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Infinite Volume Limit for Correlation
Functions in the Dipole Gas

Tuan Minh Le

Abstract. We study a classical lattice dipole gas with low activity in di-
mension d ≥ 3. We investigate long distance properties by a renormaliza-
tion group analysis. We prove that various correlation functions have an
infinite volume limit. We also get estimates on the decay of correlation
functions.

1. Introduction

1.1. Overview

In this paper we study the classical dipole gas on a unit lattice Z
d with d ≥

3. Each dipole is described by its position coordinate x ∈ Z
d and a unit

polarization vector (moment) p ∈ S
d−1.

Let ΛN be a box in R
d

ΛN =
[−LN

2
,
LN

2

]d

(1)

where L ≥ 2d+3 + 1 is a very large, odd integer. For ΛN ∩ Z
d, the classical

statistical mechanics of a gas of such dipoles with inverse temperature (for con-
venience) β = 1 and activity (fugacity) z > 0 is given by the grand canonical
partition function

ZN =
∑
n≥0

zn

n!

n∏
i=1

⎛
⎝ ∑

xi∈Zd∩ΛN

∫
Sd−1

dpi

⎞
⎠ exp

⎛
⎝−1

2

∑
1≤k,j≤n

(pk · ∂)(pj · ∂)C(xk, xj)

⎞
⎠

(2)

where C(x, y) is the Coulomb potential on the unit lattice Zd. There are associ-
ated correlation functions describing correlations between various observables.

The main problems to study are infinite volume limit for the pressure
defined by pN = |ΛN |−1 log ZN , infinite volume limit for correlation functions
and decay of correlations. In fact the interaction between the dipoles in sta-
tistical ensemble at the long range is not summable; therefore, the classical
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approach of Mayer expansion would hardly work. To overcome this problem,
we use a mathematical version of the physicists’ renormalization group. For
the small z, we show the existence of infinite volume limit for the pressure and
various correlation functions, and get estimates on the decay of correlations.
These results extend the results of other authors (see Sect. 1.3 for more de-
tails). The result on the infinite volume limit of correlations is new; and the
result on the decay of correlations of the n-point function improves the results
of most earlier authors who only consider the two point function.

1.2. Definition

Let {e1, e2, . . . , ed} be the standard basic for Z
d. For ϕ : Zd → R and μ ∈

{1, 2, . . . , d} we define ∂μϕ as ∂μϕ(x) = ϕ(x + eμ) − ϕ(x) and [ϕ] = d−2
2 . Let

e−μ = −eμ with μ ∈ {1, 2, . . . , d}. Then the definition of ∂μϕ can be used to
define the forward or backward lattice derivative along the unit vector eμ with
μ ∈ {±1,±2, . . . ,±d}. We have that ∂μ and ∂−μ are adjoint to each other and
−Δ = 1/2

∑d
±μ=1 ∂∗

μ∂μ = 1/2
∑d

±μ=1 ∂−μ∂μ.1

As in [5], the potential energy between unit dipoles (x, p1) and (y, p2) is

(p1 · ∂)(p2 · ∂)C(x − y) (3)

where x, y ∈ Z
d are positions, p1, p2 ∈ S

d−1 are moments, ∂ = (∂1, ∂2, . . . , ∂d)
and C(x − y) is the Coulomb potential on the unit lattice Z

d, which is the
kernel of the inverse Laplacian

C(x, y) = (−Δ)−1(x, y) = (2π)−d

∫
[−π,π]d

eip·(x−y)

2
∑d

μ=1(1 − cos pμ)
dp. (4)

And the potential energy of n dipoles at positions x1, x2, . . . , xn, including self
energy, has the form ∑

1≤k,j≤n

(pk · ∂)(pj · ∂)C(xk, xj). (5)

The grand canonical partition function ZN can be equivalently expressed
as a Euclidean field theory (due to Kac [13] and Siegert [14]) and is given by

0ZN ≡ ZN =
∫

exp (zW (ΛN , φ)) dμC(φ)

where W (ΛN , φ) =
∑

x∈ΛN ∩Zd

∫
Sd−1

dp cos(p · ∂φ(x))
(6)

with

• dp: the standard normalized rotation invariant measure on S
d−1.

• The fields φ(x): a family of Gaussian random variables (on some abstract
measure space) indexed by x ∈ Z

d with mean zero and covariance C(x, y)
which is a positive definite function as given above.

1 We distinguish forward and backward derivatives to facilitate a symmetric decomposition
of V (ΛN ) (defined in (9)) into blocks.
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• The measure μC : the underlying measure (see [6, Section 11.2] and [5,
Appendix A] for more detail). We discuss about the equivalence of (2)
and (6) in Appendix of this paper.

We define〈
n∏

k=1

φ(xk)

〉
≡ (0ZN )−1

∫ (
n∏

k=1

φ(xk)

)
exp (zW (ΛN , φ)) dμC(φ),

〈
n∏

k=1

φ(xk)

〉t

≡
〈

n∏
k=1

φ(xk)

〉
− (lower order terms).

(7)

For example, we have 〈φ(x1)φ(x2)〉t = 〈φ(x1)φ(x2)〉 − 〈φ(x1)〉〈φ(x2)〉.
For investigating the truncated correlation functions, we consider a more

general version of (6):

fZN =
∫

exp (if(φ) + zW (ΛN , φ)) dμC(φ) (8)

where f(φ) can be:
1. f(φ) = 0 as in [5].
2. f(φ) =

∑m
k=1 tk∂μk

φ(xk). We use this f(φ) to study the truncated cor-
relation functions

Gt(x1, x2, . . . , xm) ≡
〈

m∏
k=1

∂μk
φ(xk)

〉t

= im
∂m

∂t1 . . . ∂tm
log fZ

′
∣∣∣∣
t1=0,...tm=0

which is nontrivial and previously investigated by Dimock and Hurd [7].
3. f(φ) =

∑m
k=1 tk exp(i∂μk

φ(xk)). We use this f(φ) to study the dipole
correlation〈

m∏
k=1

exp (i∂μk
φ(xk))

〉t

= im
∂m

∂t1 . . . ∂tm
log fZ

′
∣∣∣∣
t1=0,...tm=0

4. Other general form which will be discussed at the end of this paper. The
general form can be applied for truncated correlations of density of the
dipoles which also has been studied by Brydges and Keller [2]. We think
that this general form has more applications.

Here xk ∈ Z
d are different points; μk ∈ {±1,±2, . . . ,±d} and tk ∈ C small;

m ≥ 2. For {x1, x2, . . . , xm} ⊂ Z
d, let

diam(x1, x2, . . . , xm) = max
1≤i,j≤m

dist(xi, xj)

where dist(xi, xj) is the distance between xi and xj on lattice Z
d.

1.3. Earlier Results

Actually ZN is not expected to have a limit as N → ∞. Using a method of
correlation inequalities, Frohlich and Park [10, 1978], have shown the infinite
volume limit for the pressure. After that, Frohlich and Spencer [11, 1981]
also gave the result on the infinite volume limit for the dipole phase of the
Coulomb gas by using correlation inequalities and multiscale analysis. In 1984,
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Gawedski and Kupiainen [12] used the block-spin renormalization group to
show the long distance behavior of the correlation functions and the analyticity
(in the fugacity z) of the pressure. In 1990, Brydges and Yau [4] introduced
an improving and simpler renormalization group techniques for the continuum
dipole model which they reproduced some results of [12]. Dimock and Hurd
[7, 1992] has extended the Brydges–Yau’s renormalization group analysis for
the dipole gas and obtained the decay of some correlations of the 2-point and
n-point functions. In 1994, Brydges and Keller [2] gave an “accurate” upper
bound for correlation function of the density of dipoles at 2-point. In 2007,
Brydges and Slade [1] developed a new renormalization group approach. In
2009, Dimock [5] has established an infinite volume limit for the pressure by
using this new approach.

We follow particularly the new renormalization group approach developed
by Brydges and Slade [1] and Dimock [5]. Generalizing Dimock’s framework
with an external field, we have reproduced some estimates on the correlation
functions as in Dimock and Hurd [7], and extended results in Brydges and
Keller [2] by giving the upper bound for correlations functions of the density
of dipoles at n-point. Our main result is the existence of the infinite volume
limit for correlations functions, which is new.

Besides the dipole gas papers mentioned above, we would like to cite
some other papers on the Coulomb gas in d = 2 which has a dipole phase.
There are the works of Dimock and Hurd [8], Falco [9] and Zhao [15].

1.4. The Main Result

For our RG approach we follow the analysis of Brydges and Slade [1]. Instead
of (8), we use a different finite volume approximation. First, we add an extra
term (1 − ε)V (ΛN , φ) where 0 < ε is closed to 1 and

V (ΛN , φ) =
1
4

∑
x∈ΛN ∩Zd

d∑
±μ=1

(∂μφ(x))2. (9)

By replacing the covariance C by ε−1C, this extra term will be partially com-
pensated. Hence instead of (8) we will consider a new finite volume generating
function

fZN = fZ
′
N/Z ′′

N (10)

where

fZ
′
N =

∫
eif(φ) exp (zW (ΛN , φ) − (1 − ε)V (ΛN , φ)) dμε−1C(φ) (11)

and
Z ′′

N =
∫

exp (−(1 − ε)V (ΛN , φ)) dμε−1C(φ). (12)

We have

fZN = fZ
′
N/Z ′′

N

=
∫

eif(φ) exp (zW (ΛN , φ))
[
(Z ′′

N )−1e−(1−ε)V (ΛN ,φ)dμε−1C(φ)
]
. (13)
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As N goes to infinity, exp(−(1−ε)V (ΛN , φ)) formally becomes exp(1/2(1
− ε)(φ,−Δφ)), and dμε−1C(φ) = (1/2(ε)(φ,−Δφ))dφ. Hence, when N → ∞,
the bracketed expression formally converges to (const.)(1/2(φ,−Δφ))dφ =
(const.)dμC(φ). Formally this new fZN gives the same limit as (8). This result
holds for any choice of ε. By definition (9), the extra term (1 − ε)V (ΛN , φ)
= (1 − ε) 1

4

∑
x∈ΛN ∩Zd

∑d
±μ=1(∂μφ(x))2. Therefore, the choice of ε is a choice

of how much (∂φ)2 one is putting in the interaction and how much in the
measure.

Similarly to the Theorem 1 in [5], our main theorems are:

Theorem 1. For |z| and maxk |tk| sufficiently small, there is an ε = ε(z) close
to 1 so that fpN = |ΛN |−1 log(fZN ) has a limit as N → ∞.2

Using f(φ) =
∑m

k=1 tk∂μk
φ(xk), we obtain the existence of infinite volume

limit for correlation functions.

Theorem 2. With L,A sufficiently large, the infinite volume limit of truncated
correlation function limN→∞〈∏m

k=1 ∂μk
φ(xk)〉t exists.

And we also can achieve some estimate for the correlation functions:

Theorem 3. For any small ι > 0, with L,A sufficiently large (depending on ι),
η = min{d/2, 2}, we have:∣∣∣∣∣∣

〈
m∏

k=1

∂μk
φ(xk)

〉t
∣∣∣∣∣∣ ≤ m!

am
diam−η+ι(x1, x2, . . . , xm) (14)

where a depends on ι, L,A.3

This bound is presumably not sharp since for example at z = 0 the two
point function goes like ∂μ∂νC(x, y) ∼ |x − y|−d. Also one expects tree decay
rather than diameter decay. When d = 3 or 4, the result in Theorem 3 looks
like the result in [7], but here it is obtained with the new method.

Using f(φ) =
∑m

k=1 tk exp(i∂μk
φ(xk)), we can obtain Theorems 4 and 5

which are similar to Theorems 2 and 3, just with different f .

Theorem 4. With L,A sufficiently large, the infinite volume limit of the trun-
cated correlation function limN→∞〈∏m

k=1 exp(i∂μk
φ(xk))〉t exists.

Theorem 5. For any small ι > 0, with L,A sufficiently large (depending on ι),
let η = min{d/2, 2} we have:∣∣∣∣∣∣

〈
m∏

k=1

exp (i∂μk
φ(xk))

〉t
∣∣∣∣∣∣ ≤ m!

am
diam−η+ι(x1, x2, . . . , xm) (15)

where a depends on ι, L,A.

2 In Theorem 1, f(φ) can be 0,
∑m

k=1 tk∂μk φ(xk), or
∑m

k=1 tk exp(i∂μk φ(xk)).
3 The coefficient A is used in the definition of the norm of polymer activities in Sect. 2.4.
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At the end of this paper (Sect. 6.3), we investigate a general form

f(φ) =
m∑

k=1

tkfk(φ)(xk)

and obtain Theorems 6 and 7.

Theorem 6. With L,A sufficiently large, the infinite volume limit of the trun-
cated correlation function limN→∞〈∏m

k=1 fk(φ)(xk)〉t exists.

Theorem 7. For any small ι > 0, with L,A sufficiently large (depending on ι),
let η = min{d/2, 2} we have:∣∣∣∣∣∣

〈
m∏

k=1

fk(φ)(xk)

〉t
∣∣∣∣∣∣ ≤ m!

am
diam−η+ι(x1, x2, . . . , xm) (16)

where a depends on ι, L,A.

Applying Theorem 7 with a special f for density of dipoles

f =
m∑

k=1

tkW0({xk}),

where W0({xk}) = zW (1, {xk}) as in (64), we have obtained some estimates
for truncated correlation functions of density of dipoles with (m ≥ 2) points
(Corollary 1) instead of only 2 points as Theorem 1.1.2 in [2].

Corollary 1. For any small ι > 0, with L,A sufficiently large (depending on
ι), let η = min{d/2, 2} we have:∣∣∣∣∣∣

〈
m∏

k=1

W0({xk})

〉t
∣∣∣∣∣∣ ≤ m!

am
diam−η+ι(x1, . . . , xm) (17)

where a depends on ι, L,A.

Then we apply Theorem 6 to establish the infinite volume limit for trun-
cated correlation functions of density of dipoles (Corollary 2).

Corollary 2. With L,A sufficiently large, the infinite volume limit of the trun-
cated correlation function limN→∞〈∏m

k=1 W0({xk})〉t exists.

For the proof of Theorem 1, we will show that, with a suitable choice
of ε = ε(z), the density exp(zW − (1 − ε)V ) likely goes to zero under the
renormalization group flow and leaves a measure like με(z)−1C to describe the
long distance behavior of the system. Accordingly ε(z) can be interpreted as
a dielectric constant.

Now we rewrite the generating function fZN . First we scale φ → φ/
√

ε
and then let σ = ε−1 − 1. Because ε is closed to 1, we have σ is near zero. We



Vol. 17 (2016) Infinite Volume Limit for Correlation 3539

also have

fZ
′
N (z, σ) =

∫
eif(φ) exp

(
zW (ΛN ,

√
1 + σφ) − σV (ΛN , φ)

)
dμC(φ),

Z ′′
N (σ) =

∫
exp (−σV (ΛN , φ)) dμC(φ),

fZN (z, σ) = fZ
′
N (z, σ)/Z ′′

N (σ).

(18)

Then we need to show that with |z| sufficiently small there is a (smooth)
σ = σ(z) near zero such that,

|ΛN |−1 log fZN (z, σ(z))

= |ΛN |−1 log fZ
′
N (z, σ(z)) − |ΛN |−1 log Z ′′

N (σ(z)) (19)

has a limit when N → ∞. And Theorem 1 is proved just by putting ε(z) =
(1 + σ(z))−1 back. Dimock has proved that, for small real σ with |σ| < 1, we
have |ΛN |−1 log Z ′′

N (σ) converges as N → ∞ [5, Theorem 2]. Hence we only
need to investigate the first term in (19).

The paper is organized as follows:
• In Sect. 2, we give some general definitions on the lattice and their prop-

erties. We also give definitions about the norms we use together with
their crucial properties and estimates. Then we define the basic Renor-
malization Group transformation as in [5].

• In Sect. 3, we accomplish the detailed analysis of the Renormalization
Group transformation to isolate the leading terms. Then we simplify them
for the next scale.

• In Sect. 4, we study the RG flow and find the stable manifold σ = σ(z).
• In Sect. 5, we assemble the results and prove the infinite volume limit for

|ΛN |−1 log fZ
′
N exists.

• Finally in Sect. 6, by combining all the other estimates, we obtain some
estimates for correlation functions and establish the infinite volume limit
of correlation functions.

2. Preliminaries

In this section, we quote all notations and basic result from Dimock [5]. At the
same time, we introduce some new notations which are useful for this paper.

2.1. Multiscale Decomposition

RG methods are based upon a multiscale decomposition of the basic lattice
covariance C into a sequence of more controllable integrals and analyze the
effects separately at each stage. Especially we choose a decomposition into
finite range covariances which is developed by Brydges, Guadagni, and Mitter
[3]. The decomposition of the lattice covariance C has the form

C(x − y) =
∞∑

j=1

Γj(x − y) (20)
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such that

• Γj(x) is defined on Z
d, is positive semi-definite, and satisfies the finite

range property: Γj(x) = 0 if |x| ≥ Lj/2.
• There is a constant c0 independent of L such that, for all j, x, we have

|Γj(x)| ≤ c0L
−2(j−1)[φ]. (21)

This implies that the series converges uniformly.
• There are constants cα independent of L such that

|∂αΓj(x)| ≤ cαL−(j−1)(2[φ]+|α|) (22)

where ∂α =
∏d

±μ=1 ∂
αμ
μ is a multiderivative and |α| =

∑
μ |αμ|. Thus the

differentiated series converges uniformly to ∂αC.
• [5, Lemma 2] There are some constants CL,α such that

|∂αC(x)| ≤ CL,α(1 + |x|)−2[φ]−|α|. (23)

For our RG analysis we need to break off pieces of covariance C(x − y)
one at a time. So we define

Ck(x − y) =
∞∑

j=k+1

Γj(x − y). (24)

Hence we have C = C0 and

Ck(x − y) = Ck+1(x − y) + Γk+1(x − y). (25)

2.2. Renormalization Group Transformation

The generating function (18) can be rewritten as

fZ
′
N (z, σ) =

∫
fZN

0 (φ)dμC0(φ) (26)

with

fZN
0 (φ) = eif(φ) exp

(
zW (ΛN ,

√
1 + σφ) − σV (ΛN , φ)

)
. (27)

We use the left subscript f as an extra notation for 3 cases at the same
time:

• f(φ) = 0 as in (Dimock [5]);
• f(φ) =

∑m
k=1 tk∂μk

φ(xk));
• f(φ) =

∑m
k=1 tk exp(i∂μk

φ(xk)).

Since C0 = C1 + Γ1 we replace an integral over μC0 by an integral over μΓ1

and μC1 . So we have

fZ
′
N (z, σ) =

∫
fZN

0 (φ + ζ)dμΓ1(ζ)dμC1(φ) =
∫

fZN
1 (φ)dμC1(φ). (28)

We define a new density by the fluctuation integral

fZN
1 (φ) = (μΓ1 ∗ fZN

0 )(φ) ≡
∫

fZN
0 (φ + ζ)dμΓ1(ζ). (29)
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Because Γ1, C1 are only positive semi-definite, these are degenerate Gaussian
measures.4 By continuing this way, we will have the representation for j =
0, 1, 2, . . .

fZ
′
N (z, σ) =

∫
fZN

j (φ)dμCj
(φ) (30)

here the density fZN
j (φ) is defined by

fZN
j+1(φ) = (μΓj+1 ∗ fZN

j )(φ) =
∫

fZN
j (φ + ζ)dμΓj+1(ζ). (31)

Our job is to investigate the growth of these densities when j go to ∞.

2.3. Local Expansion

We will rewrite each density fZN
j (φ) in a form which presents its locality prop-

erties known as a polymer representation. The localization becomes coarser
when j gets bigger. First we will give some basic definitions on the unit lattice
Z

d.

2.3.1. Basic Definitions on the Lattice Z
d. For j = 0, 1, 2, . . . we partition Z

d

into j-blocks B. These blocks have side Lj and are translates of the center
j-blocks

B0
j = {x ∈ Z

d : |x| ≤ 1/2(Lj − 1)} (32)

by points in the lattice Lj
Z

d. The set of all j-blocks in Λ = ΛN is denoted
Bj(ΛN ), Bj(Λ) or just Bj . A union of j-blocks X is called a j-polymer. Note
that Λ is also a j-polymer for 0 ≤ j ≤ N . The set of all j-polymers in Λ = ΛN

is denoted Pj(Λ) or just Pj . The set of all connected j-polymers is denoted by
Pj,c. For X ∈ Pj , we use C(X) to denote the set of all connected components
of polymer X and X̄ to denote the smallest Y ∈ Pj+1 such that X ⊂ Y .

For a j-polymer X, let |X|j be the number of j-blocks in X. We call
j-polymer X a small set if it is connected and contains no more than 2d j-
blocks. The set of all small set j-polymers in Λ is denoted by Sj(Λ) or just Sj .
A j-block B has a small set neighborhood B∗ = ∪{Y ∈ Sj : Y ⊃ B}.

Note If B1,B2 are j-blocks and B2 ∈ B∗
1 then, using the above definition, we

have B1 ∈B∗
2 . Similarly a j-polymer X has a small set neighborhood X∗.

For l ≥ 1 and integer d, we define some constants n1(d), n2(d), n3(d, l)
which are bounded and, for every j ≥ 0, we have:

n1(d) ≡
∑

X∈S0,X⊃0

1/|X|0 =
∑

X∈Sj ,X⊃B0
j

1/|X|j ,

n2(d) ≡
∑

X∈S0,X⊃0

1 =
∑

X∈Sj ,X⊃B0
j

1,

n3(d, l) ≡
∑

X∈S0,X⊃0

l−|X|0

|X|0 =
∑

X∈Sj ,X⊃B0
j

l−|X|j

|X|j ,

n3(d, l) ≤n3(d, 1) = n1(d) ≤ n2(d) ≤ (2d)!(2d)2
d

.

(33)

4 Dimock has discussed these in [5, Appendix A].
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Furthermore, with a fixed d, we can get

0 ≤ lim
l→∞

n3(d, l) ≤ lim
l→∞

n1(d)
l

= 0. (34)

2.3.2. Local Expansion. Using the same approach as in [5], we rewrite the
density fZN

j (φ) for φ : Zd → R in the general form

fZ = (fI ◦ fK)(Λ) ≡
∑

X∈Pj(Λ)

fI(Λ − X)fK(X). (35)

Here fI(Y ) is a background functional which is explicitly known and carries the
main contribution to the density. The fK(X) is so called a polymer activity.
It represents small corrections to the background.

In Sect. 5 we will show that the initial density fI0 has the factor property.
We want to keep this factor property at all scales. Then we can use the analysis
of Brydges’ lecture [1]. Therefore, we assume fI(Y ) always is in the form of

fI(Y ) =
∏

B∈Bj :B⊂Y

fI(B) (36)

and fI(B,φ) depends on φ only B∗, the small set neighborhood of B. Moreover
we assume fK(X) factors over the connected components C(X) of X

fK(X) =
∏

Y ⊂C(X)

fK(Y ) (37)

and that fK(X,φ) only depends on φ in X∗.
As in [5], the background functional fI(B) has a special form fI(fE, σ,B)

= exp(−V (fE, σ,B)) where5

V (fE, σ,B, φ) = fE(B) +
1
4

∑
x∈B

∑
μν

σμν(B)∂μφ(x)∂νφ(x) (38)

for some functions fE, σμν : Bj → R. Indeed we usually can take σμν(B) =
σδμν for some constant σ. Then V (fE, σ,B, φ) becomes

V (fE, σ,B, φ) = fE(B) +
σ

4

∑
x∈B

∑
μ

(∂μφ(x))2 ≡ fE(B) + σV (B). (39)

Also in our model, when f = 0, we will have

0K(X,φ) = 0K(X,−φ), 0K(X,φ) = 0K(X,φ + c). (40)

The later holds for any constant c which means that 0K(X,φ) only depends
on derivatives ∂φ.

2.4. About Norms and Their Properties

The norms provide a way of encoding the physicists’ power counting argu-
ments.

5 Sums over μ are understood to range over μ = ±1, . . . , ±d, unless otherwise specified.
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2.4.1. Norms for φ. For a j-polymer X, let Φj(X) be the Banach space of
functions φ : X → R modulo constants with the following norm

‖φ‖Φj(X) = h−1
j max

{‖∇jφ‖X,∞, ‖∇2
jφ‖X,∞

}
(41)

in that

∇j,μ = Lj∂μ, hj = L−[φ]jh (for some h ≥ 1),

‖∇jφ‖X,∞ = sup
{

|∇j,μφ(x)|
∣∣∣x ∈ X,μ ∈ {±1,±2, . . . ,±d}

}
.

(42)

If X is a (j + 1)-polymer then X can also be considered as a j-polymer. And
we have

‖φ‖Φj(X) ≤ L−[φ]−1‖φ‖Φj+1(X) = L−d/2‖φ‖Φj+1(X) ≤ L‖φ‖Φj(X) (43)

since h−1
j = L[φ]jh−1 = L[φ](j+1)−[φ]h−1 = L−[φ]h−1

j+1 and ∇j = L−1∇j+1.

2.4.2. Norms for K. For X ∈ Pj , we suppose that the polymer activities
K(X,φ) only depends on φ in X∗ (the smallset neighborhood of X) and is a
C3 function on Φj(X∗). Then we define

• For n = 0, 1, 2, 3,

‖Kn(X,φ)‖j = sup
‖fi‖Φj(X∗)≤1

∀i=1...n

{ |Kn(X,φ; f1, . . . fn)|} (44)

where Kn(X,φ), the nth derivative with respect to φ, is a multilinear
functional on fi ∈ Φj(X∗)

Kn(X,φ; f1, . . . , fn) =
∂n

∂t1 . . . ∂tn
K(X,φ+ t1f1 + · · ·+ tnfn)

∣∣∣
t1=···=tn=0

(45)

• A multiplicative norm ‖K(X,φ)‖j

‖K(X,φ)‖j =
3∑

n=0

‖Kn(X,φ)‖j

n!
(46)

satisfies

‖K(X,φ)H(Y, φ)‖j ≤ ‖K(X,φ)‖j‖H(Y, φ)‖j (47)

where X,Y are disjoint polymers in Pj .
•

‖K(X)‖j = sup
φ′,ζ

‖K(X,φ′ + ζ)‖jGj(X,φ′, ζ)−1 (48)

where K(X,φ) is considered as a function K(X,φ′ + ζ) of φ′, ζ, and
Gj(X,φ′, ζ) = Gj(X,φ′, 0)Gj(X, 0, ζ) is the large field regulator and sat-
isfies following conditions:
– Gj(X,φ′, ζ) depends only on φ′, ζ in X∗

– Gj(X,φ′, ζ) ≥ 1 and Gj(X, 0, 0) = 1.
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If we want to use the same norm but with K as a function of φ′ only, we
can define

‖K(X)‖′
j = sup

φ′,ζ
‖K(X,φ′)‖jGj(X,φ′, ζ)−1

= sup
φ′

‖K(X,φ′)‖jGj(X,φ′, 0)−1. (49)

There are two choices of large field regulators:
– The strong large field regulator

Gs,j(X,φ′, ζ) =
∏

B∈Bj(X)

e
‖φ′‖2

Φj(B∗)+‖ζ‖2
Φj(B∗) . (50)

We use ‖K(X)‖s,j to denote the norm with this strong regulator.
– The weak large field regulator

Gj(X,φ′, ζ) =
∏

B∈Bj(X)

exp
(
c1h

−2
j L−dj‖∇jφ

′‖2
B,2+c2h

−2
j ‖∇2

jφ
′‖2

B∗,∞
)

× exp
(
c3h

−2
j L−(d−1)j‖∇jφ

′‖2
∂X,2

)

×
∏

B∈Bj(X)

exp
(

c4h
−2
j max

0≤p≤2
‖∇p

j ζ‖2
B∗,∞

)
. (51)

The norm with the weak regulator will be denoted just as ‖K(X)‖j .6

Using the theorem 6.14 and (6.100) in [1], for proper choices of c1, c2, c3,
c4, L sufficiently large, and h sufficiently large depending on L, we have
that

Gs,j(X) ≤ Gs,j(X)2 ≤ Gj(X) (52)
which yields to

‖K(X)‖j ≤ ‖K(X)‖s,j . (53)
• For A ≥ 1, we define

‖K‖j = sup
X∈Pj,c

‖K(X)‖jA
|X|j . (54)

With this norm, polymer activities K(X,φ) (X ∈ Pj,c) form a Banach
space denoted as Kj(ΛN ).

2.4.3. Properties of Norms. Using the theorem 6.14 in [1], for proper choices
of c1, c2, c3, c4, L sufficiently large, and h sufficiently large depending on L, we
have the following properties:

1.
‖K(X)‖j ≤

∏
Y ∈C(X)

‖K(Y )‖j . (55)

2. ∥∥∥∥∥
( ∏

B⊂X

F (B)

)
K(Y )

∥∥∥∥∥
j

≤
∏

B⊂X

‖F (B)‖s,j‖K(Y )‖j (56)

where X,Y are disjoint polymers (but possibly touching).

6 Note that h−2
j L−dj‖∇jφ′‖2

B,2 = h−2‖∂φ′‖2
B,2 actually has no explicit dependence on j.
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3.
‖K#(X)‖′

j ≤ 2|X|j ‖K(X)‖j ≤ (A/2)−|X|j ‖K‖j (57)
with

K#(X,φ) =
∫

K(X,φ, ζ)dμΓj+1(ζ). (58)

4. If U is a (j + 1)-polymer, we can also consider U as a j-polymer. Hence,

‖K(U)‖j+1 ≤ ‖K(U)‖′
j ,

‖K(U)‖s,j+1 ≤ ‖K(U)‖′
s,j .

(59)

2.4.4. Some Crucial Estimates. Now we consider potential V (s,B, φ) of the
form

V (s,B, φ) =
1
4

∑
x∈B

∑
μν

sμν(x)∂μφ(x)∂νφ(x) (60)

here the norms of functions sμν(x) are defined by

‖s‖j = sup
B∈Bj

|B|−1‖s‖1,B = sup
B∈Bj

L−dj
∑
μν

∑
x∈B

|sμν(x)|. (61)

If sμν(x) = σδμν then V (s,B) = σV (B) as defined in (39) and the norm
‖s‖j = 2d σ.

Two following lemmas are borrowed from Section 3 in [5]:

Lemma 1 ([5], Lemma 3).
1. For any functional sμν(x), we have

‖V (s,B)‖′
s,j ≤ h2‖s‖j ,

‖V (s,B)‖s,j ≤ h2‖s‖j .
(62)

2. The function σ → exp(−σV (B)) is complex analytic and if h2σ is suffi-
ciently small, we have ∥∥∥e−σV (B)

∥∥∥′

s,j
≤ 2,

∥∥∥e−σV (B)
∥∥∥

s,j
≤ 2.

(63)

Let c be a constant such that the function σ → exp(−σV (B)) is analytic
in |σ| ≤ ch−2 and satisfies ‖ exp(−σV (B))‖s,j ≤ 2 on that domain.

To start the RG transformation, we also need some estimate on the initial
interaction. When j = 0, B ∈ B0 is just a single site x ∈ Z

d, so we consider

W (u,B, φ) =
∫
Sd−1

dp cos(p · ∂φ(x)u). (64)

Lemma 2 ([5], Lemma 4).
1. W (u,B) is bounded by

‖W (u,B)‖s,0 ≤ 2e
√

dhu. (65)

We also have that W (u,B) is strongly continuously differentiable in u.
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2. ezW (u,B) is complex analytic in z and satisfies, for |z| sufficiently small
(depending on d, h, u), we have∥∥∥ezW (u,B)

∥∥∥
s,0

≤ 2. (66)

And ezW (u,B) is also strongly continuously differentiable in u.

We also borrowed the following lemma [1] which is giving a treatment for
large polymers.

Lemma 3 ([1], Lemma 6.18). If U ∈ Pj+1 and

k(α,U) =
∑

X∈Pj,c:

X /∈Sj ,X=U

(α)−|X|j

then, for any λ ∈ (0, 1], α ≥ 1, we have

lim
α→∞ sup

U∈Pj+1

k(λα,U)α|U |j+1 = 0.

The idea of lemma 6.18 in [1] is that, for large polymers X such that
X̄ = U , the quantity |X|j must be much larger than |U |j+1.

3. Analysis of the RG Transformation

Now we use the Brydges–Slade RG analysis and follow the framework of Di-
mock [5], but with an external field f .

3.1. Coordinates (fIj, fKj)

Continuing to the Sect. 2.3.2 (Local Expansion), we suppose that we have
fZ(φ) = (fI ◦ fK)(Λ, φ) with polymers on scale j. We rewrite it as

fZ ′(φ′) = (μΓj+1 ∗ fZ)(φ′) ≡
∫

fZ(φ′ + ζ)dμΓj+1(ζ) (67)

here we try to put it back to the form

fZ ′(φ′) = (fI
′ ◦ fK

′)(Λ, φ′) (68)

where the polymers are now on scale (j + 1). Furthermore, supposed that we
have chosen fI

′, we will find fK
′ so the identity holds. As explained before,

our choice of fI
′ is to have the form

fI
′(B′, φ′) =

∏
B∈Bj ,B⊂B′

f̃I(B,φ′), B′ ∈ Bj+1. (69)

Now we define

δfI(B,φ′, ζ) = fI(B,φ′ + ζ) − f̃I(B,φ′),

fK ◦ δfI ≡ ˜
fK(X,φ′, ζ) =

∑
Y ⊂X

fK(Y, φ′ + ζ)δfI
X−Y (φ′, ζ). (70)



Vol. 17 (2016) Infinite Volume Limit for Correlation 3547

For connected X we write ˜
fK(X,φ′, ζ) in the form7

˜
fK(X,φ′, ζ) =

∑
B⊂X

fJ(B,X, φ′) + ˇ
fK(X,φ′, ζ). (71)

Given fK and fJ the Eq. (71) would give us a definition of ˇ
fK(X) for X

connected. And for any X ∈ Pj , we define

ˇ
fK(X,φ′, ζ) =

∏
Y ∈C(X)

ˇ
fK(Y, φ′, ζ). (72)

After using the finite range property and making some rearrangements
as Proposition 5.1, Brydges [1], we have (68) holds with

fK
′(U, φ′) =

∑
X,χ→U

fJ
χ(φ′)f̃I

U−(Xχ∪X)
(φ′) ˇ

fK
#

(X,φ′), U ∈ Pj+1 (73)

where χ = (B1,X1, . . . Bn,Xn) and the condition X,χ → U means that
X1, . . . Xn,X be strictly disjoint and satisfy (B∗

1 ∪ · · · ∪ B∗
n ∪ X) = U . More-

over

fJ
χ(φ′) =

n∏
i=1

fJ(Bl,Xl, φ
′),

f̃I
U−(Xχ∪X)

(φ′) =
∏

B∈U−(Xχ∪X)

f̃I(B,φ′),
(74)

with Xχ = ∪iXi. And ˇ
fK

#
(X,φ′) is ˇ

fK(X,φ′, ζ) integrated over ζ as in (58).
At this point fK

′ is considered as a function of fI, f̃I, fJ, fK. It vanishes
at the point (fI, f̃I, fJ, fK) = (1, 1, 0, 0) since χ = ∅ and X = ∅ iff U = ∅. We
study its behavior in a neighborhood of this point. We use the norm in (54)
for fK and define

‖fI‖s,j = sup
B∈Bj

‖fI(B)‖s,j ,

‖f̃I‖′
s,j = sup

B∈Bj

‖f̃I(B)‖′
s,j ,

‖fJ‖′
j = sup

X∈Sj ,B⊂X
‖fJ(X,B)‖′

j .

(75)

Using the same argument as Theorem 3 in [5], we have the following
result.

Theorem 8. Let A be sufficiently large.
1. For R > 0 there is an r > 0 such that the following holds for all

j. If max{‖0I − 1‖s,j , ‖fI − 1‖s,j} < r, max{‖0̃I − 1‖′
s,j , ‖f̃I − 1‖′

s,j} <
r, max{‖0J‖′

j , ‖fJ‖′
j} < r and max{‖0K‖j , ‖fK‖j} < r then we have

max{‖0K
′‖j+1, ‖fK

′‖j+1} < R. Furthermore fK
′ is a smooth function of

fI, f̃I, fJ, fK on this domain with derivatives bounded uniformly in j. The

7 As in Dimock [5], fJ(B, X) will be chosen to depend on fK and required fJ(B, X) = 0

unless X ∈ Sj , B ⊂ X and that fJ(B, X, φ′) depend on φ′ only in B∗.
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analyticity of fK
′ in t1, t2, . . . , tm still holds when we go from j-scale to

(j + 1)-scale.
2. If also ∑

X∈Sj :X⊃B

fJ(B,X) = 0 (76)

then the linearization of fK
′ = fK

′(fI, f̃I, fJ, fK) at (fI, f̃I, fJ, fK) =
(1, 1, 0, 0) is

∑
X∈Pj,c

X=U

(
fK

#(X) + (fI
#(X) − 1)1X∈Bj

− (f̃I(X) − 1)1X∈Bj

−
∑

B⊂X

fJ(B,X)

)
(77)

where

fK
#(X,φ) =

∫
fK(X,φ + ζ)dμΓj+1(ζ) (78)

and 0J actually is fJ at f = 0.

3.2. Choosing J and Estimating L1,L2

3.2.1. Choosing J . For a smooth function g(φ) on φ ∈ R
Λ, let T2g denote a

second order Taylor expansion:

(T2g)(φ) = g(0) + g1(0;φ) +
1
2
g2(0;φ, φ),

(T0g)(φ) = g(0).
(79)

We also set
δfK = fK − 0K. (80)

With fK
# defined in (78), for X ∈ Sj , X ⊃ B, X �= B, we pick:

fJ(B,X) =
1

|X|j [T2(0K#(X)) + T0(fK
#(X)) − T0(0K#(X))]

=
1

|X|j [T2(0K#(X)) + T0(δfK
#(X))] (81)

and choose fJ(B,B) so that (76) is satisfied. Otherwise, we let fJ(B,X) = 0.8

As in (39) we have picked

fI(B) = fI(fE, σ,B) = exp(−V (fE, σ,B)). (82)

So we require f̃I to have the same form

f̃I(B) = fI(f̃E, σ̃, B) = exp(−V (f̃E, σ̃, B)) (83)

with f̃E, σ̃ which will be defined later. Because
∑

B⊂B′ V (B) = V (B′), we
have

fI
′(B′) = fI(fE

′, σ′, B′) = exp(−V (fE
′, σ′, B)) (84)

8 When f = 0, the 0J is exactly the same as the J in [5, section 4.2].
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with
fE

′(B′) =
∑

B⊂B′
f̃E(B),

σ′ = σ̃.

(85)

The map fK
′ becomes fK

′ = fK
′(f̃E, σ̃, fE, σ, fK, 0K). We use the stan-

dard norm on the energy

‖fE‖j = sup
B∈Bj

|fE(B)|. (86)

And the Theorem 8 becomes:

Theorem 9. Let A be sufficiently large.
1. For R > 0 there is an r > 0 such that the following holds for all

j. If max{‖f̃E‖j , ‖0̃E‖j}, max{‖fE‖j , ‖0E‖j}, max{‖fK‖j , ‖0K‖j}, |σ̃|,
|σ| < r then max{‖fK

′‖j+1, ‖0K
′‖j+1} < R. Furthermore fK

′ is a smooth
function of f̃E, σ̃, fE, σ, fK, 0K on this domain with derivatives bounded
uniformly in j. The analyticity of fK

′ in t1, t2, . . . , tm still holds when we
go from j-scale to (j + 1)-scale.

2. The linearization of fK
′ at the origin has the form

L1(fK) + L2(fK) + L3(fE, σ, f̃E, σ̃, fK, 0K) (87)

where

L1(fK)(U) =
∑

X∈Pj,c:

X /∈Sj ,X=U

fK
#(X)

=
∑

X∈Pj,c:

X /∈Sj ,X=U

0K
#(X) +

∑
X∈Pj,c:

X /∈Sj ,X=U

δfK
#(X)

= L1(0K)(U) + L1(δfK)(U),

L2(fK)(U) =
∑

X∈Sj

X=U

fK
#(X) − [T2(0K#(X)) + T0(δfK

#(X))]

=
∑

X∈Sj

X=U

(I − T2)(0K#(X))+
∑

X∈Sj

X=U

(I − T0)(δfK
#(X))

= L2(0K)(U) + L2(δfK)(U),

L3(E, σ, Ẽ, σ̃, fK, 0K)(U) =
∑
B̄=U

(
V (Ẽ, σ̃, B) − V #(E, σ,B)

)

+
∑
B̄=U

∑
X∈Sj

X⊃B

1
|X|j [T2(0K#(X)) + T0(δfK

#(X))].

(88)

Proof. The new map actually is the composition of the map fK
′ = fK

′(fI, f̃I,

fJ, fK) of Theorem 8 with the maps fI = fI(fE, σ), f̃I = fI(f̃E, σ̃), fJ =
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fJ(fK, 0K). Thus it suffices to establish uniform bounds and smoothness for
the latter.

In the case f = 0, we have already have the proof in Theorem 4, Dimock
[5]. So we only consider the case f �= 0.

For fI = fI(fE, σ), f̃I = fI(f̃E, σ̃) the proof is the same as the proof for
I, I ′ in [5, Theorem 4]. We have:

fJ(B,X) =
1

|X|j [T2(0K#(X)) + T0(fK
#(X)) − T0(0K#(X))]

=
1

|X|j [(T2 − T0)(0K#(X)) + T0(fK
#(X))]. (89)

With the same argument as in [5, Theorem 4], we obtain:

‖(T2 − T0)(0K#(X))‖′
j ≤ O(1)‖0K

#(X)‖′
j ,

‖(T0)(fK
#(X))‖′

j ≤ O(1)‖fK
#(X)‖′

j .
(90)

By (57) these are bounded by O(1)[‖fK‖j + ‖0K‖j ]. The same bound holds
for ‖fJ(B,B)‖′

j . Therefore ‖fJ‖′
j ≤ O(1)[‖fK‖j + ‖0K‖j ].

The linearization is just a computation. Indeed fJ(B,X) is designed so
that

∑
X∈Sj

X=U

(
fK

#(X) −
∑

B⊂X

fJ(B,X)

)

=
∑
B=U

∑
X∈Sj

X⊃B

1
|X|j

[
T2(0K#(X)) + T0(δfK

#(X))
]

+
∑

X∈Sj

X=U

fK
#(X) −

[
T2(0K#(X)) + T0(δfK#(X))

]
(91)

which accounts for the presence of these terms. Also the linearization of (fI
#

(B) − 1) is −V #(fE, σ,B), and so forth. This completes the proof. �
3.2.2. Estimating L1,L2—The First Two Linearization Parts. Next we make
some estimates on the linearization’s parts. First we estimate L1 which is the
linearization on the large j-polymers.

Lemma 4. Let A be sufficiently large depending on L. Then the operator L1 is
a contraction with a norm which goes to zero as A → ∞.

Proof. We use the same proof as in Dimock [5, Lemma 5], but with updated
notations. We estimate by using (57) and (59)

‖L1(0K)(U)‖j+1 ≤ ‖L1(0K)(U)‖′
j ≤

∑
X∈Pj,c:

X /∈Sj ,X=U

‖0K
#(X)‖′

j

≤
∑

X∈Pj,c:

X /∈Sj ,X=U

(A/2)−|X|j ‖0K‖j (92)
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and

‖L1(δfK)(U)‖j+1 ≤ ‖L1(δfK)(U)‖′
j ≤

∑
X∈Pj,c:

X /∈Sj ,X=U

‖δfK
#(X)‖′

j

≤
∑

X∈Pj,c:

X /∈Sj ,X=U

(A/2)−|X|j ‖δfK‖j . (93)

Multiplying by A|U |j+1 then taking the supremum over U , these yield

‖L1(0K)‖j+1 ≤

⎡
⎢⎢⎣sup

U
A|U |j+1

∑
X∈Pj,c:

X /∈Sj ,X=U

(A/2)−|X|j

⎤
⎥⎥⎦ ‖0K‖j ,

‖L1(δfK)‖j+1 ≤

⎡
⎢⎢⎣sup

U
A|U |j+1

∑
X∈Pj,c:

X /∈Sj ,X=U

(A/2)−|X|j

⎤
⎥⎥⎦ ‖δfK‖j .

(94)

Using Lemma 3 (or [1, lemma 6.18]) with α = A and λ = 1
2 , the bracketed

expression goes to zero as A → ∞. We also have
‖L1(fK)‖j+1 ≤ ‖L1(0K)‖j+1 + ‖L1(δfK)‖j+1,

‖δfK‖j ≤ ‖0K‖j + ‖fK‖j .
(95)

Hence, for A sufficiently large, ‖L1(fK)‖j+1 is arbitrarily small. �
Now we estimate and find an explicit upper bound for L2.

Lemma 5. Let L be sufficiently large. Then the operator L2 is a contraction
with a norm which goes to zero as L → ∞.

Proof. For f = 0, we have the Lemma 6, in [5].
For f �= 0, we can write

L2(fK)(U) =
∑

X∈Sj ,X=U

{(I − T2)0K#(X) + (I − T0)δfK
#(X)}

= L2(0K)(U) + L2(δfK)(U) (96)

where
L2(δfK)(U) =

∑
X∈Sj ,X=U

(I − T0)δfK
#(X). (97)

Using [1, (6.40)] as well as [5, Lemma 6] we get:

‖(I − T2)0K#(X,φ)‖j+1 ≤ (
1 + ‖φ‖Φj+1(X∗)

)3 ‖0K
#
3 (X,φ)‖j+1

≤ 4
(
1 + ‖φ‖3

Φj+1(X∗)

)
‖0K

#
3 (X,φ)‖j+1,

‖(I − T0)δfK
#(X,φ)‖j+1 ≤ (

1 + ‖φ‖Φj+1(X∗)

) ‖δfK
#
1 (X,φ)‖j+1.

(98)

Notice that δfK
#(X, 0) = fK

#(X, 0) − 0K
#(X, 0) only depend on φ in X∗.

Moreover, 0K and fK are different only on supp(f) = {x1, . . . , xm}. So, if X∗∩
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{x1, x2, . . . , xm} = ∅ then fK
#(X, 0) = 0K

#(X, 0) which means δfK
#(X, 0) =

0. Therefore δfK
#(X, 0) = 0 unless X∗ ∩ {x1, x2, . . . , xm} �= ∅.

Using property (43), we have

‖0K
#
3 (X,φ)‖j+1 ≤ L−3d/2‖0K

#
3 (X,φ)‖j

≤ 6(L−3d/2)‖0K
#(X,φ)‖j

≤ 6(L−3d/2)‖0K
#(X)‖′

jGj(X,φ, 0),

‖δfK
#
1 (X,φ)‖j+1 ≤ L−d/2‖δfK

#
1 (X,φ)‖j

≤ L−d/2‖δfK
#(X,φ)‖j

≤ L−d/2
(
‖δfK

#(X)‖′
j

)
Gj(X,φ, 0),

(99)

and for φ = φ′ + ζ, using [1, (6.58)] we get:
(
1 + ‖φ‖Φj+1(X∗)

)
Gj(X,φ, 0) ≤ (

1 + ‖φ‖Φj+1(X∗)

)3
Gj(X,φ, 0)

≤ 4
(
1 + ‖φ‖3

Φj+1(X∗)

)
Gj(X,φ, 0)

≤ 4qGj+1(X̄, φ′, ζ) (100)

with q as in [1, (6.127)]. Combining all of them yields

‖(I − T2)0K#(X,φ)‖j+1 ≤ 24q(L−3d/2)‖0K
#(X)‖′

jGj+1(X̄, φ′, ζ),

‖(I − T0)δfK
#(X,φ)‖j+1 ≤ 4qL−d/2

(
‖δfK

#(X)‖′
j

)
Gj+1(X̄, φ′, ζ).

(101)

By using (57), we obtain:

‖(I − T2)0K#(X)‖j+1 ≤ 24q(L−3d/2)‖0K
#(X)‖′

j

≤ 24q(L−3d/2)(A/2)−|X|j ‖0K‖j ,

‖(I − T0)δfK
#(X)‖j+1 ≤ 4qL−d/2‖δfK

#(X)‖′
j

≤ 4qL−d/2 (‖δfK‖j) A−|X|j 2|X|j .

(102)

Therefore,

‖L2(fK)‖j+1 ≤ ‖L2(0K)‖j+1 + ‖L2(δfK)‖j+1

≤ 24q(L−3d/2)

⎡
⎣sup

U
A|U |j+1

∑
X∈Sj ,X̄=U

(A/2)−|X|j

⎤
⎦ ‖0K‖j

+ 4qL−d/2 (‖δfK‖j) sup
U

∑
X∈Sj ,X̄=U

X∗∩{x1,x2,...,xm}�=∅

A|U |j+1A−|X|j 2|X|j .

(103)

The bracketed expression is less than 2d22d

n2(d)Ld (using [1, (6.90)]), so we
have

‖L2(0K)‖j+1 ≤ 24q2d22d

n2(d)(L−d/2)‖0K‖j . (104)
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Because |U |j+1 ≤ |X|j ≤ 2d, we get:

4qL−d/2 (‖δfK‖j) sup
U

∑
X∈Sj ,X̄=U

X∗∩{x1,x2,...,xm}�=∅

A|U |j+1A−|X|j 2|X|j

≤ 4qL−d/2 (‖δfK‖j)
∑

X∈Sj ,
X∗∩{x1,x2,...,xm}�=∅

22d

≤ 4qL−d/222d

(‖δfK‖j)
m∑

i=1

∑
X∈Sj ,

X∗∩{xi}�=∅

1

≤ 4qmL−d/222d

(‖δfK‖j) n2(d). (105)

Thus

‖L2(fK)‖j+1 ≤ 24q2d22d

n2(d)(L−d/2)‖0K‖j

+L−d/2 (‖δfK‖j) n2(d)22d

4qm. (106)

Moreover ‖δfK‖j ≤ ‖0K‖j + ‖fK‖j . So we have the Lemma 5. �

3.3. Splitting L3

3.3.1. Splitting L3. Similarly in [5], we have a special treatment for the term
L3. First we rewrite the final term in L3 which is
∑
B̄=U

∑
X∈Sj

X⊃B

1
|X|j [T2(0K#(X)) + T0(δfK

#(X))]

=
∑
B=U

∑
X∈Sj

X⊃B

1
|X|j

(
0K

#(X, 0)+
1
2 0K

#
2 (X, 0;φ, φ)+fK

#(X, 0)−0K
#(X, 0)

)

=
∑
B=U

∑
X∈Sj

X⊃B

1
|X|j

(
fK

#(X, 0) +
1
2 0K

#
2 (X, 0;φ, φ)

)
. (107)

In 0K
#
2 (X, 0;φ, φ) we pick a point z ∈ B, then use the same argument as

section 4.3 in [5] by replacing φ(x) with9

φ(z) +
1
2
(x − z) · ∂φ(z) ≡ φ(z) +

1
2

∑
μ

(xμ − zμ)∂μφ(z). (108)

9 We need the factor 1/2 since the sum is over ±μ = 1, . . . , d and x−μ = −xμ.
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If we also average over z ∈ B, (108) becomes

∑
B=U

∑
X∈Sj

X⊃B

1
|X|j

(
fK

#(X, 0) +
1
2

1
|B|

∑
z∈B

0K
#
2 (X, 0;φ, φ)

)

=
∑
B=U

∑
X∈Sj

X⊃B

1
|X|j

(
fK

#(X, 0)
)

+
∑
B=U

∑
X∈Sj

X⊃B

1
|X|j

(
1

8|B|
∑
z∈B

∑
μν

0K
#
2 (X, 0;xμ, xν)∂μφ(z)∂νφ(z)

)

+
∑
B=U

∑
X∈Sj :
X⊃B

1
|X|j

∑
z∈B

1
|B|

(
1
2 0K

#
2 (X, 0;φ, φ)

)

−
∑
B=U

∑
X∈Sj

X⊃B

1
|X|j

(
1

8|B|
∑
z∈B

∑
μν

0K
#
2 (X, 0;xμ, xν)∂μφ(z)∂νφ(z)

)

=
∑
B=U

∑
X∈Sj

X⊃B

1
|X|j

(
fK

#(X, 0)+
1

8|B|
∑
z∈B

∑
μν

0K
#
2 (X, 0;xμ, xν)∂μφ(z)∂νφ(z)

)

+ L′
3(fK)(U)

(109)
here L′

3(fK)(U) = L′
3(0K)(U) is so called the error, namely

L′
3(0K)(U) =

∑
B̄=U

∑
X∈Sj :
X⊃B

1
|X|j

∑
z∈B

1
|B|

(
1
2 0K

#
2 (X, 0;φ, φ)

−1
8 0K

#
2 (X, 0;x·∂φ(z), x·∂φ(z))

)
(110)

and we can say L′
3(δfK)(U) = 0. Next we define

fβ(B) = fβ(fK,B) = −
∑

X∈Sj

X⊃B

1
|X|j fK

#(X, 0),

αμν(B) = αμν(fK,B) = αμν(0K,B)

= −1
2

1
|B|

∑
X∈Sj

X⊃B

1
|X|j 0K

#
2 (X, 0;xμ, xν).

(111)

Note that αμν is symmetric and satisfies α−μν = −αμν . We also let αμν stand
for the function αμν(x) which takes the constant value αμν(B) for x ∈ B. Now
we write (109) as
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∑
B=U

∑
X∈Sj

X⊃B

1
|X|j

(
fK

#(X, 0)+
1

8|B|
∑
z∈B

∑
μν

0K
#
2 (X, 0;xμ, xν)∂μφ(z)∂νφ(z)

)

+ L′
3(0K)(U)

=
∑
B=U

⎛
⎜⎜⎝1

4

∑
z∈B

∑
μν

1
2

1
|B|

∑
X∈Sj

X⊃B

1
|X|j 0K

#
2 (X, 0;xμ, xν)(B)∂μφ(z)∂νφ(z)

⎞
⎟⎟⎠

+
∑
B=U

∑
X∈Sj

X⊃B

1
|X|j fK

#(X, 0) + L′
3(0K)(U)

= −
∑
B=U

(
fβ(B) +

1
4

∑
z∈B

∑
μν

αμν(B)∂μφ(z)∂νφ(z)

)
+ L′

3(0K)(U)

= −
⎛
⎝∑

B=U

V (fβ, α,B, φ)

⎞
⎠+ L′

3(0K)(U) (112)

where V (fβ, α,B, φ) defined in (38). Combining all of the above, we get:

L3(fE, σ, f̃E, σ̃, fK, 0K)(U)

=
∑
B=U

(
V (f̃E, σ̃, B) − V #(fE, σ,B) − V (fβ, α,B)

)
+ L′

3(0K)(U). (113)

3.3.2. Estimating α, fβ and L′
3. First we find some explicit upper bounds for

α and fβ.

Lemma 6 (Estimates fβ and α).

‖fβ‖j ≡ sup
B∈Bj

|fβ(B)| ≤ 2n2(d)A−1‖fK‖j ,

‖α‖j ≡ sup
B∈Bj

∑
μν

|αμν(B)| ≤ 4(2d)2n2(d)h−2A−1‖0K‖j .
(114)

Remark. The norm ‖α‖j agrees with the norm ‖s‖j in (61) if sμν(x) = αμν(B)
for x ∈ B.

Proof. Using (49) and (57), with A very large, we have:

|fK#(X, 0)| ≤ ‖fK
#(X)‖′

j ≤ (A/2)−1‖fK‖j ,

‖0K
#
2 (X, 0)‖j ≤ 2‖0K

#(X)‖′
j ≤ 4A−1‖0K‖j .

(115)
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From (33), the number of small sets containing a block B is n2(d) which is
bounded and depends only on d, we have:

|fβ(B)| ≤
∑

X∈Sj ,X⊃B

|fK#(X, 0)|

≤
∑

X∈Sj ,X⊃B

2A−1‖fK‖j

≤ 2n2(d)A−1‖fK‖j . (116)

We also have ‖xμ‖Φj(X∗) = h−1Ldj/2 and |B| = Ldj . By using the norm
definition (44), we get

|B|−1|0K#
2 (X, 0;xμ, xν)| ≤ (h−1Ldj/2)2L−dj‖0K

#
2 (X, 0)‖j

= h−2‖0K
#
2 (X, 0)‖j

≤ 4h−2A−1‖0K‖j (117)

then ∑
μν

|αμν(B)| ≤
∑
μν

∑
X∈Sj ,X⊃B

|B|−1|0K#
2 (X, 0;xμ, xν)|

≤
∑
μν

∑
X∈Sj ,X⊃B

4h−2A−1‖0K‖j

≤
∑
μν

n2(d)4h−2A−1‖0K‖j

≤ (2d)2n2(d)4h−2A−1‖0K‖j . (118)

�

Now we give some estimate for L′
3.

Lemma 7. Let L be sufficiently large. Then the operator L′
3 is a contraction

with arbitrarily small norm

‖L′
3(0K)‖j+1 ≤ 72d222dn1(d)(L−2)‖0K‖j . (119)

Proof. Based on the proof of Lemma 8 in [5], we make some modifications and
obtain a better upper bound with some explicit coefficient. We have

L′
3(0K)(U)=

∑
B̄=U

∑
X∈Sj

X⊃B

1
|X|j

∑
z∈B

1
|B|

1
2 0K

#
2

(
X, 0;φ− 1

2
x·∂φ(z), φ+

1
2
x·∂φ(z)

)
.

(120)
Using [5, (152)–(154)] we get:∥∥∥∥φ − 1

2
x · ∂φ(z)

∥∥∥∥
Φj(X∗)

≤ 3d2d(L−d/2−1)‖φ‖Φj+1(X∗),

∥∥∥∥φ +
1
2
x · ∂φ(z)

∥∥∥∥
Φj(X∗)

≤ 3d2d(L−d/2−1)‖φ‖Φj+1(X∗).

(121)
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Now we estimate

0HX(U, φ) = 0K
#
2

(
X, 0;φ − 1

2
x · ∂φ(z), φ +

1
2
x · ∂φ(z)

)
. (122)

Using the same argument as (156)–(157) in [5], we obtain:

‖0HX(U, φ)‖j+1 ≤18d222d(L−d−2)‖K#
2 (X, 0)‖j(1+‖φ‖2

Φj+1(U∗)). (123)

But for φ = φ′ + ζ,

(1+‖φ‖2
Φj+1(U∗))≤Gs,j+1(U, φ, 0)≤G2

s,j+1(U, φ′, ζ)≤Gj+1(U, φ′, ζ). (124)

Also using (115) we can get:

‖HX(U)‖j+1 ≤ 72d222d(L−d−2)A−1‖K‖j , (125)

which yields to

‖L′
3K(U)‖j+1 ≤ n1(d)

∑
B̄=U

‖HX(U)‖j+1

≤ n1(d)Ld72d222d(L−d−2)A−1‖K‖j

≤ 72d222dn1(d)(L−2)A−1‖K‖j . (126)

Since L′
3K(U) is zero unless |U |j+1 = 1 this gives

‖L′
3K‖j+1 ≤ 72d222dn1(d)(L−2)‖K‖j . (127)

�

3.4. Identifying Invariant Parts and Estimating the Others

Now we investigate the 1st term of (113). We notice that αμν(B) = αμν(fK,B)
= αμν(0K,B) is independent from f(φ) and 0E(B), 0K(X,φ) actually is the
same as E(B),K(X,φ) in [5, lemma 9]. Therefore we have the same result as
[5, lemma 9]

Lemma 8 ([5], Lemma 9). Suppose 0E(B), 0K(X,φ) are invariant under lattice
symmetries away from the boundary of ΛN and 0̃E(B) is invariant for B∗ away
from the boundary. Then

1. 0E
′(B′), 0K

′(U, φ) are invariant for B′, U away from the boundary.
2. If B∗ is away from the boundary then 0β(B), αμν(B) are independent of

B and αμν(B) = α̂μν(B) defined for all B by

α̂μν(B) =
α

2
(δμν − δμ,−ν) (128)

where α is a constant.

For all B ∈ Bj we define

α′
μν(B) = α δμν (129)

and write, for any U ∈ Bj+1∑
B=U

V (fβ, α,B) =
∑
B=U

V (fβ, α′, B) − L4(fK)(U) − Δ(fK)(U) (130)
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with

L4(fK)(U) = L4(0K)(U) =
∑
B=U

V (0, α′ − α̂, B) = V (0, α′ − α̂, U)

Δ(fK)(U) = Δ(0K)(U) =
∑
B=U

V (0, α̂ − α,B) = V (0, α̃, U)
(131)

where α̃μν(x) = α̂μν(B)−αμν(B) if x ∈ B. Then we can write that L4(δfK)(U)
= 0 and Δ(δfK)(U) = 0. By the above definition Δ(0K)(U) vanishes unless U
touches the boundary. Now (113) becomes

L3(fE, σ, f̃E, σ̃, fK, 0K)(U)

=
∑
B=U

(
V (f̃E, σ̃, B) − V #(fE, σ,B) − V (fβ, α′, B)

)

+L′
3(0K)(U) + L4(0K)(U) + Δ(0K)(U). (132)

Remark. Because L4(fK) = L4(0K) and Δ(fK) = Δ(0K) are independent
from f , we will have the same results as Lemma 10 and Lemma 11 in Dimock
[5]. Moreover, by using Lemma 6 above together with some calculating, we can
obtain some explicit upper bounds for L4(0K) and Δ(0K).

Lemma 9. Let L be sufficiently large. Then the operator L4 is a contraction
with

‖L4(0K)‖j+1 ≤ 4(2d)3n2(d)L−(j+1)‖0K‖j . (133)

Lemma 10. Let L be sufficiently large. Then the operator Δ is a contraction
with

‖Δ(0K)‖ ≤ 4(2d)52dn2(d)L−1‖0K‖j . (134)

3.5. Simplifying for the Next Scale

We now pick f̃E(B), σ̃ so the V terms in (132) cancel. We have:

V #(fE, σ,B, φ) = fE(B)+
∫

σ

4

∑
x∈B

∑
μ

(∂μφ(x)+∂μζ(x))2 dμΓj+1(ζ)

= fE(B) +
σ

4

∑
x∈B

∑
μ

∂μφ(x)2
∫

dμΓj+1(ζ)

+
σ

2

∑
x∈B

∑
μ

∂μφ(x)
∫

∂μζ(x)dμΓj+1(ζ)

+
σ

4

∑
x∈B

∑
μ

∫
∂μζ(x)2dμΓj+1(ζ)

= fE(B)+
σ

4

∑
x∈B

∑
μ

∂μφ(x)2+0+
σ

4

∑
x∈B

∑
μ

(∂μΓj+1∂
∗
μ)(x, x)

≡ V (fE, σ,B, φ) +
σ

4

∑
μ

Tr(1B∂μΓj+1∂
∗
μ) (135)
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because ∫
∂μζ(x)dμΓj+1(ζ) = 0,

∫
∂μζ(x)2dμΓj+1(ζ) =

∫
(ζ, ∂∗

μδx)(ζ, ∂∗
μδx)dμΓj+1(ζ)

= (∂∗
μδx,Γj+1∂

∗
μδx)

= (δx, ∂μΓj+1∂
∗
μδx)

= (∂μΓj+1∂
∗
μ)(x, x).

(136)

If we choose f̃E = f̃E(fE, σ, fK)

f̃E(B) = fE(B) +
σ

4

∑
μ

Tr(1B∂μΓj+1∂
∗
μ) + fβ(fK,B) (137)

then the constant terms of (135) will be canceled. The second order terms of
(135) would be vanish if we define σ̃ = σ̃(σ, fK) = σ̃(σ, 0K) by

σ̃ = σ + α(fK) = σ + α(0K). (138)

Here we are canceling the constant term exactly for all B, but for the quadratic
term we only cancel the invariant version away from the boundary.

By composing fK
′ = fK

′(f̃E, σ̃, fE, σ, fK, 0K) in Theorem 9 with newly
defined f̃E = f̃E(fE, σ, fK) and σ̃ = σ̃(σ, fK) = σ̃(σ, 0K) we obtain a new
map fK

′ = fK
′(fE, σ, fK, 0K). We also have new quantities fE

′(fE, σ, fK)
defined by fE

′(B′) =
∑

B⊂B′ f̃E(B) and σ′ = σ′(σ, fK) = σ′(σ, 0K) defined by
σ′ = σ̃ = σ + α(fK) = σ + α(0K) as normal. These quantities satisfy (67)

μΓj+1 ∗ (fI(fE, σ) ◦ fK) (Λ) =
(
fI

′(fE
′, σ′) ◦ fK

′) (Λ). (139)

Here we still assume that L is sufficiently large, and that A is sufficiently
large depending on L.

Theorem 10. 1. For R > 0 there is an r > 0 such that the following holds for
all j. If ‖fE‖j, |σ|, max{‖fK‖j , ‖0K‖j}<r then max{‖fK

′‖j+1, ‖0K
′‖j+1},

‖fE
′‖j+1, |σ′| < R. Furthermore fE

′, fK
′, σ′ are smooth functions of

fE, σ, fK, 0K on this domain with derivatives bounded uniformly in j.
The analyticity of fK

′ in t1, t2, . . . , tm still holds when we go from j-scale
to (j + 1)-scale.

2. The linearization of fK
′ = fK

′(fE, σ, fK, 0K) at the origin is the contrac-
tion L(fK) where

L = L1 + L2 + L′
3 + L4 + Δ. (140)

Proof. For the first part, by combining with Theorem 9, it suffices to show
that the linear maps f̃E and σ̃ have norms bounded uniformly in j. Using the
estimate |α(fK)| = |α(0K)| ≤ 4(2d)2n2(d)h−2A−1‖0K‖j from Lemma 6, we
have σ̃ is bounded. From Lemma 6 we also have the bound on ‖fβ(fK)‖j ≤
2n2(d)A−1‖fK‖j . For B ∈ Bj , the estimate (22) gives us∣∣∣∣∣

σ

4

∑
μ

Tr(1B(∂μΓj+1∂
∗
μ)

∣∣∣∣∣ ≤ dc1,1|σ|
∑
x∈B

L−dj ≤ dc1,1|σ| (141)
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where c1,1 as in (22). Combining with (137) we have that f̃E = f̃E(fE, σ, fK)
satisfies

‖f̃E‖j ≤ ‖fE‖j + C(|σ| + A−1‖fK‖j) (142)

where C = max{dc1,1, 2n2(d)}.
The second part follows since the linearization of the new function fK

′

is the linearization of the old function fK
′ in Theorem 9 composed with f̃E =

f̃E(fE, σ, fK), σ̃ = σ̃(σ, fK) = σ̃(σ, 0K). (All of them vanish at zero.) The
cancelation gives us only with L(fK). �

3.6. Forming RG Flow

It is easier for us if we can extract the energy from the other variables. Assume
that we start with E(B) = 0 in (139)

μΓj+1 ∗ (fI(0, σ) ◦ fK) (ΛN ) =
(
fI

′(fE
′, σ′) ◦ fK

′) (Λ) (143)

where σ′ = σ′(σ, fK) = σ′(σ, 0K), fK
′ = fK

′(0, σ, fK) and fE
′ = fE

′(0,
σ, fK) as above. Then we remove the fE

′ by making an adjustment in fK
′

μΓj+1 ∗ (fI(0, σ) ◦ fK) (ΛN ) =
(
fI

′(fE
′, σ′) ◦ fK

′) (Λ)

=
∑

U∈Pj+1

(
fI

′(fE
′, σ′)(Λ − U)

) (
fK

′(0, σ, fK,U)
)

=
∑

U∈Pj+1

⎛
⎝ ∏

B′∈Bj+1(Λ−U)

fI
′(fE

′, σ′)(B′)

⎞
⎠(

fK
′(0, σ, fK,U)

)

=
∑

U∈Pj+1

⎛
⎝ ∏

B′∈Bj+1(Λ−U)

exp(fE
′(B′))[fI ′(0, σ′)(B′)]

⎞
⎠(

fK
′(0, σ, fK,U)

)

=
∑

U∈Pj+1

⎛
⎝exp

⎛
⎝ ∑

B′∈Bj+1(Λ−U)

fE
′(B′)

⎞
⎠

fI
′(0, σ′)(Λ−U)

⎞
⎠(

fK
′(0, σ, fK,U)

)

= exp

⎛
⎝ ∑

B′∈Bj+1(ΛN )

fE
+(B′)

⎞
⎠(

fI
′(0, σ+) ◦ fK

+
)
(ΛN ) (144)

where fE
+(σ,fK,B′), σ+(σ,fK), fK

+(σ,fK,U) are defined as following
(U ∈ Pj+1, B

′ ∈ Bj+1)

fE
+(σ, fK,B′) ≡ fE

′(0, σ, fK,B′) =
∑

B⊂B′
f̃E(0, σ, fK,B),

σ+(σ, fK) ≡ σ′(σ, fK) = σ′(σ, 0K) = σ + α(0K),

fK
+(σ, fK,U) ≡ exp

⎛
⎝−

∑
B′∈Bj+1(U)

fE
+(B′)

⎞
⎠

fK
′(0, σ, fK,U).

(145)
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The dynamical variables are now σ+(σ, fK) and fK
+(σ, fK). The ex-

tracted energy fE
+(σ,K) is controlled by the other variables. Because every-

thing vanishes at the origin the linearization of fK
+(σ, fK) is still L(fK). The

bound (142) on f̃E would give us an upper bound on fE
+ and our Theorem

10 becomes:

Theorem 11. 1. For R > 0 there is an r > 0 such that the following holds for
all j. If |σ|, max{‖fK‖j ,‖0K‖j}<r then |σ+|,max{‖fK

+‖j+1,‖0K
+‖j+1}<

R. Furthermore σ+, fK
+ are smooth functions of σ, fK on this domain

with derivatives bounded uniformly in j. The analyticity of fK
+ in t1, . . . ,

tm still holds when we go from j-scale to (j + 1)-scale.
2. The extracted energies satisfy

‖fE
+(σ, fK)‖j+1 ≤ C(Ld)

(|σ| + A−1‖fK‖j

)
. (146)

3. The linearization of K+ at the origin is the contraction L.

4. The Stable Manifold

Up to now, we have not specialized to the dipole gas, but take a general
initial point σ0, fK0 corresponding to an integral

∫
(fI(0, σ0) ◦ fK0)(ΛN )dμC0 .

We assume 0K0(X,φ) has the lattice symmetries and satisfies the conditions
(40). We also assume |σ0|,max{‖fK‖0, ‖0K‖0} < r where r is small enough
so the theorem 11 holds, say with R = 1, then we can take the first step.
We apply the transformation (144) for j = 0, 1, 2, . . . and continue as far as
we can. Then we get a sequence σj , fK

N
j (X) by σj+1 = σ+(σj , fK

N
j ) and

fK
N
j+1 = fK

+(σj , fK
N
j ) with extracted energies fE

N
j+1 = fE

+(σj , fK
N
j ). Then

we have, for any l, with fIj(σj) = fIj(0, σj)∫ (
fI0(σ0) ◦ fK0

)
(ΛN )dμC0

= exp

⎛
⎝ l∑

j=1

∑
B∈Bj(ΛN )

fE
N
j (B)

⎞
⎠∫ (

fI l(σl) ◦ fK
N
l

)
(ΛN )dμCl

. (147)

The quantities 0K
N
j (X) and 0E

N
j (B) are independent of N and have the lattice

symmetries if X,B are away from the boundary ∂ΛN in the sense that they
have no boundary blocks. These properties are true initially and are preserved
by the iteration. In these cases we denote these quantities by just 0Kj(X) and
0Ej(B)

With our construction α defined in (111), (128) only depends on 0Kj . By
splitting K+ into a linear and a higher order piece the sequence σj , fK

N
j (X)

is generated by the RG transformation

σj+1 = σj + α(Kj),

0K
N
j+1 = L(0KN

j ) + 0g(σj , 0K
N
j ),

δfK
N
j+1 = (L1 + L2) (δfK

N
j ) + fg(σj , fK

N
j , 0K

N
j ) − 0g(σj , 0K

N
j ).

(148)
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This is regarded as a mapping from the Banach space R× (Kj(ΛN )×Kj(ΛN ))
to the Banach space R × (Kj(ΛN ) × Kj(ΛN )). The second equation of (148)
defines 0g which is smooth with derivatives bounded uniformly in j and satisfies
0g(0, 0) = 0, D(0g)(0, 0) = 0. The last equation of (148) defines fg which is also
smooth with derivatives bounded uniformly in j and satisfies fg(0, 0) = 0,
D(fg)(0, 0) = 0.

Now we consider the first two equations in (148). Around the origin there
are a neutral direction σj and a contracting direction Kj (since L is a con-
traction.). Hence we expect there is a stable manifold. We quote a version of
the stable manifold theorem due to Brydges [1], as applied in Theorem 7 in
Dimock [5]

Theorem 12 ([5], Theorem 7). Let L be sufficiently large, A sufficiently large
(depending on L), and r sufficiently small (depending on L,A). Then there is
0 < τ < r and a smooth real-valued function σ0 = h(0K0), h(0) = 0, mapping
‖0K0‖0 < τ into |σ0| < r such that with these start values the sequence σj , 0K

N
j

is defined for all 0 ≤ j ≤ N and

|σj | ≤ r2−j ,
∥∥

0K
N
j

∥∥
j

≤ r2−j . (149)

Furthermore the extracted energies satisfy

‖0E
N
j+1‖j+1 ≤ 2C(Ld)r2−j . (150)

Remark. Using the Lemma 11 below, given r > 0, we can always choose z, σ0

and maxk |tk| sufficiently small then max{‖fK‖0, ‖0K‖0} ≤ r. Now we claim
that ‖fK

N
j ‖j has the same bound as the ‖0K

N
j ‖j in the last theorem.

Supposed that at j = k, we have: ‖fK
N
j ‖j ≤ r2−k. As in the proof of

Theorem 7 in Dimock [5], we can say that L and (L1+L2) is a contraction with
norm less than 1/8 and fg(σj , fK

N
j , 0Kj) is second order. Hence there are some

constant H such that: ‖fg(σj , fK
N
j , 0K

N
j )‖ ≤ H(|σj |2+‖0K

N
j ‖2

j +‖fK
N
j ‖2

j ) with
|σj |, ‖0K

N
j ‖j , ‖fK

N
j ‖j small. Then we have:

∥∥∥fK
N
j+1

∥∥∥
j+1

≤ 1
8

(∥∥
0K

N
j

∥∥
j
+
∥∥∥δfK

N
j

∥∥∥
j

)

+H

(
|σj |2 +

∥∥
0K

N
j

∥∥2

j
+
∥∥∥fK

N
j

∥∥∥2

j

)

≤ 1
8

(
2
∥∥

0K
N
j

∥∥
j
+
∥∥∥fK

N
j

∥∥∥
j

)
+ 3H

(
r2−j

)2

≤ 1
8
(
3r2−j

)
+ 3H

(
r2−j

)2
≤ r2−j−1 (151)

for r sufficiently small.
The bound for ‖fE

N‖j+1 comes from the bound on σj , ‖fK
N
j ‖j , (146)

and A > 1.
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Combining with the last theorem, for all 0 ≤ j ≤ N we can have:

|σj | ≤ r2−j ,
∥∥∥fK

N
j

∥∥∥
j

≤ r2−j , (152)

and the extracted energies satisfy∥∥∥fE
N
j+1

∥∥∥
j+1

≤ 2C(Ld)r2−j . (153)

5. The Dipole Gas

5.1. The Initial Density

Now we consider the generating function:

fZN (z, σ) =
∫

eif(φ) exp
(
zW (ΛN ,

√
1 + σφ) − σV (ΛN , φ)

)
dμC0(φ). (154)

When f = 0, it becomes

0ZN (z, σ) =
∫

exp
(
zW (ΛN ,

√
1 + σφ) − σV (ΛN , φ)

)
dμC0(φ). (155)

For B ∈ B0, we define: W0(B) = zW (
√

1 + σ0, B) as in (64) and V0(B) =
σ0V (B) as in (39). Then we follow with a Mayer expansion to put the density
in the form we want

fZN
0 =

∏
B⊂ΛN

eif(φ)+W0(B)−V0(B)

=
∏

B⊂ΛN

(
e−V0(B) +

(
eif(φ)+W0(B) − 1

)
e−V0(B)

)

=
∑

X⊂ΛN

fI0(σ0,ΛN − X)fK0(X)

=
(
fI0(σ0) ◦ fK0

)
(ΛN ) (156)

where I0(σ0, B) = e−V0(B) and fK0(X) = fK0(z, σ0,X) is given by

• fK0(X) =
∏

B⊂X(eif(φ)|B+W0(B) − 1)e−V0(B) when f(φ) =∑m
k=1 tk exp(i∂μk

φ(xk)), if(φ)|B = tk exp(i∂μk
φ(xk)) if B = {xk} for some

k, otherwise if(φ)|B = 0.
• fK0(X)=

∏
B⊂X(eif(φ)|B+W0(B)−1)e−V0(B) when f(φ)=

∑m
k=1 tk∂μk

φ(xk),
if(φ)|B = tk∂μk

φ(xk) if B = {xk} for some k, otherwise if(φ)|B = 0.
• fK0(X) =

∏
B⊂X(eW0(B) − 1)e−V0(B) when f(φ) = 0.

Note that, when f = 0, 0K0 actually is the K0 in [5, lemma 12]. We also can
prove the same result for fK0.

Lemma 11. Given 1 > r > 0, there are some sufficiently small a(r), b(r)
and c(r) such that if maxk |tk| ≤ a(r), |z| ≤ b(r) and |σ0| ≤ c(r) then
‖fK0(z, σ0)‖0 ≤ r. Furthermore fK0 is a smooth function of (z, σ0), and ana-
lytic in tk for all k = 1, . . . , m.

Proof. We consider these cases:
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(i) When f = 0, using [5, lemma 12], we have some b0(r), c0(r) such that
‖0K0(z, σ0)‖0 ≤ r if |z| ≤ b0(r) and |σ0| ≤ c0(r).

(ii) In the case f(φ) =
∑m

k=1 tk∂μk
φ(xk), using [5, (95)], for φ = φ′ + ζ, we

have:

‖(eif(φ)|B+W0(B) − 1)‖0 = ‖(eif(φ)|B+zW (
√

1+σ0,B) − 1)‖0

≤
∞∑

n=1

1
n!

‖zW (
√

1 + σ0, B) + if(φ)|B‖n
0

≤
∞∑

n=1

1
n!
(‖zW (

√
1 + σ0, B)‖0 + ‖if(φ)|B‖0

)n

≤
∞∑

n=1

1
n!

(
2|z|eh

√
d(1+σ0) + max

k
|tk|h−1‖φ‖Φ0(B∗)

)n

. (157)

We can assume that maxk |tk|h−1 ≤ 1. Applying lemma 1, we obtain
‖e−V0(B)‖s,0 ≤ 2. Then

‖fK0(B)‖
0

= sup
φ′,ζ

∥∥
fK0(B, φ′ + ζ)

∥∥
0
G0(X, φ′, ζ)−1

≤ sup
φ′,ζ

∥∥∥(eif(φ)|B+W0(B) − 1)
∥∥∥

0

∥∥∥e−V0(B)
∥∥∥

0
Gs,0(X, φ′, ζ)−2

≤
∥∥∥e−V0(B)

∥∥∥
s,0

sup
φ′,ζ

∥∥∥(eif(φ)|B+W0(B) − 1)
∥∥∥

0
Gs,0(X, φ′, ζ)−1

≤2sup
φ′,ζ

(
exp

(
2|z|eh

√
d(1+σ0)

+max
k

|tk|h−1‖φ′+ζ‖Φ0 (B∗)

)
−1

)
Gs,0(X, φ′, ζ)

−1

≤2sup
φ′,ζ

(
exp

(
2|z|e

h
√

d(1+σ0 )
)

−1

)
exp

(
max

k
|tk|h−1‖φ′+ζ‖Φ0(B

∗)

)
Gs,0(X, φ′, ζ)

−1

+2 sup
φ′,ζ

(
exp

(
max

k
|tk|h−1‖φ′ + ζ‖Φ0(B∗)

)
− 1

)
Gs,0(X, φ′, ζ)−1

≤ 2 sup
φ′,ζ

(
exp

(
2|z|eh

√
d(1+σ0)

)
− 1

)
exp

(‖φ′ + ζ‖Φ0(B∗)

)
e

−‖φ′‖2
Φ0(B∗)−‖ζ‖2

Φ0(B∗)

+2 sup
φ′,ζ

(
exp

(
max

k
|tk|h−1‖φ′ + ζ‖Φ0(B∗)

)
− 1

)
e

−‖φ′‖2
Φ0(B∗)−‖ζ‖2

Φ0(B∗) . (158)

Because exp(‖φ′+ζ‖Φ0(B∗)) exp(−‖φ′‖2
Φ0(B∗)−‖ζ‖2

Φ0(B∗)) is bounded and

lim
z,σ0→0

(
exp

(
2|z|eh

√
d(1+σ0)

)
− 1

)
= 0, (159)

there exist some sufficiently small b1(r), c1(r) > 0 such that we have

2 sup
φ′,ζ

(
exp

(
2|z|eh

√
d(1+σ0)

)
− 1

)
e‖φ′+ζ‖Φ0(B∗)−‖φ′‖2

Φ0(B∗)−‖ζ‖2
Φ0(B∗)

≤ r

4A
(160)

for all |z| ≤ b1(r) and |σ0| ≤ c1(r).
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For other part, we have:

2 sup
φ′,ζ

(
exp

(
max

k
|tk|h−1‖φ′+ζ‖Φ0(B∗)

)
− 1

)
e−‖φ′‖2

Φ0(B∗)−‖ζ‖2
Φ0(B∗)

≤ 2 sup
φ′,ζ

(
exp

(‖φ′‖Φ0(B∗)+‖ζ‖Φ0(B∗)

)−1
)
e−‖φ′‖2

Φ0(B∗)−‖ζ‖2
Φ0(B∗) . (161)

We can also find some sufficiently large H such that:
if ‖φ′‖Φ0(B∗) + ‖ζ‖Φ0(B∗) ≥ H then

2
(
exp

(‖φ′‖Φ0(B∗) + ‖ζ‖Φ0(B∗)

)− 1
)
e−‖φ′‖2

Φ0(B∗)−‖ζ‖2
Φ0(B∗) ≤ r

4A
. (162)

For ‖φ′‖Φ0(B∗) + ‖ζ‖Φ0(B∗) ≤ H, we have

‖φ′ + ζ‖Φ0(B∗) ≤ ‖φ′‖Φ0(B∗) + ‖ζ‖Φ0(B∗) ≤ H.

So with maxk |tk|≤a1(r) sufficiently small and ‖φ′‖Φ0(B∗)+‖ζ‖Φ0(B∗) ≤H,

2
(
exp

(
max

k
|tk|h−1‖φ′+ζ‖Φ0(B∗)

)
−1

)
e−‖φ′‖2

Φ0(B∗)−‖ζ‖2
Φ0(B∗) ≤ r

4A
. (163)

In summary we can always choose sufficiently small a(r), b(r), c(r)
such that if maxk |tk| ≤ a1(r), |z| ≤ b1(r), and |σ0| ≤ c1(r) then

‖fK0(B)‖0 ≤ 2
r

4A
=

r

2A
, ∀B ∈ B0. (164)

For those a1(r), b1(r), c1(r),maxk |tk|≤a1(r), |z|≤ b1(r), and |σ0|≤
c1(r), we have

‖fK0‖0 = sup
X∈P0,c

‖fK0(X)‖0A
|X|0

≤ sup
X∈P0,c

( ∏
B⊂X

‖fK0(B)‖0

)
A|X|0

≤ sup
X∈P0,c

( r

2A

)|X|0
A|X|0 ≤ r

2
< r. (165)

(iii) In the last case, f(φ) =
∑m

k=1 tk exp(i∂μk
φ(xk)), we have:

‖(eif(φ)|B+W0(B) − 1)‖0 ≤
∞∑

n=1

1
n!

(
2|z|eh

√
d(1+σ0) + max

k
|tk|

)n

= exp
(

2|z|eh
√

d(1+σ0) + max
k

|tk|
)

− 1. (166)

Using the same argument as above, we can choose some sufficiently small
a2(r), b2(r), c2(r) such that ‖fK0(z, σ0)‖0 ≤ r when maxk |tk| ≤ a2(r),
|z| ≤ b2(r) and |σ0| ≤ c2(r).

Now we just simply pick a(r) = max{a1(r), a2(r)},
b(r) = max{b0(r), b1(r), b2(r)} and c(r) = max{c0(r), c1(r), c2(r)}.
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The smoothness follows similarly from Lemma 12 (Dimock [5]).10 �
Remark. We have fK0 is analytic. For each step when we jump from j-scale
to (j + 1)-scale, the analyticity of fK still holds for the next scale.

Noticing that 0K0 is just the K0 in Section 6 (Dimock [5]), we need the
following lemma to apply Theorem 12.

Lemma 12 ([5, Lemma 13]). The equation σ = h(0K0(z, σ)) defines a smooth
implicit function σ = σ(z) near the origin which satisfies σ(0) = 0.

Taking |z| sufficiently small and choosing σ0 = σ(z), we can apply theo-
rem 12. For 0 ≤ l ≤ N , we have

fZN = exp

⎛
⎝ l∑

j=1

∑
B∈Bj(ΛN )

fE
N
j (B)

⎞
⎠∫

(fI l(σl) ◦ fK
N
l )(ΛN )dμCl

(168)

where |σj | ≤ r2−j , ‖fK
N
j ‖j ≤ r2−j and ‖fE

N
j+1‖j+1 ≤ O(Ld)r2−j .

5.2. Completing the Proof of Theorem 1

Theorem 13. For |z| and maxk |tk| sufficiently small the following limit exists:

lim
N→∞

|ΛN |−1 log fZ
′
N (z, σ(z)). (169)

Proof. With updated index, the proof can go exactly the same as the proof of
[5, Theorem 8]. We take l = N in (168). At this scale there is only one block
ΛN ∈ BN (ΛN ) and so we have

|ΛN |−1log fZ
′
N (z, σ(z))= |ΛN |−1

N∑
j=1

∑
B∈Bj(ΛN )

fE
N
j (B)

+|ΛN |−1log
(∫ [

fIN (σN ,ΛN )+fK
N
N (ΛN )

]
dμCN

)
.

(170)

The second term has the form

|ΛN |−1 log
(

1 +
∫

fFNdμCN

)
(171)

where

fFN (ΛN ) = fFN = fIN (σN ,ΛN ) − 1 + fK
N
N (ΛN ). (172)

By (126) in [5] and norm definition (54), we have

‖fIN (σN ,ΛN ) − 1‖N ≤ 4c−1h2|σN | ≤ 4c−1h2r2−N

‖fK
N
N (ΛN )‖N ≤ A−1‖fK

N
N‖N ≤ A−1r2−N

(173)

so that ‖fFN (ΛN )‖N ≤ (4c−1h2 + A−1)r(2−N ) which is O(2−N ) as N → ∞.

10 Instead of using the usual estimates, such as (1 + ‖φ‖2
Φj(B∗)) ≤ exp(‖φ‖2

Φj(B∗)) =

Gs,j(B, φ, 0), we can use
(
1 + ‖φ‖2

Φj(B∗)

)
= k

(
1

k
+

1

k
‖φ‖2

Φj(B∗)

)
≤ k exp

(
1

k
‖φ‖2

Φj(B∗)

)
= kG

1
k
s,j(B, φ, 0) (167)

for any positive integer k, and so forth.
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In [5, Lemma 14], Dimock has proved that for h sufficiently large
∫

GN (ΛN , 0, ζ)dμCN
(ζ) ≤ 2. (174)

Then we estimate∣∣∣∣
∫

fFN (ΛN )dμCN

∣∣∣∣ ≤ ∥∥
fFN (ΛN )

∥∥
N

∫
GN (ΛN , 0, ζ)dμCN

(ζ)

≤ 2‖F (ΛN )‖N

≤ 2
(
4c−1h2 + A−1

)
r(2−N ). (175)

Hence the expression (171) is O(2−N )|ΛN |−1 and goes to zero very quickly
as N → ∞

The rest of the proof came as in the proof of Theorem 8 in [5]. �

6. Correlation Functions: Estimates and Infinite Volume Limit

Note: We always can assume that L � 2d+3 + 1

6.1. In the Case: f(φ) =
∑m

k=1 tk∂µk
φ(xk)

For xk ∈ Z
d are different points; μk ∈ {±1, . . . ,±d} and tk complex and

|tk| ≤ a = a(r) for ∀k : 1, 2, . . . ,m.

6.1.1. Proof of Theorem 3. Using (168) with l = N , for the truncated corre-
lation functions, we have:

Gt(x1, x2, . . . , xm) ≡
〈

m∏
k=1

∂μk
φ(xk)

〉t

≡ im
∂m

∂t1 . . . ∂tm
log fZ

′
∣∣∣∣
t1=0,...tm=0

= im
∂m

∂t1 . . . ∂tm

⎛
⎝ N∑

j=1

∑
B∈Bj(ΛN )

fE
N
j (B)

⎞
⎠
∣∣∣∣∣∣
t1=0,...tm=0

+ im
∂m

∂t1 . . . ∂tm
log

∫
(fIN (σN ) ◦ fK

N
N )(ΛN )dμCN

∣∣∣∣
t1=0,...tm=0

= im
N∑

j=1

∑
B∈Bj(ΛN )

∂m

∂t1 . . . ∂tm
fE

N
j (B)

∣∣∣∣
t1=0,...tm=0

+ im
∂m

∂t1 . . . ∂tm
log

(
1 +

∫
(fIN (σN ) − 1 + fK

N
N )(ΛN )dμCN

)∣∣∣∣
t1=0,...tm=0

(176)
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Now we consider the quantity:

fFN ≡
N∑

j=1

∑
B∈Bj(ΛN )

∂m

∂t1 . . . ∂tm
fE

N
j (B)

∣∣∣∣
t1=0,...,tm=0

=
N−1∑
j=0

∑
B∈Bj(ΛN )

∂m

∂t1 . . . ∂tm
fβ(fK

N
j , B)

∣∣∣∣
t1=0,...,tm=0

=
N−1∑
j=0

∑
B∈Bj(ΛN )

∂m

∂t1 . . . ∂tm

∑
X∈Sj ,X⊃B

1
|X|j fK

N
j

#
(X, 0)

∣∣∣∣∣∣
t1=0,...,tm=0

(177)

by the definition of fβ in (111).
We notice that ∂m

∂t1...∂tm
fEj(B)|t1=0,...,tm=0 = 0 unless B∗ ⊃ {x1, x2, . . . ,

xm}. Hence,

fFN =
N−1∑
j=0

∑
B∈Bj(ΛN )

B∗⊃{x1,x2,...,xm}

∂m

∂t1 . . . ∂tm

∑
X∈Sj ,X⊃B

1
|X|jfK

N
j

#
(X, 0)

∣∣∣∣∣∣
t1=0,...,tm=0

(178)
Note: Let η = min{d/2, 2}. For any small ι > 0, we can always find A,L
sufficiently large such that:

‖ (L1 + L2 + L′
3 + L4) (0K)‖j+1 ≤ 1

4Lη−ι
‖0K‖j

‖ (L1 + L2) (δfK)‖j+1 ≤ 1
4Lη−ι

(‖δfK‖j) ≤ 1
4Lη−ι

(‖0K‖j + ‖fK‖j)
(179)

with j ≥ 1 by using the explicit upper bounds in Lemmas 4, 5, 7, and 9.
Then we can replace μ = 1/2 in Theorem 7 by μ=1/M for M =Lη−ι ≥2.

We still have |σj | ≤ rM−j , ‖fK
N
j ‖j ≤ rM−j and ‖fE

N
j+1‖j+1 ≤ O(Ld)rM−j

with maxk |tk| < a sufficiently small and 0 ≤ j ≤ N − 1. Because fK
N
j

#
(X, 0)

is analytic, using Cauchy’s bound and (57), we have:∣∣∣∣∣
∂m

∂t1 . . . ∂tm
fK

N
j

#
(X, 0)

∣∣∣∣
t1=0,...,tm=0

∣∣∣∣∣ ≤ m!
am

(
A

2

)−|X|j
‖fK

N
j ‖j

≤ m!
am

(
A

2

)−|X|j
rM−j . (180)

Then∣∣∣∣∣∣
∂m

∂t1 . . . ∂tm

∑
X∈Sj ,X⊃B

1
|X|j fK

N
j

#
(X, 0)

∣∣∣∣∣∣
t1=0,...,tm=0

∣∣∣∣∣∣
≤

∑
X∈Sj ,X⊃B

1
|X|j

∣∣∣∣∣
∂m

∂t1 . . . ∂tm
fK

N
j

#
(X, 0)

∣∣∣∣
t1=0,...,tm=0

∣∣∣∣∣
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≤
∑

X∈Sj ,X⊃B

1
|X|j

m!
am

(
A

2

)−|X|j
rM−j

≤ n3(d,
A

2
)
m!rM−j

am
. (181)

So

|fFN | ≤
N−1∑
j=0

∑
B∈Bj(ΛN )

B∗⊃{x1,x2,...,xm}

n3

(
d,

A

2

)
m!rM−j

am
. (182)

By (171)–(175), we have:
∣∣∣∣log

(
1 +

∫
(fIN (σN ) − 1 + fK

N
N )(ΛN )dμCN

)∣∣∣∣
≤ log (1 + 2‖F (ΛN )‖N )

≤ log
(
1 + 2[4c−1h2 + A−1]r2−N

)
. (183)

Using the Cauchy’s bound as above, we obtain:
∣∣∣∣∣

∂m

∂t1 . . . ∂tm
log

(
1 +

∫
(fIN (σN ) − 1 + fK

N
N )(ΛN )dμCN

)∣∣∣∣
t1=0,...,tm=0

∣∣∣∣∣
≤ m!

am
log

(
1 + 2[4c−1h2 + A−1]r2−N

)
. (184)

So

lim
N→∞

∣∣∣∣∣
∂m

∂t1 . . . ∂tm
log
(

1+
∫

(fIN (σN )−1+fK
N
N )(ΛN )dμCN

)∣∣∣∣
t1=0,...,tm=0

∣∣∣∣∣=0.

(185)

Now let j0 be the smallest integer such that ∃B ∈ Bj0 : B∗ ⊃ {x1, x2, . . . xm}.
Without loosing generality, we can assume that |x1 −x2| = diam(x1, . . . , xm).
For every j ≥ j0, let B1

j ∈ Bj be the unique j-block that contains {x1}. For
any B ∈ Bj , j ≥ j0 with B∗ ⊃ {x1, x2, . . . , xm}, B must be in B1

j
∗.

We have

|fFN | ≤
N−1∑
j=0

∑
B∈Bj(ΛN )

B∗⊃{x1,x2,...,xm}

n3(d,
A

2
)
m!rM−j

am

=
N−1∑
j=j0

∑
B∈Bj(ΛN )

B∗⊃{x1,x2,...,xm}

n3(d,
A

2
)
m!rM−j

am
. (186)
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Since M ≥ 2, the last part of (186) is bounded by

N−1∑
j=j0

∑
B∈Bj(ΛN )

B∗⊃{x1,x2,...,xm}

n3

(
d,

A

2

)
m!rM−j

am
≤

N−1∑
j=j0

∑
B∈Bj(ΛN )

B∈B1
j

∗

n3

(
d,

A

2

)
m!rM−j

am

≤
N−1∑
j=j0

(2d2)dn3(d,
A

2
)
m!rM−j

am

≤ 2d(d+1)n3

(
d,

A

2

)
2
m!rM−j0

am
.

(187)

Therefore, we have:

|fFN | ≤ 2d(d+1)n3

(
d,

A

2

)
2
m!rM−j0

am
. (188)

By the definition of j0, we have: |x1 − x2| ≤ d2d+1Lj0 . Because M = Lη−ι, we
get

M−j0 = L−j0(η−ι) ≤ (d2d+1)η|x1 − x2|−η+ι

= (d2d+1)η diam−η+ι(x1, . . . , xm). (189)

Hence, we have:

|fFN | ≤ 2d(d+1)n3

(
d,

A

2

)
2
m!r
am

diam−η+ι(x1, . . . , xm)
(
dη2η(d+1)

)
. (190)

Using this with (185), we obtain:∣∣∣∣∣
∂m

∂t1 . . . ∂tm
log fZ

′
∣∣∣∣
t1=0,...,tm=0

∣∣∣∣∣
≤ 2d(d+1)4n3(d,

A

2
)
m!r
am

diam−η+ι(x1, . . . , xm)
(
dη2η(d+1)

)
. (191)

Combining with (34), we get n3(d, A
2 )2d(d+1)4r(d2d+1)η ≤ 1 with sufficiently

large A. Therefore, with sufficiently large A, we have:

∣∣Gt(x1, x2, . . . , xm)
∣∣ =

∣∣∣∣∣∣
〈

m∏
k=1

∂μk
φ(xk)

〉t
∣∣∣∣∣∣

=

∣∣∣∣∣
∂m

∂t1 . . . ∂tm
log fZ

′
∣∣∣∣
t1=0,...,tm=0

∣∣∣∣∣
≤ m!

am
diam−η+ι(x1, . . . , xm). (192)

We complete the proof of Theorem 3.
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Remark. Actually for any N − 1 ≥ q ≥ j0, similarly to (187), we have
∣∣∣∣∣∣∣∣
N−1∑
j=q

∑
B∈Bj(ΛN )

B∗⊃{x1,x2,...,xm}

∂m

∂t1 . . . ∂tm

∑
X∈Sj ,X⊃B

1
|X|j fK

N
j

#
(X, 0)

∣∣∣∣∣∣
t1=0,...,tm=0

∣∣∣∣∣∣∣∣

≤
N−1∑
j=q

∑
B∈Bj(ΛN )

B∗⊃{x1,x2,...,xm}

n3

(
d,

A

2

)
m!rM−j

am

≤ 2d(d+1)n3

(
d,

A

2

)
2
m!rM−q

am
. (193)

6.1.2. Proof of Theorem 2. Now we fix the set {x1, x2, . . . , xm}. Let j1 be
the smallest integer such that B0

j1
⊃ {x1, x2, . . . , xm}. Then j1 is the smallest

integer which is greater than logL maxi 2‖xi‖∞. We also have: j0 ≤ j1.
Let q be any number such that q ≥ j1 + 1 ≥ j0 + 1. And let N1, N2 be

any integers such that N2 ≥ N1 > q. Using the definition of j0, we have

fF N1
=

q−1∑
j=j0

∑
B∈Bj(ΛN )

B∗⊃{x1,x2,...,xm}

∂m

∂t1 . . . ∂tm

∑
X∈Sj ,X⊃B

1

|X|j fK
N2
j

#
(X, 0)

∣∣∣∣∣∣
t1=0,...,tm=0

+

N1−1∑
j=q

∑
B∈Bj(ΛN )

B∗⊃{x1,x2,...,xm}

∂m

∂t1 . . . ∂tm

∑
X∈Sj ,X⊃B

1

|X|j fK
N2
j

#
(X, 0)

∣∣∣∣∣∣
t1=0,...,tm=0

(194)
and

fF N2
=

q−1∑
j=j0

∑
B∈Bj(ΛN )

B∗⊃{x1,x2,...,xm}

∂m

∂t1 . . . ∂tm

∑
X∈Sj ,X⊃B

1

|X|j fK
N2
j

#
(X, 0)

∣∣∣∣∣∣
t1=0,...,tm=0

+

N2−1∑
j=q

∑
B∈Bj(ΛN )

B∗⊃{x1,x2,...,xm}

∂m

∂t1 . . . ∂tm

∑
X∈Sj ,X⊃B

1

|X|j fK
N2
j

#
(X, 0)

∣∣∣∣∣∣
t1=0,...,tm=0

(195)
We also notice that:

q−1∑
j=j0

∑
B∈Bj(ΛN )

B∗⊃{x1,x2,...,xm}

∂m

∂t1 . . . ∂tm

∑
X∈Sj ,X⊃B

1
|X|j fK

N2
j

#
(X, 0)

∣∣∣∣∣∣
t1=0,...,tm=0

=
q−1∑
j=j0

∑
B∈Bj(ΛN )

B∗⊃{x1,x2,...,xm}

∂m

∂t1 . . . ∂tm

∑
X∈Sj ,X⊃B

1
|X|j fK

N1
j

#
(X, 0)

∣∣∣∣∣∣
t1=0,...,tm=0

(196)
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because for 0 ≤ j ≤ q − 1, fK
N
j

#
(X, 0) only depend on φ within X∗ and

X∗ ⊂ Λq which is the center q-block of ΛN1 ⊂ ΛN2 . Therefore,

|fF N2
− fF N1

|

≤

∣∣∣∣∣∣∣∣
N2−1∑
j=q

∑
B∈Bj(ΛN )

B∗⊃{x1,x2,...,xm}

∂m

∂t1 . . . ∂tm

∑
X∈Sj ,X⊃B

1

|X|j fK
N2
j

#
(X, 0)

∣∣∣∣∣∣
t1=0,...,tm=0

∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣
N1−1∑
j=q

∑
B∈Bj(ΛN )

B∗⊃{x1,x2,...,xm}

∂m

∂t1 . . . ∂tm

∑
X∈Sj ,X⊃B

1

|X|j fK
N1
j

#
(X, 0)

∣∣∣∣∣∣
t1=0,...,tm=0

∣∣∣∣∣∣∣∣
(197)

Then using (193) with μ = 1/2 instead of μ = 1/M = L−η+ι, we obtain:
∣∣∣∣∣∣∣∣
N2−1∑
j=q

∑
B∈Bj(ΛN )

B∗⊃{x1,x2,...,xm}

∂m

∂t1 . . . ∂tm

∑
X∈Sj ,X⊃B

1

|X|j fK
N2
j

#
(X, 0)

∣∣∣∣∣∣
t1=0,...,tm=0

∣∣∣∣∣∣∣∣
≤ 2d(d+1)n3

(
d,

A

2

)
2
m!r2−q

am
,

∣∣∣∣∣∣∣∣
N1−1∑
j=q

∑
B∈Bj(ΛN )

B∗⊃{x1,x2,...,xm}

∂m

∂t1 . . . ∂tm

∑
X∈Sj ,X⊃B

1

|X|j fK
N1
j

#
(X, 0)

∣∣∣∣∣∣
t1=0,...,tm=0

∣∣∣∣∣∣∣∣
≤ 2d(d+1)n3

(
d,

A

2

)
2
m!r2−q

am
.

(198)
That means we have:

∣∣∣fFN2
− fFN1

∣∣∣ ≤ 2d(d+1)n3

(
d,

A

2

)
4
m!r2−q

am
→ 0 (199)

when q → ∞.
Combining this with (176) and (185), we can conclude that

limN→∞〈∏m
k=1 ∂μk

φ(xk)〉t exists.

Remark. We have N -uniformly boundedness on correlation functions and
limN→∞ Gt(x1, x2, . . . , xm) exists. Therefore the bounds are held for infinite
volume limit

6.2. When f(φ) =
∑m

k=1 tk exp(i∂µk
φ(xk))

Using exactly the same argument as the above subsection, we obtain these
following results:

Theorem 4. With L,A sufficiently large, the infinite volume limit of the trun-
cated correlation function limN→∞〈∏m

k=1 exp(i∂μk
φ(xk))〉t exists.
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Theorem 5. For any small ι > 0, with L,A sufficiently large (depending on ι),
let η = min{d/2, 2} we have:∣∣∣∣∣∣

〈
m∏

k=1

exp (i∂μk
φ(xk))

〉t
∣∣∣∣∣∣ ≤ m!

am
diam−η+ι(x1, x2, . . . , xm)

where a depends on ι, L,A.

6.3. Other Cases

We can consider f(φ) =
∑m

k=1 tkfk(φ)(xk) with

* tk ∈ C,
* xk ∈ Z

d are different points,
* fk is bounded in the sense that there are some Mk,mk ≥ 0 such that

‖fk({xk}, φ)‖0 ≤ Mk‖φ‖Φ0 + mk. (200)

With the same argument as above cases, we have:

Theorem 6. With L,A sufficiently large, the infinite volume limit of the trun-
cated correlation function limN→∞〈∏m

k=1 fk(φ)(xk)〉t exists.

Theorem 7. For any small ι > 0, with L,A sufficiently large (depending on ι),
let η = min{d/2, 2} we have:∣∣∣∣∣∣

〈
m∏

k=1

fk(φ)(xk)

〉t
∣∣∣∣∣∣ ≤ m!

am
diam−η+ι(x1, x2, . . . , xm)

where a depends on ι, L,A.

In the case f =
∑m

k=1 tkW0({xk}), with W0({xk}) = zW (1, {xk}) as in
(64). Using the Lemma 2 (or the lemma 4 in [5]), these W0({xk}) satisfy those
above conditions. The W0({xk}) are actually the density of the dipoles at xk

used in [2]. Applying theorems 7 and 6, we obtain these results:

Corollary 1. For any small ι > 0, with L,A sufficiently large (depending on
ι), let η = min{d/2, 2} we have:∣∣∣∣∣∣

〈
m∏

k=1

W0({xk})

〉t
∣∣∣∣∣∣ ≤ m!

am
diam−η+ι(x1, x2, . . . , xm)

where a depends on ι, L,A.

This result somehow looks like the theorem (1.1.2) in [2]. However it gives
estimates for truncated correlation functions of (m ≥ 2) points instead of some
estimate for only 2 points.

Corollary 2. With L,A sufficiently large, the infinite volume limit of the trun-
cated correlation function limN→∞〈∏m

k=1 W0({xk})〉t exists.
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Remark. We can consider the more general form f(φ) =
∑m

k=1 tkfk(φ) with
* tk ∈ C,
* Ak ≡ suppfk are pairwise disjoint and |Ak| < ∞,
* fk is bounded in the sense that there are some Mk,mk ≥ 0 such that

‖fk(Ak, φ)‖0 ≤ Mk‖φ‖Φ0 + mk. (201)

Then we still get similar results as in Theorems 7 and 6.
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Appendix A: Kac–Siegert Transformation

By expanding the exponential in (6) and carrying out the Gaussian integrals,
we can rewrite 0ZN as

0ZN =

∫ ⎛
⎝∑

n≥0

zn

n!

n∏
i=1

∑
xi∈Λ

N
∩Zd

∫
Sd−1

dpi

(
eipi·∂φ(xi) + e−ipi·∂φ(xi)

2

)⎞
⎠dμC(φ)

=

∫ ⎛
⎝∑

n≥0

zn

n!

n∏
i=1

∑
xi∈ΛN ∩Zd

∫
Sd−1

dpie
ipi·∂φ(xi)

⎞
⎠ dμC(φ)

=
∑
n≥0

zn

n!

n∏
i=1

⎛
⎝ ∑

xi∈ΛN ∩Zd

∫
Sd−1

dpi

⎞
⎠∫

ei
∑n

k=1 pk·∂φ(xk)dμC(φ)

=
∑
n≥0

zn

n!

n∏
i=1

⎛
⎝ ∑

xi∈ΛN ∩Zd

∫
Sd−1

dpi

⎞
⎠ exp

⎛
⎝−1

2

∑
1≤k,j≤n

(pk · ∂)(pj · ∂)C(xk, xj)

⎞
⎠

(202)
which is exactly the same as the grand canonical partition function (2).
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