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Abstract Theory of Pointwise Decay with
Applications to Wave and Schrödinger
Equations

Vladimir Georgescu, Manuel Larenas and Avy Soffer

Abstract. We prove pointwise in time decay estimates via an abstract con-
jugate operator method. This is then applied to a large class of dispersive
equations.

1. Introduction

In the study of dispersive equations, linear or nonlinear, one is faced with
the need to quantitatively estimate the decay rate of the solution in various
norms. The known estimates which play a central role in the theory of dis-
persive equations include local decay estimates, pointwise decay estimates in
time, Lp decay estimates and Strichartz estimates. More intricate are microlo-
cal estimates and propagation estimates. The pointwise decay estimates for
Schrödinger operators were proven first in three dimensions and were obtained
for short range potentials [23]:

‖〈x〉−σe−itHPc(H)〈x〉−σ‖ = O(t−3/2),

where 〈x〉2 ≡ 1 + |x|2, σ is large enough, and Pc(H) stands for the projection
on the continuous spectral part of H. Here H ≡ −Δ + V (x).

This was later extended by various authors, unified to arbitrary dimen-
sion and allowing resonances at thresholds in [25]. These estimates play an
important role in proving the Lp decay estimates:

‖e−itHPc(H)ψ‖L∞(Rn) ≤ ct−n/2‖ψ‖L1(Rn).

Such estimates were proven in some generality in [27] in three or more dimen-
sions. The Kato–Jensen estimate above was used to control the low energy part
of the solution. Moreover, it was remarked by Ginibre (unpublished), that the
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Kato–Jensen estimate, when combined with iterated Duhamel formula, can
imply directly a slightly weaker Lp estimate:

‖e−itHPc(H)ψ‖L∞(Rn)+L2 ≤ ct−n/2‖ψ‖L1(Rn)∩L2 .

This was extended to N-body charge transfer Hamiltonians in [45,46].
Subsequent works have extended the Lp estimates to all dimensions, and

general classes of potential perturbations. See e.g. [11,12,28,38,49,55] and
many more. Common to all these results is the explicit use of the kernel of the
(unperturbed) Hamiltonian. Therefore, such methods are difficult to imple-
ment on manifolds. In fact, on manifolds most results are of the local decay
type and Strichartz estimates [3,4,10,39,52]. The pointwise decay estimates
and the Lp estimates are not known or not optimal. In contrast, the abstract
method we develop here and in a subsequent paper is not using resolvent esti-
mates. Thus, it is applicable in cases where explicit or perturbative methods
of constructing the resolvent are not suitable. See e.g. Sects. 7.4–7.6.

A completely independent method of getting pointwise estimates is based
on positive commutator techniques. Mourre’s abstract theory to prove decay
estimates is based on the Mourre estimate:

EI(H)i[H,A]EI(H) ≥ θEI(H)

for some θ > 0, where EI(H) is the spectral projection on an interval I. Under
regularity assumptions on the pair H,A similar to ours, Mourre proved that
the following local decay estimate holds:∫

‖〈A〉−σe−itHEI(H)ψ‖2dt ≤ c‖ψ‖2.
Mourre’s method was then generalized in [24] and later in [7,8] to prove point-
wise in time decay estimates. See the discussion and details at the end of
Sect. 5. Later, in [14,22,51] a new, time-dependent method was developed to
prove pointwise decay estimates, local decay and other propagation estimates,
starting only from the Mourre estimate. The propagation estimates of [51],
which also allowed some classes of time-dependent Hamiltonians, and opti-
mized in [22] read:

‖F (A ≤ εt)e−itHEI(H)ψ‖ = O(t−m)‖〈A〉m+1ψ‖,

‖F (A ≥ bt)e−itHEI(H)ψ‖ = O(t−m)‖〈A〉m+1ψ‖,

for all m depending only on the regularity of the potential and the localization
of the initial data. ε, b depend only on the interval I, and the constant θ.
This method and results provide a powerful tool to spectral and scattering
theory, including the N-body systems and Quantum Field theory. However, the
positivity condition in the Mourre estimate breaks down at (finite) thresholds.

Another way around this problem is the Morawetz type estimates. They
apply at thresholds, but limited to nontrapping potentials. The extension
to repulsive potentials and low dimension was established as well in some
cases. Mourre’s method was extended in many works to include thresholds
[5–7,17,18,31–34,40–43,47,50,54]. They are based on requiring the Mourre
estimate to hold with a lower bound given by some positive operator, which



Vol. 17 (2016) Abstract Theory of Pointwise Decay 2077

is not a multiple of the identity. However, these methods so far could not be
versatile enough to include many common systems, mainly due to complicated
assumptions or the use of abstract weighted spaces. They only imply local
decay estimates of the type mentioned above.

In this work and forthcoming papers, we develop a new abstract the-
ory to prove pointwise decay estimates in weighted spaces, starting only from
a general commutator identity that should be satisfied by the Hamiltonian.
We will show that for Schrödinger type equations generated by an abstract
Hamiltonian H, as well as Klein Gordon and wave equations, pointwise decay
estimates of the Kato–Jensen type hold using the following assumptions:
(a) The pair H,A with A self-adjoint, should satisfy regularity conditions

similar to Mourre’s method.
(b) A commutator identity of the type i[H,A] = θ(H) + Q with [Q,H] = 0

and Q is H-bounded.
(c) The subspace E of vectors which satisfy local decay (as above) and are

in the domain of A is known in some explicit sense, e.g. that it is all
vectors in the domain of 〈A〉m and in some invariant subspace under the
dynamics (generated by H).
These conditions differ in several aspects from the standard theories

above. The commutator condition is restrictive, e.g. it is unstable under
small perturbations of the Hamiltonian. However, we show in a subsequent
work that local decay estimates are sufficient to absorb the effects of classes
of perturbations; it is done by constructing a modified conjugate opera-
tor Ã that satisfies the above conditions. So, in fact, the main condition
is to identify, in some explicit way the subspace of vectors which satisfies
local decay. It should be noted that positivity of commutators is not used.
But, positivity would imply local decay, and better decay estimates in cer-
tain cases. To prove local decay estimates, either some resolvent bounds or
some weakly positive commutators can be employed. In practice, this can
be achieved using Morawetz type estimates or elementary perturbative resol-
vent estimates, relying only on the Fredholm alternative and compactness
arguments.

We will then give several examples to show that such estimates follow
effortlessly from the general theory. In followup papers we extend this method
to include perturbations of H of the types described above.

2. Evanescent States

Let H be a self-adjoint operator on the Hilbert space H with spectral measure
E. If u ∈ H let Eu be the measure Eu(J) = ‖E(J)u‖2 and ψu : R → C the
function ψu(t) = 〈u|e〉itHu =

∫
R

eitλEu(dλ). We are interested in vectors u
such that ψu(t) → 0 as t → ∞ and in the rapidity of this decay.

Note that |ψu(t)|2 is a physically meaningful quantity if we think of H as
the Hamiltonian of a system whose state space is H. Indeed, if u, v are vectors
of norm one then |〈v|e〉itHu|2 is the probability of finding the system in the
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state v at moment t if the initial state is u, hence |ψu(t)|2 is the probability
that at moment t the system be in the same state u as at moment t = 0.

Remark 2.1. In this paper, we are interested in the decay properties of the
functions ψu for u in the absolute continuity subspace Hac

H of H relatively to
H. We shall see that ψu ∈ L2(R) for u in a dense subspace of Hac

H but in
rather simple cases it may happen that ψu ∈ L1(R) only for u = 0. Formally
speaking, the physically interesting quantity |ψu(t)|2 generically decays more
rapidly than 〈t〉−1 but not as rapidly as 〈t〉−2. Our results concern mainly the
rate of this decay, for example we give conditions such that |ψu(t)|2 is really
dominated by 〈t〉−1, not only in an L2 sense.

Since ψu is (modulo a constant factor) the Fourier transform of Eu, there
is a strong relation between the decay of ψu and the smoothness of Eu. If u is
absolutely continuous with respect to H then ψu ∈ C0(R) (space of continuous
functions which tend to zero at infinity). However, the decay may be quite slow
if Eu is not regular enough.

Example 2.2. Let Λ be a real compact set with empty interior and strictly
positive Lebesgue measure and let H be the operator of multiplication by x in
H = L2(Λ,dx). Then the spectrum of H is purely absolutely continuous but
ψu /∈ L1(R) for all u ∈ H\{0}. Indeed, if u ∈ H and we extend it by zero
outside Λ then ψu(t) =

∫
eitx|u(x)|2dx hence if ψu is integrable then |u|2 is

the Fourier transform of an integrable function, so it is continuous, so the set
where |u(x)|2 �= 0 is open and contained in Λ, hence it is empty.

On the other hand, if H has an absolutely continuous component then
there are plenty of u such that ψu ∈ L2(R): indeed, observe that ψu ∈ L2(R) if
and only if Eu is an absolutely continuous measure with derivative E′

u ∈ L2(R)
and then ‖ψu‖L2 =

√
2π‖E′

u‖L2 .
More generally, if we denote Ev,u the complex measure Ev,u(J) =

〈v|E(J)u〉 then 〈v|eitHu〉 =
∫

eitλEv,u(dλ) hence the left-hand side belongs
to L2(R) if and only if the measure Ev,u is absolutely continuous and
has square integrable derivative E′

v,u and then we have
∫
R

|〈v|eitHu〉|2dt =
2π

∫ |E′
v,u(λ)|2dλ. It is easy to prove the inequality |E′

v,u(λ)|2 ≤ E′
v(λ)E′

u(λ),

see ([2, Section 3.5] or [36, page 1002]) and this implies E
′1/2
u+v ≤ E

′1/2
u + E

′1/2
v .

Thus, if we set for any u ∈ H

[u]H =
(∫

R

|ψu(t)|2dt

)1/4

=
(

2π

∫
R

E′
u(λ)2dλ

)1/4

then

E ≡ E(H) = {u ∈ H | [u]H < ∞} (2.1)

is a dense linear subspace of the absolutely continuous subspace of H and [·]H is
a complete norm on it. We mention that the relation |E′

v,u(λ)|2 ≤ E′
v(λ)E′

u(λ)
also implies (∫

R

|〈v|eitHu〉|2dt

)1/2

≤ [v]H [u]H . (2.2)
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Lemma 2.3. If J ∈ B(H) commutes with H then JE ⊂ E and [Ju]H ≤ ‖J‖[u]H .
If Jn = θn(H) with {θn} a uniformly bounded sequence of Borel functions such
that limn θn(λ) = 1 for all λ ∈ R, then for any u ∈ E we have limn[Jnu]H =
[u]H .

Proof. For the first part we use E′
Ju(λ) ≤ ‖J‖2E′

u(λ) (which is obvious) while
for the second part E′

θn(H)u(λ) = θ2n(λ)E′(λ) and the dominated convergence
theorem. �

The quantity
∫
R

|ψu(t)|2dt has a simple physical interpretation in the
quantum setting: if u, v are two state vectors then

∫
R

|〈v|eitHu〉|2dt is the total
time spent by the system in the state v if the initial state is u. Hence we
may say that

∫
R

|〈u|eitHu〉|2dt is the lifetime of the state u. The elements of
E(H) are those of finite lifetime, or states in which the system spends a finite
total time. We might call them self evanescent states, and they are absolutely
continuous with respect to H. Note that there is a Schrödinger Hamiltonian
H and there is a state u in the singularly continuous subspace of H such that
ψu(t) = O(|t|−1/2+ε) for any ε > 0 [48].

Another interesting class E∞ ≡ E∞(H) is that of evanescent states defined
by the condition

∫
R

|〈v|eitHu〉|2dt < ∞ for any v: such a state u spends a finite
time in any state v. The evanescent states disappear (or go to infinity) in a
natural quantum mechanical sense, which explains the fundamental role they
play in the Rosenblum Lemma [36] and later on in the Birman–Kato trace class
scattering theory. A simple argument shows that E∞ is the linear subspace of
E consisting of vectors u such that E′

u is a bounded function. In particular,
E∞ is dense in the absolutely continuity subspace of H.

Example 2.4. If H = q = operator of multiplication by x in L2(R,dx) then
E(q) = L4(R) and E∞(q) = L∞(R). Indeed, 〈u|eitqu〉 =

∫
R

eitx|u(x)|2dx is an
L2 function of t if and only if |u|2 ∈ L2 and then [u]q = (2π)1/4‖u‖L4 . On the
other hand, 〈v|eitqu〉 =

∫
R

eitxv̄(x)u(x)dx is an L2 function of t for any v ∈ L2

if and only if v̄u ∈ L2 for any v ∈ L2 hence if and only if u ∈ L∞.

3. Notes on Commutators

Let A be a self-adjoint operator on a Hilbert space H. If S is a bounded
operator on H then we denote [A,S]◦ the sesquilinear form on D(A) defined
by [A,S]◦(u, v) = 〈Au|Sv〉 − 〈u|SAv〉. As usual, we set [S,A]◦ = −[A,S]◦,
[S, iA]◦ = i[S,A]◦, etc. We say that S is of class C1(A), and we write S ∈
C1(A), if [A,S]◦ is continuous for the topology induced by H on D(A) and then
we denote [A,S] the unique bounded operator on H such that 〈u|[A,S]v〉 =
〈Au|Sv〉 − 〈u|SAv〉 for all u, v ∈ D(A). It is easy to show that S ∈ C1(A)
if and only if SD(A) ⊂ D(A) and the operator SA − AS with domain D(A)
extends to a bounded operator [A,S] ∈ B(H). Moreover, S is of class C1(A)
if and only if the following equivalent conditions are satisfied
1. the function t �→ e−itASeitA is Lipschitz in the norm topology in B(H)
2. the function t �→ e−itASeitA is of class C1 in the strong operator topology
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and then we have [S, iA] = d
dte

−itASeitA|t=0.
Clearly C1(A) is a ∗-subalgebra of B(H) and the usual commutator rules

hold true: for any S, T ∈ C1(A) we have [A,S]∗ = −[A,S∗] and [A,ST ] =
[A,S]T + S[A, T ], and if S is bijective then S−1 ∈ C1(A) and [A,S−1] =
−S−1[A,S]S−1.

We often abbreviate S′ = [S, iA] if the operator A is obvious from the
context. Then we may write (S′)∗ = (S∗)′, (ST )′ = S′T + ST ′, and (S−1)′ =
−S−1S′S−1.

We consider now the rather subtle case of unbounded operators. Note
that we always equip the domain of an operator with its graph topology. If
H is a self-adjoint operator on H then [A,H]◦ is the sesquilinear form on
D(A) ∩ D(H) defined by [A,H]◦(u, v) = 〈Au|Hv〉 − 〈Hu|Av〉. By analogy
with the bounded operator case, one would expect that requiring denseness
of D(A) ∩ D(H) in D(H) and continuity of [A,H]◦ for the graph topology of
D(H) would give a good C1(A) notion. For example, this should imply the
validity of the virial theorem, nice functions of H (at least the resolvent) should
also be of class C1, etc. However this is not true, as the following example from
[16] shows.

Example 3.1. In H = L2(R,dx) let q = operator of multiplication by x and
p = −i d

dx . Let A = eωp − p and H = eωq with ω =
√

2π. This value of ω is
chosen because eωpeωq = eωqeωp on a very large set although the operators
eωp and eωq do not commute. Then D(A) ∩ D(H) is dense in both D(A) and
D(H) (moreover, D(H) ∩ D(HA) is dense in D(H)), one has [H, iA]◦ = ωH
on D(A) ∩ D(H), but (H + i)−1 /∈ C1(A).

A convenient definition of the C1(A) class for any self-adjoint operator is
as follows. Let R(z) = (H − z)−1 for z in the resolvent set ρ(H) of H. We say
that H is of class C1(A) if R(z) ∈ C1(A) for some (hence for all) z ∈ ρ(H).
In this case the space R(z)D(A) is independent of z ∈ ρ(H), it is a core of H,
and is a dense subspace of D(A) ∩ D(H) for the intersection topology, i.e. for
the norm ‖u‖ + ‖Au‖ + ‖Hu‖. Moreover:

Proposition 3.2. Let A,H be self-adjoint operators on a Hilbert space H.
1. H is of class C1(A) if and only if the next two conditions are satisfied:

(a) [A,H]◦ is continuous for the topology induced by D(H) on D(A) ∩
D(H),

(b) there is z ∈ ρ(H) such that {u ∈ D(A) | R(z)u ∈ D(A)} is a core
for A.

2. If H ∈ C1(A) then D(A) ∩ D(H) is dense in D(H) hence [A,H]◦ has a
unique extension to a continuous sesquilinear form [A,H] on D(H). We
have:

[A,R(z)] = −R(z)[A,H]R(z) ∀ z ∈ ρ(H). (3.3)

This is Theorem 6.2.10 in [1]. The condition (a) above is quite easy to
check in general but not condition (b) because it involves a certain knowledge
of the resolvent of H, which is a complicated object. We now describe criteria
which allow one to avoid this problem.
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We denote H1 = D(H) (equipped with the graph topology) and H−1 =
D(H)∗ its adjoint space. The identification of the adjoint space H∗ of H with
itself via the Riesz Lemma gives us a scale H1 ⊂ H ⊂ H−1 with continuous
and dense embeddings. If we define Hs := [H1,H−1](1−s)/2 for −1 ≤ s ≤ 1 by
complex interpolation then (Hs)∗ = H−s for any s and H1/2 is just D(|H|1/2).
Finally, we have continuous and dense embeddings

H1 ⊂ H1/2 ⊂ H ⊂ H−1/2 ⊂ H−1.

If H ∈ C1(A) the continuous sesquilinear form [A,H] on D(H) is then iden-
tified with a linear continuous operator H1 → H−1 and this is useful for
example because it gives a simple interpretation to supplementary conditions
like [A,H]H1 ⊂ H. Observe that

H ′ := [H, iA] : H1 → H−1

is a continuous symmetric operator. Now the following assertions are conse-
quences of [1, Theorem 6.3.4, Lemma 7.5.3] and [16, Lemma 2].
1. If eitAH1 ⊂ H1 (∀t) then H ∈ C1(A) if and only if condition (a) in part

(1) of Proposition 3.2 is satisfied.
2. If H ∈ C1(A) and H ′H1 ⊂ H then eitAH1 ⊂ H1 (∀t) and the restrictions

eitA|H1 give a strongly continuous group of operators on the Hilbert space
H1.

3. If eitAH1 ⊂ H1 (∀t) then D(A,H1) = {u ∈ H1 ∩ D(A) | Au ∈ H1} is
a dense subspace of H1 and H is of class C1(A) with H ′H1 ⊂ H if and
only if |〈Au|Hv〉 − 〈Hu|Av〉| ≤ C‖u‖H‖v‖H1 for all u, v ∈ D(A,H1).

4. Assume eitAH1/2 ⊂ H1/2 (∀t). Then D(A,H1/2) := {u ∈ H1/2 ∩ D(A) |
Au ∈ H1/2} is dense in H1/2 and if the quadratic form 〈Hu|Au〉 −
〈Au|Hu〉 on D(A,H1/2) is continuous for the topology induced by H1/2

then H ∈ C1(A).
We mention that Hypotheses 1, 2′ and 3 on page 62 of [9] imply that H

is of class C1(A), cf. relation (4.10) there.
We now give some “pathological” examples which clarify the notion of

C1 regularity.

Example 3.3. Let H = L2(R) and A = p. It is clear that the operator of
multiplication by a rational real function is of class C1(p), in fact of class C∞(p)
in a natural sense. For example, if H = q−m then (H + i)−1 = qm(1 + iqm)−1

is clearly a bounded operator of class C1(p) if m ∈ N and [q−m, ip] = mq−m−1

as continuous forms on D(q−m). The worst case is attained when m = 1: then
H ′ = H2 hence H ′ + i : H1 → H−1 is an isomorphism, in particular H ′H1 is
not included in any of the smaller spaces Hs with s > −1. If m ≥ 1 is an odd
integer then H is of class C1(A) and H ′ = mH1+1/m where x1/m := −|x|1/m

if x < 0; now we have H ′H1 ⊂ H−1/m and this is optimal.

Remark 3.4. Example 3.3 shows that if H ∈ C1(A) then neither eitA nor
(A + iλ)−1 leave invariant D(H) in general.

If H ∈ C1(A) then D(A) ∩ D(H) is dense in D(H) but is not dense in
D(A) in general.
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Example 3.5. Let H = q−m with m ≥ 1 and A = p as in Example 3.3. Then
D(A) is the Sobolev space consisting of functions u ∈ L2(R) with derivative
u′ ∈ L2(R), so we have D(A) ⊂ C0(R) continuously. Thus, if u ∈ D(A)∩D(H)
then u is a continuous function such that

∫ |u(x)|2x−2mdx < ∞ which implies
u(0) = 0. But {u ∈ D(A) | u(0) = 0} is a closed hyperplane of codimension
one in the Hilbert space D(A).

Given ε > 0, taking m large in the preceding example we see that for any
(ε > 0) there is a self-adjoint operator H of class C1(A) with H ′H1 ⊂ H−ε

such that D(A)∩D(H) is not dense in D(A). Thus, the next result is optimal.

Proposition 3.6. If H ∈ C1(A) and H ′H1 ⊂ H then D(A) ∩ D(H) is dense in
D(A). More precisely, if we set Rε = (1 + iεH)−1 for ε > 0 then RεD(A) ⊂
D(A) ∩ D(H) and s − lim Rε = 1 in the Hilbert space D(A).

Proof. We have RεD(A) ⊂ D(A) ∩ D(H) and [A,Rε] = εRεH
′Rε by Propo-

sition 3.2. Then ε‖H ′Rε‖ ≤ ‖H ′R1‖‖(ε + iεH)Rε‖ ≤ C and εH ′Rεu =
εH ′R1Rε(1 + iH)u → 0 if u ∈ D(H). Thus s − limε→0[A,Rε] = 0 hence
ARεu → Au for any u ∈ D(A). �

This C1(A) property transfers from H to some functions of H: for exam-
ple, it is easy to prove that ϕ(H) ∈ C1(A) if ϕ ∈ C2(R) and |ϕ(λ)| + |ϕ′(λ)| +
|ϕ′′(λ| ≤ C〈λ〉−2. But obviously eiH /∈ C1(A) in general.

Theorem 3.7. Let H be a self-adjoint operator of class C1(A) and t ∈ R.
Then the restriction of [A, eitH ]◦ to D(A) ∩ D(H) extends to a continuous
form [A, eitH ] on D(H) and, in the strong topology of the space of sesquilinear
forms on D(H), we have:

[eitH , A] =
∫ t

0

ei(t−s)HH ′eisHds. (3.4)

Proof. Clearly it suffices to assume t = 1. For n ≥ 1 integer let Rn = (1 −
iH/n)−1. Then Rn has norm ≤ 1 and eiH = s − limn→∞ Rn

n in both spaces
H and D(H). Since H is of class C1(A) we have Rn ∈ C1(A) and [A,Rn] =
i
nRn[A,H]Rn, so Rn

n ∈ C1(A) and

[A,Rn
n] =

n−1∑
k=0

Rk
n[A,Rn]Rn−1−k

n =
i
n

n∑
k=1

Rk
n[A,H]Rn+1−k

n .

It is clear that 〈u|[A,Rn
n]v〉 → 〈u|[A, eiH ]0v〉 as n → ∞ for all u, v ∈ D(A).

Thus it remains to be shown that for all u, v ∈ D(H):

1
n

n∑
k=1

〈R∗k
n u|[A,H]Rn+1−k

n v〉 →
∫ 1

0

〈e−isHu|[A,H]ei(1−s)Hv〉ds. (3.5)

We have
∥∥∥

n∑
k=1

Rk
n[A,H]Rn+1−k

n

∥∥∥
H1→H−1

≤ n‖[A,H]‖H1→H−1
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hence it suffices to prove that (3.5) holds for u, v in a dense subspace of D(H).
So we may assume that u, v have compact support with respect to H.

Let a be a number such that | log(1+z)−z| ≤ a|z|2 if z ∈ C and |z| < 1/2.
If φn(x) = (1 − ix/n)−1 then for x in a real compact set, 1 ≤ k ≤ n, and n
large, we have

|φn(x)k − ei
kx
n |= |ek log(1−i x

n )+i kx
n − 1|≤Ck| log(1− ix/n)+ix/n|≤Cka|x/n|2

where C is a number depending only on the set where x varies. Thus, the last
term above is an O(x2/n) and so we get ‖R∗k

n u − e−i k
n Hu‖D(H) = O(n−1). A

similar argument gives ‖Rn+1−k
n v − ei

n+1−k
n HV ‖D(H) = O(n−1). Hence:

1
n

n∑
k=1

〈R∗k
n u|[A,H]Rn+1−k

n v〉=
1
n

n∑
k=1

〈e−i k
n Hu|[A,H]e−i k

n Hei
n+1

n Hv〉 + O(n−1).

Finally, we have ei
n+1

n Hv → eiHv in D(H) and the D(H)-valued functions
s �→ e−isHu and s �→ e−isHv are continuous. This proves (3.4). �

The relation (3.4) also holds in B(D(H),D(H)∗) in the strong topology
and then one may easily prove relations like the next one hold in B(H):

[A, eitHR(z)2] = R(z)[A, eitH ]R(z) + [A,R(z)]eitHR(z) + eitHR(z)[A,R(z)].
(3.6)

If H ′D(H) ⊂ H then the right-hand side of (3.4) will clearly belong to
B(D(H),H) hence we shall also have [A, eitH ] ∈ B(D(H),H) and (3.4) will
hold strongly in B(D(H),H).

We say that H ′, or [A,H], commutes with H if for any t ∈ R the rela-
tion H ′eitH = eitHH ′ holds in B(D(H),D(H)∗). This is clearly equivalent to
H ′ϕ(H) = ϕ(H)H ′ for any bounded Borel function ϕ : R → C. Note also
that H ′ commutes with H if and only if there is z ∈ ρ(H) such that [A,R(z)]
commutes with R(z) (this condition is independent of z). If we set R = R(z),
we then have R′ = −RH ′R = −H ′R2.

If H ′ commutes with H then Theorem 3.7 can be significantly improved.
If k ∈ N let Ck

b (R) be the space of functions in Ck(R) whose derivatives of
orders ≤ k are bounded.

Proposition 3.8. Let H be self-adjoint of class C1(A) such that H ′ commutes
with H and let ϕ ∈ C1

b(R). Then the restriction of [A,ϕ(H)]◦ to D(A) ∩
D(H) extends to a continuous form [A,ϕ(H)] on D(H) and [A,ϕ(H)] =
[A,H]ϕ′(H) = ϕ′(H)[A,H]. In other terms:

ϕ(H)′ = ϕ′(H)H ′ = H ′ϕ′(H), in particular (eitH)′ = itH ′eitH . (3.7)

Proof. Due to Theorem 3.7 we have [A, eitH ] = it[A,H]eitH for any real t, hence
the proposition is true if ϕ(λ) = eitλ. This clearly implies the proposition if ϕ
is the Fourier transform of a bounded measure ϕ̂ such that

∫ |xϕ̂ (x)|dx < ∞.
The general case follows by a standard limiting procedure. �

Example 3.9. Consider once again the situation from Example 3.3. Then
[p, eiH ]◦ is a restriction of −mq−m−1eiH hence is not a bounded operator
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but it extends to a continuous form on D(H). In the worst case m = 1 we
get [eiH , A] = H2eiH , hence the result of Theorem 3.7 is optimal. If ϕ is a
C1 function then ϕ(H)′ = H2ϕ′(H) hence ϕ(H)′ cannot be bounded unless
|ϕ′(λ)| ≤ C〈λ〉−2.

4. Commutators and Decay

From Proposition 3.8 we get the following decay result.

Proposition 4.1. Let H ∈ C1(A) such that H ′ := [H, iA] commutes with H
and let u ∈ D(H)∩D(A). Then |〈u|H ′eitHu〉| ≤ 2|t|−1‖Au‖‖u‖. In particular,
if H ′ = B∗B for some continuous B : D(H) → H commuting with H, then
|ψBu(t)| ≤ Cu〈t〉−1 for u ∈ D(H) ∩ D(A). If B is bounded on H then this
holds for all u ∈ D(A).

Proof. The first part is obvious. The fact that B commutes with H means
eitHB = BeitH for any t and this clearly implies that [A,H] commutes with
H. Then 〈Bu|eitHBu〉 = 〈u|[H, iA]eitHu〉 hence the second and the third part
are consequences of the first one. �
Remark 4.2. Some of the next results are abstract versions of the follow-
ing estimate: if H = h(q) and A = −p in L2(R) then H ′ = h′(q) hence
if |h′| ≥ c > 0 and h′′/h′2 is bounded then an integration by parts gives
| ∫ eith(x)|u(x)|2dx| ≤ Cu〈t〉−1 if u ∈ D(p).

We shall say that a densely defined operator S on H is boundedly invertible
if S is injective, its range is dense, and its inverse extends to a continuous
operator on H. If S is symmetric this means that S is essentially self-adjoint
and 0 is in the resolvent set of its closure.

Proposition 4.3. Let H ∈ C1(A) such that H ′ commutes with H and
H ′D(H) ⊂ H. Assume that H ′, when considered as operator on H, is bound-
edly invertible and H ′−1 extends to a bounded operator of class C1(A). Then
|ψu(t)| ≤ Cu〈t〉−1 if u ∈ D(A).

Proof. From Proposition 3.8 we get [eitH , A] = tH ′eitH as operators D(H) →
D(H)∗ hence [eitH , A] is a bounded operator D(H) → H and we have
[eitH , A]H ′−1 = teitH on the range of H ′. We denote K the continuous exten-
sion to H of H ′−1 and note that K commutes with H because H ′eitH = eitHH ′

hence H ′−1eitH = eitHH ′−1 for all t. If u ∈ D(A) and Ku ∈ D(H) then
Ku ∈ D(A) because K ∈ C1(A) hence

tψu(t) = 〈u|[eitH , A]Ku〉 = 〈e−itHu|AKu〉 − 〈Au|eitHKu〉.
This implies

|tψu(t)| ≤ ‖u‖‖AKu‖ + ‖Au‖‖Ku‖ ≤ ‖[A,K]‖‖u‖2 + 2‖K‖‖u‖‖Au‖.

Now let u be an arbitrary element of D(A). Let Rε = (1 + iεH)−1 and uε =
Rεu. Then uε ∈ D(A) because RεD(A) ⊂ D(A) and Kuε = RεKu ∈ D(H)
hence we have

|tψuε
(t)| ≤ ‖[A,K]‖‖uε‖2 + 2‖K‖‖uε‖‖Auε‖.
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Since [A,Rε] = εH ′R2
ε we get |tψu(t)| ≤ ‖[A,K]‖‖u‖2 + 2‖K‖‖u‖‖Au‖ by

making ε → 0 in the preceding inequality. �
Remark 4.4. We may restate the assumptions of Proposition 4.3 as follows:
H is of class C2(A), H ′D(H) ⊂ H, and H ′ when seen as operator on H is
essentially self-adjoint and 0 is not in its spectrum.

Remark 4.5. The good decay ψu(t) = O(t−1) obtained in Proposition 4.3
depends on a quite strong condition on H ′ which in particular forces H ′ to be
an essentially self-adjoint operator on H whose spectrum does not contain zero.
In the “classical” case mentioned in the Remark 4.2 this means |h′(x)| ≥ c > 0
which is rather natural when one has to estimate an integral like ψ(t) =∫

eith(x)f(x)dx for large positive t: points of stationary phase should be avoided,
otherwise we cannot expect more than ψ(t) = O(t−1/2).

We now consider operators satisfying some special commutation relations
but allow H ′ to have zeros, e.g. we treat the simplest case H ′ = cH. Note that
Example 3.1 shows that requiring only an algebraic relation like [H, iA] = cH
is highly ambiguous; the property H ∈ C1(A) is then necessary and is not
automatically satisfied.

In many of the applications of the conjugate operator method, see for
example Sect. 7, the operator A is unbounded in energy space. However, it
is possible to introduce an energy cutoff for A that does not alter the C1(A)
condition for H and preserves the behaviour of the commutation relation at
thresholds. For instance, consider H ∈ C1(A) bounded from below and such
that H ′ = cH. Define the operators g(H) = (H +c)−1/4 and Ã = g(H)Ag(H).
Then, it is easy to see that H ∈ C1(Ã) and [H, iÃ] = H ′g(H)2.

Remark 4.6. The subsequent results will hold for self evanescent states u ∈ E ,
but they also rely on the condition Au ∈ E . The latter assumption is not
satisfied in general, in fact, it is implied by a stronger localization condition
for u. To elude this, it can be assumed that there is a projection P which
commutes with H, and such that u ∈ RanP . Then the condition Au ∈ E
can be replaced by PAu ∈ E , which is easier to satisfy. This idea will be
explored further in forthcoming work. For instance, one can choose P as the
projection on the continuous spectrum of H and the proofs presented below
can be slightly modified to obtain the same decay estimates.

Proposition 4.7. Let H ∈ C1(A) such that H ′ = cH with c ∈ R\{0} and let
u ∈ D(A) such that u,Au ∈ E. Then |ψu(t)| ≤ Cu〈t〉−1/2.

Proof. We have ψu ∈ L2(R) because u ∈ E hence, according to Corollary 8.2,
it suffices to show that the function (δψ)(t) = tψ′

u(t) also belongs to L2(R).
If u ∈ D(|H|1/2) then tψ′

u(t) = 〈u|itHeitHu〉 so that using Proposition 3.8 we
get:

ictψ′
u(t) = 〈u|tcHeitHu〉 = 〈u|[A, itH]eitHu〉 = 〈u|[A, eitH ]u〉.

Then, if u ∈ D(A) we get ictψ′
u(t) = 〈Au|eitHu〉 − 〈u|eitHAu〉 hence (2.2)

implies:
c2‖δψu‖2 ≤ 2‖ψu‖L2‖ψAu‖L2 = 2[u]2H [Au]2H . (4.8)
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So the proposition is proved under the supplementary condition u ∈ D(H)
and the estimate (4.8) depends only on c.

Now consider an arbitrary u ∈ D(A) such that u,Au ∈ E and for ε > 0
let Rε = (1 + iεH)−1. Then from Proposition 3.2 we get Rεu ∈ D(A) and
[A,Rε] = Rε[iεH,A]Rε = cεHR2

ε. If we set uε = Rεu then the estimate (4.8)
gives c2‖δψuε

‖2 ≤ 2[uε]2H [Auε]2H . Finally, let ε → 0 and use Fatou’s lemma in
the left-hand side and Lemma 2.3 on the right-hand side to get (4.8) without
the condition u ∈ D(H). �

Theorem 4.8. Let H ∈ C1(A) such that H ′ = θ(H) with θ real of class C1

with bounded derivative and such that: (1) if |λ| ≥ ε > 0 then |θ(λ)| ≥ cε > 0,
(2) λ/θ(λ) extends to a C1 function on R. If u ∈ D(A) and u,Au ∈ E then
|ψu(t)| ≤ Cu〈t〉−1/2.

Proof. Let ϕ ∈ C∞
c (R) real and equal to one on a neighbourhood of zero and

let us set φ = ϕ(H), φ⊥ = 1 − φ2, so that ψu(t) = ψφu(t) + 〈u|φ⊥eitHu〉.
We first show that the second term is O(t−1). We have φ⊥H ′−1 = ξ(H) with
ξ(λ) = (1 − ϕ2(λ))/θ(λ) hence

t〈u|φ⊥eitHu〉 = 〈φ⊥H ′−1u|tH ′eitHu〉 = 〈ξ(H)u|tH ′eitHu〉
= 〈ξ(H)u|[eitH , A]u〉.

Until here u was an arbitrary element of H. If u ∈ D(H) ∩ D(A) then we can
expand the commutator and get

|t〈u|φ⊥eitHu〉| = |〈e−itHξ(H)u|Au〉 − 〈Aξ(H)u|eitHu〉|
≤ ‖Au‖‖ξ(H)u‖ + ‖Aξ(H)u‖‖u‖.

Since ξ is a bounded function of class C1 with bounded derivative we can use
Proposition 3.6 and get ξ(H)′ = ξ′(H)H ′ = (ξ′θ)(H). We have ξ′θ = −θ′/θ
outside a compact neighbourhood of zero, hence ξ(H)′ is a bounded operator,
so ξ(H) is of class C1(A), hence ξ(H)D(A) ⊂ D(A). Then, since H ′D(H) ⊂
H, this estimate remains true for any u ∈ D(A) by Proposition 3.6. Thus
|〈u|φ⊥eitHu〉| ≤ Cu〈t〉−1 for any u ∈ D(A).

From now on we change notations: φu will be denoted u. So we may
assume supp Eu ⊂ [−1, 1] and u,Au ∈ E , cf. Lemma 2.3, and we want to prove
that the function tψ′

u(t) belongs to L2(R). Let η be the C1 function on R which
extends λ/θ(λ), let ζ ∈ C∞

c (R) such that ζ(H)u = u, and let us set η̃ = ηζ.
Then η̃(H)u ∈ D(A) ∩ E and Aη̃(H)u = [A, η̃(H)]u + η̃(H)Au ∈ E . Finally

−itψ′
u(t) = 〈u|tHeitHu〉 = 〈u|η(H)tH ′eitHu〉 = 〈η̃(H)u|[eitH , A]ζ(H)u〉

= 〈e−itH η̃(H)u|Aζ(H)u〉 − 〈Aη̃(H)u|eitHζ(H)u〉
and from (2.2) we get the square integrability of tψ′

u(t). �

Example 4.9. Let H ∈ C1(A) such that H ≥ 0 and H ′ = H(1 + H)−1. If
u ∈ D(A) and u,Au ∈ E then |ψu(t)| ≤ Cu〈t〉−1/2.
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5. Higher-Order Commutators

The decay estimates obtained so far on ψu(t) are at most of order O(t−1) and
it is clear that to obtain O(t−k) for some integer k > 1 we need conditions of
the form u ∈ D(Ak) and assumptions on the higher-order commutators of A
with H. We recall here the necessary formalism.

Let A be a self-adjoint operator on a Hilbert space H and k ∈ N. We
say that S is of class Ck(A), and we write S ∈ Ck(A), if the map R � t �→
e−itASeitAS ∈ B(H) is of class Ck in the strong operator topology. It is clear
that S ∈ Ck+1(A) if and only if S ∈ C1(A) and S′ ∈ Ck(A). If S ∈ C2(A)
we set (S′)′ = S′′ = S(2), etc. Clearly Ck(A) is a ∗-subalgebra of B(H) and if
S ∈ B(H) is bijective and S ∈ Ck(A) then S−1 ∈ Ck(A).

For any S ∈ B(H) let A(S) = [S, iA] considered as a sesquilinear form
on D(A). We may iterate this and define a sesquilinear form on D(Ak) by:

S(k) ≡ Ak(S) = ik
∑

i+j=k

k!
i!j!

(−A)iSAj .

Then S ∈ Ck(A) if and only if this form is continuous for the topology induced
by H on D(Ak). We keep the notation Ak(S) or S(k) for the bounded operator
associated to its continuous extension to H.

Strictly speaking, the operator A acting in B(H) must be defined as the
infinitesimal generator of the group of automorphisms U = {Ut}t∈R of B(H)
given by Ut(S) ≡ etA(S) = e−itASeitA. This group is not of class C0 and so
A is not densely defined. Then Ck(A) is just the domain of Ak. One may
also define Cα(A) if α is not an integer as the Besov space of order (α,∞)
associated to U .

We denote B1(H) the Banach algebra of trace class operators on H. Its
dual is identified with the space B(H) of all bounded operators on H with the
help of the bilinear form Tr(Sρ). It is clear that the restrictions of the Ut to
B1(H) ⊂ B(H) give a group of automorphisms of B1(H) and that this group
is of class C0. We do not distinguish in notation between U and A and their
restrictions to B1(H) but note that for example the domain of A in B1(H) is
the set of S ∈ C1(A)∩B1(H) such that A(S) ∈ B1(H). Moreover, if S = |u〉〈v|
and u, v ∈ D(Ak) then S belongs to the domain of Ak in B1(H).

Now let H be a self-adjoint operator on H and R(z) = (H − z)−1 for z in
the resolvent set ρ(H) of H. We say that H is of class Ck(A) if R(z0) ∈ Ck(A)
for some z0 ∈ ρ(H); then we shall have R(z) ∈ Ck(A) for all z ∈ ρ(H) and
more generally ϕ(H) ∈ Ck(A) for a large class of functions ϕ (e.g. rational
and bounded on the spectrum of H).

For each real m let Sm(R) be the set of symbols of class m on R, i.e. the
set of functions ϕ : R → C of class C∞ such that |ϕ(k)(λ)| ≤ Ck〈λ〉m−k for all
k ∈ N. Note that Sm · Sn ⊂ Sm+n and ϕ(j) ∈ Sm−j if ϕ ∈ Sm and j ∈ N.

Proposition 5.1. Let H be a self-adjoint operator of class C1(A) with H ′ =
θ(H) for some θ ∈ S2(R). Then H is of class C∞(A). Let δθ be the first-order
differential operator given by δθ = θ(λ) d

dλ . If θ ∈ S1(R) and ϕ ∈ S0(R) then
ϕ(H) is of class C∞(A) and
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Ak(ϕ(H)) = (δk
θ ϕ)(H) ∀k ∈ N. (5.9)

Proof. We begin with a general remark. Using Proposition 3.8 we see that if
H is of class C1(A) and H ′ = θ(H) for some real Borel function θ, and if
ϕ ∈ C1

b(R), then ϕ(H)′ = A(ϕ(H)) = θ(H)ϕ′(H) = (δθϕ)(H). In particular,
if δθϕ = θϕ′ is a bounded function then ϕ(H) is of class C1(A).

If we take θ ∈ S2 and ϕ(λ) = (λ + i)−1 then ϕ ∈ S−1 hence θϕ′ ∈ S0.
Thus, the operator R = (H + i)−1 = ϕ(H) satisfies R′ = ψ(H) with ψ ∈ S0.
Now we may apply the preceding argument with ϕ replaced by ψ and get
ψ ∈ C1(A), so R′ ∈ C1(A), etc. This proves that H is of class C∞(A).

In the preceding argument we clearly may take any ϕ ∈ S−1. If θ ∈ S1

then the same argument works for any ϕ ∈ S0 and gives the last assertion of
the proposition. �

Remark 5.2. If θ ∈ Sm and ϕ ∈ S−(m−1) with 1 ≤ m ≤ 2 the last assertion of
the proposition remains true (with the same proof).

We finish this section with some comments in connection with relation
(5.9). At a formal level (5.9) means

e−itAϕ(H)eitA ≡ etA(ϕ(H)) = (etδθϕ)(H). (5.10)

We shall explain without going into details how one may rigorously interpret
this relation and how one may use it to get decay estimates.

Let ξt be the flow of diffeomorphisms of the real line defined by the vector
field δθ = θ(λ) d

dλ . This means that d
dtξt(λ) = θ(ξt(λ)) and ξ0(λ) = λ for all

λ ∈ R (we assume that such a global flow exists). Then if ϕ : R → C is
a smooth function we have d

dtϕ ◦ ξt = (δθϕ) ◦ ξt or ϕ ◦ ξt = etδθϕ. Hence
(5.10) may be written e−itAϕ(H)eitA = (ϕ◦ξt)(H). This can be easily checked
independently of what we have done before.

Let M(R) be the space of all bounded Borel measures on R. We associate
to H a continuous linear map Φ : B1(H) → M(R) defined as follows: if ρ ∈
B1(H) then

∫
ϕΦ(ρ) = Tr(ϕ(H)ρ) for any bounded Borel function ϕ. Then

Tr(ϕ(H)U−t(ρ)) = Tr(e−itAϕ(H)eitAρ) = Tr((ϕ ◦ ξt)(H)ρ)

which means that the measure Φ(U−t(ρ)) is equal to the image of the measure
Φ(ρ) through the map ξt. Or, if we denote Vt the map M(R) → M(R) which
sends a measure μ into its image ξ∗

t (μ) through ξt, we have Φ ◦ U−t = Vt ◦ Φ.
Thus, if ρ belongs to the Besov space B1(H)s,p associated to the group

of automorphisms Ut of B1(H) then Φ(ρ) belongs to the Besov space M(R)s,p

associated to the group of automorphisms Vt of M(R) (notations as in [1]).
This gives smoothness properties of the measure Φ(ρ) with respect to the
differential operator δθ in terms of smoothness properties of ρ with respect to
the operator A. In particular, since Tr(eitHρ) =

∫
eitλΦρ(dλ) is just the Fourier

transform of the measure Φρ ≡ Φ(ρ), this allows us to control the decay as
t → ∞ of t �→ Tr(eitHρ) in terms of the local behaviour of the measure Φρ.
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The operators Vt can be explicitly computed in many situations and the
preceding strategy gives optimal results. For example, in the simplest case
[H, iA] = 1 we get for any s > 0

‖〈A〉−seitH〈A〉−s‖ ≤ Cs〈t〉−s (5.11)

If [H, iA] = H then such a good decay is impossible because zero is a threshold
(see Remark 6.2). On the other hand, if η is a smooth function equal to zero
near zero and to one near infinity then (see [8]):

‖〈A〉−seitHη(H)〈A〉−s‖ ≤ Cs〈t〉−s. (5.12)

Estimates of this nature hold in fact for a large class of commutation rela-
tions [H, iA] = θ(H). Moreover, if the function η is of compact support and
such that a strict Mourre estimate holds on a neighbourhood of its support
then 〈A〉−seitHη(H)〈A〉−s may be controlled in terms of the regularity of the
boundary values of the resolvent R(λ ± i0) via a Fourier transformation argu-
ment. The higher-order continuity properties of the operators R(λ ± i0) as
functions of λ in a region where one has a strict Mourre estimate have been
studied by commutator methods first in [24] and then in [7] where the optimal
regularity result has been obtained. This gives the following decay (see [8]): if
the self-adjoint operator H has a spectral gap and is of class Cs+1/2(A) for
some real s > 1/2, and if η is a C∞ function with compact support in an open
set where A is strictly conjugate to H, then there is a number C such that

‖〈A〉−seitHη(H)〈A〉−s‖ ≤ Cs〈t〉−(s−1/2). (5.13)

This decay is the best possible for H of class Cs+1/2(A). This may be compared
with the corresponding result in [24, p. 222] but one should take into account
the remark in [7, p. 13]. Note that (5.13) is an endpoint estimate and it can be
improved by interpolation at intermediary points. For example, if H ∈ C∞(A)
and s > ε > 0 then we have

‖〈A〉−seitHη(H)〈A〉−s‖ ≤ Cs,ε〈t〉−(s−ε).

The problem with these estimates is that the cutoff function η eliminates the
thresholds of H, i.e. exactly the energies in which we are interested. We have
explained before that the behaviour of ‖〈A〉−seitH〈A〉−s‖ may be very bad
because of the thresholds.

We emphasize that in this article we are mainly interested in global esti-
mates which take into account the existence of thresholds. To get some decay
we consider self evanescent states u ∈ E(H) and show how one can get a better
decay of the physically meaningful quantity ψu(t). Our results are obtained
by a direct study of the evolution operator eitH and do not involve regularity
properties of the resolvent of H.

6. Higher-Order Decay

The expressions ψu(t) = 〈u|eitHu〉 that we considered until now are quadratic
in u and this complicates the computations of higher order. To elude this we
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note that ψu(t) = Tr(eitHρ) with ρ = |u〉〈u|, expression which makes sense for
any ρ ∈ B1(H) and is linear in ρ.

We begin with an extension to higher orders of Proposition 4.3.

Theorem 6.1. Let k ∈ N and s ∈ [0, k] real. Assume that H is of class Ck+1(A)
and H ′ commutes with H, satisfies H ′D(H) ⊂ H, and is boundedly invertible.
Then for each vector u ∈ D(|A|s) we have ψu(t) = O(t−s).

Proof. By an interpolation argument it suffices to prove |ψu(t)| ≤ Ck(‖u‖ +
‖Aku‖)2〈t〉−k for u in a dense subspace of D(Ak). Formally this is quite
straightforward starting with the formula (itH ′)−1A(eitH) = eitH and then
iterating it k times; we next sketch the rigorous proof. We change slightly
the notations from the proof of Proposition 4.3 and denote K the continuous
extension to H of −iH ′−1. Then K commutes with H, is of class Ck(A), and
we have KA(eitH) = A(eitH)K = teitH . Let u ∈ D(Ak) and ρ = |u〉〈u| or a
more general trace class operator. Let LK and RK be the operators of right
and left multiplication by K, which act both in B(H) and in B1(H). Then
RKA(eitH) = teitH hence

tψu(t) = Tr((RKA)(eitH)ρ) = Tr(A(eitH)(Kρ))

= −Tr(eitHA(Kρ)) = −Tr(eitH(ALK)ρ)

This is easy to justify since Ku ∈ D(Ak) because K is of class Ck(A). In
exactly the same way, starting with (RKA)k(eitH) = tkeitH we get

tkψu(t) = Tr((RKA)k(eitH)ρ) = (−1)k Tr(eitH(ALK)kρ).

Finally, it remains to note that ‖(ALK)kρ‖B1(H) ≤ Ck(‖u‖ + ‖Aku‖)2. �

Remark 6.2. The following example shows that such a good decay as in The-
orem 6.1 cannot be expected if H ′ is not boundedly invertible. In the Hilbert
space H = L2(0,∞) let H be the operator of multiplication by the indepen-
dent variable x and let A be the self-adjoint realization of i

2 (x d
dx + d

dxx). Then
H is of class C∞(A) and H ′ = [H, iA] = H. Let u be a C∞ function on (0,∞)
which is zero for x > 2 and equal to x−θ for x < 1 with 0 < θ < 1/2. Then
u ∈ D(|A|s) for all s > 0 but ψu(t) ∼ ∫ 1

0
eitxx−2θdx ∼ t2θ−1 for t → ∞, hence

the decay can be made as bad as possible. On the other hand, Example 2.4
explains why the space E helps to improve the behaviour.

We now give a higher-order version of Theorem 4.8. Recall that θ ∈
Sm(R) is an elliptic symbol if there is c > 0 such that |θ(λ)| ≥ c|λ|m near
infinity. Then η/θ ∈ S−m(R) for any C∞ function η with support in the
region where θ �= 0 and equal to one near infinity.

Theorem 6.3. Let H ∈ C1(A) such that H ′ = θ(H) for some elliptic symbol
θ ∈ Sm(R) with 0 ≤ m ≤ 1. Assume: (1) θ(λ) �= 0 if λ �= 0 and (2) λ/θ(λ)
extends to a C∞ function on R. Let k be an odd integer and let u ∈ H be of
the form |H|(k−1)/4v for some v ∈ D(Ak) such that Ajv ∈ E for 0 ≤ j ≤ k.
Then |ψu(t)| ≤ Cu〈t〉−k/2.
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Proof. Denote S0
(0)(R) the set of a ∈ S0(R) such that a(λ) = 0 near zero.

We first prove the following: if n ∈ N and a ∈ S0
(0)(R) then there are

a0, a1, . . . , an ∈ S0(R) such that:

tna(H)eitH =
n∑

j=0

Aj(aj(H)eitH). (6.14)

Of course, the aj also depend on n. If n = 1 we write (see also the proof of
Theorem 4.8):

ta(H)eitH = −i
a(H)
θ(H)

A(eitH) = A(a1(H)eitH) + a0(H)eitH (6.15)

where a1 = a
iθ and a0 = −θa′

1 (use Proposition 5.1). We mention that we
use without comment the relation A(ST ) = A(S)T + SA(T ) with the further
simplification that in our context S and T are functions of H hence commute.
Now assume (6.14) is true and let us prove it with n replaced by n + 1. Let
b ∈ C∞ equal to zero near zero and to 1 near infinity and such that aj = ajb
for all j. Then

tn+1a(H)eitH =
n∑

j=0

Aj(aj(H)tb(H)eitH)

Now we use (6.15) and replace tb(H)eitH = A(b1(H)eitH) + b0(H)eitH . Thus

aj(H)tb(H)eitH = aj(H)A(b1(H)eitH) + aj(H)b0(H)eitH

= A(aj(H)b1(H)eitH) + (aj(H)b0(H) − A(aj(H))b1(H))eitH

which clearly gives the required result.
Now we begin the proof of the theorem. As in the proof of Theorem 4.8

we consider separately the case when u is zero near energy zero and that when
u = ϕ(H)u for some ϕ ∈ C∞

c . The first case is an immediate consequence
of (6.14) because there is a ∈ S0

(0)(R) such that a(H)u = u hence (recall the
notation ρ = |u〉〈u|)

tk〈u|eitHu〉 = Tr(tka(H)eitHρ) =
k∑

j=0

(−1)j Tr(aj(H)eitHAj(ρ)) (6.16)

which implies ψu(t) = O(t−k) because obviously ρ ∈ D(Ak) if u ∈ D(Ak).
Note that the facts established above hold for an arbitrary u ∈ H. The

condition involving v is needed to have some control on the behaviour of u at
zero energy, which cannot be arbitrary as explained in Remark 6.2. When we
localize near zero energy we replace u by ϕ(H)u with ϕ ∈ C∞

c equal to one
on a neighbourhood of zero. If u = |H|mv with m = (k − 1)/4 and v ∈ D(Ak)
such that Ajv ∈ E for 0 ≤ j ≤ k then ϕ(H)u = |H|mϕ(H)v. By Proposition
5.1 H is of class C∞(A) so ϕ(H)D(Aj) ⊂ D(Aj) for any j and Ajϕ(H)v ∈ E
by Lemma 2.3.

Thus for the rest of the proof we may assume that the support of u
in a spectral representation of H is included in [−1, 1] and u = |H|mv with
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v ∈ D(Ak) such that Ajv ∈ E for 0 ≤ j ≤ k. It is clear that v has the same
H-support as u. Our purpose is to check the assumptions of the Corollary 8.3
for ψ = ψu. There are two conditions to be verified: the functions t

k−1
2 ψu(t)

and t
k+1
2 ψ′

u(t) should be in L2(R). We treat only the second one, the first is
treated similarly. If � = 2m + 1 = (k + 1)/2 then

t�ψ′
u(t) = 〈u|it�HeitHu〉 = 〈|H|mv|it�HeitH |H|mv〉

= 〈v|it�H�sgn�+1(H)eitHv〉.

Let η be a C∞ function with compact support such that η(λ) = λ/θ(λ) on
[−1, 1]. Then λ = η(λ)θ(λ) on [−1, 1]\{0} hence on [−1, 1] so we have

i�−1t�ψ′
u(t) = 〈η(H)�v|i�t�θ(H)�eitHv〉 = 〈η(H)�v|(itH ′)�eitHv〉.

Recall that we have A(eitH) = itH ′eitH in a sense described in Proposition 3.8.
But under the present conditions we have much more because H ′D(H) ⊂ H
hence eiτA leaves invariant the domain of H and induces there a C0-group
[see the assertion (2) page 7]. In particular, the set of u ∈ D(H) ∩ D(Aj)
such that Aju ∈ D(H) for any j ∈ N is dense in D(H) (and is a core for
A). Moreover, the Aj(H) are bounded operators if j ≥ 2. This allows us to
compute A�(eitH) inductively as usual. Our next computations look slightly
formal but it is straightforward, although a little tedious, to rigorously justify
each step.

Above we fixed � to the value (k + 1)/2 but now we allow it to take any
value smaller than this one. For the case � = 1 see the proof of Theorem 4.8.
For � = 2 we write

A2(eitH) = A(itH ′eitH) = itH ′′eitH + (itH ′)2eitH

=
H ′′

H ′ itH ′eitH + (itH ′)2eitH =
H ′′

H ′ A(eitH) + (itH ′)2eitH

By “localising” Proposition 5.1 we get H ′′ =A(H ′)=A(θ(H))=θ(H)θ′(H) =
H ′θ′(H) hence H′′

H′ = θ′(H). Thus

(itH ′)2eitH = A2(eitH) − θ′(H)A(eitH).

Then if we set ρ = |η2(H)v〉〈v| we get

it2ψ′
u(t) = Tr((itH ′)2eitHρ) = Tr(A2(eitH)ρ) − Tr(θ′(H)A(eitH)ρ)

= Tr(eitHA2(ρ)) − Tr(eitHA(ρθ′(H))).

The right-hand side belongs to L2(R) by the argument from Theorem 4.8,
which finishes the proof in the case � = 2. The general case does not involve
any new idea: by writing conveniently H(�)

H′ one may express (itH ′)�eitH as a
linear combination of functions of H times commutators Aj(eitH) and one may
proceed as above. �
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7. Applications

We will use the previous results to obtain decay estimates for ψu(t) = 〈u|eitHu〉
in several situations. Note that Example 3.1 and Proposition 3.2 show that
the commutation relation is not enough to prove the C1(A) condition for H.
For instance, in addition to the continuity of [A,H]0 on D(A) ∩ D(H), it
suffices to verify the invariance of domain R(z)D(A) ⊂ D(A). In other cases,
it is convenient to verify the simplified assumptions of Mourre [30], which are
stronger than the C1(A) property [1]:

(a) eiθAD(H) ⊂ D(H)
(b) There is a subspace S ⊂ D(A) ∩ D(H) which is a core for H such that

eiθAS ⊂ S and the form [H, iA] on S extends to a continuous operator
D(H) → H.

Recall that E = {u ∈ H | [u]H < ∞}, where [u]H =
( ∫

R
|ψu(t)|2dt

)1/4
.

7.1. Example 1: Laplacian in R
n

Let H = −Δ in L2(Rn) with domain the Sobolev space H2(Rn) and A =
− i

2 (x · ∇ + ∇ · x) the generator of dilations which is essentially self-adjoint on
the Schwartz space S = S(Rn). Condition (a) is a consequence of the formula
eiθA(H +i)−1 = (e−2θH +i)−1e−iθA, and (b) is satisfied since S is a core for H
which is trivially invariant under the dilation group. Integration by parts on S
shows that [H, iA] = 2H. We conclude from Proposition 4.7 that for u ∈ D(A)
such that u,Au ∈ E , ψu satisfies the decay estimate |ψu(t)| ≤ Cu〈t〉−1/2.
Higher-order decay estimates follow from Theorem 6.3.

7.2. Example 2: H = −∂xx + ∂yy in R
2

Let H = −∂xx + ∂yy and A = − i
2 (x · ∇ + ∇ · x) in L2(R2). With the help

of a Fourier transformation we see that H is essentially self-adjoint on S(R2).
Clearly [H, iA] = 2H, hence the estimate of Example 1 holds. One may treat
similarly the case when the operator H in L2(Rn) is an arbitrary homogeneous
polynomial of order m in the derivatives i∂1, . . . , i∂n with constant coefficients:
then [H, iA] = mH.

7.3. Example 3: Electric Field in R
n

Here we study the case H = −Δ + �h · x and A = i�h · ∇ in R
n, where �h is a

fixed unitary vector. We take again S = S(Rn) as a core for H and then it is
easy to check the commutation relation [H, iA] = 1. Therefore, Proposition 4.1
provides the estimate |ψu(t)| ≤ Cu〈t〉−1 for u ∈ D(A), where Cu = 2‖u‖‖Au‖.
Further estimates follow from Theorem 6.1.

7.4. Example 4: H = −x2−θΔ − Δx2−θ in R+

For 0< θ < 2 consider H = −x2−θΔ−Δx2−θ and A = − i
2 (x ·∇+∇·x) in R+.

Then S = C∞
c (R+) is a core for H and the domain conditions follow from

the formula e−iαAHeiαA = eθαH. The commutation relation is [H, iA] = θH,
which yields the estimate of Example 1.
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7.5. Example 5: Fractional Laplacian in R
n

For 0< s < 2, let H = (−Δ)s/2 with domain the Sobolev space Hs(Rn) and
consider A = − i

2 (x · ∇ + ∇ · x). Then S = C∞
c (R+) is a core for H and

homogeneity of H with respect to A implies that [H, iA] = sH. The estimate
of Example 1 follows.

7.6. Example 6: Multiplication by λ in L2(R+, dμ)

Let H = λ and A = − i
2 (λ∂λ + g(λ)) on L2(R+,dμ), where g is to be deter-

mined. Assume that dμ = h(λ)dλ, for some non-vanishing function h of class
C1(R+). It can be shown that if g satisfies the relation g(λ) = λh′

h +1, then A is
self-adjoint in L2(R+,dμ). For instance, if h(λ) = λN then choose g(λ) = N+1.
If g is a bounded function, S = C∞

c (R+) is a core for A and the commutation
relation is [H, iA] = 2H. For z ∈ ρ(H) the function (λ−z)−1 is smooth and has
bounded derivative on R+, hence the domain invariance R(z)D(A) ⊂ D(A)
can be easily checked. Therefore, H is of class C1(A), which gives the estimate
of Example 1.

7.7. Example 7: Dirac Operator in L2(R3;C4)
We consider the Dirac operator for a spin-1/2 particle of mass m > 0 given by
H = α · P + βm on H = L2(R3;C4), where α = (α1, α2, α3) and β denote the
4×4 Dirac matrices. The domain of H is the Sobolev space H1(R3;C4) and it
is known that σ(H) = σac(H) = (−∞,−m] ∪ [m,∞). See the book of Thaller
[53].

The Foldy–Wouthuysen transformation UFW maps the free Dirac oper-
ator into a 2 × 2 block form. Consider the Newton–Wigner position operator
QNW defined as the inverse FW-transformation of multiplication by x, that
is, QNW = U−1

FWQUFW. Using A = QNW, then H is of class C1(A) and direct
calculation shows that [H, iA] =

√
H2 − m2H−1 [44]. The following decay

estimate follows from this commutation relation.

Proposition 7.1. Let H and A as above. Then for u ∈ D(A) ∩ E such that
Au ∈ E, one has the estimate |ψu(t)| ≤ Cu〈t〉−1/2.

Proof. Let ϕ ∈ C∞
c ([m,∞)) real and equal to one on a small interval [m,m+ε]

and set φ = ϕ(H), φ⊥ = 1 − φ2. For simplicity we assume u in the subspace
of positive energies, then ψu = ψφu + 〈φ⊥u|eitHu〉. For the high-energy region

t〈u|φ⊥eitHu〉 = 〈φ⊥u|teitHu〉
= 〈φ⊥u|H(H2 − m2)−1/2[eitH , A]u〉
= 〈H(H2 − m2)−1/2φ⊥e−itHu|Au〉

− 〈AH(H2 − m2)−1/2φ⊥u|eitHu〉,
and it follows that |〈u|φ⊥eitHu〉| ≤ C〈t〉−1.

For energy close to m, assume that the support of u in a spectral repre-
sentation of H is contained in a compact interval.

Note that [eit(H−m), A] = t
√

H2 − m2H−1eit(H−m) as continuous forms
on D(H).
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Define the auxiliary function ψ(t) = 〈u|eit(H−m)u〉. Then

−itψ′(t) = 〈u|(H − m)teit(H−m)u〉
= 〈(H − m)1/2u|H(H + m)−1/2[eit(H−m), A]u〉
= 〈(H − m)1/2H(H + m)−1/2e−it(H−m)u|Au〉

− 〈A(H − m)1/2H(H + m)−1/2u|eit(H−m)u〉.
The right-hand side is in L2

t because H ∈ C1(A) and u is compactly supported
so Lemma 2.3 applies. We conclude that |ψ(t)| ≤ C〈t〉−1/2 for all t and since
|ψu| = |ψ| the result is proven. �

7.8. Example 8: Wave Equation in R
n

For H > 0 consider the equation

(WE)

⎧⎨
⎩

∂ttu + H2u = 0
u(0) = f
∂tu(0) = g.

Assume H = L2(Rn). Define u1(t) := cos(tH), u2(t) := sin(tH)
H . Then u(t) :=

u1(t)f + u2(t)g is a solution to (WE).
For f, g ∈ H define the function ψf,g(t) := 〈f |u1(t)f〉 + 〈f |u2(t)g〉 and

the subspace E = {u ∈ H | [u]H < ∞}, where [h]H = ‖〈h|u1(t)h〉‖1/2

L2
t

+

‖〈h|u2(t)h〉‖1/2

L2
t

.

Proposition 7.2. Let H and A be self-adjoint operators, assume H ∈ C1(A) and
the commutation relation [H, iA] = cH, with c �= 0. Then for f, g ∈ D(A) ∩ E
such that Af,Ag ∈ E, one has the estimate |ψf,g(t)| ≤ Cf,g〈t〉−1/2.

Proof. Similarly to Proposition 3.8, the following two sesquilinear forms
restricted to D(A) ∩ D(H) extend to continuous forms on D(H) satisfying
the identities

[cos(tH), iA] = −ctH sin(tH)[
sin(tH)

H
, iA

]
= ct cos(tH) − c

sin(tH)
H

.

We will use Corollary 8.2 for f, g ∈ D(|H|1/2). Clearly ψf,g ∈ L2(R).
Now we calculate

ctψ′
f,g(t) = −〈f |ctH sin(tH)f〉 + 〈f |ct cos(tH)g〉

= 〈f |[u1, iA]f〉 + 〈f |[u2, iA]g〉 + c〈f, u2g〉
= 〈u1f |iAf〉 + 〈iAf |u1f〉 + 〈u2f |iAg〉 + 〈iAf |u2g〉 + c〈f |u2g〉.

Thus c‖δψf,g‖L2 ≤ C[f ]H([g]H + [Ag]H + [Af ]H). For f, g not necessarily in
D(H) we can proceed analogously to Proposition 4.7 using uε = Rεu and
letting ε → 0. �
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7.9. Example 9: Klein–Gordon Equation in R
n

Now we draw our attention to (WE) in the case H =
√−Δ + m2, for m> 0.

The vector space is again defined as E = {u ∈ H | [u]H < ∞}, where [h]H =
‖〈h|eitHh〉‖1/2

L2
t

. Let A be the generator of dilations, then H is of class C1(A)
and it can be formally shown that [H, iA] = H − m2H−1.

Let u1, u2 be as in (WE), define ψ 1
f,g(t) = 〈f |u1(t)f〉 and ψ 2

f,g(t) =
〈f |u2(t)g〉. We are interested in the decay rate of ψf,g := ψ 1

f,g(t) + ψ 2
f,g(t).

Proposition 7.3. For H and A defined as above and f, g ∈ D(A) ∩ E such that
Af,Ag ∈ E, then |ψf,g(t)| ≤ Cf,g〈t〉−1/2.

Proof. Note that this result is a direct consequence of Proposition 4.8. Higher-
order decay estimates follow from Proposition 6.3. Here we present a direct
proof.

We define the auxiliary function ψ(t) := 〈f |eit(H−m)g〉 and we prove that
the conditions of Corollary 8.2 are satisfied. It is clear that ψ ∈ L2(R) since
f, g ∈ E . Assume g ∈ D(H) and we estimate

−itψ′(t) = 〈f |t(H − m)eit(H−m)g〉
= 〈f |[eit(H−m), A]H(H + m)−1g〉
= 〈e−it(H−m)f |AH(H + m)−1g〉 + 〈Af |eit(H−m)H(H + m)−1g〉.

By Lemma 2.3 we conclude that ‖δψ‖L2 ≤ C([f ]H [g]H + [f ]H [Ag]H +
[Af ]H [g]H). For general g ∈ D(A), replace it by gε = Rεg and let ε → 0.

We conclude that |ψ(t)| ≤ Cf,g〈t〉−1/2. Notice that |〈f |eitHg〉| = |ψ(t)|
satisfies the same bound.

Now we prove the desired estimate. Observe that ψ 1
f,g(t) = 1

2

(〈f |eitHf〉+
〈f |e−itHf〉), therefore |ψ 1

f,g(t)| ≤ Cf 〈t〉−1/2.
For the second term, we write

ψ 2
f,g(t) =

1
2
(〈f |H−1eitHg〉 + 〈f |H−1e−itHg〉)

and redefine the auxiliary function ψ(t) := 〈f |H−1eit(H−m)g〉, which is in
L2(R) by the spectral theorem. Now

−itψ′(t) = 〈f |tH−1(H − m)eit(H−m)g〉
= 〈f |[eit(H−m), A](H + m)−1g〉
= 〈e−it(H−m)f |A(H + m)−1g〉 + 〈Af |eit(H−m)(H + m)−1g〉,

which again yields the estimate |ψ(t)| ≤ Cf,g〈t〉−1/2, concluding the proof. �

Appendix

We prove here an auxiliary estimate. We consider functions g defined on R+ =
(0,∞) and denote ‖g‖p their Lp norms. Let δ the operator (δg) = xg′(x) acting
in the sense of distributions and set g̃(t) =

∫ ∞
0

eitxg(x)dx for t > 0 (improper
integral).
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Lemma 8.1. |g̃(t)| ≤ |t|−1/223/2(p − 1)−1/2p‖g‖1/2
p ‖δg‖1/2

q if 1 < p < ∞ and
1
p + 1

q = 1.

Proof. We may assume that g ∈ Lp and δg ∈ Lq. For any s > 0 we have
∣∣∣∣
∫ s

0

eitxg(x)dx

∣∣∣∣ ≤ s1/q‖g‖p. (8.17)

Since g ∈ Lp with p < ∞, there is a sequence an → ∞ such that g(an) → 0
(otherwise |g(x)| ≥ c > 0 on a neighbourhood of infinity, so |g|p cannot be
integrable). Since p > 1, after integrating over (s, an) and then making n → ∞,
we also obtain

|g(s)| ≤
∫ ∞

s

|g′(x)|dx ≤ (p − 1)−1/ps1/p−1‖δg‖q (8.18)

by Hölder inequality. Then
∫ ∞

s

eitxg(x)dx = lim
a→∞

∫ a

s

(
d
dx

1
it

eitx
)

g(x)dx

= lim
a→∞

[
eitag(a) − eitsg(s)

it
− 1

it

∫ a

s

eitxg′(x)dx

]
.

We take here a = an and make n → ∞ to get

−it
∫ ∞

s

eitxg(x)dx = eitsg(s) +
∫ ∞

s

eitxg′(x)dx

and then using (8.18) two times we obtain
∣∣∣∣
∫ ∞

s

eitxg(x)dx

∣∣∣∣ ≤ 2(p − 1)−1/ps−1/qt−1‖δg‖q.

Let ε > 0 and s = εq/t. Then (8.17) and the last inequality give

|g̃(t)| ≤ εt−1/q‖g‖p + 2(p − 1)−1/pε−1t−1/p‖δg‖q.

The infimum over ε > 0 of an expression εa + ε−1b is 2
√

ab. This finishes the
proof. �

Corollary 8.2. If ψ ∈ L2(R) and tψ′(t) ∈ L2(R) then |ψ(t)| ≤ Cψ|t|−1/2 for
t ∈ R\{0}.

Proof. We use Lemma 8.1 with p = 2 and g equal to the Fourier transform of
ψ. �

Corollary 8.3. If a function ψ is such that t
k−1
2 ψ(t) and t

k+1
2 ψ′(t) belong to

L2(R) for some k ≥ 1 then |ψ(t)| ≤ Cψ|t|−k/2 for all t ∈ R\{0}.
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References

[1] Amrein, W., Boutetde Monvel, A., Georgescu, V.: C0-Groups,
Commutator Methods and Spectral Theory of N -Body Hamiltoni-
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[38] Schlag, W., Rodnianski, I.: Time decay for solutions of Schrödinger equations
with rough and time-dependent potentials. Invent. Math. 155(3), 451–513 (2004)

[39] Rodnianski, I., Tao, T.: Long time decay estimates for the Schrödinger equa-
tion on manifolds. Mathematical aspects of nonlinear dispersive equations. Ann.
Math. Stud. 1, 223–253 (2007)

[40] Richard, S., Tiedra de Aldecoa, R.: On perturbations of Dirac operators with
variable magnetic field of constant direction. J. Math. Phys. 45, 4164–4173 (2004)

[41] Richard, S., Tiedrade Aldecoa, R.: On the spectrum of magnetic Dirac operators
with Coulomb-type perturbations. J. Funct. Anal. 250, 625–641 (2007)

[42] Richard, S., Tiedrade Aldecoa, R.: A few results on Mourre theory in a two-
Hilbert spaces setting. Anal. Math. Phys. 3, 183–200 (2013)

[43] Richard, S., Tiedrade Aldecoa, R.: Spectral analysis and time-dependent scat-
tering theory on manifolds with asymptotically cylindrical ends. Rev. Math.
Phys. 25, 1350003-1–1350003-40 (2013)

[44] Richard, S., Tiedra de Aldecoa, R.: A new formula relating localisation operators
to time operators. In: Operator Theory: Advances and Applications, vol. 224,
pp. 301–338. Birkhäuser, Basel (2012)
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