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Encoding Curved Tetrahedra in
Face Holonomies: Phase Space of Shapes
from Group-Valued Moment Maps

Hal M. Haggard, Muxin Han and Aldo Riello

Abstract. We present a generalization of Minkowski’s classic theorem on
the reconstruction of tetrahedra from algebraic data to homogeneously
curved spaces. Euclidean notions such as the normal vector to a face
are replaced by Levi–Civita holonomies around each of the tetrahedron’s
faces. This allows the reconstruction of both spherical and hyperbolic
tetrahedra within a unified framework. A new type of hyperbolic simplex
is introduced in order for all the sectors encoded in the algebraic data
to be covered. Generalizing the phase space of shapes associated to flat
tetrahedra leads to group-valued moment maps and quasi-Poisson spaces.
These discrete geometries provide a natural arena for considering the
quantization of gravity including a cosmological constant. This becomes
manifest in light of their relation with the spin-network states of loop
quantum gravity. This work therefore provides a bottom-up justification
for the emergence of deformed gauge symmetries and quantum groups in
covariant loop quantum gravity in the presence of a cosmological constant.

1. Introduction

In 1897, Hermann Minkowski proved a reconstruction theorem stating that to
each non-planar polygon with L edges {�a� ∈ R

3, � ∈ {1, . . . , L}|∑� �a� = �0},
one can associate a unique convex polyhedron in Euclidean three-space E3

with L faces. The area and outward pointing normal of its �-th face are |�a�|
and �a�/|�a�|, respectively [1,2]. One hundred years later, in 1996, Kapovich and
Millson showed how the space of polygons with fixed edge lengths admits a
natural phase space structure [3]. The combination of these results is remark-
able: it points out that discrete geometries are a natural arena for dynamics.
One may then wonder whether this arena is related to the theory of dynamic
geometry par excellence, general relativity. The answer turns out to be positive,
though not in a trivial way. In fact, the Kapovich–Millson phase space can be
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quantized via geometric quantization techniques [4] and this quantized space
gives a compelling interpretation of the Hilbert space of loop quantum gravity
[5,6] (restricted to a single graph) in terms of discrete quantum geometries
[7,8]. The main notions behind this are the following. In loop quantum grav-
ity, the fundamental phase-space variables are su(2) fluxes (momenta) and
SU(2) holonomies (coordinates) carried by the Faraday–Wilson lines of the
gravitational field. These lines cross at nodes, where SU(2) gauge invariance is
imposed as a momentum conservation equation, often referred to as the Gauß
or closure constraint

L∑

�=1

(�τ�)R = �0, (1.1)

here � labels the L Faraday–Wilson lines at a node (all supposed outgoing), and
(�τ�)R is the right invariant vector field on the �-th copy of SU(2), i.e. the flux
operator along the �-th Faraday–Wilson line. Since the norm of the flux of the
gravitational field carried by one of these lines is associated to the area it carries
[9], it is physically meaningful to reinterpret this equation using Minkowski’s
theorem. In this way, it can be read as the definition of a quantum convex
polyhedron at each intersection of L gravitational Faraday–Wilson lines. How
these polyhedra are glued to one another and how they encode the extrinsic
geometry of the three-space they span is more complicated and we refer to the
cited literature for more details. Nevertheless, the crucial point here is that to
each kinematical state of loop quantum gravity, one can associate a discrete
piecewise-flat quantum geometry thanks to Minkowski’s theorem.

In this paper, we move toward the generalization of this construction to
the case where the model space for the discrete geometry is curved instead of
flat. In other words, we generalize Minkowski’s theorem to tetrahedra whose
faces are flatly embedded in the three-sphere S3 and hyperbolic three-space
H3, and conjecture that a similar construction may hold for general curved
polyhedra. From a purely mathematical point of view, the generalization of
Minkowski’s theorem is interesting in its own right, and requires new inputs to
replace “the notion of face direction by some notion not relying on parallelism
in the Euclidean sense” [2, p. 346], or, in other words, to deal with the parallel
transport of the face normals to a single base point. Moreover, the question
arises whether the space of curved tetrahedra also admits a natural phase space
structure, and eventually how close it is to the Kapovich–Millson one. We will
show that a natural phase space structure exists, and it coincides with the one
studied by Thomas Treloar [10].

Surprisingly, this phase space structure is the same in both the spherical
and hyperbolic case, which have a unified description in our framework, and it
is exactly the generalization of the Kapovich–Millson phase space to geodesic
polygons embedded in S3. (This S3 is not the manifold in which the curved
tetrahedron is embedded and, again, underlies both the positively and nega-
tively curved cases.) Beside pure mathematics, this generalization is relevant to
physics as well. Indeed, this construction is thought to bear strong relations to
quantum gravity in the presence of a cosmological constant. On the one hand,
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this is apparent through the requirement that the simplicial decomposition of
the bulk geometry be a solution of Einstein’s field equations with the cosmo-
logical term within each building block [11]. On the other, curved tetrahedra
made an appearance already in the semiclassical limit of the Turaev–Viro state
sum [12–15], which in turn, is known to be related to Edward Witten’s Chern–
Simons quantization of three-dimensional gravity with cosmological constant
[16]. The relations with quantum gravity in (Anti-)de Sitter space constitute
our main motivation [17,18].

Several works, with close connections to ours, have focused on three space-
time dimensions. Notably [19–25], the precise connection was investigated be-
tween the Chern–Simons quantization of three dimensional gravity and the
spinfoam or loop-theoretic polymer quantizations, respectively. With this in
mind, we should emphasize that the present work studies three-dimensional
discrete geometries as boundaries of four-dimensional spacetimes; this is in
contrast to the research cited above, which focused on the description of geome-
tries in two-plus-one dimensions. This difference in dimensionality implies a
mismatch in the geometrical quantities encoded in the Faraday–Wilson lines:
in four and three spacetime dimensions, these carry units of area and length,
respectively. Unsurprisingly, the geometrical reconstruction theorems are com-
pletely different in the two cases.

A second interesting divergence of the two approaches is the fact that the
sign of the geometric curvature must be decided a priori in the two-plus-one
case (in particular, Girelli et al. restrict their analysis to the hyperbolic case),
while it is determined at the level of each solution in our case. Again, this is
because our formalism automatically allows for—in fact, requires—both posi-
tively and negatively curved geometries. It is intriguing to attribute this dif-
ference to the lack of a local curvature degree of freedom in three-dimensional
gravity (since these are purely kinematical constructions, one should take this
statement cum granu salis). In spite of these differences, there is an important
feature the two constructions share: in both cases, one is naturally lead to con-
sider phase-space structures and symmetries that are deformed with respect
to the standard ones of quantum gravity. In particular, the momentum space
of the geometry is curved and the symmetries are distorted to (quasi-)Poisson
Lie symmetries, which are the classical analogues of quantum-group symme-
tries. We leave the discussion of the quantization of our phase space and its
symmetries for a future publication.

Another piece of recent work in the loop gravity literature that inter-
estingly shares some features with our construction is by Bianca Dittrich and
Marc Geiller [26–28]. While constructing a new representation (a new “vac-
uum”) for loop quantum gravity, adapted to describe states of constant curva-
tures (and no metric), they are lead to deal with exponentiated fluxes as the
meaningful operators. As a consequence, areas in their formulation are also as-
sociated to SU(2)—instead of su(2)—elements. Nonetheless, the parallel seems
limited, since it appears that they are not forced to deform their phase space
and symmetry structures.
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Finally, Kapovich and Millson, and later Treloar, recognized that the
phase space structure of polygons corresponds to William Goldman’s sym-
plectic structure on the moduli space of flat connections on an L times punc-
tured two-sphere. Our result provides this correspondence with a more direct
and physical interpretation. In fact, the punctures on the two-sphere can be
understood as arising from the gravitational Faraday–Wilson lines piercing
an ideal two-sphere surrounding one of their intersection points. Exactly as
in the flat case, these lines characterize the face areas and define a polyhe-
dron. This picture can be used to extend the covariant loop quantum gravity
framework in four spacetime dimensions, the spinfoam formalism, to the case
with a non-vanishing cosmological constant. This is the goal of [17], where
we propose a generalization of the spinfoam models constructed by Barrett
and Crane [29,30], and which eventually developed into the Engle–Pereira–
Rovelli–Livine/Freidel–Krasnov (EPRL/FK) models [31–33]. In [18], we push
the approach presented in this paper further, and give an independent deriva-
tion of the main four-dimensional results of [17] based solely on Chern–Simons
theory as a mean of quantization of the curved geometries as encoded in flat
connections.

In [17], we analyse SL(2, C) Chern–Simons theory with a specific Wilson
graph insertion. The model can be viewed as a deformation of the EPRL/FK
model aimed at introducing the cosmological constant in the covariant loop
quantum gravity framework. The semiclassical analysis of the model’s quan-
tum amplitude is given by the four-dimensional Einstein–Regge gravity, aug-
mented by a cosmological term, and discretized on homogeneously curved four
simplices. Interestingly, the key equation studied in this paper, i.e. the gen-
eralization of the Gauß (or closure) constraint to curved geometry, arises in
that context simply as one of the “equations of motion”. The approach of [18],
on the other hand, considers directly the graph complement manifold, with
appropriate boundary conditions on the connection variables which are mo-
tivated by the results of this paper. This setting is enough to recover all the
previous results, albeit in a more general and self-contained fashion.

The present paper is divided into two parts. In the first, composed by
Sects. 2–6, we introduce the generalization of Minkowski’s theorem to curved
tetrahedra. First, we discuss the strategy underlying the theorem in the spher-
ical case (Sect. 2). We then gradually extend our analysis to more general
settings eventually including both signs of the curvature (Sects. 3–5). The first
part concludes with the statement and proof of the theorem in its general
form (Sect. 6). The second part, composed by Sects. 7–10 is dedicated to the
description of the phase space of shapes of discrete tetrahedra. We first intro-
duce the subject and its relations with curved polygons and moduli spaces of
flat connections (Sect. 7). Then, we review the quasi-Poisson structure one can
endow SU(2) with (Sect. 8), which serves as a preliminary step to the actual
description of the phase space of shapes (Sect. 9). We conclude this part with
a brief account of the equivalent quasi-Hamiltonian approach (Sect. 10). The
paper closes with some physical considerations and an outlook towards future
developments of the work (Sects. 11, 12).
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2. General Strategy and the Spherical Case

In the flat case, Minkowski’s theorem associates to any solution of the so-called
“closure equation”

4∑

�=1

�a� ≡ �a1 + �a2 + �a3 + �a4 = �0, with �a� ∈ R
3, (2.1)

a tetrahedron in E3, whose faces have area a� := |�a�| and outward unit normals
�n� := �a�/a�. We call the vectors �a� ≡ a��n� area vectors.

Our generalization begins with the most symmetrical curved spaces, the
three-sphere S3 and hyperbolic three-space H3, which have positive and neg-
ative curvature, respectively. In these ambient spaces, define a curved poly-
hedron as the convex region enclosed by a set of L flatly embedded surfaces
(the faces) intersecting only at their boundaries. A flatly embedded surface is
a surface with vanishing extrinsic curvature and the intersection of two such
surfaces is necessarily a geodesic arc of the ambient space. In the spherical
case, the flatly embedded surfaces and the geodesic arcs are hence portions of
great two-spheres and of great circles, respectively. Note that in the hyperbolic
case this definition includes curved polyhedra extending to infinity. This and
other properties specific to the hyperbolic case are discussed beginning in the
next section.

Our main result is that Minkowski’s theorem and the closure equation,
Eq. (2.1), admit a natural generalization to curved tetrahedra in S3 and H3.
The curved closure equation is

O4O3O2O1 = e, with O� ∈ SO(3), (2.2)

where e denotes the identity in SO(3). In the remainder of this section, we
explain how this equation encodes the geometry of curved tetrahedra. Before
going into this, we want to stress the essential non-commutativity of this equa-
tion, which mirrors the fact that the model spaces are curved, and therefore
is the crucial feature of our approach. Indeed, non-commutativity has far-
reaching consequences that are particularly apparent in the last section of the
paper where the curved closure equation is used as a moment map. This non-
commutativity will also be the source of an ambiguity in the reconstruction
that is unique to the curved case.

As in the flat case, the variables appearing in the closure equation are
associated to the faces of the tetrahedron. Indeed, the {O�} shall be interpreted
as the holonomies of the Levi–Civita connection around each of the four faces
of the tetrahedron. Since the faces of the tetrahedron are by definition flatly
embedded surfaces in S3, any path contained within them parallel transports
the local normal to the face at its starting point into the local normal to the
face at its endpoint. Therefore, choosing at every point of the face a frame in
which the local normal is parallel to ẑ, one can reduce via a pullback the so(3)
connection to an so(2) one without losing any information. (Note that there
always exists a unique chart covering an open neighbourhood of the whole
face.) In this two-dimensional setting, it is a standard result that a vector
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parallel transported around a closed (non self-intersecting) loop within the
unit sphere gets rotated by an angle equal to the area enclosed by the loop.
Therefore, the holonomy O� around the �-th face of the spherical tetrahedron,
calculated at the base point P contained in the face itself, is given by

O�(P ) = exp{a� �n�(P ) · �J}, (2.3)

where { �J} are the three generators of so(3), a� is the area of the face, and
�n(P ) ∈ TP S3 is the direction normal to the face in the local frame at which
the holonomy is calculated. Let us for a second ignore the issues related to cur-
vature and non-commutativity, and discuss what happens in the flat Abelian
limit where the radius of curvature of the three-sphere goes to infinity and the
ambient space becomes nearly flat. To make this explicit, introduce the sphere
radius r into the previous expression:

O� = exp
{a�

r2
�n� · �J

}
. (2.4)

In the limit r → ∞, the curved closure equations reduce, at the leading order,
to the flat one:

O�
r→∞≈ e +

a�

r2
�n� · �J + · · · , (2.5)

hence

O4O3O2O1
r→∞≈ e + r−2(a4�n4 + a3�n3 + a2�n2 + a1�n1) · �J + · · · . (2.6)

Importantly, the geometrical meaning of the variables is exactly the same as
in Eq. (2.1). Thus, our formulation subsumes the flat one as a limiting case.

In the curved setting, it is crucial to keep track of the holonomy base
point; for within a curved geometry, only quantities defined at, or parallel
transported to, a single point can be compared and composed with one an-
other. Therefore, all four of the holonomies appearing in the curved closure
equation must have the same base point. In spite of this, there is no point
shared by all four faces of the tetrahedron at which one can naturally base the
holonomies, and therefore at least one of them must be parallel transported
away from its own face before being multiplied with the other three. Actually,
the curved closure equation itself has no information about the base points of
the holonomies or about which paths they have been parallel transported along
to arrive at a common frame. This must be an extra piece of information that
needs to be fed into the reconstruction algorithm. Analogous interpretational
choices—though for clear reasons less numerous—have to be made in the flat
case. Here, we provide a standard set of paths on an abstract tetrahedron em-
bedded in S3 along which the {O�} are assumed to be calculated. Such a choice
of standard paths must also account for the presence of the identity element
on the right-hand side of the curved closure equation. This comes from the fact
that the chosen standard paths compose to form a homotopically trivial loop.
Interestingly, the curved closure equation can also be related to an integrated
version of the Bianchi identities for the three-dimensional Riemann tensor (see
e.g. [34]).
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Figure 1. A standard numbering of the vertices of the tetra-
hedron, which also induces a particular topological orienta-
tion. The BurntOrangep character of this tetrahedron is sim-
ply a device for underlining its spherical nature. However, sim-
ilar pictures result from stereographic projection of a spherical
tetrahedron in S3 onto R

3. This projection sends great two-
spheres of S3 into spheres of R

3, though possibly with different
radii. Note that the convex or concave aspect of the stereo-
graphically projected spherical tetrahedron has no intrinsic
meaning

Label the vertices of the geometrical tetrahedron as in Fig. 1. This num-
bering induces a topological orientation on the tetrahedron, which must be
consistent with the geometrical orientation of the paths around the faces. Faces
are labelled via their opposite vertex (e.g. face 4 is the one at the bottom of
Fig. 1), while edges are labelled by the two vertices they connect. Each face
is traversed in a counterclockwise sense when seen from the outside of the
tetrahedron. This is consistent with the tetrahedron’s topological orientation.
The normals appearing in the holonomies, Eq. (2.3), are hence the outward
pointing normals to the face whenever the base point P of the holonomy O(P )
lies on that face (right-handed convention). There is no natural common base
point for all four faces. However, any three faces do share a point. Pick faces
� = 1, 2, 3, which share vertex 4, and base the holonomies at this vertex:

O� := O�(4). (2.7)

Then, in the case of holonomies O1,2,3(4), the vectors {�n1(4), �n2(4), �n3(4)} are
outward normals to their respective faces in the frame of vertex 4. Clearly, this
is not the case for the normal �n4(4). Thus, we must specify the path used to
define the holonomy around face 4 and its transport to vertex 4. By now, this
path is completely fixed by the curved closure equation. It consists of defining
O4(2) in an analogous way to the O1,2,3(4) and then parallel transporting it to
vertex 4 through the edge (42). The set of relevant paths is shown in Fig. 2. Up
to the choice of the base point, this is manifestly the simplest (and shortest) set
of paths going around each face in the order required by the closure equation
and composing to the trivial loop. For this reason, we will call these simple
paths.

The holonomies along the simple paths, {O�}, can be expressed more
explicitly by introducing the edge holonomies {om�}, encoding the parallel
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Figure 2. The set of simple paths used to interpret the
holonomies {O�}

transport from vertex � to vertex m along the edge connecting them (we use
leftward composition of holonomies). Thus, o�m ≡ o−1

m� , and
⎧
⎪⎪⎨

⎪⎪⎩

O1 = o43o32o24
O2 = o41o13o34
O3 = o42o21o14
O4 = o42O4(2)o24 = o42 [o23o31o12] o24

. (2.8)

Let us stress once more that, since the closure equation is preserved by a cyclic
permutation of the holonomies, the assignment to a specific holonomy of the
label “4” is indeed an extra input needed by the reconstruction. We call this
vertex the special vertex.

Another important symmetry of the closure equation is its invariance
under conjugation of the four holonomies by a common element of SO(3):

O� �→ RO�R
−1, with R ∈ SO(3). (2.9)

This maps the areas a� into themselves, and the normals �n� into R�n�. (Here
and in the rest of the paper, upright symbols stand for matrices in the fun-
damental representation; e.g. in the previous equation, R is the 3 × 3 matrix
corresponding to R ∈ SO(3).) This symmetry can be interpreted either as a
change of reference frame at the base point 4, or as the effect of a further
parallel transportation of the {O�} along another piece of path from vertex 4
to some other base point. The latter interpretation is particularly compelling
when R = o24: the result of this transformation is an exchange of the rôle of
vertices (and therefore faces) 4 and 2. We conclude that picking vertex 4 or
2 as special, are gauge equivalent choices. So, it is more appropriate to refer
to the edge (24) as the special edge rather than referring to 2 or 4 as special
vertices.

A set of holonomies that close {O� | ∏
� O� = e} modulo simultaneous

conjugation is naturally interpreted as the moduli space of SO(3) flat connec-
tions on a sphere with four punctures. Indeed, since the holonomies of a flat
connection can only depend on the homotopy class of the (closed) path along
which they are calculated, these connections are maps from the fundamental
group of the punctured sphere to SO(3). Therefore, the moduli space of flat
connections is this space of maps modulo conjugation:
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Mflat[L-punctured S2, SO(3)]
∼= Hom

[
π1(L-punctured S2),SO(3)

]/
SO(3)

∼= {
O1, . . . , OL ∈ SO(3) | OL · · · O1 = e

}/
conj. (2.10)

Conjugation is the residual gauge freedom left at the arbitrarily chosen base
point of the holonomies. The connection with the tetrahedron’s geometry arises
from the observation that the fundamental group of the 4-punctured sphere
is isomorphic to that of the tetrahedron’s one-skeleton. However, this isomor-
phism is not canonical, and constitutes the extra piece of information that
is needed to run the reconstruction, i.e. the knowledge of the precise paths
associated to the {O�}.

The choice of a special edge, e.g. (24), breaks permutation symmetry.
However, conjugation is a true symmetry of the problem, and is the analogue
of rotational invariance for the flat case. Therefore, any quantity with an in-
trinsic geometrical meaning must be obtained through conjugation invariant
combinations of the {O�}. The normals {�n�} are not gauge invariant observ-
ables, but their scalar and triple products are.

Scalar products between the normals have a clear meaning: they encode
the dihedral angles between the faces of the tetrahedron. Because the faces of
the tetrahedron are flatly embedded, these dot products are invariant along
the edge shared by two faces and hence the dihedral angles are well defined.
For faces 1, 2, and 3, the situation is simple. The holonomies {O�} and the
normals appearing in their exponents are defined at vertex 4, which is shared
by all three faces. Therefore, indicating with θ�m the (external) dihedral angle
between faces � and m, see Fig. 3,

cos θ�m = �n� · �nm, for �,m ∈ {1, 2, 3}. (2.11)

Recall that O4 is first defined at vertex 2 and then parallel transported to
vertex 4 along the edge (24). Because of the gauge equivalence of 2 and 4 as
special vertices, and because vertex 2 is shared by faces 1, 3, and 4, calculating
the dihedral angles between these face is as simple as before:

cos θ�m = �n� · �nm, for �,m ∈ {1, 3, 4}. (2.12)

Figure 3. The dihedral angle θ�m spans the arc from
outward normal � to m. Here, we illustrate the case
{�,m} = {1, 3}
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To see this in a more direct way, note that, for example, cos θ14 = �n1(2)·�n4(2) =
[o24�n1(4)]·[o24�n4(4)] = �n1(4)·�n4(4), which is exactly the result of the previous
equation.

The remaining dihedral angle, between the opposite, special faces 2 and
4, is more delicate. This is because neither of the vertices 2 or 4 is shared by
the faces 2 or 4. To calculate cos θ24, we use the normals at vertex 3:

cos θ24 = �n2(3) · �n4(3)

= [o34�n2(4)] · [o32o24�n4(4)]

= �n2(4) · O1�n4(4). (2.13a)

The paths used for transporting the normals from vertex 3 to vertex 4 are
not accidental; they lie within their own face up to the point where the face
holonomy is based, and then move on, when necessary, to vertex 4 through the
special edge (24). All paths lying within a single face are equivalent because
of the flat embedding and so we use the most convenient choice.

Had we chosen to define θ24 at vertex 1 instead of 3, the result would
have been

cos θ24 = �n2(4) · O−1
3 �n4(4). (2.13b)

A quick check shows that these two results are equivalent, thanks to the closure
equation and the relation O��n� = �n�. Summarizing,

{
cos θ24 = �n2 · O1�n4 = �n2 · O−1

3 �n4

cos θ�m = �n� · �nm for {�,m} 	= {2, 4} (2.14)

Notice that θ�m ∈ (0, π) to have a convex tetrahedron, and although this
condition would be redundant for a tetrahedron in flat space, one could use
the sphere’s non-trivial topology to build non-convex spherical tetrahedra.1

We are not interested in reconstructing such objects. Moreover, the previous
condition implies that we can invert Eq. (2.14) to obtain the values of the
{θ�m} themselves. These formulas require only data entering the curved closure
equation, and not the edge holonomies {o�m}, as expected from considerations
of gauge invariance.

There is still a subtle point to clarify. How can the directions of the
outward normals {�n�} be extracted from the {O�}? The face areas of the
tetrahedron are positive real numbers a� lying in the interval (0, 2π) due to the
tetrahedron’s convexity (see Footnote 1). However, the holonomy O� cannot
distinguish between two triangles lying on the same great two-sphere in S3

that have areas a and (2π −a), respectively, and corresponding normals �n and
−�n. In formulas:

exp{a �n · �J} = exp{(2π − a)(−�n) · �J}. (2.15)

This is a consequence of the fact that both the trivial loop and a great cir-
cle have trivial SO(3)-holonomy. To resolve this ambiguity, it is enough to

1 To construct an example, one can replace one of the edges of a standard convex spherical
tetrahedron with its complement with respect to the great circle it lies on. Another example
can be constructed by replacing a whole face with its spherical complement.
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Figure 4. The three vectors involved in the triple product at
vertex 4. Given the topological orientation of the tetrahedron,
its convexity, and supposing all normals are outward pointing,
one finds that sgn [(�n1 × �n2) .�n3] > 0

appeal to convexity by checking the signs of the triple products among the
normals. Indeed, the triple products are naturally associated to the vertices
of the tetrahedron, and their signs relate to its convexity (as well as to our
choice of its topological ordering, and to the outward pointing property of the
normals {�n�}), see Fig. 4.

Concretely, this translates into the following requirements for the nor-
mals:

⎧
⎪⎪⎨

⎪⎪⎩

at vertex 4: [�n1(4) × �n2(4)] · �n3(4) > 0
at vertex 2: [�n1(2) × �n3(2)] · �n4(2) > 0
at vertex 1: [�n2(3) × �n1(3)] · �n4(3) > 0
at vertex 3: [�n3(1) × �n2(1)] · �n4(1) > 0

. (2.16)

After parallel transporting to the common base point, vertex 4, these condi-
tions read

⎧
⎪⎪⎨

⎪⎪⎩

(�n1 × �n2) · �n3 > 0
(�n1 × �n3) · �n4 > 0
(�n2 × �n1) · O1�n4 > 0
(�n3 × �n2) · O−1

3 �n4 > 0

. (2.17)

A moment of reflection shows that these conditions are exactly what is needed
to solve the ambiguity expressed in equation (2.15). In fact, among the 24

possible redefinitions of the normals by change of signs {�n�} �→ {±��n�}, one
and only one of them satisfies Eq. (2.17).

It is interesting to express the intrinsic geometrical quantities of the tetra-
hedron, such as areas, dihedral angles, and triple products, directly in terms
of the holonomies {O�}. The simplest conjugation invariant set of observables
are traces of products of the {O�}. These turn out to be quite involved. A
convenient alternative is given by the same invariants for the lifts of the {O�}
to SU(2). Call these lifts {H�}, and their matrices in the fundamental rep-
resentation {H�}. The twofold ambiguity associated with the lift reflects the
geometric ambiguity of Eq. (2.15), which is already present at the level of
SO(3). It is tempting to conjecture that considering SU(2) closures solves this
ambiguity, and that the SU(2) holonomies can be automatically associated to
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the spin connection of the homogeneously curved space. Unfortunately, this is
not the case, since by multiplying the geometrical values of any two (or four)
of the SU(2) holonomies by −1, one obtains another sensible closure equation
that looses its geometrical interpretation.2 Hence, we are lead to allow any
consistent lift with the SU(2) closure

H4H3H2H1 = e, (2.18)

and eventually correct for the sign of (an even number of) the holonomies
in such a way that all the inequalities of Eq. (2.17) are satisfied. A slightly
different way of stating this, with closure only holding up to a sign, is that
what we are really considering are PSU(2) closures, and only these are in
one-to-one correspondence with curved tetrahedra. In the following, we will
mostly deal with SU(2) holonomies, to which we associate geometries in an
almost one-to-one way.

The convenience of using the {H�} comes from the simple identity:

H = exp {a�n · �τ } = cos
a

2
1 − i sin

a

2
�n · �σ, (2.19)

where �σ are the Pauli matrices, and �τ := − i
2�σ. Define the connected part of

the half-trace of the product of p holonomies, 〈
p

︷ ︸︸ ︷
H� · · · Hm 〉C :

〈H〉C :=
1
2
Tr(H), (2.20a)

〈H�Hm〉C :=
1
2
Tr(H�Hm) − 1

4
Tr(H�)Tr(Hm), (2.20b)

〈H�HmHq〉C :=
1
2
Tr(H�HmHq) −

[
1
4
Tr(H�)Tr(HmHq) + cyclic

]

+
1
4
Tr(H�)Tr(Hm)Tr(Hq), (2.20c)

etc.

It is then straightforward to check that the geometrical quantities of interest
are normalized versions of these quantities:

cos
a�

2
= ±�〈H�〉C , (2.21a)

cos θ�m = �n�.�nm = − ±� ±m 〈H�Hm〉C√
1 − 〈H�〉2C

√
1 − 〈Hm〉2C

for {�,m} 	= {2, 4},

(2.21b)

(�n� × �nm) .�nq = − ±� ±m ±q〈H�HmHq〉C√
1 − 〈H�〉2C

√
1 − 〈Hm〉2C

√
1 − 〈Hq〉2C

for {�,m, q}

= {1, 2, 3} or {1, 3, 4}, (2.21c)

2 A more sophisticated attempt to make this work would consist in allowing non-convex

tetrahedra. Indeed, taking the equatorial complement of one side of a standard tetrahedron

would modify the area of the two adjacent faces from a� to 2π − a� at the price of obtaining
a non-convex tetrahedron. The problem with this extension is that there is no unique choice
of sides to complement. Hence, the uniqueness of the reconstructed geometry would be lost.
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Figure 5. A spherical triangle illustrating the notation for
Eqs. (2.22a) and (2.22b), the spherical cosines laws

with the appropriate generalization for cos θ24 and the missing triple products.
The {±�} signs can be thought of as representing the branches of the respective
square roots, and are uniquely fixed by imposing the positivity of the triple
products, i.e. the convexity of the tetrahedron. They are eventually related to
the areas via ±� = sgn sin a�, which is another way of stating the ambiguity
{a�, �n�} �→ {2π − a�,−�n�}.

At this point, we are left with the simple exercise of reconstructing a
spherical tetrahedron from its known dihedral angles {cos θ�m}. Notice that the
areas {a�} are not needed. Their consistency with respect to the reconstructed
geometry will be proved in complete generality in Sect. 6. The key equation in
the reconstruction is the spherical law of cosines, relating the edge lengths of
a spherical triangle to its face angles. With the notation of Fig. 5, this law and
its inverse read

cos Ĉ =
cos

(

AB − cos

(

AC cos

(

BC

sin

(

AC sin

(

BC
, (2.22a)

cos

(

AB =
cos Ĉ + cos Â cos B̂

sin Â sin B̂
, (2.22b)

where

(

AB is the arclength (on the unit sphere) between the vertices A and
B, and Ĉ is the angle between the arcs AC and BC at point C. By putting
an infinitesimal sphere around the vertex � of the spherical tetrahedron, and
looking at the spherical triangle defined by the intersections of this sphere with
the edges stemming from vertex �, one can use Eq. (2.22a) to deduce the three
face angles at the vertex � from the tetrahedron’s dihedral angles. Once all the
face angles are known, Eq. (2.22b) yields the edge lengths for each face of the
tetrahedron. Therefore, using just one formula and its inverse, it is possible to
deduce the full geometry of the spherical tetrahedron from its dihedral angles.
This is possible, in the curved case, because the radius of curvature provides a
natural scale to translate angles into arclengths. In this respect, the flat case
is a degenerate limit in which scale invariance appears. In the flat closure,
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Eq. (2.1), the areas can all be rescaled by a common factor without alter-
ing the normals. No analogously simple symmetry is present in the curved
case.

3. A First Look at the Hyperbolic Case

In the case of hyperbolic tetrahedra, the reconstruction theorem proceeds in
essentially the same way as above. Once again, the faces of the curved tetrahe-
dron are required to be flatly embedded, which implies the holonomies around
them have a form completely analogous to those in the spherical case (Eq.
(2.3)):

O�(P ) = exp{−a��n�(P ). �J}, (3.1)

where all the symbols are interpreted in the same manner, and the minus sign
is due to the negative sign of the curvature. A crucial fact about this formula
is that the holonomies are again in SO(3), and not in some other group with
different signature. The simple reason for this is that SO(3) is the group of
symmetries of the tangent space (at a point) of both S3 and H3.

We deduce the dihedral angles of the tetrahedron following similar rea-
soning to that of the previous section. The extra minus sign of Eq. (3.1) has
consequences only for the formulas that express the triple products of the nor-
mals in terms of connected traces (Eqs. (2.16), (2.21c)); the right-hand sides
of these equations should be multiplied by −1. The formulas for the dihedral
angles, which involve two normals, are only sensitive to the overall agreement
in sign of the triple products, which is granted in both the spherical and hy-
perbolic cases. This latter fact will be crucial in the following.

Once the dihedral angles have been calculated, the tetrahedron can be
straightforwardly reconstructed using the hyperbolic law of cosines:

cos Ĉ = −cosh

(

AB − cosh

(

AC cosh

(

BC

sinh

(

AC sinh

(

BC
, (3.2a)

cosh

(

AB =
cos Ĉ + cos Â cos B̂

sin Â sin B̂
. (3.2b)

Note the extra minus sign in the first equation. These formulas conclude the
list of ingredients needed for the reconstruction in the hyperbolic case.

In Sect. 5, however, we shall see that these ingredients are not quite
enough to cover all the possible hyperbolic cases naturally arising from the
closure equation. A new generalization of hyperbolic geometry has to be in-
troduced.

4. Spherical or Hyperbolic? The Gram Matrix Criterion

Up to now, we have described two possible reconstruction procedures, one for
spherical and one for hyperbolic tetrahedra. Nonetheless, the starting point
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we are proposing for the reconstruction theorem is the same closure equation,
Eq. (2.2). The natural question arises, whether there is an a priori criterion
to decide which type of tetrahedron one should reconstruct when given only
the four closing holonomies (and the choice of a special edge). There is such
a criterion. The key is the unambiguousness character of the dihedral angles
discussed above: once a sign (either for the moment) of the four triple products
has been fixed, the dihedral angles of the curved tetrahedron are uniquely
determined, irregardless of the curvature. But also, the dihedral angles encode
all the necessary information to reconstruct the full tetrahedron, including its
curvature. In this section, we briefly review how the curvature can be deduced
from the dihedral angles alone. While part of this is standard, it allows us to
introduce concepts and notation useful in the following section.

To begin, we reverse the logic, and suppose we are actually given a tetra-
hedron, flatly embedded in a space of constant positive, negative or null cur-
vature. Then, define its Gram matrix, as the matrix of cosines of its (external)
dihedral angles:

Gram�m := cos θ�m for � 	= m, and Gram�� := 1 ∀�. (4.1)

One of the main properties of the Gram matrix is that the sign of its determi-
nant reflects the spherical, hyperbolic, or flat nature of the tetrahedron:

sgn det Gram =

⎧
⎨

⎩

−1 if the tetrahedron is hyperbolic
0 if it is flat
+1 if it is spherical

. (4.2)

A straightforward way to understand this result is by embedding in R
4.

Let us start from the flat case, the simplest one. In this case, the parallel
transport is trivial and Gram(flat)

�m = �n� · �nm = δijn
i
�n

j
m. By introducing the

four 4-vectors N� = (0, �n�), one can write the Gram matrix in terms of the
4 × 4 matrix N whose components are Nμ

�, where Greek letters denote the
4-vector index. Thus, one obtains:

det Gram(flat) ≡ det NT N = (det N)2 = 0. (4.3)

The last equality follows from the obvious fact that the N� are not linearly
independent, since they are just four 3-vectors in disguise. Nonetheless, these 4-
vectors have a useful geometric interpretation; imagine the tetrahedron as em-
bedded in the model space E3

U ⊂ R
4 orthogonal to the 4-vector U := (1, 0, 0, 0).

Then, each N� is the 4-normal to another hyperplane in R
4 that picks out a

face of the tetrahedron when it intersects E3
U orthogonally. This is depicted

in one lower dimension in Fig. 6, where it is also clear that the (cosine of
the) hyper-dihedral angle δμνNμ

� Nν
m is equal to the (cosine of the) tetrahe-

dron’s dihedral angle θ�m. Note that in this case, using the Euclidean (δμν) or
Lorentzian metric (ημν = diag(−1, 1, 1, 1)) does not make any difference, since
N0

� = 0. This reflects the fact that the flat case is a degenerate version of both
the spherical and hyperbolic geometries.
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In the spherical case, one embeds the tetrahedron into the unit sphere
S3

u ⊂ R
4. The �-th face of the curved tetrahedron will then lie on a great 2-

sphere of S3
u identified by the intersection of the unit sphere with a hyperplane

passing through the origin of R
4 and orthogonal to the 4-vector N� (we use

the same symbol as in the flat case). Once more, the (cosine of the) hyper-
dihedral angle δμνNμ

� Nν
m is equal to the (cosine of the) dihedral angle θ�m

between the faces � and m of the tetrahedron (provided orientations are chosen
consistently). This fact gives the relation

Gram(sph)
�m = δμνNμ

� Nν
m, (4.4)

from which it follows

det Gram(sph) = (det N)2 > 0, (4.5)

where the zero value has been excluded because it would correspond to a
degenerate tetrahedron, which we will not treat here.

The easiest way to understand the hyperbolic case (see Fig. 6) is in terms
of a “Wick rotation” of the spherical one. One obtains

Gram(hyp)
�m = ημνNμ

� Nν
m, (4.6)

from which it follows

det Gram(hyp) = (det η)(det N)2 < 0, (4.7)

Figure 6. A one-dimension lower representation of a flat,
a spherical, and a hyperbolic tetrahedron as embedded in
E3

U ⊂ R
4, S3

u ⊂ R
4, and H3

u ⊂ R
4, respectively. The lower

picture shows a section of the hyperbolic case to highlight the
Lorentzian representation used for the hyperboloid
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since det η = −1. Here too, the zero value has been excluded because it cor-
responds to degenerate cases. The new metric is needed because the Euclid-
ean normals to the planes that intersect the unit hyperboloid H3

u ⊂ R
4 are

not tangent to the hyperboloid at the points of contact, and therefore the
Euclidean scalar product between these normals does not reproduce the tetra-
hedron’s Gram matrix. Related to this, there is the fact that the hyperboloid
of Fig. 6 has negative curvature only when calculated within the Lorentzian
metric (time direction pointing upwards in the figure).

Interestingly, there is a direct way to calculate the sign of the determi-
nant of the Gram matrix just in terms of the holonomies O� and the choice
of a special edge. We are free to choose the special vertex 4 of the curved
tetrahedron to be located at the north pôle of S3

u (or of H3
u, respectively), in

which case N� = (0, �n�) for � ∈ {1, 2, 3}, where the �n� are determined up to a
global sign by the procedure discussed in the previous section. The last three
components of N4 are then completely determined by the equations

cos θ4� = Gram4� = gμνNμ
4 Nν

� = δijN
i
4N

j
� , with � 	= 4, (4.8)

where cos θ4� is given by Eq. (2.14) and gμν can be either δμν or ημν . Explicitly:

N i
4 =

1
(�n1 × �n2) · �n3

[cos θ41 �n2 × �n3 + cos θ42 �n3 × �n1 + cos θ43 �n1 × �n2].

(4.9)

Hence, using the condition that N4 must be of unit norm, in either the Euclid-
ean or the Lorentzian metric, it is easy to realize that the sign of the determi-
nant of the Gram matrix is given by

sgn det Gram = sgn(1 − δijN
i
4N

j
4 ). (4.10)

Now that we have been able to determine a priori the nature of the curved
tetrahedron, we can run the correct form of the reconstruction according to
whether the holonomies turn out to be associated with a non-degenerate spher-
ical (det Gram > 0) or hyperbolic (det Gram < 0) geometry. If det Gram = 0,
our equations should be interpreted as some sort of degenerate spherical or
hyperbolic geometry, which we do not attempt to reconstruct. Indeed, they
cannot correspond to a flat tetrahedron, because in that case all holonomies
should be trivial, irregardless of the shape of the tetrahedron!

In conclusion, notice that one can attempt to reverse the logic presented
here, by taking the four hyperplanes identified by the N� as the primitive vari-
ables, instead of the tetrahedron. Doing so, the above construction identifies
in the spherical case not one but 16 different tetrahedra on S3

u, with antipodal
pairs congruent.3 The way we have defined the Gram matrix picks out only
one of these tetrahedra, the one for which all four normals induced by the N�

are outgoing. Choosing one among these 16 tetrahedra is somewhat analogous
to fixing the signs of the four triple products discussed in the previous section.
Also, it is interesting to note that in the flat case this multiplicity does not

3 To visualize this, it is easier to think of a 2-sphere cut by three planes passing through its
centre: it gets subdivided into eight triangles.
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appear, provided the tetrahedra “opened up towards infinity” are disallowed.
What about the hyperbolic case? On the (one sheeted-)hyperbolid, the situ-
ation is analogous to the flat case; however, by looking at the hyperboloid as
a sort of analytical continuation—we do not intend to be precise about this
claim—of the sphere, one might expect to find again a remnant of the 16-fold
multiplicity. A moment of reflection shows that the tetrahedra crossing the
equator in the spherical case are “broken up” into two pieces, both extending
to infinity, and contained in the two separate sheets of the two-sheeted hyper-
boloid. In the next section, we shall see why these two-sheeted tetrahedra are
of interest for the curved reconstruction theorem.

5. Two-Sheeted Hyperbolic Tetrahedra

A well-known result, easily deduced from the Gauß-Bonnet theorem, is that
the area of an hyperbolic triangle cannot be larger than π and is given by
a = π − ∑3

n=1 αn ≤ π, where αn are the triangle’s internal angles. (We use a
throughout for triangle areas and rely on context to distinguish the geometry
as spherical, hyperbolic or Euclidean.) The bound is saturated by ideal trian-
gles, i.e. triangles with vertices “at infinity”. Nonetheless, an SO(3) element
representing a rotation around some fixed oriented axis is generally between 0
and 2π, which means that the areas encoded in the holonomies O� generally
range over these values. Spherical triangles achieve this full range of areas, but
standard hyperbolic triangles do not. Is there something forcing the areas to be
smaller than π when the determinant of the Gram matrix, seen as a function of
the four holonomies, is negative? It is not hard to find examples showing that
there is not. Consequently, we need to make sense of hyperbolic tetrahedra
with face “areas” in the full range (0, 2π). Inspired by the observations at the
end of the previous section, we look to use triangles stretching across the two
sheets. The aim of this section is to describe these new two-sheeted hyperbolic
triangles and tetrahedra.

We start with the two-dimensional triangles. In Figs. 7 and 8, we have
illustrated what we mean by a two-sheeted triangle, and how to orient them.
The key idea is to use the planes passing through the origin of the embedding
space R

3 to extend the geodesics beyond infinity to the other sheet, and to use
the natural orientation of the hyperbolae provided by Lorentz boosts which is
also consistent with the orientation induced by that of the planes. Figures 7 and
8 represent a two-dimensional hyperbolic geometry, and hence the geometry
of the faces of a hyperbolic tetrahedron. In three dimensions, the Beltrami–
Klein disk model becomes a three-ball model, in which the two-dimensional
hyperboloids where the faces of the tetrahedron lie are mapped onto flat disks
inscribed in the three-ball; it is one of these that is pictured.

The area of a two-sheeted triangle, however, is not just larger than π, it is
actually infinite. Nonetheless, what appears implicitly in the closure equation is
not the area of the triangle, but the total deficit angle perceived by an observer
going around it. In an homogeneously curved geometry, this happens to be
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Figure 7. The two-sheeted hyperboloid and triangle. Left
A plane passing through the origin of the embedding space
R

3 (light grey) intersects the hyperboloid along two geodes-
ics. The dark grey disk gives the Beltrami–Klein model of
two-dimensional hyperbolic space. Geodesics on the hyper-
boloid are mapped onto straight lines of the Beltrami–Klein
disk (dashed lines). In contrast to the Poincaré disk model,
the Beltrami–Klein model does not preserve angles. Centre
and right In dark grey, a two-sheeted triangle. The right-most
figure shows the two Beltrami–Klein disks as seen from the
origin of R

4; therefore, a positively oriented triangle has a
right-handed downward pointing orientation with respect to
the plane of the page. The central, one-sheeted triangle in the
lower sheet is shaded for future reference

proportional to the area. Therefore, by defining a notion of holonomy around
a two-sheeted triangle, we effectively provide a notion of “renormalized” area
for these triangles. At the end of this section, we briefly comment on how far
this idea can be pushed.

To define a holonomy around a two-sheeted triangle, it is enough to give
a prescription for the parallel transport through infinity from one sheet to the
other. In other words, one needs to identify the tangent spaces at the point
P and P ′ on the boundaries of the two Poincaré or Beltrami–Klein disks, or
balls in three dimensions. However, given a geodesics and its extension to the
other sheet, there is a very natural prescription for the identification of the
aforementioned tangent spaces (see the left columns in each panel of Fig. 9, as
well as Fig. 7).

This requires that: (i) the velocity vector along the a geodesic going out
to infinity is identified with the incoming velocity vector on the geodesic’s
continuation, (ii) the vector normal to the outgoing geodesic and pointing
towards the interior of a two-sheeted triangle is identified with the only vector
with both these properties at the entering point of the incoming geodesics on
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Figure 8. Another representation of a two-sheeted triangle.
In the central image, the shape of the actual hyperbolic tri-
angle is highlighted. On the sides we represent the triangle in
both the Poicaré and Beltrami–Klein models. The Poincaré
model has the virtue of preserving angles, while the Beltrami–
Klein model represents geodesics via straight lines and are eas-
ily recovered via the intersecting-plane construction shown in
the previous picture

the other sheet. The second requirement simply preserves the notions of in
and outside. In the embedded picture, it requires the vector normal to the
geodesic to lie on the same side of the hyperplane defining the geodesic itself.
Notice that by orienting the normals to the upper and lower sheets as future
and past pointing, respectively, the three-dimensional frame composed by the
velocity, the normal vector to hyperplane, and the normal to the hyperboloid
preserves its orientation thanks to this requirement. This construction can be
generalized to the three-dimensional two-sheeted hyperboloid, by considering
the normals to the flatly embedded surfaces defining the faces of the two-
sheeted tetrahedron instead of the normal to the geodesic arcs defining the
sides of the two- sheeted triangles.

Does the identification of P and P ′ and their tangent spaces obtained
while moving along a given geodesic induce an identification of the boundaries
of the two Beltrami–Klein disks (balls)? No. The reason is shown in the right
columns of each panel of Fig. 9: a point P on the upper sheet is identified with
different points on the lower sheet depending on the geodesics through which
the point is reached. Therefore, specializing to the relevant three-dimensional
case, the parallel transport prescription we give, instead of identifying the
boundaries of the two balls ∂BK3

Upper and ∂BK3
Lower, provides a 1-to-1 map

between the spaces ∂BKUpper × S2 and ∂BKLower × S2. Here, S2 labels the
space of geodesics based at a point on ∂BKUpper,Lower.
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Figure 9. The identification across the two sheets of bound-
ary points along the same geodesics. The right column of each
panel shows what happens when Q, belonging to a different
geodesics, is let “collapse” onto P : the point P has to be iden-
tified with two different points according to which geodesics
they belong to. In this sense, one is not allowed to think of
“gluing” the two disks together to perform the identification.
The arrows show how a frame is parallel transported across
the two disks. Arrow 2 represents the projection onto the disk
of a normal to the plane of Fig. 7

Having fixed the parallel transport prescription, finding the holonomy
around a triangle is just a matter of calculation. A particularly simple way to
find the holonomy in the standard case is to note that the parallel transport
along a geodesic is trivial, and the only non-trivial contributions come from
the “kinks” at the vertices of the triangle. Pleasantly, this remains true here
because nothing happens when parallel transporting a frame across the two
sheets. If the triangle lies completely within one sheet (or on the surface of a
sphere), each kink contributes to the final holonomy with a rotation (around
the normal to the surface) through an angle −α̃, where α̃ is the angle between
the velocity vectors before and after the kink. After circuiting a triangle, the
total rotation amounts to −

(
3π − ∑3

n=1 αn

)
, with αn = π − α̃n being the

internal angles of the triangle. Then, in the case of a spherical triangle, we
simply obtain its area (modulo 2π) a =

(∑3
n=1 αn − π

)
. Similarly, for a one-

sheeted hyperbolic triangle, we obtain (again modulo 2π) minus its area a1s =(
π − ∑3

n=1 αn

)
. However, if the triangle is hyperbolic and two-sheeted, we

define its “renormalized” area through the parallel transport prescription we
just outlined, obtaining the formula:

a2s := 3π −
3∑

n=1

αn. (5.1)
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To avoid confusion, we will call a2s the holonomy area of the two-sheeted
triangle. This area is in the range a2s ∈ (0, 2π). To show this note that the
internal angles of the two-sheeted triangle are related to those of the unique
(up to congruence) one-sheeted triangle identified by continuing its geodesic
sides, see the rightmost, lower panel of Fig. 7, where the relevant one sheeted
triangle is dashed. Calling the angles of the latter triangle α, β, and γ, where
γ is the only angle the two triangles have in common, and its area a1s, one
finds:

a2s = 3π − (π − α) − (π − β) − γ = π + α + β − γ

= 2π − a1s − 2γ (5.2)
= a1s + 2α + 2β,

where the expression in the second line is manifestly less than 2π, while the
expression in the third line is manifestly positive. The same result could have
been obtained using the simple observation that the holonomy area of a (nec-
essarily two-sheeted) hyperbolic lune of width γ is ahyp.lune = 2π − 2γ (to
be compared to the spherical case: asph.lune = 2γ). We observe that the ho-
lonomy areas only make sense modulo 2π, and can only be calculated for
regions whose boundaries are arbitrarily well approximated by piecewise geo-
desics lines. Consequently, it is not possible to make sense of the holonomy area
of a full hyperbolic sheet, and the total area of the two sheets is zero, since it
is “enclosed” by the trivial loop. Nonetheless, given that the starting point of
our reconstruction theorem are the holonomies themselves, and not arbitrary
regions of the two-sheeted hyperboloid, these definitions are appropriate and
useful.

The generalization of this construction to higher dimensions, and in par-
ticular to two-sheeted tetrahedra, is straightforward: these tetrahedra are re-
gions of the two-sheeted 3-hyperboloid identified by four points on it, the
vertices, and delimited by the intersections of the hyperboloid with the hy-
perplanes generated by triplets of vertex 4-vectors. Note that to completely
characterize the tetrahedron, one has to specify the orientations of the planes.

6. Curved Minkowski Theorem for Tetrahedra

Now, that the geometric picture has been clarified, we can state and finally
prove the curved Minkowski theorem for tetrahedra. When we want to em-
phasize that the Gram matrix can be calculated directly from the holonomies
{O�}, e.g. using Eq. (2.21b) and related expressions, we write Gram(O�).

Theorem 6.1. Four SO(3) group elements O�, � = 1, . . . , 4 satisfying the clo-
sure equation O4O3O2O1 = e, can be used to reconstruct a unique generalized
(i.e. possibly two-sheeted in the hyperbolic case) constantly curved convex tetra-
hedron, provided:

(i) the {O�} are interpreted as the Levi–Civita holonomies around the faces
of the tetrahedron,
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(ii) the path followed around the faces is of the so-called “simple” type (see
Sect. 2), and has been uniquely fixed by the choice of one of the two couples
of faces (24) or (13),

(iii) the orientation of the tetrahedron is fixed and agrees with that of the paths
used to calculate the holonomies,

(iv) the non-degeneracy condition det Gram(O�) 	= 0 is satisfied.

The uniqueness is understood to be modulo isometries.

In particular, condition (i) means that the O�’s written in the form
exp{±a��n� · �J} have the following geometrical interpretation: (1) the a� are the
areas of the faces of the tetrahedron (possibly interpreted as holonomy areas),
and (2) the �n� are the outward pointing normals to these faces when paral-
lel transported (along the simple path chosen) to a common reference frame.
Also, it turns out that: (3) the tetrahedron has positive (negative) curvature
if det Gram(O�) > 0 (det Gram(O�) < 0, respectively); (4) the tetrahedron is
double-sheeted if it has a negative curvature and the cofactors of the Gram ma-
trix do not agree in sign. The proof is an extension of the formalism appearing
at Eq. (6.6) below.

Observe that the four conditions to be satisfied for the theorem to hold
have distinct characters: condition (i) is key to the theorem, it allows its geo-
metric interpretation; condition (iii) is simply needed to avoid the possibility of
reconstructing the parity reversed tetrahedron as well; condition (iv) is tech-
nical and, unfortunately, can be cumbersome from the point of view of the
holonomies, since the Gram matrix is a nice object geometrically speaking,
but not as simple algebraically; finally, condition (ii) has a somewhat strange
status. Indeed, a condition of this type is certainly needed to take care of the
parallel transport ambiguities present in the curved setting, but at the same
time the specific form we are employing looks quite arbitrary—even if inspired
by a simplicity criterion—and in principle can be modified to other choices
of paths, which would, in turn, require a few somewhat obvious modifications
in the reconstruction procedure. The simple-path condition naturally arises in
the four-dimensional context of [17,18].

Before giving the proof of the main theorem, we give a short proof of a
useful lemma:

Lemma 6.2. The principal minors of Gram are positive, with the exception of
the 4 × 4 minor in the hyperbolic case.

Proof. The 1 × 1 principal minors are immediate, since each is equal to 1.
The 2 × 2 minors are also easily seen to be positive since they are equal to
(1−cos2 θ�m), for the appropriate choice of indices (�,m). Finally, to show that
also the 3 × 3 minors are all positive, consider first the case of the principal
minor m4 equal to the determinant of the matrix obtained by erasing row and
column 4 from Gram:

m4 = det(�n�.�nm) = [det(�n1|�n2|�n3)]2 (6.1)
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where the unit vectors �n� are those appearing in Eqs. (2.3) and (3.1) (with
signs fixed by the triple product criterion),4 and the matrix appearing at the
furthest right is the matrix which has the three 3-vectors �n� as columns. In
light of this formula, m4 is trivially positive. The same holds for m2. A little
more effort is needed to prove that m1 and m3 are also positive. Explicitly:

m3 = det

⎛

⎝
1 �n1.�n2 �n1.�n4

1 �n2.O1�n4

SYM 1

⎞

⎠ = [det(�n1|�n2|O1�n4)]2, (6.2)

where in the first equality we used the definition of Eq. (2.14), which takes
into account the parallel transport of �n4 to vertex 4 along the special edge;
while in the second we made use of the fact that O1�n1 = �n1, and therefore
�n1.�n4 = �n1.O1�n4. Therefore, m3 is positive. It can be shown that m1 is positive
by a very similar argument. �

The proof of the theorem proceeds in a completely constructive way, and
without loss of generality, it is performed within the explicit choice of edge
(24) being the special one. Most of the steps necessary for the reconstruction
were explained in great detail in Sect. 2, and will not be discussed again. Our
attention is focused on the well definedness and unambiguous statement of
each step of the reconstruction. We will also prove the consistency of the
reconstruction procedure. Therefore, the theorem is subdivided into two parts:
in the first, we show that the O�’s uniquely identify a Gram matrix that, in
turn, is associated to a unique curved tetrahedron; in the second part, we show
that the Levi–Civita holonomies around the four faces of the tetrahedron are
necessarily given by the O� themselves. Loosely speaking, in the first part, we
extract from the closure relation and the simple-path condition the dihedral
angles of a tetrahedron which uniquely determine it, and in the second we
verify that the areas of the reconstructed tetrahedron are necessarily the same
as those encoded in the initial group elements O�.

Proof.
Part One First, calculate the triple products appearing in Eq. (2.17) using
the group elements via Eq. (2.21c) (properly generalized in the way discussed
in the first section for {�,m, q} = {1, 2, 4} or {2, 3, 4}), and fix the signs ±�

appearing there by requiring these four triple products to be positive (note that
there is only one such choice). Geometrically, this completely fixes the signs
of the normals by imposing the convexity of the tetrahedron.5 This allows the
unambiguous specification of the entries of the (putative) Gram matrix

Gram�m := cos θ�m for � 	= m, and Gram�� = 1, (6.3)

4 In the hyperbolic case, the triple product criterion described at the beginning of Theorem
6.1 gives the �n� signs opposite to the geometric ones. However, the Gram matrix is unaffected
by this global change in sign.
5 Note that the so reconstructed normals would turn out to have the opposite sign with
respect to the geometric ones in the hyperbolic case. This global flip in the sign of the
normals does not compromise any of the following steps.
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with the right-hand side of the first equation being calculated via Eq. (2.21b)
and its generalization for {�,m} = {2, 4}. We stress that Gram is a function
of the O�’s only. Now,

either sgn det Gram > 0, or sgn det Gram < 0, (6.4)

since the null case has been excluded by hypothesis. Define the 4 × 4 matrix
g = diag(sgn det Gram, 1, 1, 1), to be interpreted as the metric of the four-
dimensional embedding space as described in Sect. 4. Then, there exist four
4-vectors N� such that

Gram�m =
∑

μ,ν

gμνNμ
� Nν

m, (6.5)

or more symbolically Gram = NT gN . In particular, gμνNμ
� Nν

� = 1, and the
four 4-vectors N� can be interpreted geometrically as the oriented unit normals
to the hyperplanes passing through the origin of R

4 which, upon intersection
with the unit sphere S3

u ⊂ R
4 (unit two-sheeted hyperboloid H3

u, respectively),
identify the great spheres (great hyperboloid, respectively) bounding the tetra-
hedron itself. See the figures and discussion of Sect. 4.

The vertices of the tetrahedron are located along the intersections of the
triplets of hyperplanes normal to the N�. Hence, the matrix W := −(N−1)T

has columns W� proportional to the 4-vectors identifying the vertices of the
tetrahedron (the minus sign in this formula fixes the correct sign of the vertex
vectors). We define V� := W�/

√|(W�)T gW�|. In the spherical case, the vertex
vectors V� completely characterize the tetrahedron; they identify four points
on the unit sphere S3

u that can be connected by the shortest geodesic segments
between them. However, in the hyperbolic case, it is not a priori clear that the
V� intersect the two-sheeted unit hyperboloid H3

u. Indeed, for them to do so,
they must be timelike, that is they must satisfy V T

� ηV� = −1. However, this is
equivalent to the condition WT

� ηW� < 0, which in turn must be true because
of the following relations and the result of lemma 6.2 (which states m� > 0 for
all �):

(W�)T ηW� = (WT ηW )�� = ((NT ηN)−1)��

= (Gram−1)�� = (det Gram)−1m� < 0, (6.6)

where, recall, m� is the principal minor obtained by erasing row and column 4
from Gram. To obtain the last equality, the fact is used that being a diagonal
minor, m� is also equal to the (�, �)-th cofactor of Gram. Therefore, we can
conclude that also in the hyperbolic case a unique generalized (i.e. possibly
two-sheeted) tetrahedron can be identified. It suffices to define the “shortest”
geodesic between two vertices as the generalized geodesic (i.e. possibly going
through infinity) that does not pass through any point defined by the intersec-
tion of the hyperboloid and three of the four hyperplanes normals to the {N�}
other than its initial and final points. This concludes the first part of the proof.

Part Two The group elements O� and closure relation Eq. (2.2) specify more
data than the Gram matrix alone. Thus, we have to verify the consistency of
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all of this data. Indeed, the construction from part one guarantees only that
the dihedral angles of the reconstructed tetrahedron are compatible with the
holonomy group elements O�, but not that the reconstructed areas also match
those encoded in the O�. More specifically, we have claimed that the O� can
be interpreted as holonomies of the Levi–Civita connection around the various
faces of the tetrahedron, and this implies (see Sects. 2, 5) that the rotation
angles of the O� are the areas of the faces of the tetrahedron. We now prove
this claim.

Given the reconstructed tetrahedron, one can explicitly calculate the
holonomies along the specific simple path on its 1-skeleton used in the recon-
struction. Call these the reconstructed holonomies, Õ�. Although they satisfy
Õ4Õ3Õ2Õ1 = e, and their 4-normals satisfy Ñ� = N� by construction, it is
not yet clear whether the Õ� are necessarily equal to the O� (up to global
conjugation, i.e. gauge). Demonstrating this is what we mean by showing con-
sistency of the reconstruction. We once more proceed constructively, and show
that both �̃n� = �n� and ã� = a�, in the notation of Eqs. (2.3) and (3.1). We
will show that the Gram matrix and the closure equation contain all the infor-
mation needed to completely fix the Õ�. Because the Õ� and the O� have the
same Gram matrix, we will briefly drop the distinction and omit the tildes.

First align �̃n3 with �n3 by acting with a global rotation (conjugation). A
second global rotation around the �n3-axis can be used to align �̃n1 with �n1;
this is always possible because �̃n1.�̃n3 = G̃ram13 = Gram13 = �n1.�n3. Now,
the system is completely gauge-fixed and there is no further freedom to rotate
the vectors. The vector �n2 has a fixed angle with both �n1 and �n3, determined
by Gram12 and Gram23, and there are a priori at most two vectors with this
property (identified by the intersection of two cones around �n1 and �n3, respec-
tively). However, only one of those satisfies the additional requirement that
(�n1×�n2).�n3 > 0, which was crucially used in the reconstruction.6 Similarly, �n4

is also uniquely determined. All that remains then is to show that the entries
of the Gram matrix completely fix the areas.

Consider Gram24 = �n2.O1�n4. Since �n1, �n2, and �n4 are all given, there
exist at most two values of a1 (in the interval (0, 2π)) that solve this equation
(geometrically this is again the intersection of two cones). The triple product
condition (�n2 ×�n1).O1�n4 > 0 singles out one of these two solutions. Similarly,
one fixes a3 using the analogous expression Gram24 = �n2.O−1

3 �n4 and (�n3 ×
�n2).O−1

3 �n4 > 0. To conclude, we need to show that a2 and a4 are completely
determined.

Consider the closure equation O′
4O

′
3O

′
2O

′
1 ≡ (O−1

3 O4O3)O2O1O3 = e,
where we identify O′

4 ≡ O−1
3 O4O3, O′

3 ≡ O2, and so on. We have completely
fixed O1 and O3, as well as n2 and n4. The remaining unknowns are a2 and
a4. In the language of the new closure, one needs only to determine a′

3 and a′
4.

The Gram matrix of the new closure is the same as the previous one if edge

6 Notice, that existence in not in question, since it is guaranteed by construction. Only
uniqueness needs an argument.



Vol. 17 (2016) Encoding Curved Tetrahedra in Face Holonomies 2027

(24)′ is selected as the new special edge, and is therefore completely known.
Following the same construction then we can fix a′

1 and a′
3, but these are,

respectively, the same as a3 and a2. Therefore, we have fixed a2.7 Now, that
only one variable is left, an explicit use of the closure equation clearly fixes it
uniquely, by giving explicit expressions for both cos a4 and sin a4. �

Note that in the second part of the theorem, the spherical and the hyper-
bolic cases (even the two-sheeted one) are treated uniformly. In fact, once the
details of the reconstructed tetrahedron are given, one only needs a parallel
transport rule (and a path) to write down a closure equation and associate it
to a Gram matrix consistent with the reconstruction. This works straightfor-
wardly in each of the cases.

7. Curved Tetrahedra, Spherical Polygons,
and Flat Connections on a Punctured Sphere

In the first part of this paper, we have shown how four SU(2) holonomies sat-
isfying a closure constraint (and a non-degeneracy condition) give rise to the
geometry of a curved tetrahedron embedded in either S3 or H3. This closure
admits at least two other interpretations: the non-trivial holonomies of a flat
connection on a quadruply punctured 2-sphere satisfy such a closure; and this
constraint can also be associated to the four sides of a geodesic polygon embed-
ded in S3 ∼= SU(2). The flat-connection viewpoint is important, has attracted
much attention in the literature, and is closely connected to the motivations
for our work (see [17] and in particular [18]).

The moduli space of flat connections on a punctured Riemann surface
has a natural phase-space structure [35–37] that can be deduced, for example,
via gauge-theoretic arguments. In this framework, the final, finite-dimensional
phase space is obtained after a reduction by the infinite-dimensional gauge
symmetries of the initial theory. A completely finite-dimensional approach to
the problem was put forward by Anton Alekseev et al. [38–40], who built
generalized phase-space structures associated to each puncture and handle of
the Riemann surface. These spaces are then “fused” together to obtain the
usual phase-space structure, after a further reduction by a global topological
constraint. These generalized structures are well adapted to the polygonal
interpretation of the closure constraint, and allow the association of a natural
phase-space to the polygons in S3 of fixed side lengths. This was the content of
the work of Thomas Treloar [10], who generalized the previous constructions
of phase spaces of polygons on E3 [3] and H3 [41] to the compact space S3.
The novelty of the work of Alekseev and collaborators, which is reflected in
the spherical-polygon case, is the fact that one is forced to abandon Poisson
structures and to step into the realm of quasi -Poisson structures, for which
the Jacobi identity is violated by a specific term.

7 Again we do not discuss existence of these solutions, only their uniqueness, since existence
was covered in the proof’s first part.
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The violation of the Jacobi identity is quite a drastic change, but it cannot
be avoided if you are to introduce genuinely group-valued moment maps [38–
40]. Indeed, in Alekseev and collaborators’ framework, the topological (closure)
constraint is equivalent to fixing the total, group-valued momentum of the
system to the identity; this is closely analogous to the standard procedure
of setting the relevant algebra-valued momentum to vanish when it generates
gauge transformations. In this language, the generalized closure constraint is
better understood as a deformation of the Gauß constraint of gauge theories,
see also the discussion of spin networks in Sects. 1 and 12. Interestingly, the
violation of the Jacobi identity becomes irrelevant after the reduction to the
gauge invariant space is performed.

We believe these fundamental ideas about symmetry may provide an im-
portant qualitative shift in thinking about the cosmological constant in physics
[17,18]. So, in this part of the paper, we present this material as constructively
and intuitively as we can and whenever possible connect the mathematical
formalism to the physicists’ language. Our focus will be on the tetrahedral in-
terpretation of the closure constraint, which is a novel feature of our work, and
hence many considerations specific to this interpretation will be put forward.
In particular, our interpretation of the phase space we construct is in terms of
a phase space of shapes for curved tetrahedra.

A peculiar feature of our construction, seemingly coincidental, is that for
SU(2) it happens that the Jacobi identity is actually satisfied also at the level
of a single puncture’s generalized phase space.

8. Quasi-Poisson Structure on SU(2)

Before considering the phase space of curved tetrahedra, we start with the
simpler problem of defining a quasi-Poisson structure for each face. This is
analogous to the construction of the phase-space structure on the moduli space
of flat connections on a punctured sphere out of the quasi-Poisson structures
associated to each puncture.

As mentioned in Sect. 1, an important feature of Minkowski’s construction
in the flat case is that the closure constraint is also the generator of gauge
transformations at each node of the spin network, i.e. it is the generator of
rotations in the tetrahedral picture. In particular, each flux generates rotations
of the associated face vector. We want to reproduce this feature with the curved
tetrahedra. To do so, we need to formalize the flat case.

8.1. Review of the Flat Case

The group SU(2) acts on a three-vector �a ∈ R
3 via its vectorial (spin 1)

representation. This action can be cast as a Hamiltonian action generated by
the three vectors:

{ai, f(�a)} =
d
dt

f
(
e−tJi

�a
) ∣

∣
t=0

(8.1)
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for any function f : R
3 → R. Because (Ji)l

k = −εil
k, one immediately finds

{ai, f(�a)} = εil
kak ∂

∂al
f (�a) or {ai, ·} = εil

kak ∂

∂al
. (8.2)

Applying this to the function f(�a) = aj yields

{ai, aj} = εij
kak. (8.3)

However, it is useful to explore this result from a slightly different perspective.
Identify R

3 with the dual su(2)∗ of the Lie algebra su(2), via �a �→ α := �a.�η,
where ηi ∈ su(2)∗ is dual to the basis τi ∈ su(2):

〈ηi, τj〉 = δi
j , where [τi, τj ] = ε k

ij τk. (8.4)

The action of SU(2) on R
3 is mapped into the coadjoint action of SU(2) on

su(2)∗:

αG := (G ��a).�η = �a.(Ad∗
G−1�η) = Ad∗

G−1α. (8.5)

The vector field ysu(2)∗ associated to an infinitesimal transformation is

ysu(2)∗ = 〈−ad∗
yα, ∂α〉 = 〈α, ady∂α〉 = 〈α, [y, τl]〉 ∂

∂al
= ε k

il yiak
∂

∂al
(8.6)

where y ∈ su(2) is the infinitesimal version of G, and ∂α := τl
∂

∂al
is an su(2)-

valued vector field on su(2)∗. Hence, the Poisson brackets on R
3 that we wrote

above can be now interpreted as Poisson brackets on su(2)∗:

{〈α, y〉, ·} = ysu(2)∗ . (8.7)

The meaning of this equation is that the function 〈α, y〉 on su(2)∗ is the Hamil-
tonian generator of the coadjoint action in the direction of y ∈ su(2) on the
space su(2)∗.

Notice that in the latter approach the fact is put to the forefront that the
dual g∗ of a Lie algebra g carries a canonical Poisson structure induced by the
Lie brackets on g itself. This is a classical result due to Alexandr A. Kirillov
and Bertram Kostant [42,43].

We introduce some useful nomenclature and notation. Define the Poisson
bivector

P = Pij

(
∂

∂ai
⊗ ∂

∂aj
− ∂

∂aj
⊗ ∂

∂ai

)

(8.8)

so that

P (df,dg) := ι(P )(df ⊗ dg) := {f, g} ∀f, g ∈ C1(su(2)∗, R), (8.9)

where ι denotes contraction. The bivector P can also be interpreted as a map
from one-forms to vector fields; for this it is enough to contract it with a single
1-form. When viewing it as this map, we denote it P#:

P# : Ω1(su(2)∗) → X(su(2)∗), df �→ P#(df)

such that ι
(
P#(df)

)
dg = P (df,dg), (8.10)

where Ωn(M) is the space of n-forms on a manifold M and X(M) is the space
of vector fields on M .
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Now, we can rewrite Eq. (8.7) as8

P#(d〈α, y〉) = ysu(2)∗ . (8.12)

This formula tests the vector field generated by a linear function 〈α, y〉 of the
Hamiltonian generators of the group action α. The general case is9

P#(df(α)) =
∂f

∂ak
(τk)su(2)∗ ∀f ∈ C1(su(2)∗, R). (8.13)

and will be useful in generalizing to non-linear spaces of Hamiltonian genera-
tors.

If we are given a transformation to implement on su(2)∗, the right-hand
side of this equation is fixed via Eq. (8.6), while postulating its Hamiltonian
generators (the α themselves) fixes the argument of P#. These two pieces of
information, taken together, fix uniquely the Poisson bivector.

8.2. The Curved Case

We now adapt this constructive procedure to the curved case. That is, we will
deduce the appropriate bracket on the space of generalized SU(2) area vec-
tors by postulating both the way they transform and the generators of this
transformation. In analogy to the flat case, the transformation will act by con-
jugation and be generated by the SU(2) area vectors. Important modifications
to the flat construction are needed to fully implement this strategy. This will
lead us into the subtle realm of quasi -Poisson manifolds.

In the previous sub-section, it was natural to treat the area vectors as
elements of su(2)∗. Two steps are needed to promote them to elements of
SU(2): identify su(2)∗ with su(2) in a natural way, and then “exponentiate”
the result in some manner.

We use the Killing form on su(2), K(·, ·) to implement the first step.
Indeed, for any α ∈ su(2)∗, there exists a unique xα ∈ su(2) such that

〈α, y〉 = K(xα, y) ∀y ∈ su(2). (8.14)

Normalize K so that K(τi, τj) = δij , then Eq. (8.13) is essentially unaltered

P#(df(x)) =
∂f

∂xk
(τk)su(2) ∀f ∈ C1(su(2), R), (8.15)

except that the coadjoint action is mapped into the adjoint action of su(2) on
itself:

(τk)su(2) = 〈ηi,−adτk
x〉 ∂

∂xi
. (8.16)

8 Denote the inverse of P# (possibly after restriction to an appropriate subspace) by ω�:

d〈α, y〉 = ω�(〈−ad∗
yα, ∂α〉) = ι(〈−ad∗

yα, ∂α〉)ω, (8.11)

where ω ∈ Ω2. This is a well-known formula in the context of symplectic geometry. In a

slightly more general framework, it goes under the name of the moment map condition.
9 It is actually immediate to show that this condition is equivalent to the previous one by
the linearity of P#. The right hand side of this equation can be written in a coordinate free
way as 〈α, [∂αf, ∂α]〉, where again ∂α = τi

∂
∂ai

is an su(2) valued derivative on su(2)∗.
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To “exponentiate” this result, we need to find a vector field on the group
manifold generating the SU(2)-transformations of the face holonomies, i.e. the
analogue of (τk)su(2), and generalize the simple partial derivative of the func-
tion f to an appropriate vector field on the non-linear SU(2) group mani-
fold. The first task is simple, since conjugation of the SU(2) face holonomies
by elements of SU(2) generalizes the adjoint action of the group on its Lie
algebra:

AdH−1x � ADH−1G := H−1GH. (8.17)

The vector field implementing an infinitesimal transformation is

ysu(2)∗ = 〈ηi,−adyx〉 ∂

∂xi
� ySU(2) = yL − yR, (8.18)

where yR,L are, respectively, the right- and left-invariant vector fields on SU(2),
with the value y ∈ su(2) ∼= TeSU(2) at the identity.

More interesting is generalizing the derivative of the function f in the di-
rection associated to a basis element τk of the Lie algebra. There is no unique,
natural derivative (vector field) on the group SU(2) associated with the di-
rection τk. This is because the group is non-Abelian and hence non-linear.
In particular, derivatives in any direction y can be associated to either left
or right translations on the group, translating along yR and yL, respectively.
So, what is the appropriate combination ŷ of these two derivatives? Both yR

and yL reduce to the usual derivation in the flat (Abelian) limit. Interestingly,
the antisymmetry of the Poisson bivector P fixes this ambiguity, selecting
ŷ = 1

2 (yL + yR). Indeed, suppose ŷ = AyL + ByR, with A + B = 1 to assure
the correct flat limit. Then, for all functions f :

0 ≡ P (df ⊗ df) = P#(df)(df)

=
∑

k

(τ̂kf)((τk)SU(2)f)

=
∑

k

[
A(τk)L ⊗ (τk)L − B(τk)R ⊗ (τk)R

]
(df ⊗ df)

+ (B − A)
[
(τk)Lf · (τk)Rf

]

= (A − B)

{
∑

k

(τk)Lf · [
(τk)Lf − (τk)Rf

]
}

(8.19)

from which

A = B =
1
2
. (8.20)

We used the identity
∑

k(τk)L ⊗ (τk)L =
∑

k(τk)R ⊗ (τk)R.
Thus, we have obtained the following condition on the quasi-Poisson

bivector P on SU(2):

P#(df) =
1
2

[(
(τk)L + (τk)R

)
f
]
(τk)SU(2) ∀f ∈ C1(SU(2), R). (8.21)
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An equivalent condition, analogous to Eq. (8.13), does not explicitly rely on a
basis of su(2). To display this form, we need to introduce the Maurer–Cartan
forms of SU(2). These are 1-forms ϑL,R with values in the Lie algebra su(2)
defined by the equations ι(xL,R)ϑL,R = x, ∀x ∈ su(2). More conveniently, they
can be written (with matrix groups in mind) as

ϑL
∣
∣
H

= H−1dH ϑR
∣
∣
H

= dHH−1. (8.22)

Using these formulas, we can check that df =
[
(τk)L,Rf

]
ϑL,R

k , where ϑL,R =
τkϑL,R

k . Then, using the identity xL = (AdHx)R, and substituting y =
[
(τk)Rf

]

τk ∈ su(2), we obtain:10

P#
(
K(y, ϑR

∣
∣
H

)
)

=
1
2

[(1 + AdH−1)y]SU(2) ∀y ∈ su(2). (8.23)

From this equation and the non-degeneracy of the Maurer–Cartan forms, it
is clear that the quasi-Poisson bivector P has a kernel when (1 + AdH−1) is
non-invertible. In the case of SU(2), this is when H has the form exp(π�n.�τ).
We will return to this observation briefly.

To obtain a completely explicit formula for P , we coordinatize the group
SU(2). Coordinates on the Lie algebra are natural and allow comparison with
the flat case, in particular, making the flat limit easy to evaluate, so we use
the {ai}3i=1 as coordinates. In the fundamental representation

H = exp�a.�τ = cos
a

2
1 − i sin

a

2
�n.�σ (8.24)

and convenient intermediate quantities are

tH := Tr(H) = 2 cos
a

2
and �NH := Tr(H�τ ) = − sin

a

2
�n. (8.25)

By inserting f(H) = tH in Eq. (8.21), we obtain

P#(dtH) = Tr(Hτ k)(τk)SU(2) = − sin
a

2
nk(τk)SU(2). (8.26)

Now, observe that the action by conjugation of the group on itself exponenti-
ates naturally, becoming an action by conjugation at the level of the Lie alge-
bra. Therefore, the infinitesimal version of the action exp (aG)kτk =: HG :=
GHG−1 = exp�a.AdG�τ is, in our coordinates,

(aG)j = aiK(τj ,AdGτi) � ySU(2)a
j = aiK(τj , adyτi) = aiykεjki, (8.27)

and thus

ySU(2) = aiykεijk
∂

∂aj
. (8.28)

Substituting this into the formula for P#(dtH) and using �a = a�n, one finds

P#(dtH) = sin
a

2
nkaiykεijk

∂

∂aj
≡ 0 ⇒ P#(da) ≡ 0. (8.29)

This means that P is transverse to the radial coordinate in the coordinate
space.

10 Note that (τk)Lf = (AdHτk)Rf = (AdHτk)i(τi)
Rf = (AdH−1τi)k(τi)

Rf = [AdH−1y]k.
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Upon substituting f(H) = N i
H into Eq. (8.21) we find,

P#(dN i
H) =

1
2
[
Tr(Hτ kτ i) + Tr(τ kHτ i)

]
(τk)SU(2)

= −1
4
Tr(H)(τi)SU(2) = −1

2
cos

a

2
(τi)SU(2), (8.30)

and from the fact that P#(da) = 0 it is then immediate to deduce

P#(dak) =
a

2
ctg

a

2
aiεijk

∂

∂aj
. (8.31)

This gives, finally, the quasi-Poisson brackets on the group SU(2) in terms of
the logarithmic coordinates ak:

{
ai, aj

}
qP

=
a

2
ctg

a

2
εij

kak. (8.32)

This expression manifestly shows that the quasi-Poisson bivector is tangent
to and non-degenerate on the conjugacy classes of SU(2). This generalizes the
classical result that coadjoint orbits are the symplectic leaves of the dual of the
Lie algebra equipped with the canonical Kirillov–Kostant Poisson structure.
This is a particular case of a more general statement about foliations of quasi-
Poisson manifolds into non-degenerate leaves invariant under the group action
[40].

At this point, one might want to introduce a rescaling of the coordi-
nates ai, to see how the flat limit appears. Consider a homogeneously curved
geometry with radius of curvature r, then

H �rH = exp
�a.�τ

r2
. (8.33)

Since this is formally obtained by sending a �→ a/r2, Eq. (8.32) for r 	= 1 is

{ai, aj}r
qP := r−2{ai, aj}qP =

a

2r2
ctg

a

2r2
εij

kak, (8.34)

and

{ai, aj}r
qP

r→∞−−−→ εij
kak + O(r−2). (8.35)

The rescaling of the quasi-Poisson brackets {·, ·}qP �→ {·, ·}r
qP := r−2

{·, ·}qP makes the limit clean and can be achieved by a rescaling of the Killing
form appearing in the definition of ŷ: K(·, ·) �→ Kr(·, ·) := r2K(·, ·). Interpret-
ing the Killing form as a metric on the Lie algebra, this is equivalent to fixing
its scale to that of the geometric S3 (or H3). Notice, however, that this is not
a completely obvious feature, since this metric is a priori used to measure the
lengths of area vectors, and not geometrical distances.

The quasi-Poisson structure we have just defined has various interesting
features. First of all, even though the theory of group-valued moment maps
that leads to Eq. (8.21) generically gives quasi-Poisson brackets that violate the
Jacobi identity, in our case this does not happen. This surprise is because of the
choice of group, SU(2), and is probably not too significant; we are still forced
to use genuinely quasi-Poisson spaces. In the next section, it will become clear,
in particular, that the “fusion” of four face phase-spaces cannot be performed
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by simple tensor product, and needs further care. Other examples of this are:
the quasi-symplectic 2-form on the leaves tangent to the quasi-Poisson bivector
is not simply given by the inverse of its restriction; and the formula for the
quasi-symplectic volume also needs careful corrections, see Sect. 10.

9. Phase Space of Shapes of Curved Tetrahedra

The goal of this section is to put together the four quasi-Poisson spaces asso-
ciated to the faces of a curved tetrahedron, and to subsequently reduce this
quasi-Poisson space by the closure constraint H4H3H2H1 = e. Remarkably, the
reduced space obtained by “gluing” multiple quasi-Poisson spaces is eventu-
ally a symplectic space. Indeed, it is the moduli space of flat SU(2)-connections
on the four-times punctured sphere equipped with the symplectic 2-form in-
duced by the Atiyah–Bott 2-form [38,39]. The “gluing” procedure goes under
the name of fusion, and is more complicated than in the standard case of
Lie-algebra-valued moment-map theory. In the latter context, it is enough to
juxtapose the two Poisson manifolds each with its Poisson structure and to
consider a total moment map given by the sum of the two moment maps. For
example, in angular momentum theory, the total angular momentum is just
the sum of the two angular momenta. For quasi-Poisson manifolds, this is no
longer possible. The total moment map should be the product of the two mo-
ment maps, and since this operation is non-linear, one is forced to add a term
to the total quasi-Poisson bivector to ensure the moment map condition is still
satisfied in the fused space; i.e. to ensure that the total momentum generates
the same gauge transformation on the two subspaces. In other words, a twist
is needed to convert a non-linear operation (the product of two momenta) into
a linear one (the sum of the two vector fields generating the gauge transfor-
mations on each copy of the group). We turn now to making this statement
precise.

9.1. Fusion Product

Consider two copies of the group SU(2), i.e. the total quasi-Poisson space as-
sociated to two faces of the tetrahedron; by assumption, we require the total
momentum H2H1 to be the quasi-Hamiltonian generator of gauge transforma-
tions, i.e. rigid rotations, in the total space. (Here, we have in mind that we
eventually want the closure constraint H4H3H2H1 = e to generate rigid rota-
tions of the full tetrahedron.) Let us now be naive and take as a quasi-Poisson
bivector on the total space P ′ = P1 + P2, where P1,2 are the quasi-Poisson
bivectors defined on the first and second copy of SU(2), respectively, and let
us calculate the analogue of the left-hand side of Eq. (8.23):11

P ′#(
K(y, ϑR

∣
∣
H2H1

)
)

= P ′#(
K(y, ϑR

∣
∣
H2

+ AdH2ϑ
R
∣
∣
H1

)
)

11 To see that ϑR
∣
∣
H2H1

= ϑR
∣
∣
H2

+ AdH2ϑR
∣
∣
H1

, it is convenient to use ϑR
∣
∣
H

= dHH−1

and apply the Leibniz rule.
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= P#
2

(
K(y, ϑR

∣
∣
H2

)
)

+ P#
1

(
K(AdH−1

2
y, ϑR

∣
∣
H1

)
)

=
1
2

[
(1 + AdH−1

2
)y

]

SU(2)(2)
+

1
2

[
(1 + AdH−1

1
)AdH−1

2
y
]

SU(2)(1)
, (9.1)

where in the second step we used the linearity of P1,2 and the Ad-invariance
of K, and in the third one we used Eq. (8.23). This transformation has the
undesirable property that it treats the first and the second copies of the group
on a different footing.

To do better, and generalize Eq. (8.23), this formula should involve the
adjoint action associated to the product H2H1, in both factors on the right-
hand side. This is accomplished by introducing the bivector

ψ21 :=
1
2

∑

k

(τk)2 ∧ (τk)1, (9.2)

where (τk)� := (τk)SU(2)(�) indicates the vector field generating the action by
conjugation in the direction τk within the �-th copy of the group. Then,

ψ12
#

(
K(y, ϑR

∣
∣
H2H1

)
)

= ψ12
#

(
K(y, ϑR

∣
∣
H2

)
)

+ ψ12
#

(
K(AdH−1

2
y, ϑR

∣
∣
H1

)
)

=
1
2

∑

k

K
(
y, ι ((τk)2) ϑR

∣
∣
H2

)
(τk)1− 1

2

∑

k

K
(
AdH−1

2
y, ι ((τk)1) ϑR

∣
∣
H1

)
(τk)2

=
1
2

[
(1 − AdH−1

2
)y

]

SU(2)(1)
− 1

2

[
(1 − AdH−1

1
)AdH−1

2
y
]

SU(2)(2)
, (9.3)

where we used (τk)� = (τk)R
� −(τk)L

� , as well as yL = (AdHy)R. This calculation
shows that the correct “fused” quasi-Poisson bivector is

P2�1 = P2 + P1 + ψ21, (9.4)

because it satisfies the moment map condition

P2�1

(
K(y, ϑR

∣
∣
H2H1

)
)

=
1
2

[
(1 + Ad(H2H1)−1)y

]
SU(2)(2)×SU(2)(1)

, (9.5)

where ySU(2)(2)×SU(2)(1) = ySU(2)(2) + ySU(2)(1) .
Note that the fusion procedure brings the quasi -Poisson character of these

constructions to the forefront. In particular, the quasi-Poisson brackets on the
product space do not satisfy the Jacobi identity, and we see that the Jacobi
identity on a single copy of SU(2) only held by a fortunate coincidence, in
a sense due to the low dimensionality of the space. To be more specific, the
violation of the Jacobi identity is given by:

φ21 :=
1
12

εijk(τi)2×1 ∧ (τj)2×1 ∧ (τk)2×1, where (τi)2×1 = (τi)2 + (τi)1. (9.6)

Note also, that the fusion is not commutative, since ψ12 	= ψ21. This reflects the
fact that the group product itself is non-commutative and becomes even more
apparent when you iterate the process. However, it is a quick check that the
fusion product is associative. Then, the total quasi-Poisson space associated to
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the four faces of the tetrahedron is SU(2)⊗4 equipped with the quasi-Poisson
bivector

P�4 := P4�3�2�1

= P4 + P3 + P2 + P1 + ψ21 + ψ31 + ψ41 + ψ32 + ψ42 + ψ43. (9.7)

This quasi-Poisson bivector violates the Jacobi identity by a term φ4321 gen-
eralizing Eq. (9.6).

9.2. Reduction

All that remains is to find the space that results upon reduction by the closure
constraint

H4H3H2H1 = e. (9.8)

By construction, the total momentum H4 · · · H1 generates rigid rotations of the
tetrahedron, i.e. the diagonal conjugacy transformation:
H� �→ GH�G

−1 ∀�. At the end of Sect. 8, we noted that each quasi-Poisson
bivector is tangent to all the conjugacy classes of the various SU(2)(�); this fact
is unchanged by introducing the ψ�m. This allows us to restrict attention to
the space of shapes of tetrahedra with fixed areas, the area corresponding to
the conjugacy class of the group element characterizing that face. The invari-
ance under diagonal conjugation implies that the coordinates on the reduced
space are invariant functions under this action. And, finally, a simple counting
shows that the reduced space is generically two-dimensional:

4 × (dim SU(2) − 1) − dim SU(2)closure − dim SU(2)gauge = 2, (9.9)

where (dim SU(2) − 1) is the generic dimension of a conjugacy class in SU(2),
the second term accounts for the closure constraint and the last mods out
the transformations generated by this constraint. This is essentially the same
counting as in the flat case.

Then, we can coordinatize the reduced phase space by any two indepen-
dent conjugation-invariant functions of the H� (both distinct from the traces
of H�). The most natural choice seems to be a couple of functions of the
type {Tr(H2H1),Tr(H4H3}. Had we chosen such coordinates, the (quasi-)
Poisson bracket between them in the reduced space would simply be the
one induced by the quasi-Poisson bivector P�4: {Tr(H2H1),Tr(H4H3)}red ≡
{Tr(H2H1),Tr(H4H3)}�4. Although this procedure for defining the reduced
phase space is perfectly admissible, it does not lead to a pair of conjugate vari-
ables. To find those, it is more convenient to ask the following question: what
is the (quasi-)Hamiltonian flow generated by Tr(H2H1)? Since the reduced
space is two-dimensional, the answer to this question will immediately reveal
the conjugate variable to Tr(H2H1), in the form of the flow parameter.

For notational convenience, let us introduce

Δ21 := Tr(H2H1) = 2 cos
a2

2
cos

a1

2
− 2 sin

a2

2
sin

a1

2
�n2.�n1. (9.10)

The spherical law of cosines, Eq. (2.22b), immediately yields the interpreta-
tion of Δ21; consider the spherical triangle of S3 defined by the length of two
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of its edges, a1/2 and a2/2, respectively, and the angle subtended by them,
arccos(�n2.�n1). Then, the third side has a length given by A21 := arccos(Δ21/2).
The same construction can be repeated for Δ43 using side lengths given by
a3/2 and a4/2. The closure constraint ensures that Δ21 and Δ43 have the same
length and hence that the two triangles can be glued along the corresponding
sides to obtain a closed polygon in S3. The angle between the two “wings” of
the polygon can be fixed by calculating Δ14 = Δ32, which fixes the distance
between the other two vertices of the polygon.12

Returning to the calculation of the flow generated by Δ21, we have:

P#
red(dΔ21) ≡ P#

�4(dΔ21)

= P#
2�1(dΔ21) + P#

4�3(dΔ21) + (ψ31 + ψ32)#(dΔ21)

+ (ψ41 + ψ42)#(dΔ21), (9.11)

where in the second equality we have grouped the terms in a convenient way.
By construction, Δ21 is the trace of the total momentum associated to the
quasi-Poisson space SU(2)(2) × SU(2)(1). Calculating along the lines of Eqs.
(8.21) and (8.26), we obtain

P#
2�1(dΔ21) = Tr(H2H1τ k)(τk)2×1 = − sin

A21

2
�nk
21(τk)2×1, (9.12)

where A21 and �n21 are defined by H2H1 = exp A21�n.�τ and again (τk)2×1 =
(τi)2 + (τi)1. Meanwhile, the second term in Eq. (9.11) vanishes immediately
due to the mismatched dependencies. But, what about the last two terms? For
definiteness, let us focus on the first one. Both of its sub-terms must clearly
be proportional to (τk)3. However, since (τk)� is by definition the generator of
conjugations of H� in direction τk and Tr[(GH2G

−1)H1] = Tr[H2(G−1H1G)],
we see that ι

(
(τk)2

)
dΔ21 = −ι

(
(τk)1

)
dΔ21 and this term as a whole vanishes.

The final result of this computation is then

P#
red(dΔ21) = − sin

A21

2
�nk
21(τk)2×1, (9.13)

which by simple derivation of the explicit expression for Δ21 can also be written
as

P#
red(dA21) = �nk

21(τk)2×1. (9.14)

This expression has an interesting geometrical interpretation: the length
of the diagonal (21) of the spherical polygon generates a Hamiltonian flow that
rigidly rotates the sides 1 and 2 of the polygon around itself and leaves the
sides 3 and 4 fixed. The natural parameter of this flow is the angle ϕ21 between
the wings (21) and (34) of the polygon hinged by the diagonal (21) = (43):

P#
red(dA21) =

∂

∂ϕ21
. (9.15)

12 In this way, we have obtained a spherical tetrahedron in S3. This tetrahedron is in a sense
“dual” to the one we described in the first part of the paper, its sides’ lengths are equal to
the areas of the that tetrahedron, which, in contrast, can be either spherical or hyperbolical.
A more direct way of identifying this tetrahedron is via the identification of SU(2) and S3:
the position of the vertices are then given by {e, H1, (H2H1), H4} ⊂ SU(2) ∼= S3.
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Once expressed this way, it is also clear that this is a gauge invariant statement
that makes perfect sense in the reduced space where there is no difference
between the diagonal (21) and (43). This Hamiltonian flow is the simplest
instantiation of a bending flow [3,10,41]. Locally, the same result holds in
the phase space of flat tetrahedra [30,44,45]. Notice however, that the global
structure of the Poisson space is very different: in particular, the interval in
which A21 lives at fixed (large enough) a1 and a2 is generically modified by
the compact nature of the three-sphere. This has important consequences for
the quantization of this space.

The Poisson bivector

Pred =
∂

∂A21
∧ ∂

∂ϕ21
⇔ {

A21, ϕ21

}
red

= 1 (9.16)

is a completely standard Poisson structure with no trace of quasi structure.
This is not a coincidence, since it is a general feature of the reduced phase
spaces of this kind that they are Poisson (in fact, symplectic) spaces. Taking
our concrete case as an example, this can be understood from the expression
of φ4321, the term encoding the violation of the Jacobi identity in the total
quasi-Poisson space before reduction. This is a tri-vector composed of terms
generating the diagonal conjugacy transformation in the four copies of SU(2).
However, the reduced space is obtained precisely by requiring invariance under
such transformations.

The symplectic coordinates (A21, ϕ21) relate to the complex Fenchel–
Nielsen (FN) coordinates (x, y) of flat connections on a four-punctured sphere
[46], satisfying {ln x, ln y} = 1. The complex FN length variable x is the eigen-
value of the holonomy along a loop encircling two punctures, i.e. the eigenvalue
of H2H1. Hence, x2 = exp(−iA21). On the other hand, ϕ21 is the conjugate
variable, and is therefore related to the (logarithmic) complex FN twist vari-
able ln y up to a certain function of A21.

As a last remark, we point out an explicit expression for ϕ21:

ϕ21 = arccos
(

�n1 × �n21

|�n1 × �n21| · �n4 × �n21

|�n4 × �n21|
)

. (9.17)

10. Quasi-Hamiltonian Approach

In this section, we give a very brief account of the quasi-Hamiltonian approach
to the phase space of shapes. Our main goal is to calculate the quasi-symplectic
volume (area) of the leaves. In this formulation, one is forced to work directly
at the level of the conjugacy classes, i.e. on the leaves. This is because the quasi-
symplectic two form is in a sense the inverse of the quasi-Poisson bivector, and
as such cannot have any degenerate direction. This statement would apply
precisely in the standard symplectic case corresponding to the flat limit in
which the group elements are substituted by Lie-algebra elements. However,
as is often the case, in the quasi-setting, there are important twists to the
original definitions.
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We first recall the standard symplectic structure on the coadjoint orbits
in g∗. The coadjoint orbit Oα of an element α ∈ su(2)∗ is defined as

Oα = {β ∈ su(2)∗ | ∃G ∈ SU(2) with β = Ad∗
G−1α} . (10.1)

This set carries a canonical, closed, non-degenerate 2-form ωα defined by

ωα(yOα
, zOα

) = 〈α, [y, z]〉 ∀y, z ∈ su(2), (10.2)

where on the left-hand side yOα
, zOα

∈ X(su(2)∗) are the vector fields gener-
ating the coadjoint action in the directions y, z ∈ su(2), respectively. To show
that this form is closed, introduce the symbol cyclicx,y,z{·} for a summation
on cyclic permutations of the elements x, y, z, and calculate

dωα(xOα
, yOα

, zOα
) = cyclicx,y,z {xOα

ωα(yOα
, zOα

)}
− cyclicx,y,z {ωα([xOα

, yOα
], zOα

)}
= 2 cyclicx,y,z

{〈α, [x, [y, z]]〉} ≡ 0, (10.3)

with the last expression vanishing due to the Jacobi identity on su(2). In this
setting, the moment map condition corresponding to Eqs. (8.7) and (8.12) is:

ι(yOα
)ωα = 〈dα, y〉. (10.4)

We want to generalize this equation to the case where the variables are
in the group instead of in the (dual of the) Lie algebra. To this end, define

OH =
{
H ′ ∈ SU(2) | ∃G ∈ SU(2) s.t. H ′ = GHG−1

}
, (10.5)

and for any y ∈ su(2) define yOH
as the vector field that generates the con-

jugation action on OH in the direction y (these are simply the restriction to
OH ⊂ SU(2) of the ySU(2) = yR − yL defined above). Then, the generalization
of the quasi-Hamiltonian moment map condition reads

ι(yOH
)ωH =

1
2
K

(
ϑL + ϑR

∣
∣
H

, y
)
, (10.6)

where we have denoted the quasi-symplectic two form on the conjugacy class
OH ⊂ SU(2) by ωH and in this section the

∣
∣
H

is used as shorthand for the
pullback of the Maurer–Cartan forms to OH . This formula can be justified very
similarly to its counterpart in the quasi-Poisson construction: the 1-form dα is
substituted by the a particular combination of left and right Marurer–Cartan
forms, i.e. 1

2 (ϑR + ϑL), that is compatible with the antisymmetry of ωH :

ι(yOH
⊗ yOH

)ωH =
1
2
K

(
ι(yOH

)(ϑL + ϑR)
∣
∣
H

, y
) ≡ 0. (10.7)

One can show, see [38], that the above moment map condition implies that
the form ωH is not closed:

dωH = − 1
12

K
(
ϑL, [ϑL, ϑL]

) ∣
∣
H

, (10.8)

and therefore it is not symplectic. Moreover, it has a kernel on the equatorial
region of SU(2):

kerωH = {yOH
| y ∈ su(2) and y ∈ ker(AdH + 1)} . (10.9)
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This is analogous to the presence of a kernel for the quasi-Poisson bivector
P . Notice that the two are not inverses of one another, as in the standard
symplectic case, and the relation between them is more involved. We refer to
[40] for details, but for completeness we provide the inversion formula

P#
OH

◦ ω�
H = IdTOH

− 1
4
(τk)OH

⊗ (ϑL
k − ϑR

k )
∣
∣
H

(10.10)

where ϑL
k = K(ϑL, τk).

One can also perform the fusion of two quasi-symplectic spaces, and again
this procedure needs a twist, which reads:

ω2�1 = ω2 + ω1 +
1
2

∑

k

(
ϑL

k

)
2

∧ (
ϑR

k

)
1
. (10.11)

Quasi-Hamiltonian reduction is possible as well, and leads to a standard sym-
plectic space, much as reduction in the quasi-Poisson setting did.

Finally, we want to mention that it is possible to associate a volume to
the quasi-symplectic spaces OH , which can eventually be used to calculate the
volume of the reduced space, leading to the expected result; that is, to Witten’s
formula for the symplectic volume of the moduli space of flat connections on a
Riemann surface, see [47] and references therein. We do not go into this topic
in any detail, but simply calculate the volume of a single leaf. For this, we
need an explicit expression for ωH . To calculate this, we turn to the moment
map condition, and contract it with another vector field zOH

:

ι(yOH
∧ zOH

)ωH = εi
jkyjakεl

mnzmanι

(
∂

∂ai
∧ ∂

∂al

)

ωH

=
sin a

a
εpqry

pzqar, (10.12)

where we have again parametrized SU(2) by H = exp�a.�τ with �a = a�n and in
the first line we used the explicit expression of ySU(2) obtained in Eq. (8.18).
In the second line, we used the following explicit formula for 1

2 (ϑL + ϑR):

1
2
(ϑL + ϑR)

∣
∣
H

=
[
sin a

a
δi
j +

a − sin a

a
ninj

]

τ idaj . (10.13)

Because y and z ∈ su(2) are arbitrary, it follows that:

ωH =
sin a

a
akεkij dai ∧ daj . (10.14)

This formula should be understood as restricted to the conjugacy class of
H, that is to the sphere of radius a within the coordinate space {�a}. This
is consistent, since the 2-form of the previous formula is tangent to these
spheres, in the sense that it vanishes when contracted in the radial direction:
ι(∂/∂a)ωH ≡ 0. Anyway, to make this fact completely explicit, it suffices to
recognize that on the 2-sphere of radius a, Oa, the quasi-symplectic 2-form is
just

ωa = sin a d2Ω, (10.15)
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where d2Ω is the homogeneous measure on the unit 2-sphere. This can be
compared with the symplectic form on the su(2)∗ coadjoint orbits ω

su(2)∗
a =

ad2Ω. Notice that from this formula it is evident that ωa happens to be closed.
This is the quasi-symplectic version of the fact that PSU(2) happens to satisfy
the Jacobi identity. Here, it is even more clear that this happens for purely
dimensional reason: the leaves Oa are two-dimensional and therefore ωa is
already a top-dimensional form. This would not happen for other groups, nor
in the fusion space of two or more leaves. Also, note that ωa vanishes at a = π,
i.e. exactly where the operator (1 + AdH) has a kernel.

In the theory of quasi-symplectic spaces, the generalization of the Li-
ouville form L has an extra term to assure that L 	= 0 everywhere. This
generalization can be used to calculate the symplectic volume of the moduli
space of flat connections (Witten’s formulas) [47]. The generalized expression
of L in our context is

LH =
ωH√

det
(
1+AdH

2

) . (10.16)

To calculate the determinant, we observe that the adjoint action of H ∈ SU(2)
on its Lie algebra is essentially an action by rotation around the axis �n by
an angle a. Moreover, the determinant is invariant under conjugations of its
argument, and therefore the axis �n can be fixed to the ẑ-axis. In this way,

det
(

1 + AdH

2

)

= det
(

1 + Rz(a)
2

)

, (10.17)

where

Rz(a) =

⎛

⎝
cos a − sin a 0
sin a cos a 0

0 0 1

⎞

⎠ . (10.18)

This immediately gives

LH = 2 sin
a

2
d2Ω. (10.19)

Notice that in the study of the coadjoint orbits the Liouville measure is iden-
tical to ω

su(2)∗

H with no extra factor needed. Therefore, this formula should be
compared to Lsu(2)∗

α = ad2Ω. Wonderfully, LH is totally regular at a = π, i.e.
where ωa was found to be vanishing. The volume form LH vanishes only at
a = 2π, precisely on the only non-trivial central element of SU(2), where the
orbit OH=−e reduces to a point. The expression for LH most clearly displays
the compact nature of the area-vector spaces. This compactness has impor-
tant consequences for the quantization of these systems. See Sect. 12 for a brief
discussion of this.

To conclude, we provide expressions for ωH and LH explicitly displaying
the radius of curvature r:

ωH = r2 sin
a

r2
d2Ω and LH = 2r2 sin

a

2r2
d2Ω. (10.20)
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It is clear that in the limit r → ∞ one recovers ω
su(2)∗
a and Lsu(2)∗

α , with no
residual dependence on r.

11. Summary

Minkowski’s theorem establishes a one-to-one correspondence between closed
non-planar polygons in E3 and convex polyhedra, via the interpretation of the
vectors defining the sides of the polygon as area vectors for the polyhedra.
Extending this theorem to curved polyhedra is non-trivial. We have proven
the first generalization, to the best of our knowledge, of Minkowski’s theorem
for curved tetrahedra. Our techniques, make it possible, at least in principle,
to extend the result to more general polyhedra. Our theorem establishes a
correspondence between non-planar, geodesic quadrilaterals in S3, encoded
in four SO(3) group elements {O�} whose product is the group identity, and
flatly embedded tetrahedra in either S3 or H3. This correspondence depends on
the choice of a (non-canonical) isomorphism between the fundamental groups
of the four-punctured two-sphere and the tetrahedron’s one-skeleton. Finally,
we used our theorem to reinterpret the Kapovich–Millson–Treloar symplectic
structure of closed polygons on a homogeneous space (with fixed side lengths
and up to global isometries), as the symplectic structure on the space of shapes
of curved tetrahedra (with fixed face areas and up to global isometries).

In the context of the phase space construction, it was important to lift
the {O�} to elements {H�} of SU(2). Because SU(2) is a double cover of SO(3),
a given tetrahedron is not in one-to-one correspondence with four SU(2) group
elements multiplying to the identity. Nonetheless, bijectivity can be recovered
if one decorates the sides of the tetrahedron with plus and minus signs. These
can be thought of as relative orientations of the reference frames at the various
vertices of the tetrahedron, and are corrections that a spinor would be sensitive
to. In this sense, these signs are the extra structure one would expect to need
to have a full description of a discrete spinorial geometry. A difficulty that
arises in this context is that there is no way, in general, to extend a spin
structure from the one-skeleton of the tetrahedron to the full ambient space
consistently. Nevertheless, it is intriguing that the lift from a Levi–Civita to
a spin connection is required to effectively treat the symplectic nature of a
tetrahedron’s shape.

The geometrical construction investigated here also gave rise to a couple
of other unexpected features. First of all, one does not need two distinguished
frameworks to deal with spherical and hyperbolic geometries, as in two di-
mensions [20,22,23]. On the contrary, four SO(3) group elements that close
encompass both scenarios. This can be interpreted as follows: The four SO(3)
group elements are precisely four Levi–Civita parallel transport holonomies
that an observer might measure by following a (topological) tetrahedron’s
one-skeleton in some general Riemannian space. If so, these four holonomies
are all the observer knows about that region of space; what is the best approx-
imation she can give of the geometry of that region with the information at
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her disposal? We claim this is the tetrahedral geometry our theorem allows her
to reconstruct. With this picture in mind, the choice of isomorphism between
the fundamental groups of a four-punctured sphere and the tetrahedron’s one
skeleton is not an extra ingredient, but simply a datum arising in her exper-
imental setting. There are, however, situations in which the previous picture
fails to be viable. This is where the second unexpected feature of the theorem
comes in: at times one encounters geometries which are hyperbolic and con-
tain nevertheless triangles of area larger than π. This forced the introduction
of a new type of hyperbolic triangle (and more generally, simplices) extending
across the two sheets of a two-sheeted hyperoboloid. These triangles have an
infinite metrical area, but finite holonomy area.

The non-commutative nature of the generalized area vectors {O�}, as
well as the compactness of their domain of definition, led us to consider the
quasi-Poisson manifolds of Anton Alekseev and collaborators. Quasi-Poisson
manifolds generalize Poisson manifolds by allowing for group-valued moment
maps and a (controlled) failure of the Jacobi identity. The group-valued mo-
ment map was particularly valuable in the present work where it allowed us
to generalize the fact that the closure constraint generates rigid rotations of
the polyhedron to the curved context. Analogues of these facts were known in
the context of the construction of the symplectic form on the moduli space of
flat connections on a Riemann surface. Indeed, a finite-dimensional derivation
of this symplectic structure was one of the main motivations behind the work
of Alekseev and collaborators. We have provided an interpretation of these re-
sults that allows for new connections between the study of flat connections on
Riemann surfaces, deformed spin-networks for quantum gravity, and discrete
three-dimensional curved geometries.

12. Outlook

We have already applied the results of this paper to the construction of mod-
els for four-dimensional quantum gravity with cosmological constant [17,18].
The tetrahedra described here constitute the boundary states of the model,
thus this model provides a physical motivation for studying their symplectic
structure. The theorem presented in this paper also serves as the foundation
for the reconstruction of the (semiclassical) geometry of a curved four-simplex
considered in that work. There the tetrahedron’s closure relation stems from
a flatness condition for the holonomies living in S3\Γ5, where Γ5 is the four-
simplex one-skeleton. Interestingly, the four-simplex does not have an analogue
of the closure constraint, but instead a new set of spacetime holonomies en-
codes how to glue the five tetrahedra into a simplex. For more details, we refer
to the cited work.

As the application to spinfoams shows, it is interesting to seek extensions
of our work not only towards more general polyhedra, but in particular to
a generic triangulated manifold. The most natural setting for this is that of
(discrete) twisted geometries [8,48]. In a twisted geometry, the face shared
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by two polyhedra has a well-defined area, but not a well-defined shape, since
this depends on which side it is viewed from. These geometries are a classical
interpretation of spin-networks states. The spin-network is a graph coloured by
an SU(2) irrep (spin) on each link and by SU(2) intertwiners on the vertices,
much like in lattice gauge theory. Each vertex is interpreted as a polyhedron,
with as many faces as coincident links. These polyhedra are described by the
intertwiner quantum number, and their faces carry areas encoded by the spins
associated to the links. In the dual representation, one can associate to each
spin-network a wave function which depends on one SU(2) group element per
link and which is invariant under SU(2) transformations at each vertex of the
graph (see [5]).

In this representation, the group elements are interpreted as the parallel
transports between the reference frames of two adjacent polyhedra, while the
su(2) generators of the SU(2) transformation at the end point of each link
are interpreted as the area vectors of the polyhedron sitting at the given ver-
tex. Holonomies and area vectors can be packaged into a natural symplectic
structure at every (half-)link, that of T∗SU(2). Interestingly, this symplectic
structure is induced by that of general relativity when canonically quantized
in Ashtekar’s variables [6].

What our work suggests is to generalize this construction to curved, clas-
sical and quantum, twisted geometries. For this, one has to consider many
curved tetrahedra, connected one to another by pathes coloured by SU(2)
holonomies. The holonomies considered in this paper rather play the rôle of
the area vectors, or fluxes in the spin-network parlance. This way, one ends up
studying the double SU(2)×SU(2) as the pertinent generalization of T∗SU(2).
Again, this space carries a natural quasi-Poisson structure, but no symplectic
structure (a consequence of the triviality of its second deRahm cohomology),
which was introduced by Alekseev to provide a finite-dimensional construction
of the moduli space of flat connections on a Riemann surface. In our context,
the relevant Riemann surface is that of the thickened spin-network graph.
Quantization of these deformed twisted geometries requires representations
of the quantum (in the algebraic sense) objects associated to quasi-bialgebras,
which are the infinitesimal analogues of the double group SU(2)×SU(2). These
quantum objects are built out of a quasi-Hopf analogue of the appropriate
quantum Lie algebra. Their representations are known to be related to those
of a quantum group evaluated at a root of unity [49]. The study of quantum
twisted geometries is work in progress.

The phase space’s compactness and the associated emergence of quan-
tum group representations at the root of unity, which allow only a finite total
number of states, have two compelling consequences: the first of these is that
geometrical observables, such as the volume of a curved tetrahedron, have dis-
crete and bounded spectra. The second is that spinfoam models built out of
quantum group representations must be finite, in the sense that they have no
bubble divergences [50,51]. Unfortunately, we do not yet know how to make
this precise in the context of our four-dimensional model [17,18], which is de-
fined somewhat formally in terms of a complex Chern–Simons theory. The
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finiteness of a spinfoam model does not mean that bubbles are not potentially
associated with large amplitudes (scaling with powers of the inverse cosmologi-
cal constant) and may require a renormalization procedure, see [52,53]. From a
physical perspective the Planck scale regularizes ultraviolet divergences, while
the cosmological scale regularizes infrared divergences.

Finally, an interesting application of deformed spin-networks would be to
introduce a more robust coarse graining procedure for spin-networks. Indeed,
the deformed networks carry local curvature at their vertices, and therefore
could be used to deal with the failure of gauge invariance that standard coarse-
grained spin-networks suffer from [28,54].
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