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Abstract. We study the four-dimensional n-component |ϕ|4 spin model for
all integers n ≥ 1 and the four-dimensional continuous-time weakly self-
avoiding walk which corresponds exactly to the case n = 0 interpreted as a
supersymmetric spin model. For these models, we analyse the correlation
length of order p, and prove the existence of a logarithmic correction to
mean-field scaling, with power 1

2
n+2
n+8

, for all n ≥ 0 and p > 0. The proof
is based on an improvement of a rigorous renormalisation group method
developed previously.

1. Introduction and Main Results

1.1. Introduction

Recently, using a rigorous renormalisation group method [5,6,10–13], the criti-
cal behaviour of the four-dimensional n-component |ϕ|4 spin model [2,18] and
the four-dimensional continuous-time weakly self-avoiding walk [3,4,18] has
been analysed. The latter model corresponds to the case n = 0 via an exact
identity which represents the weakly self-avoiding walk as a supersymmetric
field theory with quartic self-interaction. A typical result in this work is that
for all n ≥ 0, the susceptibility diverges as ε−1(log ε−1)

n+2
n+8 , in the limit ε ↓ 0

describing approach to the critical point. Related results have been obtained
for the pressure, the specific heat, the critical two-point function, and other
quantities. The existence of such logarithmic corrections to scaling for dimen-
sion 4 was predicted about 45 years ago in the physics literature [7,17,19]. For
n = 1, the existence of logarithmic corrections was proven rigorously about 30
years ago in [15,16].
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A missing aspect in the analysis of critical scaling in [2–4,18] is a deter-
mination of the divergence of correlation length scales, as the critical point is
approached. A natural measure of length scale is the correlation length ξ de-
fined as the reciprocal of the exponential decay rate of the two-point function.
We do not study this correlation length (which was, however, studied in [16]
for the case n = 1). Instead, we study ξp, the correlation length of order p, for
all p > 0, and prove that its divergence takes the form ε− 1

2 (logε−1)
1
2

n+2
n+8 . The

independence of p in the exponents exemplifies the conventional wisdom that
in critical phenomena, all naturally defined length scales should exhibit the
same asymptotic behaviour. The correlation length ξ is predicted to diverge in
the same manner, but our method would require further development to prove
this.

1.2. Definitions of the Models

Before defining the models, we establish some notation. Let L > 1 be an integer
(which we will need to fix large). Consider the sequence Λ = ΛN = Z

d/(LN
Z

d)
of discrete d-dimensional tori of side lengths LN , with N → ∞ corresponding
to the infinite volume limit ΛN ↑ Z

d. Throughout the paper, we only consider
d = 4, but we sometimes write d instead of 4 to emphasise the role of dimension.
For any of the 2d unit vectors e ∈ Z

d, we define the discrete gradient of
a function f : ΛN → R by ∇efx = fx+e − fx and the discrete Laplacian
by Δ = − 1

2

∑
e∈Zd:|e|=1 ∇−e∇e. The gradient and Laplacian operators act

componentwise on vector-valued functions. We also use the discrete Laplacian
ΔZd on Z

d and the continuous Laplacian ΔRd on R
d.

1.2.1. The |ϕ|4 Model. Given n ≥ 1, a spin field is a function ϕ : ΛN → R
n.

We write this function as x 	→ ϕx = (ϕ1
x, . . . , ϕn

x).
On R

n, we use the Euclidean inner product v ·w =
∑n

i=1 viwi, the Euclid-
ean norm |v|2 = v · v, and write |v|4 = (v · v)2. Given g > 0, ν ∈ R, we define
a function Ug,ν,N of the field by

Ug,ν,N (ϕ) =
∑

x∈Λ

(
1
4g|ϕx|4 + 1

2ν|ϕx|2 + 1
2ϕx · (−Δϕ)x

)
. (1.1)

Then, the expectation of a random variable F : (Rn)ΛN → R is defined by

〈F 〉g,ν,N =
1

Zg,ν,N

∫

F (ϕ)e−Ug,ν,N (ϕ)dϕ, (1.2)

where dϕ is the Lebesgue measure on (Rn)Λ, and Zg,ν,N is a normalisation
constant (the partition function) chosen so that 〈1〉g,ν,N = 1. Given a lattice
point x, we define the finite and infinite volume two-point functions (whenever
the infinite volume limit exists):

Gx,N (g, ν;n) =
1
n

〈ϕ0 · ϕx〉g,ν,N , Gx(g, ν;n) = lim
N→∞

Gx,N (g, ν;n). (1.3)

In the above limit, we identify a point x ∈ Z
d with x ∈ ΛN for large N , by

embedding the vertices of ΛN as an approximately centred cube in Z
d (say as
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[− 1
2LN + 1, 1

2LN ]d ∩ Z
d if LN is even and as [− 1

2 (LN − 1), 1
2 (LN − 1)]d ∩ Z

d

if LN is odd).

1.2.2. Weakly Self-Avoiding Walk. Let X be the continuous-time simple ran-
dom walk on the lattice Z

d, with d > 0. In other words, X is the stochastic
process with right-continuous sample paths that takes steps uniformly at ran-
dom to one of the 2d nearest neighbours of the current position at the events
of a rate-2d Poisson process. Steps are independent of the Poisson process
and of all other steps. Let E0 denote the expectation for the process with
X(0) = 0 ∈ Z

d. The local time of X at x up to time T is the random variable
LT (x) =

∫ T

0
1X(t)=x dt, and the self-intersection local time up to time T is

the random variable:

I(T ) =
∫ T

0

∫ T

0

1X(t1)=X(t2) dt1 dt2 =
∑

x∈Zd

(
LT (x)

)2
. (1.4)

Given g > 0, ν ∈ R, and x ∈ Z
d, the continuous-time weakly self-avoiding

walk two-point function is defined by the (possibly infinite) integral:

Gx(g, ν; 0) =
∫ ∞

0

E0

(
e−gI(T )1X(T )=x

)
e−νT dT. (1.5)

We write Gx,N for the finite-volume analogue of (1.5) on the torus ΛN .

1.2.3. Critical Point and Correlation Length of Order p. For both models,
i.e., for all integers n ≥ 0, the susceptibility is defined by

χ(g, ν;n) = lim
N→∞

∑

x∈ΛN

Gx,N (g, ν;n). (1.6)

The limit exists for n = 0 [4], but the general case is incomplete for n ≥ 1 due
to a lack of correlation inequalities for n > 2 [14]. The existence of the limits
(1.3) and (1.6) in the contexts we study is established in [2,18] (assuming L is
large).

We write a ∼ b to mean lim a/b = 1. It is proved in [2,4] that for n ≥ 0
and small g > 0, there exists a critical value νc = νc(g;n) < 0, such that the
susceptibility diverges according to the asymptotic formula:

χ(g, νc + ε;n) ∼ Ag,nε−1(log ε−1)
n+2
n+8 as ε ↓ 0, (1.7)

for some amplitude Ag,n > 0. In addition, in [4,18], it is proved that

lim
ε↓0

lim
N→∞

Gx,N (g, νc + ε;n) ∼ (1 + zc
0(g;n))(−ΔZ4)−1

0x as |x| → ∞, (1.8)

for some function 1 + zc
0(g;n) = 1 + O(g) (the field strength renormalisation).

When g = 0, νc(0;n) = 0 for all n ≥ 0. For the free two-point function
(as opposed to interacting when g > 0), we use m2 ≥ 0 instead of ν ≥ νc = 0,
as we will extend (1.8) to approximate Gx,N (g, ν;n) by its free counterpart
(1 + zc

0)Gx,N (0,m2) with carefully chosen m2. The free two-point function is
independent of n ≥ 0, and its infinite-volume version is equal to the lattice
Green function:

Gx(0,m2) = (−ΔZ4 + m2)−1
0x . (1.9)
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In probabilistic terms, Gx(0,m2) equals 1
2d times the expected number of visits

to x of a simple random walk on Z
4 with killing rate m2, started from 0. It

is proved in [2,4] that for n ≥ 0 and for small g > 0, νc(g;n) = −ag + O(g2)
with a = (n + 2)(−ΔZ4)−1

00 > 0.
Given a unit vector e ∈ Z

d, the correlation length ξ is defined by

ξ(g, ν;n) = lim sup
k→∞

k

log Gke(g, ν;n)
. (1.10)

It provides a characteristic length scale for the model. We study a related
quantity, the correlation length of order p > 0, defined in terms of the infinite-
volume two-point function and susceptibility by

ξp(g, ν;n) =
[∑

x∈Z4 |x|pGx(g, ν;n)
χ(g, ν;n)

] 1
p

. (1.11)

It is predicted that ξp has the same asymptotic behaviour near ν = νc as the
correlation length ξ, for all p > 0.

For all quantities defined above, we often omit the argument n from the
notation.

1.3. Main Result

Our main result is the following theorem. We define constants cp > 0 by

cp
p =

∫

Rd

|x|p(−ΔRd + 1)−1
0x dx, (1.12)

and set Ãg,n = Ag,n/(1+ zc
0) for the constants Ag,n and zc

0 in (1.7)–(1.8). (We
expect that Ag,n, zc

0 are independent of L, but this has not been proved.)

Theorem 1.1. Let d = 4, n ≥ 0 and p > 0. For L sufficiently large (depending
on p, n), and for g > 0 sufficiently small (depending on p, n), as ε ↓ 0

ξp(g, νc + ε;n) ∼ cpÃ
1
2
g,nε− 1

2 (log ε−1)
1
2

n+2
n+8 . (1.13)

Some results related to Theorem 1.1 have been obtained previously. For
n = 1, the ε− 1

2 (log ε−1)
1
6 behaviour on the right-hand side of (1.13) was proven

in [16] for the correlation length ξ of (1.10), in the sense of upper and lower
bounds with different constants. For the n = 0 model, the end-to-end distance
of a hierarchical version of the continuous-time weakly self-avoiding walk, up
to time T , was shown to have T

1
2 (log T )

1
8 behaviour [9].

The proof of Theorem 1.1 involves a modification of the renormalisation
group strategy used in [2–4,18] to analyse the susceptibility and the critical
two-point function. That strategy is based on a multi-scale analysis using a
finite-range decomposition of the covariance (−Δ + m2)−1 =

∑
j Cj . The new

ingredient in our proof is to take better advantage of the decay of Cj when j
exceeds the mass scale jm given by Ljm ≈ m−1. Using this decay, beyond the
mass scale we obtain better control over the two-point function than what was
obtained in [3,18], sufficient to analyse ξp and to prove Theorem 1.1. It would
be of interest to extend this, to seek the further improvements that would be
needed to analyse the correlation length ξ. Our new treatment leads to the
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simplification that at scales beyond jm, the large-field regulator G̃j used in
[2–4,18] becomes superfluous, and the fluctuation-field regulator Gj suffices.

1.4. The Non-Interacting Model

An elementary ingredient in the proof of Theorem 1.1 is the following result
for the g = 0 case, which is independent of n ≥ 0. For simplicity, we restrict
attention to dimensions d > 2, as only d = 4 is used in this paper.

Proposition 1.2. For all dimensions d > 2 and all p > 0, as m2 ↓ 0
∑

x∈Zd

|x|pGx(0,m2) = cp
pm

−(p+2)(1 + O(m)), (1.14)

with cp given by (1.12). In particular, ξp(0, ε) = cpε
−1/2(1+O(ε1/2)) as ε ↓ 0.

Proposition 1.2 is presumably well known, but since we have not found
a proof in the literature, we provide a proof in the Appendix. Note that this
g = 0 case does not exhibit a logarithmic correction.

2. Proof of Main Result

In this section, we state Proposition 2.1, an improvement on the results of
[18] (this reference subsumes and extends the results of [3]), and show that
Theorem 1.1 is a consequence of Proposition 2.1.

The main conclusions of [18] are based on a rigorous renormalisation
group method. The method uses an approximation of the interacting model
by the non-interacting one, encoded by an n-dependent map

(g, ε) 	→ (m2, g0, ν0, z0) (2.1)

with domain [0, δ)2 (for some small δ > 0). Properties of this map are dis-
cussed briefly in [18, Section 4.6] where further references to [4] and [2] are
given. In particular, the map (2.1) identifies the values of m2, zc

0 that lead
to the approximate equality Gx,N (g, ν;n) ≈ (1 + zc

0)Gx,N (0,m2) discussed in
Sect. 1.2.3.

A key ingredient of the renormalisation group method is a flow of renor-
malised coupling constants. The flow of the important coupling constant g is
well approximated by the sequence ḡ defined by

ḡj+1 = ḡj − βj ḡ
2
j , ḡ0 = g0, (2.2)

where the coefficients βj = βj(m2) > 0 are defined in [2, (3.19)]. The βj obey
βj(m2) ≈ βj(0) for j ≤ jm and βj(m2) ≈ 0 for j ≥ jm, where

jm = �logL m−1� (2.3)

is the mass scale. We are interested in small m with L fixed, so jm is large and
positive. It follows that ḡj decays like 1/j for j ≤ jm and is approximately
constant for j > jm (see [2, Section 3.2] for details).

We estimate sums over x ∈ Z
4 by dividing Z

4 into shells S1 = {x : |x| <
1
2L} and, for j ≥ 2, Sj = {x : 1

2Lj−1 ≤ |x| < 1
2Lj}. The number of points in
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Sj is bounded by O(L4j). We refer to the integer j as a scale. Given x ∈ Z
4,

we define the coalescence scale to be the unique scale jx, such that

x ∈ Sjx+1. (2.4)

Equivalently, jx = max{0, �logL(2|x|)�}; this introduces a minor notational
clash with the mass scale jm defined in (2.3) that should not cause problems.
It follows from [4, Proposition 6.1] that

ḡj = O((log m−1)−1) for j ≥ jm, ḡjx
= O((log |x|)−1) for jx ≤ jm. (2.5)

In [18, Remark 6.5], a remainder Rx is identified, such that

1
1 + z0

Gx(g, ν;n) =
(
1 + O(ḡjx

)
)
Gx(0,m2) + Rx(m2, g0;n), (2.6)

for any n ≥ 0 with m2, g0 given in terms of (g, ν) by (2.1), with

|Rx| ≤ O(ḡjx
)Gx(0, 0). (2.7)

Thus, (2.6) compares the value of the interacting theory on the left-hand side,
evaluated at (g, ν), with the first term on the right-hand side. The first term
on the right-hand side is the corresponding free quantity at renormalised pa-
rameter values (0,m2).

However, with (2.7), the exponential decay present in Gx(0,m2) when
m2 > 0 is overwhelmed by the remainder term which involves instead the
massless free two-point function Gx(0, 0), and control needed for the corre-
lation length of order p gets lost. In the next proposition, we improve the
estimate (2.7) of [18, Lemma 5.6] by providing a new factor (m|x|)−2s when
|x| is large compared to the mass. Roughly, Ljx ≈ |x| and Ljm ≈ m−1, so
when the coalescence scale exceeds the mass scale, m|x| becomes greater than
1. Thus, the factor (m|x|)−2s gives good decay when the coalescence scale
exceeds the mass scale, and we are free to choose s > 0 to be as large as
desired.

Proposition 2.1. Let d = 4, n ≥ 0, ε ∈ (0, δ) with δ sufficiently small, and
ν = νc + ε. Let x ∈ Z

4 with x �= 0. Fix any s ≥ 0. For L sufficiently large and
for g > 0 sufficiently small (depending on s)

|Rx| ≤ O(ḡjx
)

|x|2 ×
{

1 (m|x| ≤ 1)
(m|x|)−2s (m|x| ≥ 1),

(2.8)

with the constant depending on L and s.

The proof of Proposition 2.1 constitutes the main part of this paper and
is given in Sects. 4–5.

The case s = 0 of Proposition 2.1 is already given by (2.7). This case is
insufficient to prove Theorem 1.1, as the remainder term Rx is not summable
over x ∈ Z

4 when s = 0. The improvement to arbitrary s > 0 in (2.8) represents
the key innovation in this paper. Note that, in particular, Rx is summable after
multiplication by |x|p, provided 2s > p + 2.
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Before proving Proposition 2.1, we prove Theorem 1.1 assuming Propo-
sition 2.1. In the proof, we use the important relation that

m2 ∼ Ã−1
g,nε(log ε−1)− n+2

n+8 as ε ↓ 0, (2.9)

which is proved in [2, (4.35)] for n ≥ 1 and [4, (4.63)] for n = 0. In particular,
the dependence of m2 on ε encompasses the logarithmic correction for the
susceptibility, since

χ(g, ν;n) =
1 + z0

m2
, (2.10)

according to [2, (4.24)] for n ≥ 1 and [4, (4.34)] for n = 0.

Proof of Theorem 1.1. We multiply (2.6) by |x|p, sum over x ∈ Z
4, and use

(2.10), to obtain

ξp
p(g, ν) =

∑

x∈Z4

|x|p Gx(g, ν)
χ(g, ν)

= m2
∑

x∈Z4

|x|p
(
Gx(0,m2) + rx(g,m2)

)
, (2.11)

with
rx = O(ḡjx

)Gx(0,m2) + Rx. (2.12)
By Proposition 1.2, this gives (as m2 ↓ 0)

ξp
p(g, ν) ∼ cp

pm
−p + m2

∑

x∈Z4

|x|prx(g,m2). (2.13)

By (2.9), it suffices to prove that the first term on the right-hand side of (2.13)
is dominant.

For the term O(ḡjx
)Gx(0,m2) in (2.12), we apply (2.5) to obtain

∑

x∈Z4

ḡjx
|x|pGx(0,m2)

≤
∑

x:0<jx≤jm

c|x|p
log |x|Gx(0,m2) +

c

log m−1

∑

x:jx>jm

|x|pGx(0,m2). (2.14)

In the first term, we use Gx(0,m2) ≤ Gx(0, 0) ≤ O(|x|−2). The restriction
jx ≤ jm ensures that |x| ≤ O(m−1). Therefore, the first term is bounded
above by a multiple of (m−1)d+p−2(log m−1)−1, which suffices. For the term
with jx > jm, we extend the sum to x ∈ Z

4 and apply Proposition 1.2 to
obtain a bound of the same form as for the first term.

Fix any s > 1
2 (p + 2). For the term Rx of (2.12), we use Proposition 2.1

to see that
|Rx(g,m2)| = O(ḡjx

)L−2jx−2s(jx−jm)+ . (2.15)
By (2.15) and (2.4)

∑

x∈Z4

|x|p|Rx(g,m2)| =
∞∑

j=1

∑

x∈Sj

|x|p|Rx(g,m2)|

=
∞∑

j=1

L4j+pj−2j−2s(j−jm)+O(ḡj), (2.16)
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with an L-dependent constant. By Lemma 2.2 (with a = p + 2 and b = 1), we
obtain

m2
∑

x∈Z4

|x|p|Rx(g,m2)| = O
(
m−p(log m−1)−1

)
. (2.17)

The first term on the right-hand side of (2.13) therefore dominates, and the
proof is complete. �

The estimate used to obtain (2.17) is given by the following lemma, which
is stated more generally for use in the proof of Proposition 1.2.

Lemma 2.2. Let L > 1, 2s > a > 0, b ≥ 0, and let ḡ0 > 0 be sufficiently small.
Then

∞∑

j=1

Laj−2s(j−jm)+ ḡb
j = O(m−aḡb

jm
) = O(m−a(log m−1)−b). (2.18)

Proof. We divide the sum at the mass scale as

∞∑

j=1

Laj−2s(j−jm)+ ḡb
j =

jm∑

j=1

Laj ḡb
j +

∞∑

j=jm+1

Laj−2s(j−jm)ḡb
j . (2.19)

For the second sum on the right-hand side, we use ḡj = O(ḡjm
) for j > jm by

(2.5), and obtain a bound consistent with the first equality of (2.18). For the
first term, we use the crude bound ḡi/ḡi+1 = 1 + O(g0) (by [6, Lemma 2.1]),
and find

jm∑

j=1

Laj ḡb
j ≤ Lajm ḡb

jm

jm∑

j=1

((1 + O(ḡ0))L−a)jm−j = O(Lajm ḡb
jm

), (2.20)

for sufficiently small ḡ0 > 0. This proves the first equality in (2.18). The second
equality then follows, since ḡjm

= O(log m−1) by (2.5). �

3. Renormalisation Group Method

We now provide a brief outline of the renormalisation group method developed
in [5,10–13], and identify the changes in the analysis of [18] needed to prove
Proposition 2.1. We discuss some of the key points which have been explained
in detail elsewhere, and make no attempt at completeness here. For notational
simplicity, we consider the case n ≥ 1 below; the case n = 0 is similar.

3.1. The Two-Point Function Via Gaussian Integration

The starting point of our study is the two-point function Gx,N (g, ν;n). The
first step is a change of variables. Given g > 0, ν ∈ R, and given m2 > 0 and
z0 > −1, let
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g0 = g(1 + z0)2, ν0 = (1 + z0)ν − m2. (3.1)

Let C = (−Δ + m2)−1 and let EC denote the expectation with respect to the
Gaussian measure with covariance C. For y ∈ Λ, we define the monomials

τy = 1
2 |ϕy|2, τΔ,y = 1

2ϕy · (−Δϕ)y. (3.2)

Let h = n−1/2(1, . . . , 1) ∈ R
n. With the two points 0, x ∈ Λ fixed, we introduce

observable fields σ0, σx ∈ R, and define

U0(Λ) =
∑

y∈Λ

(
g0τ

2
y + ν0τy + z0τΔ,y

) − σ0(ϕ0 · h) − σx(ϕx · h), (3.3)

and

Z0 = e−U0(Λ). (3.4)

It is then an elementary calculation (see [18, (6.3)]) to show that (for n ≥ 1)

Gx,N (g, ν;n) = (1 + z0)
∂2

∂σ0∂σx

∣
∣
∣
0
log ECZ0. (3.5)

The renormalisation group method provides a way to calculate the inte-
gral ECZ0 and thereby compute (3.5). At this point, z0 and m2 are arbitrary,
but careful choices of parameters will be required to make (3.5) useful, as in
(2.1), and it is part of the method to determine this careful choice.

3.2. Progressive Integration

We evaluate the Gaussian integral ECZ0 progressively, via the covariance de-
composition

C = C1 + · · · + CN−1 + CN,N (3.6)
constructed in [1] (see also [8]). For simplicity, we write CN = CN,N . For an
integrable function F of the spin field ϕ, we let EwθF be the convolution of
F with the Gaussian measure of covariance w, i.e., (EwθF )(ϕ) = EwF (ϕ + ζ),
where the expectation integrates the variable ζ. It is a property of Gaussian
integration (see [10]) that

(ECθF )(ϕ) = (ECN
θ ◦ ECN−1θ ◦ · · · ◦ EC1θF )(ϕ). (3.7)

Let
ZN = ECθZ0 = ECN

θ ◦ ECN−1θ ◦ · · · ◦ EC1θZ0. (3.8)
In particular

ECZ0 = ZN (0). (3.9)
This allows us to evaluate the integral ECZ0 by studying the dynamical system
Zj 	→ Zj+1 defined by

Zj+1 = ECj+1θZj , j < N. (3.10)

For its analysis, we require a suitable space N of functions of the spin
and observable fields, on which the dynamical system acts. The space N is
discussed in detail in [18, Section 2.4.1]. The part of N which does not involve
the observable fields σ0, σx is given by

N ∅ = N ∅(Λ) = CpN ((Rn)Λ, R). (3.11)



384 R. Bauerschmidt et al. Ann. Henri Poincaré

The finite smoothness parameter pN is discussed in Sect. 4.2 below, where it
is explained that pN must be chosen in a way that depends on the parameter
p in Theorem 1.1. The part of N involving the observable fields contains some
subtleties that need not concern us here (see [18, Section 2.4.1] for details).

3.3. Local Field Polynomials

The dynamical system is analysed via a perturbative part which is tracked
accurately to second order in g, together with a third-order non-perturbative
part whose study forms the main part of our effort. For the perturbative part,
we first introduce an appropriate space of local field polynomials.

For y ∈ Λ, we supplement (3.2) by defining

τ∇∇,y =
1
4

∑

e∈Zd:|e|=1

∇eϕy · ∇eϕy. (3.12)

With x ∈ Λ fixed, and given g, ν, z, y, u, λ0, λx, q0, qx ∈ C, we extend (3.3) by
defining the polynomial

Vy = gτ2
y + ντy + zτΔ,y + yτ∇∇,y + u

− 1y=0λ0(ϕ0 · h)σ0 − 1y=xλx(ϕx · h)σx

− 1
2 (1y=0q0 + 1y=xqx)σ0σx. (3.13)

Then, we define V to be the space of functions V = Vy of the form (3.13).
Given X ⊂ Λ, we also define

V(X) = {V (X) =
∑

y∈X

Vy : V ∈ V}. (3.14)

We also make use of the subspaces V(1) ⊆ V consisting of polynomials
with y = 0, as well as the subspace V(0) ⊆ V(1) of polynomials with u = y =
q0 = qx = 0. For V ∈ V, we define maps V 	→ V (1) ∈ V(1) and V 	→ V (0) ∈ V(0).
Both maps replace zτΔ + yτ∇∇ by (z + y)τΔ, and the latter additionally sets
u = q0 = qx = 0.

3.4. Renormalisation Group Coordinates

For j = 0, . . . , N , we partition Λ into LN−j disjoint scale-j blocks of side
length Lj . A scale-j polymer is a union of scale-j blocks. The set of all scale-j
blocks is denoted Bj , and the set of all scale-j polymers is denoted Pj . For
X ∈ Pj , we write Bj(X) for the set of scale-j blocks in X. For F,G : Pj → N ,
we define the circle product F ◦ G : Pj → N by

(F ◦ G)(X) =
∑

Y ∈Pj(X)

F (X\Y )G(Y ). (3.15)

The evolution of Zj can be tracked in the renormalisation group coordi-
nates ζj ∈ R, Ij ,Kj : Pj → N , defined such that

Zj = eζj (Ij ◦ Kj)(Λ), ζj = −uj |Λ| + 1
2 (q0,j + qx,j)σ0σx. (3.16)
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The coordinate Ij tracks the evolution of the relevant and marginal directions.
It is determined by a local polynomial U ∈ V(0), and takes the form

Ij(X) =
∏

B∈Bj(X)

e−U(B)(1 + Wj(B,U)), X ∈ Pj , (3.17)

with Wj an explicit quadratic term in U (defined in [5, (3.21)]). The evolution
of (ζ, U) to second order is called the perturbative flow and is given by the
explicit map Vpt : V → V defined in [5, (3.23)]. In particular, it is shown in
[18, Proposition 3.2] that the perturbative flow of q is given by

qpt = q + λ0λxCj+1;0x, (3.18)

and that the perturbative flow of λ0 and λx becomes the identity map once j
exceeds the coalescence scale jx.

At scale j = 0, we are given U0 as defined in (3.3) and we set ζ0 = 0.
In particular, the initial values of u, q0, qx are zero, and the initial values of
λ0, λx are 1. By definition, W0 = 0, and we have I0(X) = e−U0(X). We define
1∅ : P0 → N by

1∅(X) =

{
1 X = ∅

0 otherwise,
(3.19)

and set K0 = 1∅. With these choices, Z0 of (3.4) takes the form (3.16), and
we seek (ζj , Uj ,Kj), such that this continues to hold as the scale advances.

Equivalently, given (Uj ,Kj), we define (δζj+1, Uj+1,Kj+1), so that

Ej+1θ(Ij ◦ Kj)(Λ) = e−δζj+1(Ij+1 ◦ Kj+1)(Λ), (3.20)

where δζj+1 = ζj+1 − ζj . Moreover, we need Kj to contract as the scale ad-
vances, under an appropriate norm. The construction of (scale-dependent)
maps V+ and K+, such that (3.20) holds with

(δζj+1, Uj+1,Kj+1) = (V+(Uj ,Kj),K+(Uj ,Kj)) (3.21)

is the main accomplishment of [13] and is summarised in Sect. 3.5, in a form
adapted to our current setting.

3.5. The Main Theorem

We define a scale-dependent norm

‖V ‖V = max
{

|g|, L2j |ν|, |z|, |y|, L4j |u|, �j�σ,j(|λ0| ∨ |λx|), �2σ,j(|q0| ∨ |qx|)
}

(3.22)
on V ∈ V, which depends on parameters �j and �σ,j . An innovation in this
paper is that we define these parameters by

�j = �0L
−j−s(j−jm)+ , �σ,j = �−1

j∧jx
2(j−jx)+ g̃j , (3.23)

where the mass scale jm is defined in (2.3), the coalescence scale jx is defined
in (2.4), and s is the parameter appearing in Proposition 2.1. The sequence
g̃ = g̃(m2, g0) is defined in [4, (6.15)]; it is bounded above and below by
constant multiples of the sequence ḡ defined in (2.2), by [4, Lemma 7.4]. We
discuss the origin of the definition (3.23) in detail in Sect. 4.
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The following theorem is a restatement of [18, Theorem 5.1] with three
changes. The first, minor, change is the specialisation to the case p = 1 and
h = h (in the notation of [18]). The second change is the main accomplishment
of this paper, namely, that the norms in the estimates (3.27) below use the
new norm parameters (3.23). The third change is that we have omitted some
technical details concerning the parameter m2 to simplify this brief summary;
these details are as in [18, Theorem 5.1]. In particular, m2 must be chosen
small in Theorem 3.1.

In [13], maps V+,K+ are defined which map a pair (U,K) at scale j to
(V+(U,K),K+(U,K)) at scale j + 1, and which preserve the circle product
I ◦ K under expectation as in (3.20). A norm has already been defined on the
space V in (3.22). We specify a domain Dj for U in V(0) in Sect. 5.2. We also
require a norm on a space K containing the non-perturbative coordinate K
(see [18, Definition 4.5]), which is the Wj norm of [13, (1.45)]. We denote the
ball of radius r in the normed space Wj by BWj

(r). Given α > 0, we define
the domain

Dj = Dj × BWj
(αϑ̃j g̃

3
j ), (3.24)

where g̃j was discussed above, and ϑ̃j is a sequence that, roughly, is equal to 1
below the mass scale and decays exponentially above the mass scale (discussed
above [13, (1.65)]). Then, at scale j, the maps V+,K+ act on the domain Dj

and map into V(1)
j+1,Kj+1, respectively. The deviation of the map V+ from

the perturbative map Vpt (mentioned above (3.18)) is denoted by R+, and is
defined by

R+(U,K) = V+(U,K) − V
(1)
pt (U). (3.25)

The following theorem is applied with α = 4M as a convenient choice.

Theorem 3.1. Let d = 4 and let n ≥ 0. Fix s > 0. Let CD and L be sufficiently
large. There exist M > 0 and δ > 0, such that for g̃ ∈ (0, δ), and with the
domain D defined using any α > M , the maps

R+ : D → V(1), K+ : D → W+ (3.26)

define (U,K) 	→ (V+,K+) obeying (3.20), and satisfy the estimates

‖R+‖V ≤ Mϑ̃+g̃3
+, ‖K+‖W+ ≤ Mϑ̃+g̃3

+. (3.27)

The proof of Theorem 3.1 is identical to the proof of [18, Theorem 5.1],
via a version of [13, Theorems 1.10–1.11] that uses the norm parameters (3.23)
with s > 0. The proof of the latter results with these new norm parameters
amounts to checking that the proof of the s = 0 case contained in [12,13]
continues to hold with s > 0. A verification of this fact is carried out in
Sect. 5.

Theorem 3.1 expresses a contractive property of the map K+, as it takes
K in a ball whose radius involves α = 4M at scale j, to an image which lies
in a ball whose radius involves the smaller number M at scale j + 1. The
fact that K+ is a contraction is used in [4, Proposition 8.1] (for n = 0) and
[2, Theorem 3.6] (for n ≥ 1) to prove that, for m2 and g0 sufficiently small,
there exist critical initial conditions ν0 = νc

0(m
2, g0) and z0 = zc

0(m
2, g0) such
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that, for the case of no observables (σ0 = σx = 0), iteration of the maps
(V+,K+) defines a sequence (V (0)

j ,Kj) which lies in the domain Dj and obeys
the estimates (3.27) for all j = 1, . . . , N . This construction of critical initial
conditions uses the s = 0 version of (3.23).

The case with observable fields included is handled in [18]. Because we
have increased �σ,j beyond the mass scale, the estimates on q0, qx given by the
bound on R+ in (3.27) are significantly improved compared to their versions
with s = 0 in [18]. As is discussed in detail in [18, Section 5], V

(0)
j remains in the

domain Dj for all j (also concerning λ0,j , λx,j). Moreover, λ0,j , λx,j , q0,j , qx,j ,
are independent of the volume parameter N and so can be extended to infinite
sequences, and the following limits exist:

qu,∞ = lim
j→∞

qu,j , u = 0, x. (3.28)

3.6. Identity for the Two-Point Function

At scale N , the torus Λ is a single block, and (3.16) gives

ZN = eζN (IN (Λ) + KN (Λ)). (3.29)

Evaluation at ϕ = 0 gives

ZN (0) = eζN (1 + KN (Λ, 0)). (3.30)

Thus, by (3.5)

1
1 + z0

Gx,N (g, ν) =
1
2
(q0,N + qx,N )+

D2
σaσb

KN

1 + KN
− (Dσa

KN ) (Dσb
KN )

(1 + KN )2
(3.31)

(with derivatives taken at σ0 = σx = 0 on the right-hand side). The bound [18,
(6.13)] is only improved by the new choice of norm, to assert that, for l = 0, 1, 2,
the lth derivative of KN (Λ) with respect to the observable field is bounded
above by a multiple of 2−l(N−jx)|x|−lL−ls(N−jx)ϑN ḡ3−l

N . In particular, the last
two terms of (3.31) vanish as N → ∞, and

1
1 + z0

Gx(g, ν;n) =
1
2
(q0,∞ + qx,∞). (3.32)

It is then a consequence of (3.18) and (3.25) (as in the proof of [18,
Lemma 5.6]) that

qu,∞(m2) = λ0,jx
λx,jx

Gx(0,m2) +
∞∑

i=jx

Rqu

i , u = 0, x, (3.33)

where Rqu

i is the coefficient of 1y=uσ0σx (recall (3.13)) of R+,i (recall (3.25)).
Moreover, as in [18, (5.30)] and [18, Corollary 6.4]

λu,jx
= 1 + O(ϑjx

ḡjx
). (3.34)

It follows that
1

1 + z0
Gx(g, ν;n) = (1 + O(ḡjx

))Gx(0,m2) + Rx, (3.35)
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with

Rx =
1
2

∞∑

i=jx

(Rq0
i + Rqx

i ). (3.36)

This provides a more detailed statement of (2.6).

3.7. Proof of Proposition 2.1

By the first bound of (3.27) and the definition (3.22)

|Rqu

+,i| ≤ O(�−2
σ,iϑiḡ

3
i ). (3.37)

Using the old norm parameters �oldσ , the sum Rx in (3.36) is bounded by the
right-hand side of (2.7). With the new norm parameters, we instead get the
result of Proposition 2.1.

Proof of Proposition 2.1 (assuming Theorem 3.1). We insert the definition of
�σ,j from (3.23) into (3.37). We also use g̃−2

j = O(ḡ−2
j ), ϑi ≤ 1, �20 ≤ O(1),

as well as ḡj ≤ O(ḡjx
) for j ≥ jx. The definitions of the coalescence scale

jx and the mass scale jm imply that L−2jx ≤ O(|x|−2) and L−(jx−jm)+ ≤
O((m|x|)−1). All this leads to

∞∑

j=jx

|Rqu

j | ≤ L−2jx−2s(jx−jm)+

∞∑

j=jx

O(ḡj)4−(j−jx)

≤ |x|−2(m|x|)−2sO(ḡjx
). (3.38)

This gives the desired estimate (2.8). �

Thus, to prove Proposition 2.1, it suffices to show that Theorem 3.1 holds
with the s-dependent choice (3.23), for arbitrary s > 0. Constants in estimates
will depend on s, and since we used s > 1

2 (p + 2) in the proof of Theorem 1.1,
such constants depend on p.

4. Improved Norm

The proof of Theorem 3.1 is based on the observation that it is possible to use
the parameters (3.23) in the norm used in [12], instead of the s = 0 version
used previously. In this section, we first state improved covariance estimates,
thereby indicating why it is possible to improve the norm. This leads to a
discussion of simplified norm pairs beyond the mass scale. A lemma concerning
the fluctuation-field regulator indicates why the simplification is possible. In
the following, we use the notation appropriate for the spin field ϕ ∈ (Rn)Λ for
n ≥ 1; only notational modifications are needed for n = 0.

4.1. Covariance Bounds

The estimate in [18] which yields the s = 0 case of (2.8) uses the norms defined
in [12]. One of these norms is the Φj(�j) norm defined by
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‖ϕ‖Φj(�j) = �−1
j sup

x∈Λ
sup

|α|1≤pΦ

Lj|α|1 |∇αϕx|, (4.1)

which depends on the parameter �j , and on the maximal number of discrete
derivatives pΦ (fixed to be at least 4 in [12]). As in (3.23), we now define

�j = �0L
−j−s(j−jm)+ , �σ,j = �−1

j∧jx
2(j−jx)+ g̃j . (4.2)

The analysis of [12,13] uses the norm parameters �j and �σ,j with s = 0. To
distinguish these from our new choice (4.2) of �j and �σ,j , we write

�oldj = �0L
−j , �oldσ,j = (�oldj∧jx

)−12(j−jx)+ g̃j . (4.3)

In the more general terminology and notation of [10,12], we may regard
a covariance Cj in the decomposition (3.6) as a test function depending on
two arguments x, y, and with this identification its Φj(�j) norm is

‖Cj‖Φj(�j) = �−2
j sup

x,y∈Λ
sup

|α|1+|β|1≤pΦ

L(|α|1+|β|1)j |∇α
x∇β

yCj;x,y|. (4.4)

The purpose of the Φj(�j) norm is to measure the size of typical fluctuation
fields ϕ with covariance Cj . The parameter �j is chosen so that the norm of a
typical field should be O(1), independent of j.

The following lemma justifies our choice of �j in (4.2), by showing that the
bound [12, (1.73)], proved there only for the s = 0 version �oldj of (4.3), remains
true with the stronger choice of norm parameter �j that permits arbitrary
s ≥ 0. In its statement, the bounded sequence ϑj decays exponentially after
the mass scale and may be taken to be equal to 2−(j−jm)+ ; its details are given
in [12, Section 1.3.1] (where it is called χj rather than ϑj).

Lemma 4.1 (Extension of [12, (1.73)]). Given c ∈ (0, 1], �0 can be chosen large
(depending on L, c, s), so that

‖Cj‖Φj(�j) ≤ min(c, ϑj). (4.5)

The proof of Lemma 4.1 uses an estimate from [5, Proposition 6.1(a)],
which we repeat here as the following proposition.

Proposition 4.2 (Restatement of [5, Proposition 6.1(a)]). Let d > 2, L ≥ 2,
j ≥ 1, m̄2 > 0. For multi-indices α, β with �1 norms |α|1, |β|1 at most some
fixed value p, and for any k, and for m2 ∈ [0, m̄2]

|∇α
x∇β

yCj;x,y| ≤ c(1 + m2L2(j−1))−kL−(j−1)(d−2+|α|1+|β|1), (4.6)

where c = c(p, k, m̄2) is independent of m2, j, L. The same bound holds for
CN,N if m2L2(N−1) ≥ ε for some ε > 0, with c depending on ε but independent
of N .

Proof of Lemma 4.1. For d = 4, insertion of (4.6) into (4.4) gives

‖Cj‖Φj(�j) ≤ cLpΦ�−2
j (1 + m2L2(j−1))−kL−2(j−1). (4.7)

With s = 0 in (4.2), (4.7) gives ‖Cj‖Φj(�j) ≤ cL�−2
0 (1 + m2L2(j−1))−k for an

L-dependent constant cL (whose value may now change from line to line). The
estimate [12, (1.73)] is wasteful in that it does not make any use of the factor



390 R. Bauerschmidt et al. Ann. Henri Poincaré

(1+m2L2(j−1))−k in (4.7) beyond extraction of the factor ϑj . To improve this,
we now allow arbitrary s, and fix the arbitrary parameter k to be k = s + 1 in
(4.7), so that

(1 + m2L2j)−k ≤ cLL−2(s+1)(j−jm)+ . (4.8)

We insert (4.8) and the definition �j = �0L
−j−s(j−jm)+ from (4.2) into (4.7),

to conclude that there exists c0 = c0(s, L), such that

‖Cj‖Φj(�j) ≤ c0�
−2
0 L−2(j−jm)+ . (4.9)

By definition of ϑj (see [12, Section 1.3.1]), L−2(j−jm)+ is bounded by a mul-
tiple of ϑj . It thus suffices to choose �0 large enough that �20 ≥ c0c

−1. �

4.2. New Choice of Norm Beyond the Mass Scale

As in [12, (1.36)], we use the localised version of (4.1), defined for subsets
X ⊂ Λ by

‖ϕ‖Φj(X) = inf{‖ϕ − f‖Φj
: f ∈ C

Λ such that fx = 0 ∀x ∈ X}. (4.10)

A small set is defined to be a connected polymer X ∈ Pj consisting of at
most 2d blocks (the specific number 2d plays no direct role here), and Sj ⊂ Pj

denotes the set of small sets. The small set neighbourhood of X ⊂ Λ is the
enlargement of X defined by X� =

⋃
Y ∈Sj :X∩Y 
=∅

Y .

Given X ⊂ Λ and ϕ ∈ (Rn)Λ, we recall from [12, (1.36)] that the
fluctuation-field regulator Gj is defined by

Gj(X,ϕ) =
∏

x∈X

exp
(
|Bx|−1‖ϕ‖2

Φj(B�
x ,�j)

)
, (4.11)

where Bx ∈ Bj is the unique block that contains x, and hence |Bx| = Ldj . The
large-field regulator is defined in [12, (1.41)] by

G̃j(X,ϕ) =
∏

x∈X

exp
(

1
2
|Bx|−1‖ϕ‖2

Φ̃j(B�
x ,�j)

)

. (4.12)

The Φ̃j norm appearing on the right-hand side of (4.12) is similar to the Φj

norm, with the important difference that it is insensitive to shifts by linear test
functions; see [12, (1.40)] for the precise definition. The two regulators serve
as weights in the regulator norms of [12, Definition 1.1]. The regulator norms
are defined, with γ ∈ (0, 1] and for F in the space N (X�) of functionals of the
field (see [10, (3.38)]), by

‖F‖Gj(�j) = sup
ϕ∈(Rn)Λ

‖F‖Tϕ,j(�j)

Gj(X,ϕ)
, (4.13)

‖F‖G̃γ
j (hj)

= sup
ϕ∈(Rn)Λ

‖F‖Tϕ,j(hj)

G̃γ
j (X,ϕ)

. (4.14)



Vol. 18 (2017) Finite-Order Correlation Length 391

The parameter �j that appears in the regulators (4.11)–(4.12) and in the nu-
merator of (4.13) was taken to be �oldj in [12], but now we use �j instead. As
in [12], the parameter hj and its observable counterpart hσ,j are given by

hj = k0g̃
−1/4
j L−j , hσ,j = (�oldj∧jx

)−12(j−jx)+ g̃
1/4
j . (4.15)

In [12], estimates on ‖ · ‖j+1 are given in terms of ‖ · ‖j , where the pair
(‖ · ‖j , ‖ · ‖j+1) refers to either of the norm pairs

‖F‖j = ‖F‖Gj(�oldj ) and ‖F‖j+1 = ‖F‖T0,j+1(�oldj+1)
, (4.16)

or
‖F‖j = ‖F‖G̃j(hj)

and ‖F‖j+1 = ‖F‖G̃γ
j+1(hj+1)

. (4.17)

We will show that, above the mass scale jm (see (2.3)), the results of [12] hold
with both norm pairs in (4.16) and (4.17) replaced by the single new norm
pair

‖F‖j = ‖F‖Gj(�j) and ‖F‖j+1 = ‖F‖Gj+1(�j+1), (4.18)

with the improved �j of (4.2) with s > 0 fixed as large as desired.
The space N containing the functionals F appearing above requires con-

trol on up to pN derivatives of F with respect to the field ϕ, where pN is a
parameter of the Tϕ norm. In the proof of Proposition 5.1, we must choose pN
to be large depending on p, to analyse the correlation length of order p. The
renormalisation group analysis is predicated on fixed (but arbitrary) pN , so it
can proceed with this modification. However, we do not prove that constants
are uniform in pN , and in particular, we do not prove that the required small-
ness of g in Theorem 1.1 is uniform in the choice of pN . Thus, we do not have
a result for all p > 0 for any fixed g.

The use of two norm pairs adds intricacy to [12,13]. The pair (4.16) is
insufficient, on its own, because the scale-(j + 1) norm is the T0 semi-norm
which controls only small fields, and an estimate in this norm does not imply
an estimate for the Gj+1 norm. The norm pair (4.17) is used to supplement
the norm pair (4.16), and estimates in both the scale-(j + 1) norms can be
combined to provide an estimate for the Gj+1 norm. This then sets the stage
for the next renormalisation group step. Above the mass scale, the use of (4.18)
now bypasses many issues. For example, for j > jm, the Wj norm of [13, (1.45)]
is replaced simply by the Fj(G) norm, and there is no need for the Yj norm
of [13, (2.12)] nor for [13, Lemma 2.4].

The need for both norm pairs (4.16)–(4.17) is discussed in [12, Sec-
tion 1.2.1] and is related to the so-called large-field problem. Roughly speaking,
the norm pair (4.17) is used to take advantage of the quartic term in the inter-
action to suppress the effects of large values of the fields. This approach relies
on the fact that the interaction polynomial is dominated by the quartic term
in the h norm, as expressed by [12, (1.91)], together with the lower bound
[12, (1.90)] on the quartic term. However, above the mass scale, large fields
are naturally suppressed by the rapid decay of the covariance. This idea is
captured in Lemma 4.3, which replaces [12, Lemma 1.2] above the mass scale.
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The regulators in its statement are defined by (4.11) with the s-dependent �j

of (4.2).

Lemma 4.3 (Replacement for [12, Lemma 1.2]). Let X ⊂ Λ and assume that
s > 1. For any q > 0, if L is sufficiently large depending on q, then for
jm ≤ j < N

Gj(X,ϕ)q ≤ Gj+1(X,ϕ). (4.19)

Proof. By (4.11), it suffices to show that, for any scale-j block Bj and any
scale-(j + 1) block Bj+1 containing Bj

q‖ϕ‖2
Φj(B�

j ,�j)
≤ L−4‖ϕ‖2

Φj+1(B�
j+1,�j+1)

. (4.20)

In fact, since ‖ϕ‖Φj(B�
j ,�j)

≤ ‖ϕ‖Φj(B�
j+1,�j)

by definition, it suffices to prove
the above bound with Bj replaced by Bj+1 on the left-hand side. According
to the definition of the norm in (4.10), to show this it suffices to prove that

q‖ϕ‖2
Φj(�j)

≤ L−4‖ϕ‖2
Φj+1(�j+1)

(4.21)

(then we replace ϕ by ϕ − f in the above and take the infimum).
By definition

‖ϕ‖Φj(�j) ≤ �−1
j �j+1 sup

x∈Λ
sup

|α|≤pΦ

�−1
j+1L

(j+1)|α||∇αϕx|, (4.22)

with the inequality due to replacement of Lj|α| on the left-hand side by L(j+1)|α|

on the right-hand side. Since �−1
j �j+1 = L−1−s j≥jm

‖ϕ‖Φj(�j) ≤ L−1−s j≥jm ‖ϕ‖Φj+1(�j+1). (4.23)

Thus
q‖ϕ‖2

Φj(�j)
≤ qL−4L2−2s j≥jm ‖ϕ‖2

Φj+1(�j+1)
, (4.24)

and then (4.21) follows once L is large enough that qL2−2s ≤ 1. �

Remark 4.4. The elimination of the h norm after the mass scale is more than a
convenience. It becomes a necessity when we improve the � norm. Briefly, the
reason is as follows. In the proof of [13, Lemma 2.4], the ratio �σ/hσ must be
bounded. For this, we would need to increase hσ beyond the mass scale (since
�σ has been increased). This forces a compensating decrease in h beyond jm,
to keep the product hhσ bounded for stability (as in Sect. 5.2). However, if we
do this, we lose the lower bound required on εgτ2 required for stability in the
h norm (see [12, (3.8)]).

5. Proof of Theorem 3.1

In this section, we show that Theorem 3.1 holds, thereby completing the proof
of Proposition 2.1. The key steps in the proof of the s = 0 case of Theorem 3.1
are contained in [12,13]. Our main objective in this section is to show that the
results in [12,13] continue to hold with the new norm parameters �j , �σ,j . To
this end, we may and do use the fact that the estimates of [12] have already
been established with the old norm parameters.
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In the following, we indicate the changes in the analysis of [12,13] that
arise due to the new choice of norm parameters (4.2) beyond the mass scale,
and due to the reduction from two norm pairs to one. This requires repeated
reference to previous papers.

5.1. Norm Parameter Ratios

The analysis of [12] assumes that the norm parameters hj , hσ,j , for h = � or
h = h, satisfy the estimates [12, (1.79)]; these assert that

hj ≥ �j ,
hj+1

hj
≤ 2L−1,

hσ,j+1

hσ,j
≤ const

{
L (j < jx)
1 (j ≥ jx).

(5.1)

We do not change hj or hσ,j for j below the mass scale, so there can be no diffi-
culty until above the mass scale. Above the mass scale, the parameters hj , hσ,j

are eliminated, and requirements involving them become vacuous. Thus, for
(5.1), we need only verify the second and third inequalities for the case h = �.
By definition

�j+1

�j
= L−(1+s j≥jm ),

�σ,j+1

�σ,j
=

g̃j+1

g̃j
×

{
L1+s j≥jm (j < jx)
2 (j ≥ jx).

(5.2)

According to [12, (1.77)], 1
2 g̃j+1 ≤ g̃j ≤ 2g̃j+1. Thus, the second estimate of

(5.1) is satisfied (the ratio being improved when j ≥ jm), while the third is
not when s > 0 and jm < jx. This potentially dangerous third estimate in
(5.1) is used to prove the scale monotonicity lemma [12, Lemma 3.2], as well
as the crucial contraction. We discuss [12, Lemma 3.2] next, and return to the
crucial contraction in Sect. 5.4.

[12, Lemma 3.2]. There is actually no problem with the scale monotonic-
ity lemma. Indeed, for the case α = ab of the proof of [12, Lemma 3.2], the
hypothesis that π0xF = 0 for j < jx ensures that this case only relies on the
dangerous estimate for j ≥ jx, where the danger is absent in (5.2). For the
cases α = a and α = b of the proof of [12, Lemma 3.2], what is important is
the inequality �σ,j+1�j+1 ≤ const �σ,j�j , which continues to hold with (4.2) for
all scales j, both above and below the mass scale. Therefore, [12, Lemma 3.2]
continues to hold with the choice (4.2). In addition

‖F‖Tϕ(�j) ≤ ‖F‖Tϕ(�oldj ). (5.3)

This strengthened special case of the first inequality of [12, (3.6)] (strengthened
due to the constant 1 on the right-hand side of (5.3) compared to the generic
constant in [12, (3.6)]) can be seen from an examination of the proof of the
α = a, b case of [12, Lemma 3.2], together with the observation that �σ,j�j =
�oldσ,j�

old
j by definition.
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5.2. Stability Domains

The stability domain Dj is defined in [12, (1.83)]. We modify Dj only for the
coupling constant q, by replacing rq in [12, (1.84)] by

L2jx+2s(jx−jm)+22(j−jx)rq,j =

{
0 j < jx

CD j ≥ jx.
(5.4)

[12, Proposition 1.5]. With (5.4), [12, Proposition 1.5] as it pertains to
h = � (omitting all reference to h = h) continues to hold beyond the mass scale
by the same proof. In particular, with the smaller choice for the domain of q,
[12, (3.14)] holds with the larger s-dependent �σ,j .

Note that we do not need to change the domain of λ. This is because the
bound [12, (3.13)] continues to hold with the new norm parameters. Indeed,
while �j and �σ,j have been modified, their product �j�σ,j has not changed
below jx, and improves above jx. This guarantees that the T0 semi-norm
‖σϕ̄a‖T0 = �σ� remains at least as good as it was with the old norm para-
meters, and therefore, there is no new stability requirement arising from this.

The choice (5.4) places a more stringent requirement on the domain than
does the s = 0 version. To see that this requirement is actually met by the
renormalisation group flow, we note a minor improvement to the proof of [13,
Lemma 6.2(ii)], where the bound |δq| ≤ cL−2j is used to show that v(X)
(defined there) satisfies

‖v(X)‖ ≤ cL−2j(�oldσ,j)
2 ≤ c′. (5.5)

Here, the factor L−2j arises as a bound on the covariance Cj+1;00 in the pertur-
bative flow [12, (3.35)] of q, and it can, therefore, be improved to L−2j−2s(j−jm)+

by Lemma 4.1. Thus, also with �old, �oldσ replaced by �, �σ, the required bound
‖v(X)‖ ≤ c′ remains valid.

5.3. Extension of Stability Analysis

In this and the next section, we verify that the results of [12, Section 2] remain
valid with �old replaced by �. In this section, we deal with the results whose
proofs need only minor modification.

First, we note that the supporting results of [12, Section 4] hold with the
new norms. Indeed, it is immediate from (5.3) that analogues of [12, Proposi-
tion 4.1] and [12, Lemmas 3.4, 4.11–4.12] hold with the new �j . Moreover, [12,
Lemma 4.7] and [12, Proposition 4.0] hold for general values of the parameters
hj (which are implicit in the T0,j norm). We discuss [12, Proposition 4.9] in
Sect. 5.4, and the remaining results of [12, Section 4] do not make use of norms.

[12, Proposition 2.1]. With h = �, [12, (2.1)] continues to hold with the
same proof; in fact, the proof does not depend on the explicit choice of h. We
do not need [12, (2.2)], as it is only applied with h = h.

[12, Proposition 2.2]. The only change to the proof is for the case j∗ =
j+1. To get [12, (2.9)], we proceed as previously in the case h = h but applying
Lemma 4.3 rather than [12, Lemma 1.2] following [12, (5.22)]. In the same way,
we get [12, (2.10)] and the remaining parts of the proposition follow without
changes to the proof.
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[12, Proposition 2.3]. Again, the only required change in the proof is
the use of Lemma 4.3 in the case j∗ = j + 1, for which as previously we use
Lemma 4.3 instead of [12, Lemma 1.2].

[12, Proposition 2.4]. No changes need to be made to the proof. In fact,
it is necessary not to use the h = � case of the estimate [12, (5.32)]. Instead,
the h = �old case of this estimate should be used for gQ. This is possible, since
the renormalisation group map, and in particular, the coupling constants are
independent of the choice of norm.

[12, Proposition 2.5]. Using (5.3), we see that the proof continues to hold
above the mass scale. The only change to the proof is that in the application of
[12, Proposition 2.2], j should be replaced by j +1 in [12, (2.9)] with j∗ = j +1
(corresponding to the Gj+1 norm). This yields [12, (6.6)] with a Gj+1 norm
on the left-hand side.

[12, Proposition 2.6]. A version of [12, Lemma 6.1] with the new � con-
tinues to hold. This lemma makes use of �̂, which superficially depends on the
choice of � in its definition [12, (3.17)]. However, brief scrutiny of [12, (3.17)]
reveals that the apparent dependence on � actually cancels and there is in
fact no dependence. Similarly, [12, Lemma 3.4] continues to hold without any
changes to its proof. The proof of [12, Proposition 2.6] then applies without
change.

[12, Proposition 2.7]. With the new choice of � (and G = G),
[12, Lemma 7.1] continues to hold with no changes to its proof. Thus, by
[12, (3.6)] and [12, Lemma 1.7]

‖Ej+1δI
XθF (Y )‖Tϕ,j+1(�j+1)

≤ ‖Ej+1δI
XθF (Y )‖Tϕ,j(�j)

≤ α
|X|j+|Y |j
E

(CδV ε̄)|X|j ‖F (Y )‖Gj(�j)Gj(X ∪ Y, ϕ)5. (5.6)

By Lemma 4.3, Gj(X ∪ Y, ϕ)5 ≤ Gj+1(X ∪ Y, ϕ). Now, we divide both sides
by Gj+1(X ∪ Y, ϕ) and take the supremum over ϕ to complete the proof.

5.4. Extension of the Crucial Contraction

The proof of the “crucial contraction” [12, Proposition 2.8] makes use of the
third estimate in (5.1), which is now violated above the mass scale due to our
new choice of �j . On the other hand, the second estimate of (5.1) is improved
by the new choice and compensates for the degraded third estimate, as we
explain in this section.

Below the mass scale, we continue to use the crucial contraction as stated
in [12, Proposition 2.8] in terms of two norm pairs. Next, we state a version
of the crucial contraction for use above the mass scale using the new norm
pair (4.18). The statement uses the notation of [12] (which we do not redefine
here), with the exception that now we have replaced a by 0, b by x, and jab

by jx for consistency with our present notation. Throughout this section, we
sometimes write the dimension as d for emphasis, although we only consider
d = 4.
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Proposition 5.1 (Improvement of [12, Proposition 2.8]). Let jm ≤ j < N
and V ∈ Dj. Let X ∈ Sj and U = X. Let F (X) ∈ N (X�) be such that
παF (X) = 0 when X(α) = ∅, and such that π0xF (X) = 0 unless j ≥ jx.
There is a constant C (independent of L) such that

‖Ĩ
U\X
pt ECj+1θF (X)‖Gj+1(�j+1) ≤ C

(
(L−d−1 + L−11X∩{0,x}
=∅)κF + κLocF

)
,

(5.7)

with κF = ‖F (X)‖Gj(�j) and κLocF = ‖ĨX
ptLocX Ĩ−X

pt F (X)‖Gj(�j).

An ingredient in the proof of Proposition 5.1 is [11, Lemma 3.6], which
is the s = 0 version of the following lemma. For simplicity, we state only the
conclusion of the lemma, and the notation and hypotheses are those in [11,
Lemma 3.6], except now we use the s-dependent norm parameters hj = �j of
(4.2) (hj is not needed above the mass scale, and the s = 0 case applies below
the mass scale).

Lemma 5.2 (Improvement of [11, Lemma 3.6]). With the same hypotheses and
notation as in [11, Lemma 3.6]

‖g‖Φ̃(X) ≤ C̄3L
−(1+s j≥jm )d′

+‖g‖Φ̃′(X+). (5.8)

Proof. The proof of [11, Lemma 3.6] is based on the assumption �j+1/�j ≤
cL−1 (we take [ϕi] = 1; the parameters �σ,j are not used). For our new values
of �, the stronger assumption �j+1/�j ≤ L−1−s j≥jm holds. The unique change
to the proof occurs in the transition from [11, (3.42)] to [11, (3.43)], where the
ratio �j+1/�j is used. With the new ratio, [11, (3.43)] becomes

‖r‖Φ(X) ≤ sup
z∈X+

(cK�′−1)z sup
|β|∞≤pΦ

L−(p(z)+p(z)s j≥jm+|β|1)|∇β
R′rz|. (5.9)

Here, r = h − Tayah, where h is an arbitrary test function and a is the
largest point which is lexicographically no larger than any point in X. The
test function h depends on sequences of points (x1, . . . , xp), and Tayah is a
discrete version of Taylor’s approximation which approximates h by a discrete
Taylor polynomial localised at point a in each argument (see [11] for details).
By definition, for the empty sequence ∅, (Tayah)∅ = h∅, and thus r∅ = 0.

It follows that we can take p(z) ≥ 1 in the supremum over z ∈ X+ in
(5.9). Thus

‖r‖Φ(X) ≤ L−s j≥jm sup
z∈X+

(cK�′−1)z sup
|β|∞≤pΦ

L−(p(z)+|β|1)|∇β
R′rz|. (5.10)

The quantity

sup
z∈X+

(cK�′−1)z sup
|β|∞≤pΦ

L−(p(z)+|β|1)|∇β
R′rz| (5.11)

is identical to the right-hand side of [11, (3.43)] when [ϕi] = 1. In [11], it is
shown that this quantity can be bounded by a constant times

L−d′
+‖h‖Φ′(X+). (5.12)
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Thus
‖r‖Φ(X) ≤ C̄3L

−s j≥jm L−d′
+‖h‖Φ′(X+). (5.13)

With this improvement to [11, (3.43)] in the proof of [11, Lemma 3.6], the
conclusion of [11, Lemma 3.6] is improved to (5.8). �

Roughly speaking, the L-dependent factor in (5.8) implements the di-
mensional gain for irrelevant directions in a renormalisation group step when
passing from one scale to the next. In other words, we may regard the dimen-
sion of the field as improving from 1 below the mass scale to 1 + s above the
mass scale. The s = 0 version of Lemma 5.2 is adapted to the scaling at the
critical point, where m2 = 0. In the noncritical case m2 > 0, the dimensional
gain improves greatly for j > jm, as apparent from (4.6), and is captured more
accurately by the general-s version of (5.8).

As a consequence of the former improvement, we have the following two
further improvements. From now on, we always assume h = � and j > jm, as
this is the only case relevant for the improvement of [12, Proposition 2.8].

[11, Proposition 1.19]. The improvement in Lemma 5.2 propagates to
[11, Proposition 1.19], which now holds as stated except with γα,β improved
to

γα,β =
(
L−(d′

α+s j≥jm ) + L−(A+1)
) (

�σ,j+1

�σ,j

)|α∪β|
. (5.14)

The right-hand side can be estimated as follows. By (5.2)

�σ,j+1

�σ,j
≤ 4

{
L1+s j≥jm j < jx

1 j ≥ jx,
(5.15)

and hence

γα,β ≤ C ′′
(
L−(d′

α+s j≥jm ) + L−(A+1)
)
×

{
L(1+s j≥jm )(|α∪β|) j < jx

1 j ≥ jx.
(5.16)

[12, Proposition 4.9]. As we explain next, using (5.14) and identical nota-
tion to that defined in and around [12, Proposition 4.9], the proposition holds
as stated also for the improved norms, provided we take A ≥ 5 + s. For this,
what is required is to show that under the hypotheses of [12, Proposition 4.9],
the γα,β that arise in its proof obey

γα,β ≤ C

{
L−5 |α ∪ β| = 0
L−1 |α ∪ β| = 1, 2.

(5.17)

For |α ∪ β| = 0, the first term of (5.16) obeys the bound of (5.17), since
d′

∅
= d + 1. For the remaining cases, d′

α = 2 for j < jx and d′
α = 1 for

j ≥ jx. For |α ∪ β| = 2, the assumption that F1, F2, F1F2 have no component
in N0x unless j ≥ jx means that we are in the case with no growth due the
ratio �σ,j+1/�σ,j in (5.16), and its first term again obeys the bound (5.17) with
room to spare. Finally, when |α∪β| = 1, the first term of (5.16) also obeys the
estimate (5.17), and again with room to spare. Concerning the second term



398 R. Bauerschmidt et al. Ann. Henri Poincaré

of (5.16), given our choice of A and the fact that we need only consider the
growing factor in (5.16) for |α ∪ β| = 1, it suffices to observe that

L−(A+1)L1+s j≥jm ≤ L−5. (5.18)

This completes the proof of the improved version of [12, Proposition 4.9].

Proof of Proposition 5.1. We complete the proof of Proposition 5.1 by modi-
fying the proof of [12, Proposition 2.8] above the mass scale. The estimate [12,
(7.22)] follows from [12, Proposition 2.7] as an estimate in terms of the modi-
fied norm pair (4.18), for which [12, Proposition 2.7] was verified in Sect. 5.3.
The bound [12, (7.25)] with improved γ is obtained by applying the improved
version of [12, Proposition 4.9]. In the remainder of the proof of [12, Propo-
sition 2.8], we specialise each occurrence of G to the case G = G and we
conclude by obtaining an analogue of [12, (7.31)] with G̃ replaced by G by
applying Lemma 4.3 rather than [12, Lemma 1.2].

An additional detail is that it is required that we choose the parameter
defining the space N to obey pN > A. Since we have changed A (depending
on s), we must make a corresponding change to pN . This does not pose prob-
lems (beyond the previously discussed requirement that g needs to be chosen
small depending on p), as this parameter may be fixed to be an arbitrary and
sufficiently large integer (see [18, Section 7.1.3] where this point is addressed
in a different context). Similarly, the value of A is immaterial and can be any
fixed number in the proof of [12, Proposition 2.8]. �
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Appendix: Moments of the Free Green Function

We now prove Proposition 1.2, which we repeat as the following proposition.

Proposition A.1. Let cp be the constant defined by (1.12). For all dimensions
d > 2 and all p > 0, as m2 ↓ 0,

∑

x∈Zd

|x|pGx(0,m2) = cp
pm

−(p+2)(1 + O(m)). (A.1)

In particular, ξp(0, ε) = cpε
−1/2(1 + O(ε1/2)) as ε ↓ 0.

The last sentence in the the proposition follows immediately from (A.1)
and the fact that χ(0,m2) = m−2, so it suffices to prove (A.1).

The case p = 2 of (A.1) can be obtained easily from the identity
∑

x∈Zd

|x|2Gx(0,m2) = −ΔRdĜ(0), (A.2)
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where Ĝ is the Fourier transform of G. Higher even moments could in principle
be computed by further differentiating Ĝ. We adopt a different approach for
general p > 0, based on the finite-range decomposition of (−ΔZd + m2)−1

given in [1,8]. This finite-range decomposition also provides the basis for the
renormalisation group method. The finite-range decomposition is

Gx(0,m2) =
∞∑

j=1

Cj;x(m2). (A.3)

The finite-range property refers to the fact that Cj;x(m2) = 0 if |x| ≥ 1
2Lj ,

where L > 1 is fixed arbitrarily. We review some properties of this decompo-
sition, from [1,5], before proving Proposition A.1. The positive definiteness of
the finite-range decomposition is not needed here, and L need not be large.

The terms Cj;x(m2) are defined in [5, Section 6.1] by

Cj;x(m2) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫ 1
2 L

0

φ∗
t (x;m2)

dt

t
(j = 1)

∫ 1
2 Lj

1
2 Lj−1

φ∗
t (x;m2)

dt

t
(j ≥ 2)

(A.4)

(in [5], the notation Cj;0,x and φ∗
t (0, x;m2) was used instead). Here, φ∗

t is a
function of x ∈ R

d and m2 > 0 given in [1, Example 1.1]. It satisfies the finite-
range property that φ∗

t (x;m2) = 0 for |x| > t. It was also shown in [1] that
there exists a function φt satisfying the same finite-range property but giving
a decomposition of the continuum Green function:

(−ΔRd + m2)−1
0x =

∫ ∞

0

φt(x;m2)
dt

t
. (A.5)

Moreover, by [1, (1.37)], for |x| ≤ t

φ∗
t (x;m2) = φt(x;m2) + O(t−(d−1)(1 + m2t2)−k). (A.6)

This allows us to approximate the discrete Green function by the continuum
one, for which the moments are easily computed. We have set the constant c
present in [1] equal to 1, which we can do by rescaling φ∗

t .
As t approaches 0, the error bound in (A.6) degenerates. However, to esti-

mate (A.1), it suffices to restrict to x �= 0. Then, since x ∈ Z
d, the finite-range

property permits replacement of the lower bound in the range of integration
for j = 1 in (A.4) by 1

2 , and the contribution due to j = 1 can be estimated
in the same way as the terms j ≥ 2.

In addition, by [1, (1.34)], for any k, there is a constant Ck, such that

|Dxφt(x;m2)| ≤ Ckt−(d−1)(1 + m2t2)−k. (A.7)

We fix a choice of k which obeys k > 1
2 (p + 1) and use only this choice. By [1,

(1.38)], there exists a function φ̄, such that

φt(x;m2) = t−(d−2)φ̄
(x

t
;m2t2

)
. (A.8)
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Proof of Proposition 1.2. We begin by writing

∑

x∈Zd

|x|pGx(0,m2) =
∑

x∈Zd

|x|p
∞∑

j=1

Cj;x(m2) = M(m2) + E(m2), (A.9)

where the main and error terms are, respectively

M(m2) =
∑

x∈Zd

|x|p
∞∑

j=1

∫ 1
2 Lj

1
2 Lj−1

φt(x;m2)
dt

t
, (A.10)

E(m2) =
∑

x∈Zd

|x|p
∞∑

j=1

(

Cj;x −
∫ 1

2 Lj

1
2 Lj−1

φt(x;m2)
dt

t

)

. (A.11)

We first compute the main term M . By (A.8)

φt(x;m2) = md−2φmt(mx; 1). (A.12)

Therefore, by Riemann sum approximation

∑

x∈Zd

|x|p
∫ 1

2 Lj

1
2 Lj−1

φt(x;m2)
dt

t
(A.13)

= m−(p+2)md
∑

x∈Zd

|mx|p
∫ 1

2 Lj

1
2 Lj−1

φmt(mx; 1)
dt

t
(A.14)

= m−(p+2)

∫

Rd

|x|p
∫ 1

2 Lj

1
2 Lj−1

φmt(x; 1)
dt

t
+ O(L(p+1)jL−2k(j−jm)+),

where the error estimate follows from (A.7) and (4.8). Summation over j gives

M(m2) = cp
pm

−(p+2) + O(m−(p+1)), (A.15)

where we used (A.5) for the first term, and we used 2k > p+1 and Lemma 2.2
for the second term.

For the error term, it follows from (A.4), (A.6), and the observation that
the lower bound in the range of integration for the j = 1 term in (A.4) can be
changed to 1

2 that

Cj;x =
∫ 1

2 Lj

1
2 Lj−1

φt(x;m2)
dt

t
+ O(L−j(d−1)(1 + m2L2j)−k)1|x|≤Lj . (A.16)

Therefore, using (4.8) again we have

E(m2) =
∞∑

j=1

∑

|x|≤Lj

|x|pO(L−j(d−1)L−2k(j−jm)+) (A.17)

=
∞∑

j=1

O(L(p+1)jL−2k(j−jm)+). (A.18)

With 2k > p + 1 and Lemma 2.2, this gives E(m2) = O(m−(p+1)), and the
proof is complete. �
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