particular combination of periods which vanishes at the
maximal conifold locus. As noted in [13], the coefficients of the constant trivial
period are determined by the coefficients bNS

i , i.e., the coefficients of the linear
terms in the next-to-leading NS free energy. As far as we know, this connection
has not been noticed before and is a direct consequence of our conjecture (3.24).

The main conclusion of this analysis is that, if (3.24) is correct, the
fermionic spectral traces ZX(N , �) provide a non-perturbative definition of
the genus expansion of the topological string (in the maximal conifold frame).
This is of course the natural generalization of what was done in [12,13] in the
case of genus one mirror curves. We will provide some detailed verifications of
this statement in the case of the resolved C

3/Z5 geometry, in the next section.
Finally, let us note that the fermionic spectral traces can be also com-

puted in the so-called M-theory limit, in which Ni � 1 but � is fixed. In this
limit, ZX(N , �) is given, at leading order, by a multivariable generalization
of the Airy function, extending in this way the results found in the genus one
case in [1]. In some cases, this generalization can be written as a product of
conventional Airy functions. We will see a detailed example of this in Sect. 4.2.

4. Testing the Conjecture

In this section, we will perform a detailed test of the above conjectures in
(arguably) the simplest toric geometry with a genus two mirror curve: the
resolved C

3/Z5 orbifold studied in the Example 2.1.

4.1. The Resolved C
3/Z5 Orbifold

The toric description of the geometry is encoded in the charge vectors (2.27).
After setting x1 = x2 = x4 = 1, we have

z1 =
x3

x3
0

, z2 =
x0

x2
3

. (4.1)

Another useful set of parameters for the moduli space are,

u = z1z
3
2 = x−5

3 , v = z2
1z2 = x−5

0 . (4.2)

This geometry has been discussed in detail in [28,29], and it has a rich phase
structure. The large radius point is, as usual,

z1 = z2 = 0. (4.3)

In addition, there are two half-orbifold points. The first one is defined by

x0 = 0, u = 0, (4.4)
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Figure 4. The conifold locus Δ(z1, z2) = 0 in the (z1, z2)
plane contains a point (4.8) where two components cross
transversally

while the second one is defined by

x3 = 0, v = 0. (4.5)

We note that these are the points which are suitable to study the operators
O3,1 and O2,2, since in each case we are setting to zero the perturbation in
(2.34). The corresponding geometries are the canonical bundles over P(1, 3, 1)
and P(1, 2, 2), respectively. The (full) orbifold point is simply

x0 = x3 = 0. (4.6)

As in the genus one case considered in [1], studying the topological string
around this point will make it possible to calculate the expansion (2.57) of the
generalized spectral determinant.

Another important region in the moduli space of the curve is the conifold
locus, where the discriminant

Δ(z1, z2) = 3125z2
1z3

2 + 500z1z
2
2 + 16z2

2 − 225z1z2 − 8z2 + 27z1 + 1, (4.7)

vanishes. The real part of this locus has various components, but there is a
very special point at

z1 = − 1
25

, z2 =
1
5

(4.8)

where two components of the locus cross transversally (see Fig. 4). As we will
see, this is the maximal conifold point at which the ’t Hooft parameters λ1, λ2
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vanish. This point controls the ’t Hooft limit of the spectral traces, at weak ’t
Hooft coupling.

The resolved C
3/Z5 orbifold can be also realized as a perturbed local P

2

geometry. This can be easily seen by considering the Eq. (2.30) and performing
the transformation x + y → −x. After reinstating x4 in the equation, and
setting x1 = x2 = x3 = 1, we find that (2.30) reads,

ex + ey + e−x−y + x4e2x + x0 = 0, (4.9)

and we have

z1 = x−3
0 , z2 = x4x0. (4.10)

After Weyl quantization, we find the operator

O1,1 + x4e2x, (4.11)

which is a perturbation of the operator O1,1 obtained by quantizing the mirror
curve of local P

2.
Let us now review some of the topological string amplitudes on this geom-

etry. Near the large radius point there are two flat coordinates, t1, t2. They
can be expressed in terms of the moduli z1, z2 by the mirror map,

t1 = −ΠA1(z1, z2) = − log(z1) + O(zi),
t2 = −ΠA2(z1, z2) = − log(z2) + O(zi), (4.12)

where the periods ΠAi
, ΠBi

, i = 1, 2 are given in (A.5). Using (2.28) and
taking into account (3.2), we conclude that the matrix Cij is given by

C =
(

3 −1
−1 2

)
. (4.13)

We will introduce, as usual, the exponentiated variables

Q1 = e−t1 , Q2 = e−t2 . (4.14)

The large radius genus zero free energy is defined by the special geometry
relations,

∂F0

∂t1
=

1
10

ΠB1 ,
∂F0

∂t2
=

1
10

ΠB2 , (4.15)

which leads to (see for example [27])

F0(t1, t2) =
1
15

t31 +
1
10

t21t2 +
3
10

t1t
2
2 +

3
10

t32 + F inst
0 (t1, t2), (4.16)

where

F inst
0 (t1, t2) = 3Q1 − 2Q2 − 45

8
Q2

1 + 4Q1Q2 − Q2
2

4
+ · · · (4.17)

The genus one free energies (both standard and refined) have been
obtained in [27]. The (standard) genus one free energy is given by

F1(t1, t2) = − 1
12

log
(
Δz

38/5
1 z

39/5
2

)
− 1

2
log det(Jij), (4.18)
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where

Jij =
∂ti
∂zj

(4.19)

is the Jacobian of the mirror map, and Δ is the discriminant (4.7). One finds,
by explicit expansion,

F1(t1, t2) =
2t1
15

+
3t2
20

+
Q1

4
− Q2

6
− 3Q2

1

8
+

Q1Q2

3
− Q2

2

12
+ · · · (4.20)

Similarly, one finds the NS refined free energy,

FNS
1 (t1, t2) = − 1

24
log
(
Δz−2

1 z−3
2

)
, (4.21)

which has the expansion

FNS
1 (t1, t2) = − t1

12
− t2

8
− 7Q1

8
+

Q2

6

+
129Q2

1

16
− 5Q1Q2

6
+

Q2
2

12
+ · · · . (4.22)

Higher genus free energies, as well as higher FNS
n (t1, t2), have been determined

in [27] up to order 3. We will, however, not use them in this paper.

4.2. The Generalized Spectral Determinant

The resolved C
3/Z5 geometry involves two canonical operators, obtained by

Weyl’s quantization of (2.34). They read,

O1 = ex + ey + e−2x−2y + x3e−x−y = O2,2 + x3e−x−y,

O2 = ex + ey + e−3x−y + x0e−x = O3,1 + x0e−x. (4.23)

As we have seen in Sect. (2.3), the generalized spectral determinant can be
expressed in many ways. A particularly useful representation in this geometry
comes from (2.75), and we find

Ξ(x0, x3; �) = det
(
1 + x0 (O2,2 + x3P12)

−1
)

det
(
1 + x3O

−1
3,1

)

= det
(
1 + x3 (O3,1 + x0P21)

−1
)

det
(
1 + x0O

−1
2,2

)
. (4.24)

In particular, we have

det
(
1 + x0 (O2,2 + x3P12)

−1
)

=
Ξ(x0, x3; �)
Ξ(0, x3; �)

,

det
(
1 + x3 (O3,1 + x0P21)

−1
)

=
Ξ(x0, x3; �)
Ξ(x0, 0; �)

. (4.25)

The defining formula for the generalized spectral determinant is (2.54). For
convenience, we will choose as our reference operator O3,1 (i.e., we will choose
j = 2 in (2.54)). The relevant operators are then,

A21 = ρ3,1P21, A22 = ρ3,1, (4.26)

and we recall that

P21 = e−x, (4.27)
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where x is the quantum Heisenberg operator appearing in O3,1. It is known
from [11] that ρ3,1 is of trace class, and it can be easily checked that A21 is of
trace class as well.

We are now ready to write down the total grand potential, as it follows
from our conjecture (3.24). The parameters entering the operators are written
in terms of chemical potentials as,

x0 = κ1 = eμ1 , x3 = κ2 = eμ2 , (4.28)

and they are related to the complex moduli of the geometry by

log z1 = −3μ1 + μ2, log z2 = μ1 − 2μ2, (4.29)

as it follows from (3.2). The first thing we must know is the value of the appro-
priate B-field in (3.18). Since this geometry can be regarded as a perturbation
of the local P

2 geometry when z2 = 0, a natural guess is that

B = (1, 0). (4.30)

It can be checked that, for this choice, (3.19) is satisfied.2 The insertion of this
B-field in the worldsheet instanton piece is equivalent to changing the sign of
Q1 in the expansions at large radius (but not in the log terms). For example,
for the very first terms, one finds,

JWS(μ1, μ2; �) = −
∞∑

v=1

1
v

(
2 sin

2π2v

�

)−2

×
(
3e−2πvt1/� + 2e−2πvt2/�

)
+ · · · , (4.31)

and the sign in the first exponential (involving t1) is the opposite one to what
we had in (4.17).

The function JWKB(μ1, μ2; �) can be computed in many different ways.
The leading order terms at large μi can be read from (4.16), (4.20) and (4.22).
The semiclassical limit (3.17) can be checked as in [6], by calculating semiclas-
sical traces. This calculation is easy to do either when x3 = 0, or when x0 = 0.
In these cases, the relevant operators are simply O2,2, O3,1, respectively, and
the corresponding semiclassical grand potential is easy to calculate (see also
[61]). The classical spectral traces of these operators are

Z
(0)
� (O2,2) =

∫
dxdy

2π

1

(ex + ey + e−2x−2y)�

=
1

10π

Γ (�/5) Γ (2�/5)2

Γ(�)
,

Z
(0)
� (O3,1) =

∫
dxdy

2π

1

(ex + ey + e−3x−y)�

=
1

10π

Γ (�/5)2 Γ (3�/5)
Γ(�)

. (4.32)

2 We would like to thank Albrecht Klemm for verifying explicitly that this is indeed the
case for the refined BPS invariants of this geometry calculated in [27].
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We then find,

J0(μ1, 0) = −
∞∑

�=1

(−κ1)�

�
Z

(0)
� (O2,2) ,

J0(0, μ2) = −
∞∑

�=1

(−κ2)�

�
Z

(0)
� (O3,1) . (4.33)

From the point of view of the geometry, these are expansions near the orbifold
point. It is easy to verify, using the explicit formulae in Sect. A.2 of the Appen-
dix, that these expansions are indeed reproduced by the r.h.s. of (3.17). Finally,
the quantum mirror map entering in the expression (3.22) can be computed
systematically, as shown in Appendix A.4.

As we explained above, in the maximally supersymmetric case � = 2π,
the spectral determinant can be written down explicitly. The generalized theta
function becomes in this case a standard Riemann theta function. Indeed, it
can be easily checked that

Θ(μ; 2π) =
∑

n1,n2∈Z

exp ×
[
iπ
(
n2

1τ11 + 2n1n2τ12 + n2
2τ22

)

+ 2πi (n1υ1 + n2υ2) − iπ
(

n1 +
8
3
n2

)]
, (4.34)

where the vector υ is given in (3.30) (since we are considering a fixed CY
example, we have removed the subscript X). Let us recall that the Riemann
theta function with characteristics α, β is defined by

ϑ

[
α
β

]
(z, τ) =

∑

n∈Z2

exp
[
iπ t(n + α)τ(n + α) + 2πi(z + β) · (n + α)

]
.

(4.35)

It follows that the generalized spectral determinant, for the maximally super-
symmetric case, can be written as

Ξ(μ; 2π) = exp (J(μ; 2π)) ϑ

[
0
β

]
(υ, τ). (4.36)

where

β = −
(

1
2
,
4
3

)
(4.37)

and J(μ; 2π) is given by the specialization of (3.26) to the resolved C
3/Z5

orbifold. It is also easy to check from the results in the Appendix A.4 that, for
� = 2π, the quantum mirror map becomes the classical mirror map, together
with a change of sign z1 → −z1 in the polynomial part.

The expression (4.36) embodies our conjecture for the case at hand. We
can now test our conjecture by verifying that this formula indeed gives the right
spectral properties and quantities (in the maximally supersymmetric case). In
the rest of this section, we will check the predictions for the spectral traces.
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The fermionic spectral traces Z(N1, N2; �) can be read off from the expan-
sion of the spectral determinant around κ1 = κ2 = 0, which in our case
corresponds to x0 = x3 = 0. This is the orbifold point. In the maximally
supersymmetric case, this can be done by performing an analytic continuation
of the various quantities involved in (4.34) to the orbifold point. As in the
case of local P

2 analyzed in [1], it is convenient to change the sign of x3 and
perform the expansion of a closely related theta function. Note that this leads
to a change of sign z1 → −z1. This has the effect of restoring the conventional
sign of the standard topological string amplitudes (which we had to change,
due to the B-field (4.30)), but also changes the structure of the theta function,
due to the shifts in the logarithms. After carefully keeping track of all these
changes, we find,

Ξ(x0,−x3; 2π) = eJ(x0,x3;2π)eiπϑ

[
α
β

]
(υ, τ − S) , (4.38)

where

S =
(

1/2 1/2
1/2 0

)
, α =

(
0,

1
2

)
, β = −

(
3
8
,
4
3

)
, (4.39)

and the quantities J(x0, x3; 2π), τ and υ are given by (3.26), (3.28) and (3.30)
but they involve now the analytic continuation to the orbifold point of the
standard genus zero and one free energies. After implementing this formula,
one finds the expansion

Ξ(x0, x3; 2π) = 1 + Z(1, 0; 2π)x0 + Z(0, 1; 2π)x3 + Z(1, 1; 2π)x0x3 + · · · .(4.40)

The coefficients of this expansion involve derivatives of the Riemann theta
function of genus two, but they can be evaluated numerically with high preci-
sion. We find,

Z(1, 0; 2π) = 0.0552786404500042 . . . ,

Z(0, 1; 2π) = 0.0894427190999916 . . . ,

Z(1, 1; 2π) = 0.0030770561988687 . . . (4.41)

As we explained in Sect. 2.3, these coefficients are defined as (generalized)
fermionic spectral traces of the operators (4.26). One has, for example,

Z(1, 0; 2π) = Tr (ρ3,1P21) = Trρ2,2,

Z(0, 1; 2π) = Trρ3,1,

Z(1, 1; 2π) = Trρ2,2 Trρ3,1 − Tr(ρ3,1P21ρ3,1). (4.42)

In [11], the integral kernels of the operators ρm,n were obtained in closed
form, in terms of the quantum dilogarithm. Therefore, the traces (4.42) can
be computed explicitly. Since these results will be also used in the analysis
near the maximal conifold point, let us briefly summarize them. Let us denote
by Φb(x) Faddeev’s quantum dilogarithm [62,64] (we follow the notations in
[11]). We define as well the functions (see also [68])

Ψa,c(x) =
e2πax

Φb(x − i(a + c))
. (4.43)
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Let q, p be operators satisfying the normalized Heisenberg commutation rela-
tion

[p, q] = (2πi)−1. (4.44)

They are related to the Heisenberg operators x, y appearing in Om,n by the
following linear canonical transformation:

x ≡ 2πb
(n + 1)p + nq

m + n + 1
, y ≡ −2πb

mp + (m + 1)q
m + n + 1

, (4.45)

so that � is related to b by

� =
2πb2

m + n + 1
. (4.46)

Then, in the momentum representation associated with p, the operator ρm,n

has the integral kernel,

ρm,n(p, p′) =
Ψa,c(p) Ψa,c(p′)

2b cosh
(
π p−p′+i(a+c−nc)

b

) , (4.47)

where a, c are given by

a =
mb

2(m + n + 1)
, c =

b

2(m + n + 1)
. (4.48)

Using these results, we can easily compute the kernel of A21, and one finds

〈p|ρ3,1P21|p′〉 = e− 4πbp′
5 e− 2πb2 i

25 ρ3,1

(
p, p′ +

ib

5

)
. (4.49)

Therefore, we find the following integral representation

Tr(ρ3,1P21ρ3,1) = e− 2πb2 i
25

∫
e− 4πbp′

5 ρ3,1

(
p, p′ +

ib

5

)
ρ3,1 (p′, p) dp dp′.

(4.50)

In the maximally supersymmetric case, � = 2π, the spectral theory of
these operators also simplifies, as noted already in [10], and one can use the
results of [63] to show that the integral kernels above become elementary func-
tions. The trace of ρm,1 was computed in [11] for any m and � = 2π, and one
finds

Tr ρ3,1 =
1

5
√

5
. (4.51)

A similar computation shows that

Tr ρ2,2 =
1
50

(
5 −

√
5
)

. (4.52)

These agree precisely with the predictions (4.41) of the spectral determinant
(4.36). A numerical calculation of the double-integral (4.50) makes it also pos-
sible to verify the prediction in (4.41) for Z(1, 1; 2π).
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We should note that, although we evaluated the expansion (4.40) numer-
ically, its coefficients can be computed analytically in terms of derivatives of
the Riemann–Siegel theta function. For example, one finds

Z(1, 0; 2π) =
29/5i

√
π
5 Γ
(

9
10

)

Γ
(

1
5

)2

(
Θ11(υ0, τ0) +

1
2
Θ12(υ0, τ0) − Θ22(υ0, τ0)

)
,

(4.53)

where

Θij(υ0, τ0) =
∂τij

ϑ

[
α
β

]
(υ0, τ0)

ϑ

[
α
β

]
(υ0, τ0)

, α =
(

0,
1
2

)
, β =

(
3
8
,
4
3

)
, (4.54)

and

υ0 =
(

−11
40

,− 1
30

)
,

τ0 =

⎛

⎝
− 1

2 + 1
2 i
√

1
5

(
5 + 2

√
5
) − 1

2 + i
√

1
4 − 1

2
√

5

− 1
2 + i

√
1
4 − 1

2
√

5
i
√

1
10

(
5 +

√
5
)

⎞

⎠ . (4.55)

Moreover, by requiring that Z(0, 0; 2π) = 1, we find the following identity:

ϑ

[
α
β

]
(υ0, τ0) = − 57/40Γ

(
1
5

)3/2

22/5
(
5 +

√
5
)3/5

π
√

Γ
(

3
5

) , (4.56)

which we checked numerically with high precision. The fact that (4.53) agrees
with (4.52) is another manifestation of the highly non-trivial content of our
conjecture (3.24).

There is yet another method to evaluate the spectral traces, which can
be also applied away from the maximally supersymmetric case. This method,
which goes back to [7], is based on the integral formula (3.35), and in using
directly the large radius expansion of the modified grand potential. In the genus
one case, where there is one single integration, this leads to an expression for
the fermionic spectral traces given by an infinite sum of Airy functions, in
which each term is exponentially suppressed with respect to the preceding
one. It turns out that this method can be generalized to the resolved C

3/Z5,
as follows. The modified grand potential is given by

J(μ1, μ2; �) = J(p)(μ1, μ2; �) + J(np)(μ1, μ2; �). (4.57)

Here, the perturbative part is the cubic polynomial in the μis,

J(p)(μ1, μ2; �) =
1
π�

(
3μ3

1

4
− 3μ2μ

2
1

4
+

μ2
2μ1

4
+

2μ3
2

3

)

+
1
2

(
π

�
− �

8π

)
μ1 +

1
3

(
π

�
− �

4π

)
μ2 + A(�), (4.58)
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while the non-perturbative part J(np)(μ1, μ2; �) contains the exponentially
small corrections appearing in the expression (3.22), and it is a power series in
z1, z2. We recall that the complex moduli z1,2 are related to the parameters
μ1,2 by (4.29). We can now make a change of variables such that the cubic
polynomial appearing in (4.58) does not contain mixed terms,

μ1 = ν1 +
ν2

3
, μ2 = ν2. (4.59)

We find,

J(p)(ν1, ν2; �) =
2∑

i=1

(
Ci(�)

3
ν3

i + Bi(�)νi

)
+ A(�), (4.60)

where

C1(�) =
9

4π�
, C2(�) =

25
12π�

, (4.61)

and

B1(�) =
1
2

(
π

�
− �

8π

)
,

B2(�) =
1
2

(
π

�
− 5�

24π

)
. (4.62)

It follows from (3.35) that the fermionic spectral traces are given, at leading
order, by

Z(N1, N2; �) ≈ Z(p)(N1, N2; �), (4.63)

where

Z(p)(N1, N2; �) = eA(�)
2∏

i=1

(Ci(�))−1/3 Ai
[
(Ci(�))−1/3 (Mi − Bi(�))

]
,

(4.64)

and the Mi are defined by the condition,

μ · N = ν · M , (4.65)

so that, in this case,

M1 = N1, M2 =
N1

3
+ N2. (4.66)

It is also clear how to incorporate the corrections due to J(np)(μ1, μ2; �). We
can write,

eJ
(np)(μ1,μ2;�) =

∑

i,j≥0

Pi,j(μ1, μ2; �)zi
1z

j
2, (4.67)

where the Pi,j (μ1, μ2; �) are polynomials in μ1, μ2, and P0,0 = 1. Then, a
simple computation shows that

Z(N1, N2; �) =
∑

i,j≥0

Pi,j (−∂N1 ,−∂N2 ; �) Z(p)

× (N1 + 3i − j,N2 − i + 2j; �) . (4.68)
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The leading term in this expression is of course given by (4.64), while the
remaining series gives, for Ni large, exponentially small corrections. As in the
case of genus one mirror curves, this expansion seems to converge rapidly, and
we have verified that, for � = 2π, it reproduces the spectral traces computed
above. In addition, we found the following educated guess for the value of
A(2π),

A(2π) =
1
10

log
(

25
2

(
5 +

√
5
))

− 3ζ(3)
5π2

. (4.69)

The formula (4.64) generalizes the results involving Airy functions found
in Chern–Simons matter theories [6,65] and in the case of topological strings
on local del Pezzo surfaces [1]. It has been recently shown in [66] that the Airy
behavior of the topological string partition function is a universal feature. In
[66], this behavior (involving a single Airy function) was obtained by consid-
ering a one-dimensional slice of the moduli space. It would be interesting to
see if the argument of [66] can be used to derive (4.64). Note that, if gΣ is
large enough, we cannot put to zero all the crossing terms in the cubic polyno-
mial appearing in J(p)(μ; �), and the leading behavior of the fermionic spectral
traces will be given by a generalization of the Airy function which does not
reduce to a product of elementary Airy functions.

4.3. Quantization Conditions

One of the most important results of [1] is that, in the case of mirror curves of
genus one, the quantization condition for the spectrum of the corresponding
operator can be read from the vanishing of the (deformed) theta function
entering in the spectral determinant. As it was already pointed out in [1],
there is a natural generalization of this conjecture to the higher genus case,
by considering the vanishing of the higher genus, deformed theta function in
(3.25). However, the higher genus case is richer (and slightly more complicated)
due to the fact that there are many operators Oi, i = 1, . . . , gΣ, which one can
associate to the same geometry. Let us explain this in some more detail.

The vanishing of the generalized spectral determinant gives a global quan-
tization condition, which defines a discrete family of codimension one submani-
folds in moduli space. In many cases, a given point in the vanishing locus solves
the spectral problem for different (related) operators. For example, the resolved
C

3/Z5 orbifold leads to two different operators (4.23). A point (x0, x3) in the
vanishing locus of the spectral determinant, with x0 < 0 and x3 < 0, can be
interpreted in two ways: either as an eigenvalue −x0 of the operator O1, which
depends on x3, or an eigenvalue −x3 for the operator O2, which depends on
x0. This follows from the discussion around (2.79). However, if the point in the
vanishing locus occurs at x0 = 0, it cannot be interpreted in terms of O1, since
this operator is positive definite and all its eigenvalues are strictly positive.

In this section, we will obtain the quantization condition for C
3/Z5, in

the maximally supersymmetric case, and verify explicitly that it solves many
different spectral problems. In particular, we will be able to write exact quan-
tization conditions for the unperturbed operators O3,1 and O2,2. To have a
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Figure 5. The curves represent the locus in the (x0, x3)
plane in which the generalized spectral determinant (4.36)
vanishes. They can be labeled by the quantum number n =
0, 1, . . . appearing in the generalized Bohr–Sommerfeld quan-
tization condition. The uppermost curve corresponds to n = 0

first view of the vanishing locus of the generalized spectral determinant (4.36)
in the moduli space parametrized by (x0, x3), we can simply plot it using the
expansion (4.40) (we assume that x0 and x3 are real). The result is shown in
Fig. 5. It consists of a discrete family of curves, and each curve crosses both the
negative x3 and x0 axis. Note that there are no solutions in which both x0 and
x3 are positive. The vanishing locus obtained in this way has all the expected
properties: the intersection with the axis x3 = 0 and x0 = 0 gives the spec-
trum of the operators ρ2,2 and ρ3,1. The discrete family of curves correspond
to the quantum numbers n = 0, 1, . . . of the generalized Bohr–Sommerfeld
quantization condition.

As a first test that this vanishing locus produces the actual spectrum, we
can compute the ground-state energy for the operators ρ2,2 and ρ1,1, using the
diagonalization method of [67], and compare it with the zeros of the spectral
determinant Ξ(x0, 0; 2π) and Ξ(0, x3; 2π), as we keep more and more terms in
their polynomial expansion. We recall that, if these functions vanish at (x0, 0)
and (0, x3), respectively, the energies are given by

E = log (−x0) , E = log (−x3) . (4.70)

As we see in Tables 1 and 2, the answer obtained from the spectral determinant
converges rapidly to the correct value.
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Table 1. The ground-state energy E0 for the operator ρ2,2,
as obtained from the vanishing locus of the spectral determi-
nant Ξ(x0, 0; 2π)

Order E0

1 2.8953686937107540094
5 3.1640650172200080194
8 3.1640650781321192069
10 3.1640650781321190565

Numerical value 3.1640650781321190565

This is a power series around x0 = 0, and to obtain the energy we truncate it at a given
order in x0. As we keep more and more terms in the series, we quickly approach the

ground-state energy obtained by numerical methods

Table 2. The ground-state energy E0 for the operator ρ3,1,
as obtained from the vanishing locus of the spectral determi-
nant Ξ(0, x3; 2π)

Order E0

1 2.4141568686511505619
5 2.7700028996745256210
8 2.7700040488404954468
10 2.7700040488404460337

Numerical value 2.7700040488404460337

We follow the same procedure as in Table 1

The expansion (4.40) around the orbifold point is very convenient for
small energies, but it does not make contact with the WKB expansion for the
operators ρ2,2 and ρ3,1. We can, however, obtain alternative formulations of the
exact quantization condition for these operators using expansions appropriate
for the half-orbifold points. Let us first consider the operator ρ2,2. In principle,
the zeroes of the spectral determinant occur at negative values of x0 and x3,
but it is convenient to change their signs so that they occur along the positive
real axis. In the case of ρ2,2, we change the sign of x0, which involves changing
the sign of both z1 and z2. The quantization condition is given by the vanishing
of the theta function

Θ2,2(E) = ϑ

[
α
β

]
(υ, τ − S) , (4.71)

where

α =
(

1
2
, 0
)

, β =
(

−3
8
,

7
24

)
, S =

(
1/2 1/2
1/2 1/2

)
. (4.72)

In this theta function, υ, τ are computed using the analytic continuations
(A.29), we set x3 = 0, and E = − log(Y ).

In the case of ρ3,1, we change the sign of x3, which involves changing the
sign of z1. We already did this in the calculation near the full orbifold point,
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and we find that the quantization condition is given by the vanishing of the
theta function,

Θ3,1(E) = ϑ

[
α
β

]
(υ, τ − S) , (4.73)

where α, β and S are given in (4.39), υ, τ are computed using the analytic
continuations (A.20), (A.24), we set x0 = 0, and E = − log(X).

It is interesting to see in some detail how the above quantization condi-
tions agree, in the limit of large energies, with the semiclassical result. Let us
consider, for example, the operator ρ3,1. The semiclassical quantization con-
dition can be obtained using for example Fermi gas technology. The grand
potential for the operator ρ3,1 at large μ is given by

J (μ, �) ≈ 25
36π�

μ3 +
(

π

2�
− 5�

48π

)
μ, μ � 1. (4.74)

This follows from formulae (5.8) and (B.2) of [61]. Using the general results of
[6], one finds that the quantization condition at large E is given by

vol(E) = 2π�

(
n +

1
2

)
, (4.75)

where

vol(E) ≈ 25
6

E2 − 7π2

18
− 5�

2

24π
, E � 1. (4.76)

This includes the first-order correction in �
2. How can this be obtained from

Θ3,1(E)? First, we have to understand the structure of the various functions
involved in the higher genus theta function. One finds, from the formulae in
Appendix A.2,

τ11 =
i
√

3
2

+ O(X10/3),

τ12 = − i
2
√

3
+ O(X5/3),

τ22 = −25i
6π

log(X) +
i

6
√

3
+ O(X5/3), (4.77)

as well as

υ1 =
5
24

+ O(X5/3),

υ2 =
25 log2(X)

24π2
− 1

36
+ O(X5/3). (4.78)

The terms involving positive powers of X are exponentially small corrections.
We would like now to obtain the vanishing condition for Θ3,1(E) at leading
order, neglecting these small corrections. It is easy to see, from the above
behaviors, that the leading contribution comes from the terms with n2 = 0,−1
in the theta function. More precisely, one finds the vanishing condition

cos (π (−υ2 + 1/3) + φ) = 0. (4.79)
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Here, φ is the argument of the (genus one) Jacobi theta function

ϑ

[
0
0

](
5
12

− i
4
√

3
,
1
2

+
i
√

3
2

)
. (4.80)

Numerically, we have verified that

φ = − π

18
. (4.81)

Therefore, we find that the quantization condition, at leading order, is

cos
(

π

(
11
36

− 25E2

24π2

))
= 0, (4.82)

which is precisely what one obtains from (4.75) and (4.76) when � = 2π. We
find it remarkable that the argument of the theta function (4.80) is rational
and has the right value to reproduce the next-to-leading WKB quantization
condition. Of course, one can check explicitly that the zeroes of the theta
function (4.73) give the spectrum of ρ3,1 for � = 2π with very high precision.

The quantization condition encoded in the theta functions (4.71) and
(4.73) has a nice interpretation in terms of complex instantons. As we have
seen in the example of (4.73), which corresponds to the operator ρ3,1 this
condition is given, at leading order, by (4.79). The perturbative part of this
quantization condition involves the combination of B-periods appearing in υ2,

−ΠB1 + 2ΠB2 . (4.83)

This follows from (3.30) and the matrix (4.13). The B-cycle (4.83) has a very
concrete incarnation as the boundary of the region

R(E) = {(x, y) ∈ R
2 : O3,1(x, y) ≤ eE}, (4.84)

which is shown in the left-hand side of Fig. 6 (for E = 3). As in [6,10], υ2 also
involves corrections coming from complex instantons associated with the dual
A-period. However, there are further subleading corrections involving the other
handle of the Riemann surface. These are due to complex instantons associated
with other combinations of A- and B-periods. The effects of these instantons
are encoded in the genus two theta function, through the dependence in for
example υ1, which involves

3ΠB1 − ΠB2 . (4.85)

This is in agreement with the principle put forward in [49,50]: in a exact
WKB analysis, all periods appearing in the complexified Hamiltonian con-
tribute to the quantization condition. This is illustrated in the right-hand side
Fig. 6, which shows the underlying genus two curve and its “hidden” cycles.
One remarkable implication of our conjecture (3.24) is that all these complex
instanton effects are encoded in the higher genus theta function (or a defor-
mation thereof, for general values of �).

The vanishing locus of the spectral determinant contains as well informa-
tion about the perturbed operators O1, O2 which are obtained by quantizing
the functions (2.34). Let us consider, for example, the operator O2, which is a
perturbation of the operator O3,1. Given a value of the perturbation, x0 ≥ 0,
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Figure 6. On the right-hand side we show the boundary of
the region (4.84). This is the B-cycle which leads to the per-
turbative WKB quantization condition. However, when we
consider the full complexified genus two curve, we find other
cycles which correspond to complex instantons and also con-
tribute to the quantization condition

Table 3. The ground-state and first excited energies, E0 and
E1, for the perturbed ρ3,1 operator, as obtained from the van-
ishing locus of the spectral determinant Ξ(20, x3; 2π)

Order E0 E1

4 3.1223827669081676 4.233804854297745
6 3.1220388008498759 4.286273969753037
9 3.1220387541932648 4.286366387547196
12 3.1220387541932659 4.286366387477153

Numerical value 3.1220387541932659 4.286366387477153

This is a power series around x3 = 0, and to obtain the energies we truncate it at a given
order in x3. As we keep more and more terms in the series, we quickly approach the energy

obtained by numerical methods

the conjecture predicts the spectrum as follows. We look at the values of x3

such that Ξ(x0, x
(n)
3 ; 2π) vanishes. The spectrum of O2, for the given value of

x0, is then
{−eEn

}
n=0,1,...

=
{

x
(n)
3 : Ξ

(
x0, x

(n)
3 ; 2π

)
= 0
}

. (4.86)

Graphically, these values are obtained by taking the intersection of the curves
in Fig. 5 with the vertical line x0 = constant. The predictions can be compared
by the spectrum obtained by numerical diagonalization. We find an excellent
agreement, as we show for x0 = 20 in Table 3. Of course, completely similar
considerations apply to the perturbed operator O1.
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The vanishing locus of the spectral determinant determines also the spec-
trum of the operator

O1,1 + x4e2x, (4.87)

which is obtained by quantization of the mirror curve in the form (4.9). This
is a perturbation of the operator O1,1, which is obtained by quantizing the
mirror curve to local P

2. To determine the spectrum, we proceed as follows.
Given a value of the perturbation x4, we have a corresponding value of x3

given by

x3 = x
−3/5
4 . (4.88)

This automatically determines an infinite, discrete series of (negative) values
of x0, x

(n)
0 , n = 0, 1, . . ., in the vanishing locus of the spectral determinant.

Then the energy levels of the operator (4.87) are determined by

− eEn = x
1/5
4 x

(n)
0 , n = 0, 1, . . . (4.89)

We find again an excellent agreement between the numerical spectrum, as
obtained by diagonalization of (4.87), and the one predicted by (4.89).

In Fig. 7, we illustrate these considerations for different cases. The dots
indicate the spectrum as computed numerically by diagonalization of the oper-
ators. The vertical group of dots in the fourth quadrant corresponds to a per-
turbed operator O2 with x0 = 300. The horizontal group of dots at the top
of the second quadrant corresponds to a perturbation of the operator O1 with
x3 = 500. Finally, the horizontal group of dots at the bottom of the second
quadrant corresponds to the perturbed operator O1,1 with x4 = 6−5. In all
cases, we find perfect agreement between the numerical results and the pre-
diction from the vanishing locus.

It turns out that one can also consider negative values of the perturba-
tions. For example, one can consider x0 < 0 for the operator O2 in (4.23).
The generalized spectral determinant predicts that, in this case, the values
of x

(n)
3 = −eEn for the first eigenstates will be positive, while the remaining

values will be negative. This is easy to understand from the explicit expression
in (4.23): the operator O3,1 gives positive contributions to the exponentiated
energy, while the perturbation gives a negative contribution. For the low-lying
eigenstates, the perturbation takes over, while for the higher, excited states, the
operator O3,1 takes over. An example of such a situation is shown in Fig. 8, for
x0 = −300. Again, the predictions are in perfect agreement with the numerical
results.

4.4. The Large N Limit of Spectral Traces

As we explained in Sect. 3.3, the generalized spectral determinant provides a
non-perturbative completion of the conventional topological string free energy.
The genus expansion of the topological string, in the frame associated with the
maximal conifold locus, appears as an asymptotic expansion of the fermionic
spectral traces ZX(N , �). This is, however, a non-trivial statement, since it is
based on the conjecture that the non-perturbative corrections to the spectral
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–1000 –500 0 500

–600

–400

–200

0

200

400

600

Figure 7. The blue lines represent the locus in the (x0, x3)
plane where the spectral determinant (4.38) vanishes. The
horizontal group of dots in red in the second quadrant repre-
sents the points (x(n)

0 , x3) = (−eEn , 500), n = 0, 1, 2, which
give the spectrum of the operator O1 for the value x3 = 500.
The vertical group of dots in purple, in the fourth quadrant,
represents the points (x0, x

(n)
3 ) = (300,−eEn), n = 0, 1, 2, 3,

giving the spectrum of the operator O2 with x0 = 300. Finally,
the horizontal group of dots in black, in the second quad-
rant, represents the points (x(n)

0 , x3) = (−eEn6, 63), which
encode the spectrum of the perturbed P

2 operator (4.87) with
x4 = 6−5 (color figure online)

problem are encoded in the conventional topological string. It was pointed out
in [12,13] that this statement can be, however, checked if one can expand the
spectral traces in the strong coupling limit � → ∞. One can then compare this
expansion with the predictions of the topological string. We will now perform
such a comparison.

Let us first calculate the asymptotic expansion (1.2) directly on the oper-
ator side. In our case, this reads

log Z(N1, N2; �) = �
2F0(λ1, λ2) + F1(λ1, λ2) + · · · (4.90)

We note that, when N2 = 0 or N1 = 0, the l.h.s. reduces to the fermionic
spectral trace of the operators ρ2,2 or ρ3,1, respectively. It follows that

Fg(λ1, λ2) = F (2,2)
g (λ1) + F (3,1)

g (λ2) + O (λ1λ2) . (4.91)
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Figure 8. The dots represent the points (x0, x
(n)
3 ) =

(−300,−eEn), n = 1, 2, 3, 4, giving the spectrum of the oper-
ator O2 with a negative value of x0 = −300

The expansions of F (2,2)
g (λ) and F (3,1)

g (λ) near λ = 0 were worked out in [12],
for small g, and directly from the spectral theory. One finds, for the leading
terms,

F (2,2)
0 (λ) =

λ2

2

(
log (λσ1) − 3

2

)
− c1λ − 1

75

√
65 − 22

√
5π2λ3

−
(
174

√
5 − 425

)
π4λ4

11250
+

4
(
145 − 59

√
5
)√

5 − 2
√

5π6λ5

46875
+ O(λ6),

F (3,1)
0 (λ) =

λ2

2

(
log (λσ2) − 3

2

)
− c2λ − 1

75

√
65 + 22

√
5π2λ3

+

(
425 + 174

√
5
)
π4λ4

11250
−

4
√

14530 + 32482√
5

π6λ5

9375
+ O(λ6). (4.92)

In these equations,

σ1 =
2
25

√
10 − 2

√
5π2, σ2 =

2
25

√
10 + 2

√
5π2. (4.93)

The coefficients c1,2 can be expressed in terms of the Bloch–Wigner function,

D2(z) = Im (Li2(z)) + log |z|arg(1 − z), (4.94)
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where arg denotes the branch of the argument between −π and π. We have

c1 =
5

2π2
D2

(
e

2πi
5

1 +
√

5
2

)
, c2 =

5
2π2

D2

(
e

πi
5

1 +
√

5
2

)
. (4.95)

For the next-to-leading function, one finds,

F (2,2)
1 (λ) = − 1

12
log (λ�) + ζ ′(−1) +

√
725 − 178

√
5π2

150
λ

+

(
174

√
5 − 425

)
π4

11250
λ2 −

4
√

112450 − 249538√
5

π6

28125
λ3 + O(λ4),

F (3,1)
1 (λ) = − 1

12
log (λ�) + ζ ′(−1) +

√
725 + 178

√
5π2

150
λ

−
(
425 + 174

√
5
)
π4

11250
λ2 +

4
√

112450 + 249538√
5

π6

28125
λ3 + O(λ4).

(4.96)

The results above do not determine the crossing terms. To obtain these,
we have to calculate fermionic traces with both N1, N2 different from zero,
and expand them at large �. These expansions can be obtained, as in [12,13],
by writing integral expressions for the traces and expanding them around the
Gaussian point. For example, for the calculation of Z(1, 1; �) we need the
integral expression (4.50), and we obtain

log Z(1, 1; �) =
1
2

log

[
2
(
7
√

5 − 15
)
π2

625�2

]
− c1 − c2 +

√
1
2

(
1205 + 31

√
5
)
π2

75�

− 8
((

5 + 11
√

5
)
π4
)

625�2
+ · · · . (4.97)

We have examined the very first terms in the large � expansion of Z(1, 1; �),
Z(2, 1; �) and Z(1, 2; �), which allows us to determine the coefficients of the
cross terms λ1λ2, λ2

1λ2, λ1λ
2
2 in F0(λ1, λ2). In this way, we find

F0(λ1, λ2) = F (2,2)
0 (λ1) + F (3,1)

0 (λ2) + α12λ1λ2

+
4
25

√
5 + 2

√
5π2λ1λ

2
2 +

4
25

√
5 − 2

√
5π2λ2

1λ2 + · · · (4.98)

where

α12 = − log

[
3 +

√
5

2

]
. (4.99)

Note that, in comparing an expansion at small N1, N2 like (4.97) to (4.92),
(4.96), we cannot use the asymptotic expansion of the Barnes functions
G2(N1 + 1), G2(N2 + 1), which give the very first terms in (4.92), (4.96).
Rather, we have to subtract these terms from the asymptotic expansion, and
replace them by the exact values of the Barnes functions, similar to what was
done in [69] in a related context.
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We now want to compare these results with the predictions of (3.35).
According to (3.42), the ’t Hooft parameters are given by

λ1 =
1

8π3

(
3
∂F̂0

∂t1
− ∂F̂0

∂t2
− π2

2

)
,

λ2 =
1

8π3

(
−∂F̂0

∂t1
+ 2

∂F̂0

∂t2
− 2π2

3

)
. (4.100)

We recall that the prepotential F̂0(t1, t2) appearing here is the standard large
radius prepotential of this geometry, but after turning on the B-field (4.30).
As in the genus one case, we expect the λi to be vanishing flat coordinates
around the point in the conifold locus characterized by two vanishing periods.
The natural candidate is the maximal conifold point (4.8). In Appendix A.3
we have found flat coordinates tc1,2 around this point by solving the Picard–
Fuchs equations. Note, however, that we have to turn on a B-field, which is
equivalent to changing z1 → −z1 in the results of that Appendix. We will keep
the same notation for the resulting flat coordinates after this change of sign.
A detailed numerical analysis shows that indeed

tci = riλi, i = 1, 2, (4.101)

where

r1 = 4π2

√
1 − 2√

5
, r2 = 4π2

√
1 +

2√
5
. (4.102)

As we noted in Sect. 3.3, the constants in (4.100) are determined by the coeffi-
cients bNS

i and the matrix (4.13). It was observed in the Appendix to [28] that
the combinations appearing in (4.100) are precisely vanishing flat coordinates
along the two different branches of the conifold locus which intersect at the
maximal conifold point. Interestingly, we can predict these combinations from
our main conjecture (3.24), as it has been already noted in [13].

According to (3.44), the leading term in the expansion (1.2) is determined
by the equations,

∂F0

∂λ1
=

1
10π

Π−
v ,

∂F0

∂λ2
=

1
10π

Π−
u , (4.103)

where Π−
v,u are the combinations of A-periods written down in (A.9), (A.10),

but after changing z1 → −z1 in the power series expansion. To integrate these
equations and expand them around λ1 = λ2 = 0, so as to make contact
with the expansions of the spectral traces, we have to consider the analytic
continuation of the periods Π−

v,u around the maximal conifold point, i.e., we
have to express them as a linear combination of the flat coordinates λ1,2 and
the logarithmic periods S1,2 in (A.38). This seems to be difficult, analytically.
However, our conjecture predicts that this combination should be
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1
10π

Π−
v =

1
r1

S1 +
(

log
σ1

r1
− 1
)

λ1 − c1 + α12λ2,

1
10π

Π−
u =

1
r2

S2 +
(

log
σ2

r2
− 1
)

λ2 − c2 + α12λ1, (4.104)

where α12, given in (4.99), is the coefficient of λ1λ2 in F0(λ1, λ2). We have
verified (4.104) numerically. In particular, a remarkable consequence of (4.104)
is the following. Let us write (A.10) as

Πu(z1, z2) = log(z1z
3
2) + Π̃u(z1, z2),

Πv(z1, z2) = log(z2
1z2) + Π̃v(z1, z2). (4.105)

Then, if we denote the coordinates of the maximal conifold point (4.8) as zc
1,2,

we find, by evaluating (4.104) at (−zc
1, z

c
2), that

− 1
25

(
log
∣∣zc

1(z
c
2)

3
∣∣+ Π̃u(zc

1, z
c
2)
)

=
1
π

D2

(
e

πi
5

1 +
√

5
2

)
,

− 1
25

(
log
∣∣(zc

1)
2zc

2

∣∣+ Π̃v(zc
1, z

c
2)
)

=
1
π

D2

(
e

2πi
5

1 +
√

5
2

)
, (4.106)

where we took into account the expressions (4.95). Similar identities, evalu-
ating the A-periods at the conifold point in terms of the dilogarithm func-
tion, were already predicted by the conjecture of [1] in the genus one case,
as explained in [12,13]. For elliptic mirror curves, some of these identities
have been known in the mathematics and physics literature [15,16,70]. In our
approach, these identities follow from the presence of the quantum dilogarithm
in the integral kernel of the corresponding operators [11]. As already empha-
sized in [12,13], the fact that these identities are true is a highly non-trivial
test of the spectral theory/mirror symmetry correspondence of [1] that we are
developing in this paper for the higher genus case. In particular, the identities
(4.106), which we have verified with high numerical precision, do not seem to
be known in the mathematics literature.3

Once (4.104) has been established, we can integrate it to obtain, up to a
constant,

F0(λ1, λ2) =
λ2

1

2

(
log (λ1σ1) − 3

2

)
− c1λ1

+
λ2

2

2

(
log (λ2σ2) − 3

2

)
− c2λ2 + α12λ1λ2

− 1
75

√
65 − 22

√
5π2λ3

1 +
4
25

√
5 + 2

√
5π2λ2

2λ1

+
4
25

√
5 − 2

√
5π2λ2λ

2
1

3 After the first version of this paper appeared, Charles Doran and Matt Kerr proved these
identities using the techniques of [16].
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− 1
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11250
+ O(λ5). (4.107)

As in the case of mirror curves of genus one, (3.35) predicts that F1(λ1, λ2) is
given, up to an additive constant, by the genus one free energy in the maximal
conifold frame. We can now use (4.18) and the mirror map near the maximal
conifold point to obtain, up to an additive constant,

F1(λ1, λ2) = − 1
12

log (λ1λ2) +
1

150
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725 − 178
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5π2λ1
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π6λ3
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28125
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35050 + 73142√
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π6λ2λ
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9375
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112450 + 249538√
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π6λ3
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28125
+ O(λ4). (4.108)

If we compare the expressions (4.107), (4.108) with the results obtained from
spectral theory, we find complete agreement. In particular, the free energies
(4.92), (4.96) for the matrix models associated with the operators ρ3,1 and
ρ2,2 are recovered as topological string free energies in the maximal conifold
frame, restricted to the two branches λ1 = 0, λ2 = 0 of the conifold locus,
respectively. In addition, one can check that the cross terms (4.107), (4.108)
reproduce the expansions of the spectral traces with both N1 and N2 different
from zero. For example, one finds that the term of order �

−2 in log Z(1, 1; �),
which is the term written down in the second line of (4.97), precisely equals
the sum of the coefficients of the quartic terms in F0(λ1, λ2), plus the sum of
the coefficients of the quadratic terms in F1(λ1, λ2).
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The conclusion of this rather lengthy and detailed analysis is that the
spectral theory associated with the mirror curve of the resolved C

3/Z5 orbifold
provides a non-perturbative description of topological strings on this toric CY
threefold. More precisely, the fermionic spectral traces Z(N1, N2; �), which are
perfectly well defined, can be expanded in a ’t Hooft limit which reproduces
the genus expansion of the topological string free energy, as we have verified
in detail.

It is also possible to write the expression (2.64) in the form of a two-cut
matrix model. To do this, one has to use the explicit expression for the kernels
(4.47) as well as the Cauchy identity, similar to what was done in [12,13] for
genus one mirror curves. A straightforward calculation shows that the matrix
model calculating the spectral trace Z(N1, N2; �) is given by

Z(N1, N2; �) =
1

N1!N2!

∫
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10
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2
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e− b2uj
5
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10

(
buj

2π
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×
∏

i<j 2 sinh
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ui−uj

2 + iπΔi,j

)
2 sinh

(
ui−uj

2 − iπΔi,j

)

∏
i,j 2 cosh

(
ui−uj

2 + πici,j

) ,

(4.109)

where

Δi,j =

⎧
⎪⎨

⎪⎩

0 if i, j ≤ N1 or i, j > N1,

1/10 if i ≤ N1 and j > N1,

−1/10 otherwise,
(4.110)

and

ci,j =

⎧
⎪⎨

⎪⎩

3/10 if i, j ≤ N1,

1/10 if i, j ≥ N1,

2/10 otherwise
(4.111)

In principle, our conjecture provides such a matrix model-like descrip-
tion of the topological string for all toric CY threefold, and it would be very
interesting to test it in more higher genus examples.

5. Conclusions and Future Prospects

In this paper, we have extended the correspondence of [1] to mirror curves
of higher genus. This generalization requires many new ingredients: on the
spectral theory side, we need a generalized spectral determinant which gives
an entire function on the moduli space. This leads to a single quantization
condition, in contrast to what happens in many quantum integrable systems.
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We have seen that this quantization condition captures in detail the spectrum
of the operators appearing in the quantization of the curve. In addition, the
fermionic spectral traces, which are obtained by expanding the generalized
spectral determinant, provide a non-perturbative definition of the all-genus
topological string in a certain conifold frame. All these considerations have
been analyzed in detail in the example of the resolved C

3/Z5 orbifold.

The results presented in this paper open different avenues for future
research. The general theory presented here grew out of a detailed analysis of
the resolved C

3/Z5 orbifold, and it would be very important to consider other
higher genus examples to test it more carefully. It would be also important to
extend our checks (which were mostly done in the maximally supersymmetric
case) to arbitrary values of �. We should note, however, that this seems to
require a deeper understanding of the all-genus topological string away from
the large radius point. Already in the genus one case, it was noted in [1] that,
for example, the expansion of the spectral determinant near orbifold points
is only feasible in the maximally supersymmetric case, since we do not have
systematic resummations of the topological string amplitudes at those points.
In the case of higher genus curves, there are even more limitations of this type.
For example, the operators ρ3,1 and ρ2,2 correspond to half-orbifold points of
the geometry, and it seems difficult to write down an explicit quantization
condition for these operators in terms of half-orbifold quantities for general �.
Clearly, more work is needed along this direction.

Another related question is the following. In the case of genus one curves
and for general �, it has been shown in [77] that the condition for the vanishing
of the spectral determinant (i.e., the quantization condition) can be written in
a closed form, in terms of the NS free energy (3.13). It would be interesting to
see if a similar simple form can be found in the higher genus case. This might
be, however, more difficult than for mirror curves of genus one. Recall that,
in the maximally supersymmetric case, the quantization condition involves
the vanishing of the usual Riemann theta function. When gΣ ≥ 2, however,
the theta divisor has a more complicated parametrization than in genus one,
involving in particular the Abel map, and it is not clear that one can write a
simple quantization condition even when � = 2π.

As we have emphasized, the quantization scheme for mirror curves of
higher genus that we are proposing in this paper is different from the more
conventional procedure based on an underlying quantum integrable system.
On the other hand, a construction by Goncharov and Kenyon associates an
integrable system with any toric CY manifold [71] (see also [72,73]). The quan-
tization of this system leads to gΣ quantization conditions for the moduli of the
curve. It would be very interesting to understand the precise relation between
the quantization of the Goncharov–Kenyon system and the quantization pro-
cedure developed here.

The results obtained in this paper might have implications for the study
of non-perturbative aspects of Chern–Simons matter theories. Some of the
models studied in [74–76] in the Fermi gas approach involve operators which



610 S. Codesido et al. Ann. Henri Poincaré

are obtained from the quantization of higher genus curves. The methods and
ideas developed in this paper should be useful in their study.

Of course, there remain deep conceptual questions concerning the origin
of the correspondence between spectral theory and topological strings. From a
mathematical point of view, it would be important to develop a version of the
complex WKB method which makes it possible to understand the structure
of non-perturbative corrections postulated in the conjecture of [1] and the
extension studied here. From a physical point of view, it would be important to
know whether there is a full-fledged field theory behind the operators obtained
by quantization. As pointed out in [1], the behavior of the fermionic spectral
traces at large N suggests that it could be a theory of M2 branes. Finding and
describing in detail such a theory would lead to a much deeper understanding
of topological string theory in the toric case.
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Appendix A: Special Geometry of the Resolved C
3/Z5 Orbifold

In this Appendix, we collect necessary information on the resolved C
3/Z5

orbifold, in particular its periods. Many of these results have appeared before,
in [27–29].

A.1: Periods at Large Radius

The moduli space of complex structures of this CY is parametrized by the
complex variables z1, z2 introduced in (2.28). The periods of this geometry are
solutions to the Picard–Fuchs equations determined by the following operators
[27],

L1 = −2Θ2,1 + Θ3,0 + z1(−2Θ0,1 + 3Θ0,2 − Θ0,3 + 6Θ1,0

− 18Θ1,1 + 9Θ1,2 + 27Θ2,0 − 27Θ2,1 + 27Θ3,0),
(A.1)

L2 = Θ0,2 − 3Θ1,1 + z2(−2Θ0,1 − 4Θ0,2 + Θ1,0 + 4Θ1,1 − Θ2,0), (A.2)

L3 = Θ2,1 + z1z2 (−2Θ0,2 + 2Θ0,3 + 7Θ1,1

−13Θ1,2 − 3Θ2,0 + 24Θ2,1 − 9Θ3,0) , (A.3)

where Θi,j stands for the logarithmic derivative of order i w.r.t. z1 and of order
j w.r.t. z2. The standard way to solve these equations in the large radius point
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(see for example [78]) is to consider the fundamental period �0(ρ1, ρ2), given
by

�0(ρ1, ρ2) =
∑

�,n≥0

× Γ(ρ1 + 1)2Γ(ρ2 + 1)Γ(ρ1 − 2ρ2 + 1)Γ(−3ρ1 + ρ2 + 1)z�+ρ1
1 zk+ρ2

2

Γ(� + ρ1 + 1)2Γ(k + ρ2 + 1)Γ(� − 2k + ρ1 − 2ρ2 + 1)Γ(−3� + k − 3ρ1 + ρ2 + 1)
,

(A.4)

and take derivatives of this quantity w.r.t. ρi, i = 1, 2. We will then define,

ΠAi
=

∂�0(ρ1, ρ2)
∂ρi

∣∣
ρ1=ρ2=0

, i = 1, 2,

ΠB1 =
(
2∂2

ρ1
+ 2∂ρ1∂ρ2 + 3∂2

ρ2

)
�0(ρ1, ρ2)

∣∣
ρ1=ρ2=0

,

ΠB2 =
(
∂2

ρ1
+ 6∂ρ1∂ρ2 + 9∂2

ρ2

)
�0(ρ1, ρ2)

∣∣
ρ1=ρ2=0

. (A.5)

We will also denote

�ij =
∂2�0

∂ρi∂ρj

∣∣∣∣
ρ1=ρ2=0

. (A.6)

One has, explicitly,

ΠA1 = log(z1) − 6z1 − z2 + 45z2
1 − 3z2

2

2
+ · · · ,

ΠA2 = log(z2) + 2z1 + 2z2 − 15z2
1 + 3z2

2 + · · · ,

ΠB1 = 2 log2(z1) + 2 log(z1) log(z2) + 3 log2(z2) + · · · ,

ΠB2 = log2(z1) + 6 log(z1) log(z2) + 9 log2(z2) + · · · . (A.7)

In terms of the variables (4.14), we have

z1 = Q1 + 6Q2
1 + Q1Q2 + 9Q3

1 + 10Q2
1Q2

+56Q4
1 + 26Q3

1Q2 + 4Q2
1Q

2
2 + · · · ,

z2 = Q2 − 2Q1Q2 − 2Q2
2 + 6Q1Q

2
2 + 5Q2

1Q2

−3Q3
2 − 32Q3

1Q2 − 10Q1Q
3
2 − 4Q4

2 + · · · (A.8)

There are two combinations of the A-periods which play an important
rôle, since they can be regarded as the flat coordinates corresponding to the
moduli x3, x0. They are given by,

Πu = ΠA1 + 3ΠA2 , Πv = 2ΠA1 + ΠA2 . (A.9)

As already noted in [29], their expansions can be written in closed form:

Πu = log u + 5
∞∑

(m,r)′

Γ(5m + 2r)
Γ(1 + r)Γ(1 + 3m + r)Γ(1 + m)2

(−u)mzr
2 ,

Πv = log v + 5
∞∑

(n,r)′

Γ(5n + 3r)
Γ(1 + r)Γ(1 + 2n + r)2Γ(1 + n)

(−v)n(−z1)r. (A.10)
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Here, (m, r)′ and (n, r)′ mean that the corresponding pairs run over non-
negative pairs of integers, except (0, 0). In the same way, one finds the explicit
expression

ΠB2 = − log2(u) + 2ΠA1 log(u)

+ 10
∑

m,r

5ψ(5m + 2r) − 2ψ(1 + m) − 3ψ(1 + 3m + r)
Γ(1 + r)Γ(1 + m)2Γ(1 + 3m + r)

×Γ(5m + 2r)(−u)mzr
2 . (A.11)

A.2: Periods at the (Half)-Orbifold Points

We also need the analytic continuation of these periods to the other significant
points in moduli space. Let us first consider the half-orbifold point (4.4). Near
this point, z1 is large but z2 is small. To perform the analytic continuation, it
is convenient to write the fundamental period in the Mellin–Barnes form. One
has

�0(ρ1, ρ2) =
∑

k≥0

Γ(ρ1 + 1)2Γ(ρ2 + 1)(−1)k+1 sin(π(3ρ1 − ρ2))

×Γ(ρ1 − 2ρ2 + 1)Γ(−3ρ1 + ρ2 + 1)

×
∫

C
dt

Γ(−t)Γ(t + 1)Γ(−k + 3t + 3ρ1 − ρ2)
πΓ(k + ρ2 + 1)Γ(t + ρ1 + 1)2Γ(−2k + t + ρ1 − 2ρ2 + 1)

×zk+ρ2
2 zρ1+t

1 . (A.12)

Here, C is a contour running parallel to the imaginary axis. By closing the
contour on the r.h.s. and picking up the residues at

t = �, � ≥ 0 (A.13)

we obtain (A.4). But we can close the contour on the l.h.s. and pick up the
residues at

t =
1
3
(k − n − 3ρ1 + ρ2), n ≥ 0, (A.14)

and we have

�0(ρ1, ρ2) = sin(3πρ1 − πρ2)
∑

k,n≥0

(−1)k+n+1xn
0X

1
3 (5k+n+5ρ2)

× csc
(

1
3
π(k − n − 3ρ1 + ρ2)

)

× Γ(ρ1 + 1)2Γ(ρ2 + 1)Γ(ρ1 − 2ρ2 + 1)Γ(−3ρ1 + ρ2 + 1)

3n!Γ(k + ρ2 + 1)Γ
(

1
3 (−5k − n − 5ρ2 + 3)

)
Γ
(

1
3 (k − n + ρ2 + 3)

)2 ,

(A.15)

where we introduced the variable

X =
1
x3

(A.16)

and we used

z2 = x0X
2, z1 =

1
Xx3

0

. (A.17)
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The analytic continuation of the large radius periods is simply obtained by
taking the derivatives of �0(ρ1, ρ2) in the form (A.15) as in (A.5). For the
A-periods, it is easier to consider the combinations Πu, Πv in (A.9). Note that
the analytic continuation of the period Πu is straightforward, and we simply
obtain

Πu(x0,X) = 5 log X + 5
∑

(m,r)′

Γ(5m + 2r)
Γ(m + 1)2Γ(r + 1)Γ(3m + r + 1)

×(−1)mX5m+2rxr
0. (A.18)

The analytic continuation of Πv gives,

Πv(x0,X) =
5
3

log X +
5
3

∑

(p,t)′

(−1)tΓ
(

1
3 (p + 5t)

)

Γ(p + 1)Γ(t + 1)Γ
(

t−p
3 + 1

)2

×(−x0)pX
1
3 (p+5t). (A.19)

We have

ΠA1(x0,X) =
3
5
Πv(x0,X) − 1

5
Πu(x0,X),

ΠA2(x0,X) =
2
5
Πu(x0,X) − 1

5
Πv(x0,X). (A.20)

It is also useful to consider the following periods,

π13(x0,X) = −Γ
(

2
3

)2

Γ
(

1
3

)
∑

(p,t)′′

(−1)tΓ
(

1
3 (p + 5t)

)

Γ(p + 1)Γ(t + 1)Γ
(

t−p
3 + 1

)2

×(−x0)pX
1
3 (p+5t),

π23(x0,X) =
2Γ
(

1
3

)2

Γ
(

2
3

)
∑

(p,t)′′′

(−1)tΓ
(

1
3 (p + 5t)

)

Γ(p + 1)Γ(t + 1)Γ
(

t−p
3 + 1

)2

×(−x0)pX
1
3 (p+5t), (A.21)

where the sum
∑

(p,t)′′
(A.22)

runs over all non-negative integers p, t such that (p, t) �= (0, 0) and 1
3 (p+5t)−

1
3 ∈ N, while

∑

(p,t)′′′
(A.23)

runs over all non-negative integers p, t such that (p, t) �= (0, 0) and 1
3 (p+5t)−

2
3 ∈ N. For the B-periods, one similarly finds that ΠB2 has a straightforward
analytic continuation, while for ΠB1 we find
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ΠB1(x0,X) =
10πΓ

(
1
3

)

3
√

3Γ
(

2
3

)2 π13(x0,X) +
5πΓ

(
2
3

)

3
√

3Γ
(

1
3

)2 π23(x0,X)

+
1
3
ΠB2(x0,X) − 10π2

9
, (A.24)

see [31] for a similar derivation.
A similar calculation can be done for the other half-orbifold point, at

x3 = 0. Let us denote

Y =
1
x0

. (A.25)

It is convenient to consider the large radius period, but after changing the
sign of z2. For this half-orbifold point, the particular combination of A-periods
which has an easy analytic continuation is Πv, and it reads,

Πv = 5 log Y + 5
∞∑

(n,r)′

Γ(5n + 3r)
Γ(1 + r)Γ(1 + 2n + r)2Γ(1 + n)

Y 5n+3r(−x3)r.

(A.26)

The rest of the periods at large radius can be written as linear combinations
of the following series,

π1/2 = −Y 1/2
∑

l,s≥0

Γ
(

1
2 + 2l + s

)

Γ(2 + 2s − l)Γ(1 + l)2Γ
(

1
2 + l − s

)Y 2l+s(−x3)2s+1−l

π3/2 = −Y 3/2
∑

s≥0

2s+1∑

l=0

3Γ
(

1
2 + 2l + s

)

Γ(2 + 2s − l)Γ(1 + l)2Γ
(

1
2 + l − s

)

× (4ψ(1 + l) + ψ(1/2 + l − s) − 5ψ(1/2 − 2l − s)

−4 log(4)) Y 2l+s−1(−x3)2s+1−l,

π1 = −
∑

s≥1

s−1∑

l=0

2(s − 1 − l)!(2l + s − 1)!
(2s − l)!�!2

(−1)s+lY 2l+s(−x3)2s−l,

Π̃B = 5
∑

(m,r)′

Γ(5m + 3r)
Γ(1 + r)Γ(1 + 2m + r)2Γ(1 + m)

× (4ψ(1 + 2m + r) + ψ(1 + m) − 5ψ(5m + 3r)) Y 5m+3r(−x3)r.
(A.27)

One finds,

�11 = −25
4

log2(Y ) +
5
2

log(Y )
(
π1/2 + Πv

)

− 2 log(4)π1/2 − 1
6
π3/2 − 1

2
Π̃B +

5
4
π1 +

π2

3
,

�12 = −5
2

log(Y )π1/2 + log(16)π1/2 +
1
6
π3/2 − π2

3
,

�22 = 0, (A.28)
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and we finally obtain the following analytic continuation formulae,

ΠA1(Y, x3) =
1
2

(Πv + π12) ,

ΠA2(Y, x3) = −π12,

ΠB1(Y, x3) = 2�11 + 2�12,

ΠB2(Y, x3) = �11 + 6�12. (A.29)

Let us finally consider the analytic continuation near the full orbifold
point, x3 = x0 = 0. After some computations, one finds that the fundamental
period becomes

�0(ρ1, ρ2) =
∑

k,n

(−1)k+nΓ(ρ1 + 1)Γ(ρ2 + 1)2Γ(ρ1 − 3ρ2 + 1)Γ(−2ρ1 + ρ2 + 1)

15k!n!Γ
(

1
5 (−3k − n + 5)

)
Γ
(−k

5 − 2n
5 + 1

)2

× sin(π(ρ1 − 3ρ2))g(ρ1, ρ2, k, n)xk
3xn

0 , (A.30)

where

g(ρ1, ρ2, k, n) = − sin
(

1
3
π(n + 5ρ1)

)
csc
(

1
15

π(3k + n + 5ρ1)
)

× csc
(

1
3
π(n − ρ1 + 3ρ2)

)

− sin
(

1
3
π(n + 5ρ1 − 1)

)
sec
(

1
30

π(6k + 2n + 10ρ1 − 5)
)

× csc
(

1
3
π(−n + ρ1 − 3ρ2 + 1)

)

− sin
(

1
3
π(n + 5ρ1 + 1)

)
sec
(

1
30

π(6k + 2n + 10ρ1 + 5)
)

× csc
(

1
3
π(n − ρ1 + 3ρ2 + 1)

)
. (A.31)

Then one can check that

ΠA1(x0, x3)

= −
∑

m,r

π(−1)m+r
(
(−1)m csc

(
1
5π(2m + r)

)− 3 csc
(

1
5π(m + 3r)

))

5m!r!Γ
(−m

5 − 3r
5 + 1

)
Γ
(− 2m

5 − r
5 + 1

)2 xm
0 xr

3,

ΠA2(x0, x3)

=
∑

m,r

π(−1)m+r
(
2(−1)m csc

(
1
5π(2m + r)

)− csc
(

1
5π(m + 3r)

))

5m!r!Γ
(−m

5 − 3r
5 + 1

)
Γ
(− 2m

5 − r
5 + 1

)2 xm
0 xr

3.

(A.32)

This result can also be obtained with the results of [29]. The B-periods
can then be obtained by computing derivatives of (A.30). One finds the closed
form expression,
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ΠB1(x0, x3) = −8π2

3
+
∑

(m,r)′

Γ
(

1
5 (m + 2r)

)2

m!Γ(r + 1)Γ
(− 3m

5 − r
5 + 1

)xm
3 xr

0,

ΠB2(x0, x3) = −2π2 +
1
2

∑

(m,r)′

sec
(

1
5π(4r − 3m)

)
Γ
(

1
5 (m + 2r)

)2

m!Γ(r + 1)Γ
(− 3m

5 − r
5 + 1

) (−x3)mxr
0.

(A.33)

A.3: Periods at the Maximal Conifold Point

The maximal conifold point is defined by (4.8). Near this point, we have the
vanishing coordinates ρi, i = 1, 2, defined by

z1 = − 1
25

+ ρ1, z2 =
1
5

+ ρ2. (A.34)

We expect to have two flat coordinates tc1, tc2 vanishing at the maximal
conifold point, and two periods vanishing like tci log tci . In addition, near the
maximal conifold point, we expect the discriminant (4.7) to vanish like

Δ ∼ tc1t
c
2. (A.35)

One can indeed find two solutions of the Picard–Fuchs equations with the
required behavior. In terms of these flat coordinates, the local coordinates ρi,
i = 1, 2 are given by the expansions,

ρ1 =

(
25 − 11

√
5
)
tc2 +

(
25 + 11

√
5
)
tc1

250

+

(
337

√
5 − 755

)
(tc2)

2 − (755 + 337
√

5
)
(tc1)

2

2500
+ O (tc)3 ,

(A.36)

ρ2 =
tc1 − tc2
5
√

5
+

(
7
√

5 − 10
)
(tc2)

2 + 10tc1t
c
2 − (10 + 7

√
5
)
(tc1)

2

250
+ O (tc)3 .

(A.37)

Similarly, one finds the following solutions to the Picard–Fuchs equations,

S1 = tc1 log (tc1) − 1
100

(
10 +

√
5
)

(tc1)
2

+
2
25

(
5 − 2

√
5
)

tc1t
c
2 +

1
25

(
5 − 2

√
5
)

(tc2)
2 + · · · ,

S2 = tc2 log (tc2) +
1
25

(
5 + 2

√
5
)

(tc1)
2

+
2
25

(
5 + 2

√
5
)

tc1t
c
2 +

1
100

(
−10 +

√
5
)

(tc2)
2 + · · · (A.38)

A.4: Quantum Mirror Map

As in [3,52], the quantum mirror map of the C
3/Z5 geometry can be computed

directly by quantizing the mirror curve with Weyl’s prescription, and solving
the resulting difference equation. Let us consider the second function in (2.34).
After appropriate rescalings of x, y, we find that the equation O2(x, y)+x3 = 0
can be written as

ex + ey + z1z
3
2e−3x−y + z2e−x + 1 = 0. (A.39)
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Let us introduce the function

V (x) =
ψ(x − i�)

ψ(x)
, (A.40)

where ψ(x) is a wavefunction in the x-representation. Therefore, the equation
(
ex + ey + z1z

3
2e−3x−y + z2e−x + 1

) |ψ〉 = 0 (A.41)

becomes

X + z2X
−1 + 1 + V (X) +

z1z
3
2q−3X−3

V (q2X)
= 0, (A.42)

where

q = ei�/2, X = ex. (A.43)

We can now solve systematically for V (X) as a power series in z1, z2. The
quantum A-period is then given by

Πu(z1, z2; �) = log u + Π̃u(z1, z2; �), (A.44)

where

Π̃u(z1, z2; �) = −5ResX=0

[
1
X

log (V (X))
]

. (A.45)

We find, at the very first orders,

Π̃u(z1, z2; �) = 5z2 +
15z2

2

2
+

50z3
2

3

− 5z3
2

(
4
(
q6 + q4 + q2 + 1

)
z1 − 35q3z2

)

4q3

− z4
2

(
5
(
q10 + 7q8 + 7q6 + 7q4 + 7q2 + 1

)
z1 − 126q5z2

)

q5

+O(z6
i ). (A.46)

It is easy to check that, when � → 0, we recover the classical Πu period
in (A.10).

We can compute another, independent quantum period by using the rep-
resentation (4.9) of the geometry. After appropriate rescalings, we can write it
as

ex + ey + z1e−x−y + z2e2x + 1 = 0, (A.47)

and following the same procedure we used above, we obtain the equation

X + z2X
2 + 1 + V (X) +

z1q
−1X−1

V (q2X)
= 0. (A.48)

Solving this, we can obtain the quantum A-period corresponding to ΠA2 .
Namely, we find
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ΠA2(z1, z2; �) = log u + Π̃A2(z1, z2; �), (A.49)

Π̃A2(z1, z2; �) = ResX=0

[
1

X

(
log(V (X)) − 2 log(V (X−1))

)]

= (q + q−1)z1 + 2z2 +
6q4z2

2 +
(−2q8 − 7q6 − 12q4 − 7q2 − 2

)
z2
1

2q4

+O(z3
i ). (A.50)
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[38] Babelon, O., Bernard, D., Talon, M.: An Introduction to Classical Integrable
Systems. Cambridge University Press, Cambridge (2003)

[39] Gutzwiller, M.C.: The quantum mechanical Toda lattice. Ann. Phys. 124, 347
(1980)

[40] Gutzwiller, M.C.: The quantum mechanical Toda lattice: II. Ann. Phys. 133,
304 (1981)

[41] Sklyanin, E.K.: The quantum Toda chain. Lect. Notes Phys. 226, 196 (1985)

[42] Gaudin, M., Pasquier, V.: The periodic Toda chain and a matrix generalization
of the Bessel function’s recursion relations. J. Phys. A 25, 5243 (1992)

[43] Kharchev, S., Lebedev, D.: Integral representation for the eigenfunc-
tions of quantum periodic Toda chain. Lett. Math. Phys. 50, 53 (1999).
arXiv:hep-th/9910265

[44] An, D.: Complete set of eigenfunctions of the quantum Toda chain. Lett. Math.
Phys. 87, 209 (2009)

[45] Mironov, A., Morozov, A.: Nekrasov functions and exact Bohr-Zommerfeld inte-
grals. JHEP 1004, 040 (2010). arXiv:0910.5670 [hep-th]

[46] Mironov, A., Morozov, A.: Nekrasov functions from exact BS periods: the case
of SU(N). J. Phys. A 43, 195401 (2010). arXiv:0911.2396 [hep-th]

[47] Kozlowski, K.K., Teschner, J.: TBA for the Toda chain. arXiv:1006.2906 [math-
ph]

[48] Matsuyama, A.: Periodic Toda lattice in quantum mechanics. Ann. Phys. 222,
300 (1992)

[49] Balian, R., Parisi, G., Voros, A.: Discrepancies from asymptotic series and their
relation to complex classical trajectories. Phys. Rev. Lett. 41, 1141 (1978)

[50] Balian, R., Parisi, G., Voros, A.: Quartic oscillator. In: Feynman Path Integrals.
Lecture Notes in Physics, vol. 106, p. 337 (1979)

[51] Huang, M.X.: On gauge theory and topological string in Nekrasov–Shatashvili
limit. JHEP 1206, 152 (2012). arXiv:1205.3652 [hep-th]

[52] Huang, M.X., Klemm, A., Reuter, J., Schiereck, M.: Quantum geometry of
del Pezzo surfaces in the Nekrasov–Shatashvili limit. JHEP 1502, 031 (2015).
arXiv:1401.4723 [hep-th]

[53] Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Kodaira–Spencer theory of
gravity and exact results for quantum string amplitudes. Commun. Math. Phys.
165, 311 (1994). arXiv:hep-th/9309140

[54] Gopakumar, R., Vafa, C.: M theory and topological strings. 2.
arXiv:hep-th/9812127

[55] Iqbal, A., Kozcaz, C., Vafa, C.: The refined topological vertex. JHEP 0910, 069
(2009). arXiv:hep-th/0701156

[56] Choi, J., Katz, S., Klemm, A.: The refined BPS index from stable pair invariants.
Commun. Math. Phys. 328, 903 (2014). arXiv:1210.4403 [hep-th]

[57] Nekrasov, N., Okounkov, A.: Membranes and sheaves. arXiv:1404.2323
[math.AG]

[58] Huang, M.X., Klemm, A.: Direct integration for general Ω backgrounds. Adv.
Theor. Math. Phys. 16(3), 805 (2012). arXiv:1009.1126 [hep-th]

http://arxiv.org/abs/hep-th/9910265
http://arxiv.org/abs/0910.5670
http://arxiv.org/abs/0911.2396
http://arxiv.org/abs/1006.2906
http://arxiv.org/abs/1205.3652
http://arxiv.org/abs/1401.4723
http://arxiv.org/abs/hep-th/9309140
http://arxiv.org/abs/hep-th/9812127
http://arxiv.org/abs/hep-th/0701156
http://arxiv.org/abs/1210.4403
http://arxiv.org/abs/1404.2323
http://arxiv.org/abs/1009.1126


Vol. 18 (2017) Spectral Theory and Mirror Curves of Higher Genus 621

[59] Eynard, B., Mariño, M.: A holomorphic and background independent partition
function for matrix models and topological strings. J. Geom. Phys. 61, 1181
(2011). arXiv:0810.4273 [hep-th]

[60] Aganagic, M., Bouchard, V., Klemm, A.: Topological strings and (almost) mod-
ular forms. Commun. Math. Phys. 277, 771 (2008). arXiv:hep-th/0607100

[61] Hatsuda, Y.: Spectral zeta function and non-perturbative effects in ABJM
Fermi-gas. JHEP 1511, 086 (2015). arXiv:1503.07883 [hep-th]

[62] Faddeev, L.D., Kashaev, R.M.: Quantum dilogarithm. Mod. Phys. Lett. A 9,
427 (1994). arXiv:hep-th/9310070

[63] Garoufalidis, S., Kashaev, R.: Evaluation of state integrals at rational points.
Commun. Number Theor. Phys. 09(3), 549 (2015). arXiv:1411.6062 [math.GT]

[64] Faddeev, L.D.: Discrete Heisenberg-Weyl group and modular group. Lett. Math.
Phys. 34, 249 (1995). arXiv:hep-th/9504111

[65] Fuji, H., Hirano, S., Moriyama, S.: Summing up all genus free energy of ABJM
matrix model. JHEP 1108, 001 (2011). arXiv:1106.4631 [hep-th]

[66] Alim, M., Yau, S.T., Zhou, J.: Airy equation for the topological string par-
tition function in a scaling limit. Lett. Math. Phys. 106(6), 719 (2016).
arXiv:1506.01375 [hep-th]

[67] Huang, M.X., Wang, X.F.: Topological strings and quantum spectral problems.
JHEP 1409, 150 (2014). arXiv:1406.6178 [hep-th]

[68] Ellegaard Andersen, J., Kashaev, R.: A TQFT from quantum Teichmüller the-
ory. Commun. Math. Phys. 330, 887 (2014). arXiv:1109.6295 [math.QA]

[69] Mariño, M., Schiappa, R., Weiss, M.: Multi-instantons and multi-cuts. J. Math.
Phys. 50, 052301 (2009). arXiv:0809.2619 [hep-th]

[70] Mohri, K., Onjo, Y., Yang, S.K.: Closed submonodromy problems, local mir-
ror symmetry and branes on orbifolds. Rev. Math. Phys. 13, 675 (2001).
arXiv:hep-th/0009072

[71] Goncharov, A.B., Kenyon, R.: Dimers and cluster integrable systems.
arXiv:1107.5588 [math.AG]

[72] Fock, V.V., Marshakov, A.: Loop groups, clusters, dimers and integrable systems.
arXiv:1401.1606 [math.AG]

[73] Eager, R., Franco, S., Schaeffer, K.: Dimer models and integrable systems. JHEP
1206, 106 (2012). arXiv:1107.1244 [hep-th]

[74] Moriyama, S., Nosaka, T.: ABJM membrane instanton from pole cancellation
mechanism. Phys. Rev. D 92(2), 026003 (2015). arXiv:1410.4918 [hep-th]

[75] Moriyama, S., Nosaka, T.: Exact instanton expansion of superconformal
Chern–Simons theories from topological strings. JHEP 1505, 022 (2015).
arXiv:1412.6243 [hep-th]

[76] Hatsuda, Y., Honda, M., Okuyama, K.: Large N non-perturbative effects
in N = 4 superconformal Chern–Simons theories. JHEP 1509, 046 (2015).
arXiv:1505.07120 [hep-th]

[77] Wang, X., Zhang, G., Huang, M.X.: New exact quantization condition for toric
Calabi–Yau geometries. Phys. Rev. Lett. 115, 121601 (2015). arXiv:1505.05360
[hep-th]

[78] Hosono, S., Klemm, A., Theisen, S.: Lectures on mirror symmetry. Lect. Notes
Phys. 436, 235 (1994). arXiv:hep-th/9403096

http://arxiv.org/abs/0810.4273
http://arxiv.org/abs/hep-th/0607100
http://arxiv.org/abs/1503.07883
http://arxiv.org/abs/hep-th/9310070
http://arxiv.org/abs/1411.6062
http://arxiv.org/abs/hep-th/9504111
http://arxiv.org/abs/1106.4631
http://arxiv.org/abs/1506.01375
http://arxiv.org/abs/1406.6178
http://arxiv.org/abs/1109.6295
http://arxiv.org/abs/0809.2619
http://arxiv.org/abs/hep-th/0009072
http://arxiv.org/abs/1107.5588
http://arxiv.org/abs/1401.1606
http://arxiv.org/abs/1107.1244
http://arxiv.org/abs/1410.4918
http://arxiv.org/abs/1412.6243
http://arxiv.org/abs/1505.07120
http://arxiv.org/abs/1505.05360
http://arxiv.org/abs/hep-th/9403096


622 S. Codesido et al. Ann. Henri Poincaré
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