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SLE Boundary Visits

Niko Jokela, Matti Järvinen and Kalle Kytölä

Abstract. We study the probabilities with which chordal
Schramm–Loewner evolutions (SLE) visit small neighborhoods of bound-
ary points. We find formulas for general chordal SLE boundary visiting
probability amplitudes, also known as SLE boundary zig-zags or order
refined SLE multi-point Green’s functions on the boundary. Remarkably,
an exact answer can be found to this important SLE question for an ar-
bitrarily large number of marked points. The main technique employed is
a spin chain–Coulomb gas correspondence between tensor product repre-
sentations of a quantum group and functions given by Dotsenko–Fateev
type integrals. We show how to express these integral formulas in terms of
regularized real integrals, and we discuss their numerical evaluation. The
results are universal in the sense that apart from an overall multiplicative
constant the same formula gives the amplitude for many different for-
mulations of the SLE boundary visit problem. The formula also applies
to renormalized boundary visit probabilities for interfaces in critical lat-
tice models of statistical mechanics: we compare the results with numer-
ical simulations of percolation, loop-erased random walk, and Fortuin–
Kasteleyn random cluster models at Q = 2 and Q = 3, and find good
agreement.
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1. Introduction

1.1. SLE Curves

Schramm–Loewner evolutions (SLE) are conformally invariant random frac-
tal curves in the plane, whose most important characteristics are determined
by one parameter κ > 0. They were introduced by Schramm [42] as the
only plausible candidates for the scaling limits of random interfaces in sta-
tistical mechanics models that are expected to display conformal invariance,
with different models corresponding to different values of the parameter κ.1

Proofs that interfaces in various critical lattice models do converge to SLEs
in the scaling limit have been obtained for example in [13,14,27,28,38,45–
47,49,53].

The fundamental example of SLEs is the chordal SLEκ [37,41]. For a
given simply connected domain Λ ⊂ C with two marked boundary points
a, b ∈ ∂Λ, the chordal SLEκ in Λ from a to b is an oriented but unparame-
trized random curve γ in the closure of Λ starting from a and ending at b.
Its two characterizing properties are conformal invariance and domain Markov
property:

• Conformal invariance states that the image of a chordal SLE under a con-
formal map is a chordal SLE in the image domain.

• Domain Markov property states that given an initial segment of a
chordal SLE, the conditional law of the continuation is a chordal SLE in
the remaining subdomain.

Some features of SLEs vary continuously in κ, notably the Hausdorff
dimension of the fractal curve is given by dH(γ) = 1 + κ

8 for 0 < κ ≤ 8 [10].
On the other hand, some qualitative properties of SLEs show abrupt phase
transitions with respect to the parameter κ. For the present purposes, it is
important to distinguish the following three phases [41]:

1 Figure 1 shows two SLE curves. Examples of interfaces in lattice models are shown in
Figs. 5, 6, and 7, on pages 1305, 1306, and 1307, respectively.
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Figure 1. Chordal SLEκ is a random fractal curve. For κ ≤ 4
the curve is simple and does not touch boundary, and for 4 <
κ < 8 the curve has double points and touches the boundary
on a random Cantor set. The two pictures show chordal SLEκ

in the upper half-plane H from 0 to ∞—in the left picture
κ = 3, and the right picture κ = 6

0 < κ ≤ 4 The chordal SLEκ is a simple curve, i.e., the curve does not have
double points, see Fig. 1 (left). The curve does not touch the bound-
ary ∂Λ of the domain except at the starting point a and the end
point b. The curve avoids any given point z ∈ Λ of the domain with
probability one.

4 < κ < 8 The chordal SLEκ is a non self-traversing curve with double points,
see Fig. 1 (right). The intersection of the curve with the boundary
∂Λ of the domain is a random Cantor set. The curve still avoids
any given point z ∈ Λ\ {a, b} of the domain or of its boundary with
probability one.

8 ≤ κ The chordal SLEκ is a space-filling curve; any point z ∈ Λ of the
domain is on the curve.

The behavior in the case κ ≥ 8 is somewhat pathological. No interfaces in
statistical mechanics models are expected to correspond to κ > 8.2 In this
article we restrict our attention to the cases 0 < κ < 8.

1.2. Chordal SLE Boundary Visits

The main goal of this article is to find formulas for the probabilities with which
the chordal SLE visits small neighborhoods of given boundary points. Partial
answers to similar questions have been obtained in [3–5,34,51].

It is easiest to illustrate the question in the upper half-plane

H = {z ∈ C|�m(z) > 0},

with the chordal SLEκ curve γ starting from the origin and ending at infinity.
We will briefly recall the precise definition of chordal SLEκ in H from 0 to ∞
in Sect. 5.1, and we refer the reader to [41] for more thorough background.

2 In the borderline case κ = 8, the (space-filling) chordal SLE8 curve is the scaling limit of
the Peano curve of the uniform spanning tree [38].
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Figure 2. A schematic illustration of the boundary zig-zag
studied in this article: the chordal SLEκ curve in the upper
half-plane H starts from x and visits small neighborhoods of
boundary points y1, y2, . . . , yN

Denote the half-disk of radius ε > 0 centered at a boundary point y ∈
R ⊂ ∂H by

Bε(y) = {z ∈ H||z − y| < ε}.

Given points y1, y2, . . . , yN ∈ R and radii ε1, ε2, . . . , εN > 0, the probability
that the curve γ visits all of Bεj

(yj), j = 1, 2, . . . , N , tends to zero as a power
law as the radius εj is taken small. More precisely, the scaling exponent of the
power law is

h =
8 − κ

κ
(1.1)

(see Appendix A), and we are interested in the limit3

C
(N)
(H;0,∞)(y1, y2, . . . , yN )

= lim
ε1,...,εN ↘0

1
εh
1 . . . εh

N

P[γ ∩ Bεj
(yj) 	= ∅ for j = 1, 2, . . . , N ] (1.2)

of probabilities of events illustrated schematically in Fig. 2. In the spirit of
[1,33,35,36,39,40], it is appropriate to call the limit (1.2) an SLE boundary
Green’s function. We emphasize that one could in principle choose to define
a boundary visit of SLE differently, for example, for κ > 4 one could ask the
curve γ to touch a boundary segment of length ε, or one could choose the neigh-
borhood shape to be something other than a half-disk. Yet, independently of
the precise formulation, the limit remains universal apart from a multiplicative
constant which depends on the details of the chosen formulation.4 Different
formulations and universality will be discussed in Sect. 5.

Recalling that γ is an oriented curve, we may even specify the order of
the boundary visits, i.e., require that the curve γ first reaches the chosen small
neighborhood of y1, then the neighborhood of y2 and so on until reaching

3 The existence of the limit has been proved in [34].
4 Compare also with the proof [35] that the SLE Green’s function defined using conformal
radius differs by a multiplicative constant (whose explicit value is not known) from the SLE
Green’s function defined using Euclidean distance.
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the neighborhood of yN . The order refinement of the SLE boundary Green’s
function is the limit

P
(N)
(H;0,∞)(y1, y2, . . . , yN )

= lim
ε1,...,εN ↘0

1
εh
1 . . . εh

N

P[τy1;ε1 < τy2;ε2 < · · · < τyN ;εN
< ∞], (1.3)

where any increasing parametrization t �→ γt of the curve γ is chosen, and we
denote by

τyj ;εj
= inf{t ≥ 0|γt ∈ Bεj

(yj)} (1.4)

the stopping time at which the curve γ first reaches the εj-neighborhood of
yj . Obviously one can recover the complete correlation function C

(N)
(H;0,∞) from

the ordered ones P
(N)
(H;0,∞) by summing over all possible orders of visits5

C
(N)
(H;0,∞)(y1, y2, . . . , yN ) =

∑

σ∈SN

P
(N)
(H;0,∞)(yσ(1), yσ(2), . . . , yσ(N)).

In the general form with the order of visits specified, the question of finding the
asymptotic amplitudes of the visiting probabilities of chordal SLEκ was posed
in [5], where these quantities were called “(boundary) zig-zag probabilities”.

Depending on the details of the precise formulation of the boundary visit
question, one would obtain a different non-universal multiplicative constant in
the SLE boundary Green’s function (1.2) and its order refinement (1.3). We,
therefore, prefer to use a generic notation for a quantity of this type, for which
we are free to choose a more convenient multiplicative normalization. We also
prefer to make explicit the dependence of the question on the starting point
x ∈ R of the chordal SLEκ curve, but the end point of the curve will always
be kept at infinity. In the rest of this article,

ζ(N)(x; y1, y2, . . . , yN )

denotes a (boundary) zig-zag amplitude, which is proportional to any of the
interpretations (see Sects. 5.3, 5.4) of the order refined boundary visit question.
In particular, we have

P
(N)
(H;0,∞)(y1, y2, . . . , yN ) = const. × ζ(N)(0; y1, y2, . . . , yN ).

Similarly, we denote by

χ(N)(x; y1, y2, . . . , yN )

a complete (boundary) correlation function, so that in particular

C
(N)
(H;0,∞)(y1, y2, . . . , yN ) = const. × χ(N)(0; y1, y2, . . . , yN ),

with the same proportionality constant.

5 In fact in the sum we only need those permutations which respect the order of positive
yj ’s and reverse the order of negative yj ’s; otherwise, the curve essentially disconnects its
future passage to a point that it would need to visit later. This will be discussed in some
more detail in Sect. 2.2.
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Explicit formulas for the above types of quantities are known in the fol-
lowing two special cases:

• The one-point function (N = 1) behaves simply as a power law, as fol-
lows immediately from the invariance under dilatations z �→ λz (λ > 0)
of the chordal SLEκ in (H; 0,∞)

ζ(1)(x; y1) = χ(1)(x; y1) ∝ |y1 − x|−h = |y1 − x|1− 8
κ . (1.5)

• The two-point function when y1 and y2 are on the same side of the starting
point (either x < y1 < y2 or y2 < y1 < x) is given by a hypergeometric
function [51] (see also [5])

ζ(2)(x; y1, y2) = χ(2)(x; y1, y2)

∝ |y1 − x|1− 8
κ |y2 − y1|1− 8

κ × 2F1

(
4
κ

,
κ − 8

κ
;
8
κ

;
y2 − y1

y2 − x

)
.

(1.6)

In this article we present a method for finding the solutions in the general
case. We write down a system of partial differential equations (PDEs) moti-
vated by conformal field theory (CFT) for the quantities of interest, ζ(N) and
χ(N). Our solutions for them are written in terms of Coulomb gas integrals
(Dotsenko–Fateev integrals [17]) and are found by quantum group calcula-
tions. This technique is developed in the present article and in [30]; we call it
the spin chain–Coulomb gas correspondence. Our primary goal here is to find
the explicit formulas and show their wide applicability: the functions ζ(N) and
χ(N) answer various formulations of boundary visit questions for SLEs as well
as for interfaces in lattice models. We also compare the results to numerical
simulations of various lattice models and outline a strategy of proof that our
formulas give the (order refined) SLE boundary Green’s functions.

We emphasize that it is very rarely possible to find the exact solution for
an SLE problem involving a large number of marked points—the few existing
solutions to such problems rely on finding tricks that appear particular to each
problem [1,11,22,23,25,26,43,44,52].6 The key technique that enables us to
find the exact solution here is the spin chain–Coulomb gas correspondence. It
provides a systematic method to solve a quite general class of SLE problems.

6 In contrast, it is almost routine to answer chordal SLE questions which involve only two
boundary points or one bulk point in addition to the starting point and end point of the
curve. This is so essentially because the three-dimensional group of conformal automorphisms
of the domain allows to reduce the problem with four real variables to just one cross ratio,
and a standard application of Itô calculus yields a second-order linear ordinary differential
equation for the quantity in question. Boundary conditions then pin down the correct answer
in the two-dimensional space of solutions. For example, the known formulas (1.5) and (1.6)

were found by such methods. For questions depending on a larger number of points, such as

the one studied in this article, instead of ordinary differential equations one would need to

solve partial differential equations, and the spaces of solutions become substantially harder

to manage.
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1.3. Organization of the Article

The rest of the article is organized as follows:
In Sect. 2 we formulate the PDE problem which we solve in the subse-

quent sections to find the zig-zag amplitudes ζ(N) and the complete correlation
functions χ(N):
• The functions ζ(N) and χ(N) are conformally covariant.
• The functions ζ(N) and χ(N) satisfy a second order PDE and N third-order

PDEs.
• The boundary conditions depend on the order of visits: they are written

in terms of asymptotic behaviors of ζ(N) and their inhomogeneous terms
involve the ζ(N−1) in a recursive manner.

In Sect. 3 we discuss the spin chain–Coulomb gas correspondence, by
which the PDE problem is translated to a linear problem in representations of
a quantum group:
• We associate functions defined by Coulomb gas integrals to vectors in a

finite-dimensional tensor product representation of the quantum group
Uq(sl2).

• The functions associated with highest weight vectors are solutions to the
partial differential equations of Sect. 2, and for particular highest weights
they also have the correct conformal covariance.

• Projections to subrepresentations in consecutive tensorands determine the
asymptotic behaviors of the functions.

• There are unique highest weight vectors of the correct highest weights whose
subrepresentation projections correspond to the boundary conditions im-
posed on the zig-zag amplitudes ζ(N).

In Sect. 4 the integrals obtained in the spin chain–Coulomb gas corre-
spondence are rewritten as regularized real integrals. The transformation to
real integrals concretely exhibits the needed closed homology properties of our
solutions.

In Sect. 5 we discuss basic properties, applications, interpretations, and
universality of the SLE boundary visit question and outline a strategy of proof.

In Sect. 6, we compare our formula numerically to simulations of lattice
models of statistical mechanics. We study random interfaces in percolation,
random cluster model, and loop-erased random walk. We perform computer
simulations of them and collect frequencies of multi-point boundary visits of
the interfaces, and compare renormalized frequencies to the zig-zag amplitudes
ζ(N).

We conclude the article by discussion and outlook in Sect. 7.
The article is complemented with several appendices. Appendix A pro-

vides two derivations of the value of the scaling exponent (1.1), and a derivation
of the second-order PDE. Appendix B contains relevant background on con-
formal field theory. Our normalization conventions for some quantum group
representations and some explicit four-point solutions are contained in Ap-
pendix C. Numerical evaluation of the integrals of Sects. 3 and 4 is treated in
Appendix D.
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2. The Problem: Partial Differential Equations and Asymptotics

We find the boundary visit amplitudes ζ(N) and χ(N) by solving a PDE prob-
lem. The system of partial differential equations is given below in Sect. 2.1.
This part is the same for χ(N) and for ζ(N), and moreover the system is the
same for all boundary zig-zag amplitudes corresponding to different orders of
visits to the same set of points. The results will be different, however, as each
of the functions satisfies different boundary conditions, detailed in Sect. 2.2.

2.1. Differential Equations for Boundary Visit Amplitudes

The linear homogeneous system of PDEs below contains essentially three dif-
ferent types of partial differential equations—all of them can be argued to hold
by conformal field theory (see Appendix B.2), but from the point of view of
SLE analysis, the argument leading to each of them is different. For ζ(N) the
system reads

⎡

⎣ ∂

∂x
+

N∑

j=1

∂

∂yj

⎤

⎦ ζ(N)(x; y1, . . . , yN ) = 0 (2.1)

⎡

⎣x
∂

∂x
+

N∑

j=1

yj
∂

∂yj
− Nh

⎤

⎦ ζ(N)(x; y1, . . . , yN ) = 0 (2.2)

[
∂2

∂x2
− 4

κ
L−2

]
ζ(N)(x; y1, . . . , yN ) = 0 (2.3)

[
∂3

∂y3
j

− 16
κ

L(j)
−2

∂

∂yj
+

8(8 − κ)
κ2

L(j)
−3

]
ζ(N)(x; y1, . . . , yN ) = 0

(j = 1, 2, . . . , N),
(2.4)

where

L−2 =
N∑

k=1

( −1
yk − x

∂

∂yk
+

h

(yk − yj)2

)

and

L(j)
−n =

−1
(x − yj)n−1

∂

∂x
+

(n − 1)δ
(x − yj)n

+
∑

k �=j

( −1
(yk − yj)n−1

∂

∂yk
+

(n − 1)h
(yk − yj)n

)
,

and we have used the parameters h = 8−κ
κ and δ = 6−κ

2κ .
The first-order PDEs (2.1) and (2.2) express the translation invariance

and homogeneity of the amplitudes. More general conformal covariance of the
answer will be discussed in Sect. 5.2 and again from a conformal field theory
point of view in Appendix B.1. The second order PDE (2.3) can be interpreted
either in terms of the SLE process as the statement of a local martingale prop-
erty of the answer, see Appendix A.3, or in terms of conformal field theory as
a conformal Ward identity associated with a second-order degeneracy of the
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boundary field located at x, as will be discussed in Appendix B.2. The N third-
order PDEs (2.4) are similarly the conformal Ward identities associated with
third-order degeneracies of the boundary fields located at yj , j = 1, 2, . . . , N ,
see Appendix B.2. Unlike for the first- and second-order equations we do not
know how to explain the third-order equations by SLE analysis directly. As a
partial justification, however, we note that Eq. (2.4) coincide with the third-
order partial differential equations [19] derived by Dubédat for limiting cases
of multiple SLE partition functions, which morally describe the same configu-
rations of curves as our boundary visiting SLEs. Ultimately, the validity of all
of the above equations for the SLE boundary visit amplitudes would need to
be established by first finding the explicit answer, which is the main task in
the present article, and then proving that it gives the SLE boundary Green’s
function following the strategy that will be outlined in Sect. 5.4.3.7

2.2. Asymptotics for Boundary Visit Amplitudes

The system of differential equations of Sect. 2.1 has a large space of solutions.
To pin down the correct solution we need boundary conditions, which will be
specified in the form of asymptotic behavior of the boundary zig-zag ampli-
tudes. Considerations of the possible asymptotics allowed by conformal field
theory can be found in Appendix B.3. The particular requirements that finally
specify the solutions are given below.

Consider the question of visiting the neighborhoods of y1, y2, . . . , yN in
this order. Some notation and terminology is needed to conveniently describe
the specific asymptotics of ζ(N) in this case. We say that points yj such that
yj < x are on the left and points yj such that x < yj are on the right. We say
that the points are in an outwards increasing order if for any yj , yk on the left
we have that j < k implies yk < yj and for any yj , yk on the right we have
that j < k implies yj < yk: in other words, that among points on the same
side, the point further away from starting point is visited later.

The boundary visit amplitude vanishes unless the points are in an out-
wards increasing order—a visit to a small neighborhood of a point further
away on the same side almost disconnects the future passage of the curve to
the point that would need to be visited later.8

It is convenient to use a separate ordering for the points on the left and
right. Denote, therefore, y−

1 , . . . , y−
L the points on the left in a decreasing order

(in the order of visits) and y+
1 , . . . , y+

R the points on the right in an increasing

7 Given that this proposed route to Eq. (2.4) is somewhat indirect, one may wonder if
more direct hints of these third-order differential equations exist. To this end, recall that for
N = 1 and N = 2 the explicit zig-zag amplitudes (1.5) and (1.6) can in any case be found

by routine SLE calculations. For these already known functions ζ(1) and ζ(2), we have by
direct calculation verified the validity of the third-order equations, which conformal field
theory predicts.
8 For positive ε it is in principle possible for visits to occur in an order that is not outwards
increasing, but these probabilities are suppressed by a higher power of ε, and as such do not
survive the limit (1.3) of ε ↘ 0. Rigorous estimates of the appropriate SLE probabilities are
of the type considered, e.g., in [10,39], although the present situation is somewhat easier.
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order (in the order of visits). The following notation makes the arguments of
the zig-zag amplitude appear in the same order as they are on the real axis:

ζω(y−
L , . . . , y−

1 ;x; y+
1 , . . . , y+

R) = ζ(N)(x; y1, y2, . . . , yN ),

where ω = (ω1, ω2, . . . , ωN ) ∈ {+,−}N is a sequence of “±”-symbols specifying
the sequence of sides of the visits in the sense that ωj = − (resp. ωj = +) if yj

is on the left (resp. on the right). If we fix the number L of points on the left and
the number R of points on the right, N = L+R, then the number of different
outwards increasing orders is

(
N
L

)
, corresponding to the choices of ω ∈ {+,−}N

with L “−”-symbols and R “+”-symbols. The complete correlation function
χ(N) is the sum of these

(
N
L

)
zig-zag amplitudes. In the particular case when

all the points are on the same side, the complete correlation function coincides
with the zig-zag amplitude.

The specific asymptotics depend on the order of visits, and to describe
them we need a few separate cases. We call the consecutive points y±

m and
y±

m+1 on the same side (±) successively visited points on the same side if for
some j we have y±

m = yj and y±
m+1 = yj+1.

We claim that for any outwards increasing order ω the boundary zig-zag
amplitude ζω satisfies the asymptotics conditions given below,9 and that up to
a multiplicative constant these asymptotics determine all ζ(N). The conditions
are intuitive in view of the possibilities listed in Appendix B.3: they state that
the order of magnitude of the amplitude is larger if successively visited points
are close and smaller if non-successively visited points are close, and in the
former case the leading asymptotic is proportional to an (N−1)-point function,
where the two close-by points are replaced by a single point. Moreover, they
state that the leading behavior when successively visited points are close-by is
given by the (N − 1)-point function with the two close-by points replaced by
just one.

• Asymptotics for successively visited points If yj and yj+1 are successively
visited points on the same side, then

lim
yj ,yj+1→y′

1
|yj+1 − yj |1− 8

κ

ζ(N)(x; y1, . . . , yj , yj+1, . . . , yN )

= const. × ζ(N−1)(x; y1, . . . , yj−1, y
′, yj+2, yj+3, . . . , yN ). (2.5)

• Asymptotics for non-successively visited points If yj and yk are
non-successively visited consecutive points on the same side, then

lim
yj ,yk→y′

1
|yk − yj |1− 8

κ

ζ(N)(x; y1, y2, . . . , yN ) = 0. (2.6)

9 The eventual justification of these requirements would be a proof of the fact that the SLE
boundary Green’s function agrees with our formula obtained by solving the PDE system
with these conditions. A strategy of proof is discussed in Sect. 5.4.3.
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• Asymptotics for the first points on the left and right For the first point y1

to be visited we have

lim
x,y1→x′

1
|y1 − x|1− 8

κ

ζ(N)(x; y1, y2, . . . , yN )

= const. × ζ(N−1)(x′; y2, y3, . . . , yN ). (2.7)

For the first point on the opposite side, i.e., for y±
1 	= y1 , we have

lim
x,y±

1 →x′

1
|y±

1 − x|1− 8
κ

ζ(N)(x; y1, y2, . . . , yN ) = 0. (2.8)

The constants in (2.5) and (2.7) are different, but for different pairs of succes-
sively visited consecutive points, the constant in (2.5) should be the same.10

Moreover, the constants should not depend on N .
We conjecture that the solution space to the partial differential Eqs.

(2.1)–(2.4) is finite-dimensional and that its dimension is exactly the multi-
plicity mN of a certain irreducible direct summand in a tensor product, see
Sect. 3.5.5. Under this assumption, it could be shown with the techniques intro-
duced in Sect. 3, that recursively in N the asymptotics conditions (2.5)–(2.8)
specify uniquely, up to a multiplicative constant, solutions for all outwards
increasing orders of visits ω.

Our choice of normalization of ζ(N) and χ(N) will be determined recur-
sively by fixing the constant appearing in Eq. (2.7), see Sect. 3.4. Once this nat-
ural choice is made, the different N -point functions ζω obtain correct relative
normalizations, with the universal ratios referred to in Sect. 5.4. In particular,
the constant appearing in Eq. (2.5) gets automatically fixed as well.

3. Quantum Group and Integral Formulas

3.1. Coulomb Gas Integrals

The main tool that allows us to solve the PDE problem of Sect. 2 and, there-
fore, to find the explicit formula for the SLE boundary visit amplitudes is the
spin chain–Coulomb gas correspondence. In this article, for the sake of con-
creteness, we describe only the case relevant to the problem of boundary visit
amplitudes—a more general treatment can be found in [30].

3.1.1. Standard Coulomb Gas Integrals and Their Properties. The Coulomb
gas formalism of conformal field theory, or Dotsenko–Fateev integrals [17], is
a way of producing solutions to systems of differential equations of the type
of Sect. 2.1 by integrating an auxiliary function, which in our case takes the
following form:

10 As a remark, we have not found any new solutions by relaxing the requirement that the
constants for different pairs are equal—even with unspecified constants treated as additional
variables, the system of equations forces the correct universal ratios between the constants,
at least for small N .
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f
(N)
� (x; y1, y2, . . . , yN ; w1, w2, . . . , w�)

=
N∏

j=1

(yj − x)
4
κ ×

∏

1≤j<k≤N

(yk − yj)
8
κ ×

�∏

s=1

(ws − x)− 4
κ

×
N∏

j=1

�∏

s=1

(ws − yj)− 8
κ ×

∏

1≤s<r≤�

(wr − ws)
8
κ . (3.1)

Consider the function

F (x; y1, . . . , yN ) =
∫

Γ

f
(N)
� (x; y1, . . . , yN ;w1, . . . , w�) dw1 · · · dw�, (3.2)

where Γ is a closed �-surface avoiding the points x, y1, . . . , yN . The integral of
course only depends on the homotopy type of the surface Γ. The function is
defined such that while the contour Γ of the w-variables may depend on the
positions of x, y1, . . . , yN , the choice is locally constant. One then observes the
following:

• Translation invariance F satisfies Eq. (2.1).
• Scale covariance F is homogeneous of degree ΔN ;� = � + 4

κ (N2 + �2 − 2� −
2N�), and in particular if � = N it satisfies Eq. (2.2).

• Second-order differential equation F satisfies Eq. (2.3).
• Third-order differential equations F satisfies Eq. (2.4).

The translation invariance follows immediately from the translation invariance
of the integrand f

(N)
� by considering a shift of the variables x, y1, . . . , yN small

enough so that the integration contour Γ can be kept constant, and then the
same shift of the integration contour, which now does not change the homotopy
type. The scaling covariance is shown similarly, starting with scaling close
enough to identity. The relevant scaling covariance of the integrand reads

f
(N)
� (λx;λy1, . . . ;λw1, . . .) = λ

4
κ (N2+�2−2�−2N�) f

(N)
� (x; y1, . . . ;w1, . . .)

and an extra factor λ� comes from the change of variables in the integration—
the formal proofs can be found in [30, Lemma 3.3, Theorem 4.17].

The second- and third-order differential equations rely more crucially
on the fact that the integration surface Γ is closed. One again starts from
a property satisfied by the integrand alone. Starting from the second-order
equation, let

D1,2 =
κ

2
∂2

∂x2
+

N∑

j=1

(
2

yj − x

∂

∂yj
− 2h

(yj − x)2

)

be the differential operator we want to show annihilates F . It is a matter of
straightforward verification to see that the integrand satisfies

[
D1,2 +

�∑

s=1

(
2

ws − x

∂

∂ws
− 2

(ws − x)2

)]
f

(N)
� (x; y1, . . . ;w1, . . .) = 0
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and to notice that this can also be read as

D1,2 f
(N)
� (x; y1, . . . ;w1, . . .)

= −2
�∑

s=1

∂

∂ws

(
1

ws − x
× f

(N)
� (x; y1, . . . ;w1, . . .)

)
.

Thus when acting on F by the differential operator D1,2, we may take the oper-
ator inside the integral and rewrite the integrand as a sum of total derivatives.
The integral of these vanish because the contour was assumed to be closed.
Hence one gets the second-order differential equation for F . The third-order
differential equations are shown to hold similarly—the formal proof of a more
general statement can be found in [30, Proposition 4.12, Theorem 4.17].

3.1.2. Spin Chain–Coulomb Gas Basis Functions. Our solution will eventually
be of the form (3.2), with � = N . As in [30,31], we need to unveil an underlying
quantum group structure, which will be useful for calculations, and in partic-
ular crucial for dealing with the asymptotics. For this purpose, we introduce
the functions

ϕt−
L ,...,t−

2 ,t−
1 ;d;t+1 ,t+2 ,...,t+R

(y−
L , . . . , y−

2 , y−
1 ;x; y+

1 , y+
2 , . . . , y+

R)

indexed by t±j ∈ {0, 1, 2} and d ∈ {0, 1}, which are defined by the integrals

ϕt−
L ,...,t+R

(y−
L , . . . , y+

R)

=
∫

Γ
t
−
L ,...,t

+
R

f�
t−
L ,...,t+R

(y−
L , . . . , y+

R ;w1, . . . , w�) dw1 · · · dw�, (3.3)

where:

• The integration surface Γt−
L ,...,t−

2 ,t−
1 ;d;t+1 ,t+2 ,...,t+R

is shown in Fig. 3. The di-
mension of the integration surface, i.e., the number of integration variables
ws, is � = d +

∑L
j=1 t−j +

∑R
j=1 t+j . In the functions appearing in our final

answer this will always be � = N . The contour of each integration variable
ws is a loop based at an anchor point z0 to the left of all of the variables, and
the loop encircles one of the points in the positive direction. The loops of
the first t−L variables encircle the point y−

L , the next t−L−1 variables encircle
the point y−

L−1 and so on. The loops encircling the same point are nested.
The loops encircling different points avoid each other so that the contours
to a point further on the right go below.

• The integrand f�
t−
L ,...,t−

1 ;d;t+1 ,...,t+R
is a rephased branch of the integrand f

(N)
�

defined in Eq. (3.1): we multiply by a suitable complex number of modulus
one to make f�

t−
L ,...,t+R

real and positive at the point where each of the inte-
gration variables is on the real axis to the right of the point it encircles, see
Fig. 3.

We make the following remarks about the role and properties of the above
functions:
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Figure 3. The integration contours of the wj-variables in
Γt−

L ,...,t−
2 ,t−

1 ;d;t+1 ,t+2 ,...,t+R
and the point (marked by red circles)

where the integrand f� is rephased to be positive (color figure
online)

• Individually the surfaces Γt−
L ,...,t+R

are not closed, but our solution will be a
linear combination which is closed in the appropriate homology [24].

• The individual functions ϕt−
L ,...,t+R

depend also on the point z0 where the
loops in Γt−

L ,...,,t+R
are anchored. This dependence will cancel in the final

answer—the cancellation will be shown concretely in Sect. 4, and a proof
of this property in a general setup is given in [30, Proposition 4.5, Theo-
rem 4.17].

In the spin chain–Coulomb gas correspondence defined in Sect. 3.3.1, we will
make basis vectors in a quantum group representation correspond to the func-
tions ϕt−

L ,...,t−
2 ,t−

1 ;d;t+1 ,t+2 ,...,t+R
. In Sects. 3.3.2 and 3.3.3 we explain how straight-

forward quantum group calculations will allow us to decide about the asymp-
totics of the functions as well as the closedness of the surfaces in an appropriate
homology—see also [24,30].

3.2. Quantum Group

We need to recall some facts and fix some notation for the quantum group
Uq(sl2). It should be thought of as a deformation of (the universal enveloping
algebra of) the Lie algebra sl2, with a deformation parameter q—with a suit-
able normalization when q → 1 one recovers sl2 from the definitions we give
below.

We let q = e4πi/κ, and assume that κ is generic in the sense that κ /∈ Q.11

We define the q-integers [m] (for m ∈ Z)

[m] :=
qm − q−m

q − q−1
.

Since we assume κ /∈ Q, all q-integers [m] with m 	= 0 are non-zero.

11 For irrational κ the parameter q is not a root of unity, and the representation theory of
the quantum group is semisimple. To obtain the SLE boundary visit amplitudes in general,
we may in the end use continuity in the parameter κ.
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3.2.1. Definition of the Quantum Group. The quantum group Uq(sl2) is the
algebra over C with generators E,F,K,K−1 and relations

KK−1 = 1 = K−1K, KE = q2EK, KF = q−2FK,

EF − FE =
1

q − q−1

(
K − K−1

)
.

Moreover, Uq(sl2) is equipped with the unique Hopf algebra structure such
that the coproducts of the generators are

Δ(K) = K ⊗ K, Δ(E) = E ⊗ K + 1 ⊗ E, Δ(F ) = F ⊗ 1 + K−1 ⊗ F.

The coproduct Δ determines the action of the quantum group in tensor prod-
uct M ⊗ M ′ of two representations M and M ′, for example, E.(v ⊗ v′) =
E.v ⊗ K.v′ + v ⊗ E.v′. The tensor product of representations is then asso-
ciative but not commutative: multiple tensor products are well defined, for
example (M ⊗ M ′) ⊗ M ′′ ∼= M ⊗ (M ′ ⊗ M ′′), but the order of the tensorands
is important.

3.2.2. Representations of the Quantum Group. The quantum group Uq(sl2)
is semisimple (for q not a root of unity) in the sense that any finite-dimensional
representation is the direct sum of its irreducible subrepresentations. In fact,
the representation theory essentially just deforms that of sl2. We recall the
following standard facts, the proofs of which can be found in, e.g., [30, Lem-
mas 2.3, 2.4]:

For any d ∈ N, there exists a d-dimensional irreducible representation
Md with a basis e0, e1, e2, . . . , ed−1 such that the action of the generators on
the basis vectors is given by

K.ej = qd−1−2j ej

F.ej = ej+1 (with interpretation ed = 0)

E.ej = [j] [d − j] ej−1 (with interpretation e−1 = 0) .

This representation Md is the appropriate deformation of the d-dimensional
irreducible representation of sl2 (“the spin-d−1

2 representation”). The tensor
products of Md decompose according to the following formula:

Md2 ⊗ Md1
∼= Md1+d2−1 ⊕ Md1+d2−3 ⊕ · · · ⊕ M|d1−d2|+1.

Our calculations will require some specific cases of such (quantum) Clebsch-
Gordan decompositions to be made explicit. Formulas for those cases are given
in Appendix C.1.

The one-dimensional irreducible M1
∼= C is the trivial representation; it

acts as a neutral element of the tensor products: for any representation M we
have the isomorphisms M1 ⊗ M ∼= M ∼= M ⊗ M1. This allows us to omit M1

in tensor products, when needed.
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3.3. Spin Chain–Coulomb Gas Correspondence

3.3.1. Definition of the Correspondence. With the above preparations we can
now define the correspondence. The spin chain–Coulomb gas correspondence
linearly associates with vectors

v ∈ M⊗R
3 ⊗ M2 ⊗ M⊗L

3

in a tensor product of representations of Uq(sl2) a function so that for the
natural tensor product basis vectors the associated functions are those defined
in Sect. 3.1.2:

et+R
⊗ · · · ⊗ et+1

⊗ ed ⊗ et−
1

⊗ · · · ⊗ et−
L

�→ ϕt−
L ,...,t−

1 ;d;t+1 ,...,t+R
.

Note that in our convention, the order of the variables of the function is
the reverse of the order of the corresponding factors in the tensor product.

3.3.2. Asymptotics Via the Correspondence. A key property of the spin
chain–Coulomb gas correspondence is that the asymptotics of the functions
can be straightforwardly read from the projections to subrepresentations of
the corresponding vectors in M⊗R

3 ⊗M2 ⊗M⊗L
3 . For these projections, we use

below the notation and normalization conventions of Appendix C.1.
Let v ∈ M⊗R

3 ⊗ M2 ⊗ M⊗L
3 and let ϕ be the function associated with v

by the correspondence of Sect. 3.3.1. The correspondence of asymptotics and
subrepresentations is stated precisely in the following:
• Consider two consecutive points y±

m, y±
m+1 on the right or left (superscript

“+” or “−”, respectively). For d ∈ {1, 3, 5}, denote accordingly by π
(d)
±;m

the projection to d-dimensional subrepresentation of M3 ⊗M3 acting on the
m:th and m + 1:st components on the appropriate side.
– Suppose that v is in the singlet of the components corresponding to

y±
m, y±

m+1, that is v = π
(1)
±;m(v). Then as y±

m, y±
m+1 → y′, we have

ϕ(x; y1, . . . , yN ) ∼ B1 × |y±
m+1 − y±

m|2− 16
κ × ϕ(1)(x; y1, . . . , yN ),

where the variables y±
m, y±

m+1 have been removed from the right-hand
side, the function ϕ(1) is the function of two variables less associated with
the vector π̂

(1)
±;m(v) interpreted as a vector in either M

⊗(R−2)
3 ⊗M2⊗M⊗L

3

or M⊗R
3 ⊗ M2 ⊗ M

⊗(L−2)
3 , and the constant is the generalized beta-

function

B1 =
Γ(κ−8

κ )2 Γ(κ−4
κ )2 Γ(κ+8

κ )
2 Γ(2 − 8

κ ) Γ(2κ−6
κ ) Γ(κ+4

κ )
.

– Suppose that v is in the triplet of the components corresponding to
y±

m, y±
m+1, that is, v = π

(3)
±;m(v). Then as y±

m, y±
m+1 → y′, we have

ϕ(x; y1, . . . , yN ) ∼ B3 × |y±
m+1 − y±

m|1− 8
κ × ϕ(3)(x; y1, . . . , y

′, . . . , yN ),

where on the right-hand side the two variables y±
m, y±

m+1 have been re-
moved and replaced by one y′, the function ϕ(3) is the function of one
variable less associated with the vector π̂

(3)
±;m(v) interpreted as a vector in
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either M
⊗(R−1)
3 ⊗M2 ⊗M⊗L

3 or M⊗R
3 ⊗M2 ⊗M

⊗(L−1)
3 and the constant

is the beta-function

B3 =
Γ(κ−8

κ )2

Γ(2κ−8
κ )

.

– Suppose that v is in the quintuplet of the components corresponding to
y±

m, y±
m+1, that is, v = π

(5)
±;m(v). Then as y±

m, y±
m+1 → y′, we have

ϕ(x; y1, . . . , yN ) ∼ |y±
m+1 − y±

m| 8
κ × ϕ(5)(x; y1, . . . , y

′, . . . , yN ),

where on the right-hand side the two variables y±
m, y±

m+1 have been re-
moved and replaced by one y′. We will not need any properties of the
function ϕ(5), but we nevertheless remark that with a generalization of
the present method it becomes in principle explicit (see [30, Proposi-
tion 4.4] for details).

• Consider the point x and the first point y±
1 on the right or left (super-

script “+” or “−”, respectively). For d ∈ {2, 4}, denote accordingly by π
(d)
±

the projection to d-dimensional subrepresentation of M3 ⊗ M2 or M2 ⊗ M3

acting on the middle factor M2 and the M3 on the appropriate side of it.
– Suppose that v is in the doublet of the components corresponding to

x, y±
1 , that is v = π

(2)
± (v). Then as x, y±

1 → x′, we have

ϕ(x; y1, . . . , yN ) ∼ B2 × |y±
1 − x|1− 8

κ × ϕ(2)(x′; . . . , yN ),

where on the right-hand side the two variables x, y±
1 have been removed

and replaced by one x′, the function ϕ(2) is the function of one variable
less associated with the vector π̂

(2)
± (v) interpreted as a vector in either

M
⊗(R−1)
3 ⊗M2 ⊗M⊗L

3 or M⊗R
3 ⊗M2 ⊗M

⊗(L−1)
3 and the constant is the

beta-function

B2 =
Γ(κ−4

κ )Γ(κ−8
κ )

Γ(2κ−6
κ )

. (3.4)

– Suppose that v is in the quadruplet of the components corresponding to
x, y±

1 , that is v = π
(4)
± (v). Then as x, y±

1 → x′, we have

ϕ(x; y1, . . . , yN ) ∼ |y±
1 − x| 4

κ × ϕ(4)(x′; . . . , yN ),

where on the right-hand side the two variables x, y±
1 have been removed

and replaced by one x′. We will not need any properties of the function
ϕ(4), although it could also be written explicitly (see [30, Proposition 4.4]
for details).

For a general v ∈ M⊗R
3 ⊗M2 ⊗M⊗L

3 the asymptotics of ϕ are obtained by the
above formulas and linearity.

The statements are proved by straightforward manipulations of the inte-
grals, which are done in a more general setup in [30, Lemmas 4.2, 4.3, 3.11,
Proposition 4.4]. Indeed, when the vector v is of the supposed form, we know
from Appendix C.1 explicitly how its two consecutive tensor components must
be related. Considering the different possibilities for y±

m, y±
m+1, namely v =
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π
(5)
±;m(v), v = π

(3)
±;m(v), or v = π

(1)
±;m(v), one manages to rearrange zero, one,

or two integration variables on contours between the points y±
m and y±

m+1 so
that the contours of the rest of the integration variables remain away from
these points. Then extracting the asymptotics becomes easy: first of all, there
is a factor |y±

m+1 − y±
m| 8

κ in the integrand, and second the integral over the
contours between the points y±

m and y±
m+1 can be rescaled to produce (modulo

error terms that can be neglected in the limit y±
m, y±

m+1 → y′) a generalized
beta-function

B1 =
∫ 1

0

dw1

∫ 1

w1

dw2 w
− 8

κ
1 w

− 8
κ

2 (w2 − w1)
8
κ (1 − w1)− 8

κ (1 − w2)− 8
κ or

B3 =
∫ 1

0

dw w− 8
κ (1 − w)− 8

κ or B5 = 1,

times a power law |y±
m+1 − y±

m|Δl with Δl = l + 8
κ ( (l−1)l

2 − 2l) according to the
number l = 2, 1, 0 of integration variables on contours between the points y±

m

and y±
m+1. For the rest of the integrations, we may combine the factors in the

integrand containing the variables y±
m, y±

m+1 or any of the integration variables
between them, and we get a function of the same type, with fewer variables.
The different possibilities for x, y±

1 are treated in an entirely parallel fashion.
The multiplicative constants B1, B3, and B2 appear in the derivation as

integrals which are a priori convergent only for κ > 8. The assertions neverthe-
less remain true by analytic continuation also in the cases of interest 0 < κ < 8,
and we have given the constants B1, B3, and B2 explicitly as generalized beta
functions which are well defined, non-zero, and analytic in κ apart from certain
rational values of κ.

3.3.3. Highest Weight Vectors and Closed Integration Surfaces. For funda-
mental properties of the Dotsenko–Fateev functions in Sect. 3.1.1, it was im-
portant that the integration surface Γ was closed in an appropriate homol-
ogy related to the multivalued integrand (3.1), see [24]. Our basis functions
ϕt−

L ,...,t−
1 ,d,t+1 ,...,t+R

for the spin chain–Coulomb gas correspondence, introduced
in Sect. 3.1.2, are obtained by integrals along the contours Γt−

L ,...,t−
1 ,d,t+1 ,...,t+R

of
Fig. 3, which do not constitute a closed surface. Remarkably, however, Felder
and Wieczerkowski [24] showed that if the vector v is annihilated by the quan-
tum group generator E, i.e., if v is a sum of highest weight vectors of subrep-
resentations of M⊗R

3 ⊗ M2 ⊗ M⊗L
3 , then the homology class of the associated

linear combination of Γt−
L ,...,t+R

is closed. Less abstractly, as in [30, Proposi-
tion 4.5, Corollary 4.8], this can be viewed as a generalization of the manipu-
lations of the integrals we described in the end of Sect. 3.3.2, and we exhibit
this property very concretely by transforming the integrals to integrals along
the real axis in Sect. 4.1.

Importantly, if v ∈ M⊗R
3 ⊗ M2 ⊗ M⊗L

3 satisfies E.v = 0, then the asso-
ciated function ϕ has the following properties:
• The function ϕ does not depend on the choice of the anchor point z0 of the

contours Γt−
L ,...,t+R

.
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• The function ϕ satisfies the second-order differential Eq. (2.3).
• The function ϕ satisfies the third-order differential Eq. (2.4).
Generalizations and formal proofs are given in [30, Propositions 4.5, 4.12].

3.4. Linear Problem in Quantum Group Representations

Recall that we are looking for solutions to the partial differential Eqs. (2.1)–
(2.4), with boundary conditions specified in terms of the asymptotics (2.5)–
(2.8). We will produce the solution by the spin chain–Coulomb gas correspon-
dence of Sect. 3.3.1: we will find a vector v so that the associated function ϕ
solves the problem.

More precisely, for all order specifications ω ∈ {+,−}N with R “+”-
symbols and L “−”-symbols, we want vectors

v(N)
ω ∈ M⊗R

3 ⊗ M2 ⊗ M⊗L
3

such that the function associated with vω by the spin chain–Coulomb gas cor-
respondence is the boundary zig-zag amplitude ζω(y−

L , . . . , y−
1 ;x; y+

1 , . . . , y+
R).

This will be achieved if the vectors vω satisfy the following conditions, written
in terms of the projections π, π̂ defined in Appendix C.1:
• Highest weight vector of a doublet subrepresentation

E.v(N)
ω = 0 (3.5)

K.v(N)
ω = q v(N)

ω . (3.6)

• Projections to singlet and triplet for successively visited points If y±
m and

y±
m+1 are successively visited points on the same side (y±

m = yj and y±
m+1 =

yj+1), then

π
(1)
±;m(v(N)

ω ) = 0 (3.7)

π̂
(3)
±;m(v(N)

ω ) = const. × v
(N−1)
ω′ ,

where ω′ = (ω1, ω2, . . . , ωj−1, ωj , ωj+2, ωj+3, . . . , ωN ).
• Projections to singlet and triplet for non-successively visited points If y±

m

and y±
m+1 are non-successively visited consecutive points on the same side

(y±
m = yj and y±

m+1 = yk with k − j > 1), then

π
(1)
±;m(v(N)

ω ) = 0 (3.8)

π
(3)
±;m(v(N)

ω ) = 0.

• Projections to doublet for the first points on the left and right Let ± denote
the side of the first visited point, y1 = y±

1 , and ∓ the opposite side. For the
first visited point the condition is

π̂
(2)
± (v(N)

ω ) = const. × v
(N−1)
ω′ , (3.9)

where ω′ = (ω2, ω3, . . . , ωN ). For the first point on the opposite side the
condition is

π
(2)
∓ (v(N)

ω ) = 0. (3.10)
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By the closed integration surface considerations of Sect. 3.3.3, Eq. (3.5) guar-
antees that the function associated with vω is independent of the anchor point
and satisfies the PDEs (2.3) and (2.4). The translation invariance (2.1) is then
obvious. Equation (3.6) guarantees that the associated function is a linear
combination of ϕt−

L ,...,t−
1 ,d,t+1 ,...,t+R

with d+
∑

j t−j +
∑

j t+j = N , and, therefore,
by the results of Sect. 3.1.1, it has the correct scaling covariance (2.2). Finally,
by the asymptotics properties of Sect. 3.3.2, we see that Eqs. (3.7)–(3.10),
guarantee (2.5)–(2.8), respectively.

As for the choice of multiplicative normalization, we first make an explicit
choice for the cases N = 1 in Sect. 3.5.1. The rest of the multiplicative factors
are fixed recursively in N by requiring that the constant appearing on the
right hand side of Eq. (3.9) is equal to one. This corresponds to fixing the
multiplicative constant in Eq. (2.7) to the value B2 given in (3.4).

3.5. Solutions in Terms of Quantum Group Representations

A priori, the system of Eqs. (3.5)–(3.10) given in Sect. 3.4 is a linear algebra
problem in the 2 × 3N -dimensional tensor product space M⊗R

3 ⊗ M2 ⊗ M⊗L
3 .

The first two Eqs. (3.5) and (3.6) reduce this ambient dimension in a well-
understood way: their meaning is that vω is a highest weight vector of a sub-
representation of dimension two in the tensor product. We have

dim(Ker(E) ∩ Ker(K − q)) = mN ,

where mN is the multiplicity of M2 in the semisimple decomposition of the
tensor product, determined recursively by the formula of Sect. 3.2.2. Explicitly
for small N and asymptotically as N → ∞, the multiplicities mN are

N 1 2 3 4 5 6 7 8 9 10 . . .
mN 1 2 4 9 21 51 127 323 835 2188 . . .

,

mN ∼ 3

√
3
4π

× N− 3
2 3N .

Superficially the system of Sect. 3.4 still seems overdetermined, but we
find that in each case the solution space is one-dimensional, so up to multi-
plicative normalizations the solutions are unique.

Next we give the explicit solutions to the system of equations for a few
small values of N .

3.5.1. One-Point Solutions. There are two separate states that we need to
solve, v

(1)
− ∈ M2 ⊗ M3 for a visit on the left (y1 < x), and v

(1)
+ ∈ M3 ⊗ M2 for

a visit on the right (x < y1). The solutions, unique up to normalization, are

v
(1)
− =

q4

1 − q4
e0 ⊗ e1 − q

1 − q2
e1 ⊗ e0 (3.11)

v
(1)
+ =

q2

1 − q2
e0 ⊗ e1 − q2

1 − q4
e1 ⊗ e0. (3.12)
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The normalization above has been chosen such that the corresponding func-
tions both are equal to

ζ(1)(x; y1) = B2 |y1 − x|1− 8
κ ,

where the constant B2 is given by (3.4) (in particular both functions take
positive real values). The calculation of the corresponding integrals is discussed
in more detail in Sect. 4.2.1.

3.5.2. Two-Point Solutions. There are four separate states that we need to
solve for:

v
(2)
−− ∈ M2 ⊗ M3 ⊗ M3 (y2 < y1 < x)

v
(2)
−+ ∈ M3 ⊗ M2 ⊗ M3 (y1 < x < y2)

v
(2)
+− ∈ M3 ⊗ M2 ⊗ M3 (y2 < x < y1)

v
(2)
++ ∈ M3 ⊗ M3 ⊗ M2 (x < y1 < y2).

For the normalization of the states, we use the asymptotics as |y1 − x| → 0,
i.e., we fix the constant in either (2.7) or (3.9).

The solutions, unique with the chosen normalization, read

v
(2)
++ =

q4(1 + q2 + q4)
(1 − q4)2(1 + q4)
× ((q2 + q4)e011 − e020 − (1 + q2)e101 − (1 − q2)e110 + e200)

v
(2)
−− =

q3(1 + q2 + q4)
(1 − q4)2(1 + q4)
× (q3e002 + (q5 − q3)e011 − q3e020 − q2e101 − q4e101 + (1 + q2)e110)

v
(2)
+− =

q3(1 + q2 + q4)
(1 − q4)2(1 + q4)

×
(

q4

1 + q2
e002 + q5e011 − q3e101 − q4e110 +

1 + q2 + q4

1 + q2
e200

)

v
(2)
−+ =

q3(1 + q2 + q4)
(1 − q4)2(1 + q4)

×
(

q2(1 + q2 + q4)
1 + q2

e002 − qe011 − q3e101 + e110 +
q2

1 + q2
e200

)
,

where we use the shorthand notation et2t1d = et2 ⊗ et1 ⊗ ed ∈ M3 ⊗ M3 ⊗ M2

in the first case, and similarly for the rest.

3.5.3. Three-Point Solutions. For N = 3 there are eight separate states that
we need to solve for. For brevity, in the formulas below, we factor out the
constant

C3 =
q5
(
q4 + q2 + 1

)2

(q4 − 1)3 (q12 + q10 + 2q8 + 2q6 + 2q4 + q2 + 1)
.
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Then, with a shorthand notation similar to above, the unique normalized so-
lutions are

v
(3)
+++ = C3(−

(
q6+2q4+2q2+1

)
q3e0021−(q2+1

) (
q6+q4−1

)
q3e0111+

(
q2+1

)2
q3e0120

+
(
q2+1

)2
q3e0201+

(
q6−q2−1

)
qe0210+

(
q3+q

)3
e1011+

(
q6−q2−1

)
qe1020

+
(
q2+1

) (
q6−q2−1

)
qe1101+

(
q9−q7−2q5−q3+q

)
e1110−(q6+q4−1

)
qe1200

−(q6+2q4+2q2+1
)
qe2001−(q6+q4−1

)
qe2010+

(
q2+1

)2
qe2100)

v
(3)
++− = C3

(
−(q4+q2+1

)
q4e0012+

(
−q8+q2+

1

q2+1
−1

)
e0102−(q6+q4−1

)
q5e0111

+
(
q7+q5

)
e0201+

(
q8+q6

)
e0210+

(
q6+q4

)
e1002+

(
q2+1

)2
q5e1011

+
(
q6−q2−1

)
q3e1101+

(
q6−q2−1

)
q4e1110−(q4+q2+1

)
q4e1200

−(q4+q2+1
)
q3e2001−(q4+q2+1

)
q4e2010+

(
q4+q2+1

)2
e2100

q2+1

)

v
(3)
+−+ = C3

(
−(q4+1

) (
q4+q2+1

)
q2e0012+

(
q4+

q2

q2+1

)
e0102+

(
q7+q5+q3

)
e0111

−qe0201−q2e0210+

(
q6+q2+

1

q2+1
−1

)
e1002+

(
q9+q7+q5

)
e1011

−(q2+1
)
q3e1101−(q2+1

)
q4e1110+

(
q2+

1

q2+1

)
e1200−q5e2001

+q6 (−e2010)+

(
q4+

q2

q2+1

)
e2100

)

v
(3)
+−− = C3

(
−(q2+1

)
q6e0012+

(−q10+q6+q4
)
e0021

q2+1
−(q2+1

)
q7e0102

+
(−q11+q7+q5

)
e0111+

(
q9+q7+q5

)
e0120+

(
q7+q5+q3

)
e1002

+
(
q6+q4−1

)
q3e1011−(q2+1

)
q3e1020+

(
q6+q4−1

)
q4e1101−(q2+1

)2
q4e1110

−
(
q5+q3+q

)2
e2001

q2+1
+
(
q4+q2+1

)
e2010+

(
q5+q3+q

)
e2100

)

v
(3)
−++ = C3

(
−(q4+q2+1

)
q4e0012−(q4+q2+1

)
q6e0102+

(
q2+1

)2
q3e0111

+
(
q7+q5

)
e0201+

(−q4−q2−1
)
e0210+

(
q5+q3+q

)2
e1002

q2+1
+
(
q6−q2−1

)
qe1011

+
(
q6−q2−1

)
q3e1101+

(−q6−q4+1
)
e1110+

(
q2

q2+1
−q6
)

e1200

−(q4+q2+1
)
q3e2001+

(
q2+1

)
e2010+

(
q4+q2

)
e2100

)

v
(3)
−+− = C3

(
−
(
q10+q8+q6

)
e0012

q2+1
−
(
q4+q2+1

)
q8e0021

q2+1
+q3e0102

+
(
q7+q5

)
e0111+q7e0120+q5e1002+

(
q9+q7

)
e1011+q9e1020

−(q4+q2+1
)
q2e1101−(q4+q2+1

)
q4e1110−

(
q8+q6+q4

)
e2001

q2+1

−
(
q10+q8+q6

)
e2010

q2+1
+

(
q7+q5+2q3+q+

1

q

)
e2100

)
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v
(3)
−−+ = C3

(
−
(
q4+q2+1

)2
q4e0012

q2+1
+
(
q6+q4+q2

)
e0021+

(
q5+q3+q

)
e0102

+
(
q6+q4−1

)
qe0111−(q2+1

)
qe0120+

(
q7+q5+q3

)
e1002+

(
q6+q4−1

)
q3e1011

−(q2+1
)
q3e1020−(q3+q

)2
e1101+

(−q6+q2+1
)
e1110−(q2+1

)
q4e2001

+

(−q8+q4+q2
)
e2010

q2+1
+
(
q5+q3+q

)
e2100

)

v
(3)
−−− = C3

(
−(q2+1

)2
q5e0012+

(−q9+q5+q3
)
e0021+

(−q9+q5+q3
)
e0102

+
(−q8+q6+2q4+q2−1

)
q3e0111+

(
q6+q4−1

)
q3e0120+

(
q6+q4−1

)
q3e0201

−(q2+1
)2

q3e0210+
(
q2+1

) (
q4+q2+1

)
q2e1002+

(
q2+1

) (
q6+q4−1

)
q2e1011

−(q3+q
)2

e1020−(q2+1
)3

q2e1101−(q2+1
) (

q6−q2−1
)
e1110

+
(
q2+1

) (
q4+q2+1

)
e1200

)
.

3.5.4. Four-Point Solutions. For N = 4 there are 16 separate states that we
need to solve for. The solutions are again unique (with the chosen normaliza-
tion). In Appendix C.2 we include the results for those vectors that have been
used in the plots of Fig. 13.

3.5.5. Well-Posedness of the Problem. The linear problem of Sect. 3.4 is
well-posed: one always finds solutions and they are unique (with the chosen
normalization). Up to N = 4 this was explicitly stated above.

The uniqueness of solutions is checked by considering the homogeneous
equations for N -point vectors, where the inhomogeneous terms coming from
the (N − 1)-point vectors on the right-hand sides of Eqs. (3.7) and (3.9) are
omitted, that is

(K − q).v = 0, E.v = 0, π
(1)
±;m(v) = 0, π

(3)
±;m(v) = 0, π

(2)
± (v) = 0

for v ∈ M⊗R
3 ⊗ M2 ⊗ M⊗L

3 .

The projection conditions here, i.e., the homogeneous versions of Eqs. (3.7)–
(3.10), force the vector to lie in the unique subrepresentation of the highest spin
M2N+2 ⊂ M⊗R

3 ⊗M2 ⊗M⊗L
3 . On the other hand, the first two equations, i.e.,

Eqs. (3.5) and (3.6), force the solution to lie in a doublet M2 ⊂ M⊗R
3 ⊗ M2 ⊗

M⊗L
3 . The doublet subrepresentation and the subrepresentation of highest spin

intersect only at zero. The homogeneous problem, therefore, has no non-zero
solutions, which shows uniqueness.

The easiest way to prove the existence of solutions for all N seems to be
by exhibiting an algorithm, which recovers the solutions to our problem from
the solutions to a slightly simpler similar problem related to multiple SLEs.
This is done in detail in [31, Section 5].
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4. Regularized Real Integrals and Evaluation of the Formulas

4.1. Transformation to Real Integration Contours

Let us then analyze further the integrals ϕt−
L ,...,t−

2 ,t−
1 ;d;t+1 ,t+2 ,...,t+R

given by the
spin chain–Coulomb gas correspondence. Recall that the integral was defined
in Sect. 3.1.2, where the integration surface Γ consists of non-intersecting loop
contours for each of the integration variables ws as depicted in Fig. 3.

First we shall describe a transformation of the contours which makes
the integrands explicitly real in general, and examples will follow below. The
procedure is, in principle, straightforward. We assume that the anchor point z0

of the loop integrals lies on the real axis left of the points x and y−
L . (As stated

in Sect. 3.3.3 and as we shall see below, the integrals of interest to us in the end
are independent of this anchor point.) We can then deform the loop-shaped
contours so that they follow the real line, starting from the innermost loops
on the left and proceeding towards right.

There is, however, a complication as the integrals along the real axis may
become singular. Notice that as any of the integration variables wi approaches
any of the points yj , the integrand behaves as ∼ |wi − yj |1−8/κ. Thus the
resulting integrals will be convergent if κ > 8. For simplicity, let us, there-
fore, first assume that κ > 8, although for the application to SLE boundary
visit amplitudes we are ultimately interested in κ < 8. We will discuss the
divergences and the needed regularization for κ < 8 in Sect. 4.3.

When κ > 8, a loop contour enclosing, for example, y−
k can be divided

into 2(L − k + 1) subcontours on the real line. We get two contours (one from
both the lower and the upper edges of the loop) between the base point and
y−

L as well as between all consecutive pairs {y−
j , y−

j+1} with j = k, . . . , L − 1.
The corresponding (one-dimensional) integral thus becomes a sum of integrals
over the real line. Extending this procedure to the loops enclosing x and the
points y+

k right of x, each integral ϕt−
L ,...,t−

2 ,t−
1 ;d;t+1 ,t+2 ,...,t+R

can be written as a
linear combination of integrals having all integration contours on the real line.

In order to obtain the explicit linear combination of the integrals, the
remaining and most non-trivial task is to calculate the phase factors which
arise as the integrand is a multi-valued function. The phase convention for the
integrand f�

t−
L ,...,t+R

of (3.3) for the loop contours was defined by the red circles
in Fig. 3, and this convention leads to rather impractical branch choices for the
integrand as the contours are transformed. We shall choose the phases for the
contours along the real line as depicted by the red circles in Fig. 4, where the
integration contours have been deformed away from the real line to make their
multiplicity and the phase convention visible. Let us denote these integrals
by ρ̂k−

L ,...,k−
2 ,k−

1 ;k;k+
1 ,k+

2 ,...,k+
R
, when the number of variables integrated from the

anchor to y−
L is k−

L , the number of variables integrated from y−
L to y−

L−1 is
k−

L−1 and so on (we thus choose to index the integrals in terms of the rightmost
points of the integration intervals). It is not worthwhile to write down a general
formula for the phase factors which appear when expressing each ϕ as a sum
of the integrals ρ̂, but it is straightforward to calculate them case by case as
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Figure 4. The integration contours of the wj-variables for
ρ̂;k;k+

1 ,k+
2 ,...,k+

N
and the point (marked by red circles) where

the integrand is rephased to be positive. The contours in this
figure have been deformed away from the real axis, for the
sake of clarity of the phase convention (color figure online)

seen in the examples below. As the phase factors reflect the branch choices of
the integrand in (3.2), they will be integer powers of q = exp(4πi/κ), possibly
multiplied by −1 if the direction of integration needs to be reversed.

As the final step, we arrange the integration over each interval such that
the integration variables have a fixed order. The natural phase convention in
this case is that the integrand is real and positive. We denote these integrals
by ρk−

L ,...,k−
2 ,k−

1 ;k;k+
1 ,k+

2 ,...,k+
R
. The integrals are over products of simplexes of

dimensions k−
L , . . . , , k−

1 ; k; k+
1 , , . . . , k+

R , for example when L = 0, R = N , and
K = k +

∑N
j=1 k+

j we have

ρ;k;k+
1 ,k+

2 ,...,k+
N

(;x; y1, . . . , yN )

=
∫

· · ·
∫

x<w1<w2<w3<···<wk<y1
y1<wk+1<···<wk+k1<y2

...
...

yN−1<wK−kN +1<···<wK<yN

dw1dw2 · · · dwK |f (N)
N (x; y1, . . . , yN ;w1, . . . , wN )|.

The reordering gives a factor of [k]! q−k(k−1)/2 for each interval with k integra-
tions, where [k]! =

∏k
m=1 [m] is a q-factorial (see [30, Lemma 3.2] for details).

Thus, we have

ρ̂k−
L ,...,k−

2 ,k−
1 ;k;k+

1 ,k+
2 ,...,k+

R
=

L∏

j=1

[
k−

j

]
! q−k−

j (k−
j −1)/2 × [k]! q−k(k−1)/2

×
R∏

j=1

[
k+

j

]
! q−k+

j (k+
j −1)/2×ρk−

L ,...,k−
2 ,k−

1 ;k;k+
1 ,k+

2 ,...,k+
R
.

4.2. Solutions in Terms of Real Integrals

Let us then calculate explicitly the solutions obtained in Sect. 3.5 for low
numbers of boundary visits N . We shall discuss in detail the case N = 1, and
list the results for the solutions with a higher number of points. Case by case,
we will check that the obtained solutions for the boundary zig-zag amplitudes
satisfy the following two requirements:
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• The integration contour Γ is closed, and, therefore, the solution is inde-
pendent of the choice of the anchor point of the loop integrals. When the
amplitude is expressed in terms of the integrals ρk−

L ,...,k−
1 ;k;k+

1 ,...,k+
R

(or a
similar ρ̂), this will be clear as the solutions do not depend on the integrals
which include integrations starting from the base point—we will only have
terms with k−

L = 0 (or if L = 0 then k = 0).
• The solution is real: when expressed in terms of the integrals ρ, all coeffi-

cients will be real.

4.2.1. One-Point Solutions. We start from the N = 1 case where the single
visit takes place right of the starting point x. In this case we found that the
state v

(1)
+ ∈ M3 ⊗ M2 in (3.12) which satisfies the constraints is

v
(1)
+ =

q2

1 − q2
e0 ⊗ e1 − q2

1 − q4
e1 ⊗ e0.

By the spin chain–Coulomb gas correspondence of Sect. 3.3.1, the zig-zag prob-
ability amplitude is given by

ζ
(1)
+ (x; y+

1 ) =
q2

1 − q2
ϕ;1;0(x; y+

1 ) − q2

1 − q4
ϕ;0;1(x; y+

1 ).

Let us then do the transformation to the integrals along the real line.
The first term ϕ;1;0 has the loop integral encircling x, which can only lead to
integrals over the real line between the base point and x, i.e., the integral ρ̂;1;0.
The phase factor from the lower edge of the loop is q = e4πi/κ (as the phase
conventions of Figs. 3 and 4 differ by a rotation of the integration variable w
around x by the angle −π), whereas the phase factor for the upper edge of the
loop is −q−1 (where the rotation is in the opposite direction, and the minus
sign arises from reversing the direction of integration). Together,

ϕ;1;0(x; y+
1 ) =

(
q − 1

q

)
ρ̂;1;0(x; y+

1 ).

The other loop integral ϕ;0;1 breaks into four integrals along the intervals
on the real axis, two integrals between the base point and x, and two integrals
between x and y+

1 . The phase factors can be calculated analogously to the case
of ϕ;1;0, and they are integer powers of q. We find that

ϕ;0;1(x; y+
1 ) =

(
q2 − 1

q2

)
ρ̂;0;1(x; y+

1 ) +
(

q3 − 1
q

)
ρ̂;1;0(x; y+

1 ). (4.1)

Substituting in these results, we get

ζ
(1)
+ (x; y+

1 ) = ρ̂;0;1(x; y+
1 ) = ρ;0;1(x; y+

1 ).

In particular, the contributions of the integral ρ̂;1;0 cancel. The remaining
integral ρ̂;0;1 is independent of the anchor point of the loop contours, which
shows that the contour Γ was closed. In this case there is only one integration
variable, so trivially ρ̂;0;1 = ρ;0;1. From the final expression we also see that
the result is real.
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When N = 1 the resulting integral can be calculated easily. Using the
definitions from (3.2),

ζ
(1)
+ (x; y+

1 ) = (y+
1 − x)4/κ

∫ y+
1

x

dw (w − x)−4/κ(y+
1 − w)−8/κ

= B2 (y+
1 − x)1−8/κ,

where the constant is given by the same beta function B2 = B
(

κ−8
κ , κ−4

κ

)
=

Γ(κ−4
κ )Γ(κ−8

κ )/Γ(2κ−6
κ ) as in Eq. (3.4).

For comparison, let us also take a look at the case where the visit takes
place left of x. The state v

(1)
− ∈ W2 ⊗ W3 was given in Eq. (3.11), and by the

correspondence we get the probability amplitude

ζ
(1)
− (y−

1 ;x) =
q4

1 − q4
ϕ1;0;(y−

1 ;x) − q

1 − q2
ϕ0;1;(y−

1 ;x).

The transformations to real integrals read in this case

ϕ1;0;(y−
1 ;x) =

(
q2 − 1

q2

)
ρ̂1;0;(y−

1 ;x)

ϕ0;1;(y−
1 ;x) =

(
q − 1

q

)
ρ̂0;1;(y−

1 ;x) +
(
q3 − q

)
ρ̂1;0;(y−

1 ;x).

Inserting these gives again a simple result

ζ
(1)
− (y−

1 ;x) = ρ̂0;1;(y−
1 ;x) = ρ0;1;(y−

1 ;x).

This evaluates to

ζ
(1)
− (y−

1 ;x) = (x−y−
1 )4/κ

∫ x

y−
1

dw (w−y−
1 )−8/κ(x−w)−4/κ = B2 (x−y−

1 )1−8/κ.

The results for the left- and right-side visits can be collected in the (well
known) N = 1 probability amplitude already stated in Eq. (1.5),

ζ(1)(x; y1) = χ(1)(x; y1) = B2 |y1 − x|1− 8
κ ,

with our multiplicative normalization convention resulting in B2 given
in (3.4).

4.2.2. Two-Point Solutions. Let us start the discussion of the two-point so-
lutions from the case where both visits take place on the right-hand side. The
relevant vector v

(2)
++ ∈ M3 ⊗ M3 ⊗ M2 reads

v
(2)
++ =

q4(1 + q2 + q4)
(1 − q4)2(1 + q4)
×((q2 + q4)e011 − e020 − (1 + q2)e101 + (1 − q2)e110 + e200),
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where et2t1d ≡ et2 ⊗ et1 ⊗ ed. Thus the probability amplitude is

ζ
(2)
++(x; y+

1 , y+
2 ) =

q4(1 + q2 + q4)
(1 − q4)2(1 + q4)

((q2 + q4)ϕ;0;1,1(x; y+
1 , y+

2 )

− ϕ;0;2,0(x; y+
1 , y+

2 ) − (1 + q2)ϕ;1;0,1(x; y+
1 , y+

2 )

+ (1 − q2)ϕ;1;1,0(x; y+
1 , y+

2 ) + ϕ;2;0,0(x; y+
1 , y+

2 )).

The transformation to real integrals is still straightforward albeit more in-
volved, as one needs to take into account the phases related to the order of
the integration variables. The number of terms is also larger, e.g., the inte-
gral ϕ;0;2,0 breaks into 16 different terms (some of which immediately cancel
against each other).

Collecting the results in the expression for the probability amplitude,
however, there are again lots of simplifications:

ζ
(2)
++(x; y+

1 , y+
2 ) =

q−2 + 1 + q2

q−2 + q2
(ρ;0;0,2(x; y+

1 , y+
2 ) + ρ;0;1,1(x; y+

1 , y+
2 )).

Again we notice that as the first index of all remaining real integrals is zero,
the integration contour is closed. The probability amplitude is also real.

The amplitudes with other orderings of visits can be calculated similarly.
The results can be collected as

ζ
(2)
−−(y−

1 , y−
2 ;x) =

q−2 + 1 + q2

q−2 + q2
(ρ0,2;0;(y−

1 , y−
2 ;x) + ρ0,1;1;(y−

1 , y−
2 ;x))

ζ
(2)
−+(y−

1 ;x; y+
1 ) =

q−2 + 1 + q2

q−3 + q−1 + q + q3

(
(q−2 + 1 + q2)ρ0;2;0(y−

1 ;x, y+
1 )

+
q−3 + q−1 + q + q3

q−2 + q2
ρ0;1;1(y−

1 ;x; y+
1 ) + ρ0;0;2(y−

1 ;x; y+
1 )

)

ζ
(2)
+−(y−

1 ;x; y+
1 ) =

q−2 + 1 + q2

q−3 + q−1 + q + q3

(
(q−2 + 1 + q2)ρ0;0;2(y−

1 ;x, y+
1 )

+
q−3 + q−1 + q + q3

q−2 + q2
ρ0;1;1(y−

1 ;x; y+
1 ) + ρ0;2;0(y−

1 ;x; y+
1 )

)

ζ
(2)
++(x; y+

1 , y+
2 ) =

q−2 + 1 + q2

q−2 + q2
(ρ;0;0,2(x; y+

1 , y+
2 ) + ρ;0;1,1(x; y+

1 , y+
2 )).

One can check that

ζ
(2)
++(x; y+

1 , y+
2 ) = B2

2

Γ( 16−κ
κ ) Γ( 4

κ )
Γ( 12−κ

κ ) Γ( 8
κ )

(y+
1 − x)1− 8

κ (y+
2 − y+

1 )1− 8
κ

× 2F1

(
4
κ

,
κ − 8

κ
;
8
κ

;
y+
2 − y+

1

y+
2 − x

)
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and

ζ
(2)
+−(y−

1 ;x; y+
1 ) = B2

2

Γ( 16−κ
κ ) Γ( 8

κ )
Γ( 12−κ

κ ) Γ( 12
κ )

(x − y−
1 )

4
κ (y+

1 − x)− 4
κ (y+

1 − y−
1 )2− 16

κ

× 2F1

(
8
κ

,
κ − 4

κ
;
12
κ

;−x − y−
1

y+
1 − x

)
,

and that ζ
(2)
−−(y−

2 , y−
1 ;x) and ζ

(2)
−+(y−

1 ;x; y+
1 ) are given by the obvious reflection

in the above formulas. In particular, our formulas for ζ
(2)
++ and ζ

(2)
−− agree up

to the choice of normalization with those given in [51].

4.3. Divergences of the Real Integrals

As we mentioned above, the integrals over the real line contain divergences.
The integrals converge for κ > 8, but diverge when 0 < κ ≤ 8, which is the
range of the most interesting values of κ. There are several strategies to tame
the divergences, of which we emphasize two.

First, by construction, the spin chain–Coulomb gas method will result in
formulas that are analytic in κ, and the fundamental way of regularizing the
divergences of the integrals, therefore, is
• Analytic Continuation We can first restrict to κ > 8, where the integrals

converge, and analytically continue the final expressions to smaller values
of κ.

As usual, analytic continuation can be done in several ways. The basis functions
ϕ, defined as integrals as in Fig. 3, themselves converge for all values of κ and
their suitable linear combinations are thus already the analytic answer that we
are looking for. Whenever possible, it is nevertheless desirable to have explicit
expressions for the answer in terms of known analytic functions. This is, in
fact, essentially what we have been doing so far. Already the multiplicative
constants B1, B3, B2 appearing in the asymptotics properties in Sect. 3.3.2
were a priori defined as real integrals convergent only for κ > 8, but they were
expressible in terms of Gamma-functions which readily provide their analytic
continuation, e.g., B2 =

∫ 1

0
dw w− 4

κ (1 − w)− 8
κ = Γ(κ−4

κ )Γ(κ−8
κ )/Γ(2κ−6

κ ).
Furthermore, in Sect. 4.1 we gave formulas for the final answers for the zig-zag
amplitudes ζ

(1)
± and ζ

(2)
ω , in terms of, for example, hypergeometric functions

which also have known analytic continuations.
Although the real integrals always remain in essence similar to the cases

considered above, we cannot in general reduce the answers to such well-known
special functions. It is, therefore, useful to have a direct procedure to regularize
the divergent real integrals generally, in a way that provides their analytic
continuation, has transparent properties, and can be used for their numerical
evaluation. We focus on one such procedure:
• Cutoff Regularization We can start from the final expressions involving real

integrals, and introduce a small cutoff ε to regularize all divergent integrals.
More precisely, we require that all integration variables are further away
than ε from any of the points x or yk. With this prescription, the results
diverge as ε ↘ 0. All divergent terms are powers of ε, with the exponents
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depending on κ. They can be subtracted unambiguously at least for irra-
tional values of κ. The final result is then obtained by taking ε ↘ 0 after
subtracting the divergent counterterms. We will discuss the details below.

Let us now sketch how to prove that this regularization leads to the
correct final result.

First, the loop integrals ϕ of Fig. 3 converge for all values of κ and thus
can be used to define the analytic continuation of the result from κ > 8 to 0 <
κ ≤ 8. We can then do the transformation to real integrals, which was described
in Sect. 4.1, in a way that avoids the divergences. We first choose ε which is
smaller than half of the separation of any two of the points yk or x. When
deforming the loops into integrals over the real line, we replace the sections
of contours on the real line, which are closer than ε to the points yk or x, by
(semi-)circles having radii ε. This approach results in a higher dimensional
analogue of the usual Pochhammer contour. In this way a regularization is
obtained by modification of the contours, and no terms are dropped. There-
fore, it also gives the analytic continuation of the results to small values of κ,
independently of the value of ε.

Second, the pieces of the above contour on the real line equal the cutoff
regularized integrals. The integrals over the (semi-)circles can be expanded
around ε = 0, and the terms which are divergent as ε ↘ 0 provide the coun-
terterms for the cutoff regularization. For generic irrational κ the expansions
contain no constant term. Therefore, taking ε ↘ 0, the analytically continued
result matches with the cutoff-regularized one for all values of κ for which the
cutoff procedure could be defined unambiguously.12

Let us then work out the details of the cutoff regularization, i.e., find a
method to calculate the counterterms. We already pointed out that this can be
done by studying the expansion of the contributions from the (semi-) circles to
the integrals above, but tracking the phases of these integrals is quite involved.
It turns out to be easier to read off the divergent terms from the real integrals
directly. We can first take κ > 8 and start from the integrals without any
cutoff. Then we separate the “divergent” terms by dividing the integrations
into several pieces, effectively introducing a “cutoff”.

Let us first discuss the generic framework in more detail. We shall also
give an example below. We start from the integral ρ where all integrals are
along the real line and the integrand is real. We divide the integrals over each
of the real intervals into two pieces: the “regular” one where all integration
variables are further away than ε from the endpoints, and the “divergent” one
where one of the variables (either the first or the last one) is within ε from the
endpoints. The basic idea is then to develop the divergent pieces as series at
ε = 0.

For an N -point function, the highest possible divergence appears when all
integration variables are within ε from different points yj . Taking into account

12 For the specific values of κ, where the counterterms of the cutoff procedure involve
constants, cutoff regularization can be defined such that it matches with the other schemes.
Equivalently we can, e.g., require that the counterterms are analytic in κ.
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the behavior of the integrand and the integration measure, such contribution
is ∼ εN(1−8/κ). Developing the integrand as series at ε = 0, and taking into
account the contributions having divergent terms from n < N integrations,
the generic divergent contribution has the power behavior

∼εn(1−8/κ)εk, where n = 1, 2, . . . , N and k = 0, 1, 2, . . . (4.2)

All such terms can be in principle calculated by analyzing the divergent terms.
Analytically continuing to κ < 8, terms with small k will be divergent as ε ↘ 0.
(Alternatively, we could keep κ < 8 fixed from the start and work with two
cutoffs.) Since we started from an integral that was independent of ε, these
terms must cancel when all divergent and regular pieces are summed, and they
are thus the required counterterms. How all of this works is best illustrated by
considering an example.

Let us discuss the N = 2 integral

ρ;0;0,2(x; y1, y2) =
∫ y2

y1

∫ y2

w1

dw1dw2

[
(w2 − w1)(y2 − y1)

(y2 − w1)(y2 − w2)(w2 − y1)(w1 − y1)

] 8
κ

×F (w1, w2;x; y1, y2),

where x < y1 < y2 and we denoted by

F (w1, w2;x; y1, y2) =
[

(y2 − x)(y1 − x)
(w2 − x)(w1 − x)

] 4
κ

the part which would be replaced by a more complicated function for a higher
point integral having a similar structure, i.e., integral of two variables between
consecutive points yj . The regular term is

R =
∫ y2−ε

y1+ε

∫ y2−ε

w1

dw1dw2

[
(w2 − w1)(y2 − y1)

(y2 − w1)(y2 − w2)(w2 − y1)(w1 − y1)

] 8
κ

×F (w1, w2;x; y1, y2)
and the divergent terms can be written as
D1 + D2 + D3 + D4 + D5

=

(∫ y1+ε

y1

∫ y2−ε

y1+ε
+

∫ y2−ε

y1+ε

∫ y2

y2−ε
+

∫ y1+ε

y1

∫ y2

y2−ε
+

∫ y1+ε

y1

∫ y1+ε

w1

+

∫ y2

y2−ε

∫ y2

w1

)
dw1dw2

×
[

(w2 − w1)(y2 − y1)

(y2 − w1)(y2 − w2)(w2 − y1)(w1 − y1)

] 8
κ

F (w1, w2; x; y1, y2),

where the first two terms include one divergent piece of integration, and the
last three include two pieces.

The leading contribution from the divergent pieces is contained in the
third term D3, where |w1 − y1| < ε and |w2 − y2| < ε, as the terms D4 and
D5 are suppressed by the factor (w2 −w1)8/κ. We denote the O(ε) integration
variables as ŵ1 = w1 − y1 and ŵ2 = y2 − w2. Developing at ε = 0 we find

D3 =

∫ ε

0

∫ ε

0
dŵ1dŵ2ŵ

−8/κ
1 ŵ

−8/κ
2

[
F (y1, y2; x; y1, y2)

+ ŵ1
∂

∂w1
F (w1, y2; x; y1, y2)

∣∣∣
w1=y1

− ŵ2
∂

∂w2
F (y1, w2; x; y1, y2)

∣∣∣
w2=y2

+ O(ε2)

]
,
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where we wrote the terms of the expansions up to next-to-leading order, cor-
responding to k = 1 in (4.2). Doing the integrals gives the counterterms

D3 =
ε2(1−8/κ)

(1 − 8/κ)2

[
F (y1, y2; x; y1, y2) +

ε(1 − 8/κ)

2(1 − 4/κ)

×
(

∂

∂w1
F (w1, y2; x; y1, y2)

∣∣∣
w1=y1

− ∂

∂w2
F (y1, w2; x; y1, y2)

∣∣∣
w2=y2

)
+ O(ε2)

]

=
ε2(1−8/κ)

(1 − 8/κ)2

[
1 − 2ε(1 − 8/κ)(y2 − y1)

κ(1 − 4/κ)(y2 − x)(y1 − x)
+ O(ε2)

]
.

As another example, let us consider the term D1. Denoting again ŵ1 =
w1 − y1, we find

D1 =

∫ ε

0

∫ y2−ε

y1+ε
dŵ1dw2ŵ

−8/κ
1 (y2 − w2)

−8/κ

[
F (y1, w2; x; y1, y2)

+ ŵ1

(
∂

∂w1
F (w1, w2; x; y1, y2)

∣∣∣
w1=y1

− 8(y2 − w2)

κ(w2 − y1)(y2 − y1)
F (y1, w2; x; y1, y2)

)
+ O(ε2)

]

=
ε1−8/κ

1 − 8
κ

∫ y2−ε

y1+ε
dw2(y2 − w2)

−8/κ

[
F (y1, w2; x; y1, y2)

+
ε(1 − 8/κ)

2(1 − 4/κ)

(
∂

∂w1
F (w1, w2; x; y1, y2)

∣∣∣
w1=y1

− 8(y2 − w2)

κ(w2 − y1)(y2 − y1)
F (y1, w2; x; y1, y2)

)
+ O(ε2)

]
.

Thus rather nontrivial integrals remain in these counterterms. Notice that
even though the explicit ε-factor which arises from the divergent pieces is of
lower order than in D3, the overall divergence is of the same order as the
integral over w2 also diverges for ε ↘ 0.

The calculation for D2 is similar as for D1. The terms D4 and D5 only
contribute at O(ε2−8/κ), and their calculation is rather involved. Actually we
slightly cheated in the calculation of next-to-leading order terms for D1: we
replaced w2 − w1 by w2 − y1 even though this approximation fails when w2

is close to the lower bound of its integration range. Corrections due to this
approximation can be combined with the contributions from D4.

In Appendix D we discuss how the regularized integrals are used to nu-
merically compute the SLE boundary visit amplitudes.

5. Notions of SLE Boundary Visits and Applications

In this section we give the definition of chordal SLE in the upper half-plane H,
and give the conformal covariance rule to transport the boundary visit ampli-
tudes from the half-plane to any other domain. We then consider alternative
definitions of SLE boundary visits and discuss applications of our main result.
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5.1. Definition of Chordal SLE in Half-Plane

By conformal invariance, it is sufficient to define the chordal SLEκ in one
reference domain with marked points. The most common choice is the upper
half-plane H, with the curve starting from 0 and ending at ∞. The following
definition also gives a convenient time parametrization for the curve. To define
the chordal SLEκ in (H; 0,∞), consider the Loewner chain

g0(z) = z,
d
dt

gt(z) =
2

gt(z) − Xt
(for z ∈ H) (5.1)

where the driving process (Xt)t≥0 is taken to be

Xt =
√

κBt

a multiple of the standard Brownian motion (Bt)t≥0 on the real line—the
parameter κ gives the variance increment per unit time.

The hull Kt of the chordal SLEκ at time t is the closure of the set of points
z ∈ H for which the solution to the Loewner differential equation, Eq. (5.1),
has ceased to exist by time t. The hulls are growing compacts, Ks ⊂ Kt for
s ≤ t. It can be shown [41] that the hulls are generated by a continuous curve
γ : [0,∞) → H in the sense that the unbounded component of the complement
H\γ[0, t] of an initial segment up to time t coincides with the complement
H\Kt of the hull. We think of the chordal SLEκ simply as this random curve
γ.

5.2. Conformal Covariance of Boundary Visit Amplitudes

We content ourselves to writing down the solutions to the boundary visit
question in the upper half-plane H for a chordal SLEκ from x to ∞. The answer
can be transported to other domains by conformal covariance as follows:

Let us denote by ζ
(N)
(Λ;a,b)(y1, . . . , yN ) the boundary zig-zag amplitude for

chordal SLEκ in domain Λ from a to b, defined in a similar manner as in
the half-plane, when the points y1, . . . , yN ∈ ∂Λ are on smooth parts of the
boundary of the domain. Consider the chordal SLEκ curve γ in (Λ; a, b), and
a conformal map f : Λ → f(Λ). For boundary points y ∈ ∂Λ at which f ′(y)
exists, a neighborhood of y of radius ε is approximately mapped to a neigh-
borhood of the image f(y) and having radius ε × |f ′(y)|. The SLE curve it-
self is conformally invariant, that is, f(γ) has the law of a chordal SLEκ in
(f(Λ); f(a), f(b)). Correspondingly, after passing to the limit of small radii in
the definition of the amplitude

lim
ε↘0

(
1∏
j εh

j

× P [SLEκ visits neighborhoods of yj of radii εj ]

)
,

we get that the boundary zig-zag amplitudes satisfy the following conformal
covariance rule:
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ζ
(N)
(Λ;a,b)(y1, . . . , yN ) =

⎛

⎝
N∏

j=1

|f ′(yj)|h
⎞

⎠× ζ
(N)
(f(Λ);f(a),f(b)) (f(y1), . . . , f(yN )) ,

(5.2)
and similarly for the complete correlation functions χ

(N)
(Λ;a,b).

Appendix B.1 discusses this conformal covariance from the viewpoint of
conformal field theory.

5.3. Different Definitions of SLE Boundary Visits

There are several formulations of boundary visits, and one expects many limits
of the types of Eq. (1.2) or (1.3) to exist. Consider for example the following
alternative formulations:
• Touching small boundary intervals (for κ > 4) In the phase κ > 4, where the

curve γ can touch the boundary of the domain, a natural notion of reaching
a neighborhood of a point yj ∈ R\ {x} ⊂ ∂H is that the curve γ touches
the boundary between the point yj and a point which is εj further away
from the starting point x of the curve. If yj > x set Iεj

(yj) = [yj , yj + εj ]
and if yj < x set Iεj

(yj) = [yj − εj , yj ]. The corresponding boundary visit
amplitude is given by the limit of

ε−h
1 . . . ε−h

N P[γ ∩ Iεj
(yj) 	= ∅ ∀j = 1, 2, . . . , N ] (5.3)

as ε1, . . . , εN ↘ 0.
• Reaching small conformal distances from the boundary points For Λ � C a

simply connected open domain and z ∈ Λ, define the conformal radius ρΛ(z)
such that if f : D → Λ is a conformal map with f(0) = z, then ρΛ(z) =
|f ′(0)|. By Schwarz lemma and Köbe 1

4 -theorem, ρΛ(z) is comparable to the
distance of z to ∂Λ:

1
4
ρΛ(z) ≤ dist (z, ∂Λ) ≤ ρΛ(z).

Now for yj ∈ R\ {x} ⊂ ∂H, let Uj be the (unique) connected component
of H\γ such that yj ∈ ∂Uj . Join to Uj its reflection across the real axis, to
obtain a larger domain in which yj is an interior point—more precisely, let
Vj be the interior of Uj ∪ R ∪ U∗

j , where U∗
j = {z̄|z ∈ Uj}. The quantity

ρH\γ(yj) = ρVj
(yj) gives a conformally covariant notion of the distance of yj

to γ—recall that 1
4ρH\γ(yj) ≤ dist (yj , γ) ≤ ρH\γ(yj). The corresponding

boundary visit amplitude is given by the limit of

ε−h
1 . . . ε−h

N P[ρH\γ(yj) < εj ∀j = 1, 2, . . . , N ] (5.4)

as ε1, . . . , εN ↘ 0.
One could give an endless list of possible formulations: it is essentially possible
to define the notion of a boundary visit as the intersection of the curve with
a small neighborhood of any imaginable shape. Each of the different formu-
lations admits both a complete correlation function analogous to Eq. (1.2) as
exemplified in the two cases above, and an ordered zig-zag amplitude analo-
gous to Eq. (1.3). The formulations (5.3) and (5.4) are convenient for various
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reasons. In Appendix A we in particular present a derivation of the correct
value of the scaling exponent h = 8−κ

κ given in (1.1) based on each of them.

5.4. Applications of the Results and Universal and Non-Universal Aspects

In Sect. 5.3 we have argued that the SLE boundary visit amplitudes describe
the probabilities of events where the SLE trace comes close to marked bound-
ary points, independent of the details of the definition of these events. In this
section we mention further applications.

First, however, we emphasize that the details of the formulation or ap-
plication affect a multiplicative constant in the answer, but not the functional
shape of the zig-zag amplitude ζ(N)(x; y1, . . . , yN ) or the correlation func-
tion χ(N)(x; y1, . . . , yN ). For example, visiting small neighborhoods of different
shapes should happen with comparable but not necessarily equal probabili-
ties. In renormalization group language, the multiplicative constants are non-
universal, whereas the functions ζ(N)(x; y1, . . . , yN ) and χ(N)(x; y1, . . . , yN )
are universal as scaling functions (correlation functions). Also some ratios of
the multiplicative constants are universal: the most immediate example comes
from considering the formula

χ(N)(x; y1, . . . , yN ) =
∑

σ∈SN

ζ(N)(x; yσ(1), . . . , yσ(N))

for the complete correlation function as a sum over different orders of visits—
for the formula to be meaningful, the ratios of the different multiplicative
constants for a given N have to be independent of the formulation.

A slightly trivial but nevertheless illuminating example of the universality
of the functional shape and non-universality of the constant factor is to imagine
what would have happened in Eq. (1.2) had we chosen to measure the size of
the semi-disk neighborhoods with diameter ε instead of radius ε—the limit
would obviously have been a factor 2Nh smaller. As a nontrivial example, note
that the literature contains two definitions of the SLE Green’s function at
interior points: one for neighborhoods defined with usual Euclidean distances,
and another with conformal radius. It has been shown in [35] that the two
Green’s functions are the same up to a multiplicative constant (whose value is
not explicitly known). In fact, the idea used in [35] is the correct explanation
with SLE analysis of the universality of the functional shape of ζ

(N)
ω and of the

non-universality of the multiplicative constant. Roughly, if the SLE curve is
conditioned to approach a point y, and one considers the curve locally near y,
then in small scale the curve will look like it is drawn from a certain stationary
distribution which is independent of what other far away points the curve
is conditioned to visit. The curve with stationary law has certain non-zero
probabilities of hitting a half-disk, boundary interval, or some other shape,
and the ratios of these probabilities give the ratios of the amplitudes in the
respective formulations.

In most cases, an exact formula for the non-universal multiplicative con-
stants would be too much to hope for. However, Appendix A.1 contains one
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concrete example in which the multiplicative constant is explicit: the N = 1
case in the “touching small boundary intervals” formulation is Eq. (A.1).

In Sect. 2 we argued that the amplitudes ζ(N) and χ(N) are obtained
as solutions to a system of linear partial differential equations and boundary
conditions. Solutions to this linear homogeneous problem are at best fixed up
to a multiplicative constant, and the above considerations explain that this is
only natural.

5.4.1. Boundary Visit Probabilities for Interfaces in Lattice Models. The
principal motivation for the introduction and study of SLEs is that these ran-
dom curves are the scaling limits of interfaces in lattice models of statistical
mechanics at criticality. The SLE zig-zag probabilities are closely related to the
probabilities for an interface in a lattice model to pass through given bound-
ary points. For some models these probabilities in turn have direct physical
interpretations, for example the boundary visit probability of interface in Q-
random cluster model (Q-FK model) gives a boundary magnetization in the
Q-Potts model via the Edwards–Sokal coupling [20].

For lattice model interfaces, too, the exact meaning of passing through
a boundary point involves some choices, and different choices lead to different
non-universal constant factors. The idea, however, always is to consider the
model on a lattice domain Λδ of small lattice mesh size δ so that Λδ approx-
imates a given planar domain Λ ⊂ C as δ ↘ 0. One defines a boundary visit
locally by requiring the lattice model interface to use, for example, a given
edge or a given vertex near a marked point y ∈ ∂Λ on the boundary. The
probabilities of thus visiting N marked points on smooth parts of the bound-
ary ∂Λ are of order δNh, provided that also the lattice approximations to the
boundary have a regular and consistent local structure as δ ↘ 0. Thus the
lattice mesh δ serves as a measure of the neighborhood size, and much like
in (1.2), the limit of the lattice model interface probability renormalized by
δ−Nh should be given by ζ(N) or χ(N), correctly conformally transported to
the domain Λ by the conformal covariance rule of Sect. 5.2.

In Sect. 6, we discuss in more detail a few well-known lattice models
and the details of the question of boundary visits of interfaces for them. We
find that our formulas for ζ(N) and χ(N) are in very good agreement with the
probabilities obtained from numerical simulations of these lattice models.

5.4.2. Covariant Measure of SLE on the Boundary. For lattice models, the
most natural way of quantifying boundary proximity of an interface is by count-
ing the number of boundary points visited by it, e.g., within a given boundary
segment. In the scaling limit, the count must be renormalized properly by a
power of the lattice spacing δ: the probability to visit a given boundary point
is of order δh and the expected number of boundary points visited in a segment
is of order δh−1 (which diverges for κ > 4 and tends to zero for κ < 4).

The article [4] presents a construction of a covariant measure of SLEs
on the boundary, which is the analogous boundary proximity count in the
continuum. Roughly, this SLE boundary measure μΛ;a,b, associated with the
chordal SLEκ in domain Λ from a to b, is a random locally finite measure
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μΛ;a,b on ∂Λ, supported on the set where the chordal SLEκ curve γΛ;a,b from
a to b in Λ touches the boundary ∂Λ. This measure is conformally covari-
ant with exponent h, i.e., if f : Λ → Λ′ is a conformal map, then μΛ;a,b(dx) =
|f ′(x)|h μf(Λ);f(a),f(b)(df(x)) in law. The domain Markov property for the mea-
sure states that conditionally on an initial segment of the chordal SLEκ curve
in (Λ; a, b), the measure μΛ;a,b restricted to a set A ⊂ ∂Λ away from the initial
segment has the same law as μΛ\segment;tip,b restricted to the same set. These
properties characterize the family of measures μΛ;a,b up to a multiplicative
constant.

The SLE boundary measure is constructed by studying a local martingale
associated with the correlation function χ(1). By construction this function χ(1)

then gives the density of the expectation of μ = μH;0,∞ with respect to the
Lebesgue measure on R. The higher complete correlation functions χ(N) of the
present article should be the integral kernels for moments of the SLE boundary
measure

ε−N E

⎡

⎣
N∏

j=1

μ([yj , yj + ε])

⎤

⎦ ∼ const. × χ(N)(0; y1, . . . , yN ).

In fact the proof [4] of non-triviality of the constructed SLE boundary measure
employs the two-point function χ(2), which had been found in [51].

A convenient way to explicitly characterize a random measure is to give its
Laplace transform. Denote briefly μ = μH;0,∞. For a test function φ : R\ {0} →
R let

L(φ) : = E[e− ∫
R

φdμ]

be the Laplace transform of μ at φ. For the sake of concreteness, consider
φ supported on the positive real axis. Then the expansion of the Laplace
transform around the zero function is given by

L(εφ) = E[e−ε
∫
R

φdμ]

= 1 − εE

[∫

R

φ(y)dμ(y)
]

+
ε2

2
E

[∫∫
φ(y1)φ(y2)dμ(y1)dμ(y2)

]
+ · · ·

= 1 +
∞∑

N=1

(−ε)NcN

∫
· · ·
∫

{y1<y2<···<yN }
φ(y1) · · · φ(yN )

× χ(N)(0; y1, . . . , yN ) dy1 . . . dyN ,

where cN are non-universal multiplicative constants.
The construction of [4] establishes that a unique (up to normalization)

random measure satisfying the required abstract properties exists. The results
of this article in principle give explicit formulas for the random measure in
terms of integral kernels for its moments or the power series expansion of its
Laplace transform.

5.4.3. Conditioned SLE and First Visit Point Recursion for the Zig-Zag
Amplitudes. Let us discuss one more interpretation of the results, which in
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fact also suggests a natural strategy of rigorous proof that our formulas give
the order refined SLE Green’s functions on the boundary, as defined in Sect.
1 or alternatively in Sect. 5.3.

Consider conditioning the chordal SLEκ curve γ to visit a boundary point
y, for definiteness in (H;x,∞) again. As such, this is a zero-probability event
(for κ < 8), and one must perform a limiting procedure to properly define
the conditioning: first condition on visiting Bε(y) and then let ε ↘ 0. The
conditioned curve can be described explicitly: its Radon–Nikodym derivative
with respect to the ordinary chordal SLE is proportional to the indicator of
the event of the visit, and in the limit ε ↘ 0 we get a Girsanov transform of
the ordinary chordal SLE

dPcond.
(H;x,y,∞)

dP(H;x,∞)

∣∣∣∣∣
Ft

∝ χ
(1)
H\Kt

(γ(t); y) = |g′
t(y)|h χ(1)(Xt; gt(y)).

This description of the conditioned curve is equivalent to the more familiar
SLEκ(ρ) with ρ = κ − 8, i.e., the random Loewner chain (5.1) with driving
process given by

X0 = x, dXt =
√

κ dBt +
ρ

Xt − gt(y)
dt, where ρ = κ − 8.

After the random time when the conditioned curve reaches y (i.e., when
|Xt − gt(y)| → 0), the curve will continue like an ordinary chordal SLE in
the complement of the initial segment of the curve up to that time.

Using the one-point function χ(1), one may thus describe the SLE condi-
tioned to visit a given boundary point. Conditioning on visiting several points
could be similarly done with our functions χ(N) or ζ(N). Below we will, how-
ever, turn the logic around and see how our formulas could be rigorously proved
using this conditioning.

The idea is to use the conditioning to reduce the N -point function ques-
tion to an (N−1)-point question. Namely, for the SLE curve γ to make visits to
Bε1(y1), . . . , BεN

(yN ) in this order, it needs to make the first visit to y1 by def-
inition, and we may proceed by conditioning on this. We know, for example by
considerations similar to Appendix A.1 or A.2, that the probability of this first
visit is of order εh

1 χ(1)(x; y1), and we can describe the conditional law of the
curve given this first visit essentially by the SLEκ(ρ) process above. After the
time τ of the first visit, the curve is again a chordal SLE in the random domain
H\Kτ at that time, and we would like it to visit the neighborhoods of the N −1
remaining points y2, . . . , yN . We may inductively assume that the (N−1)-point
visit formulas ζ(N−1) for chordal SLE have been established. Thus we need to
be able to average the (N − 1)-point zig-zag amplitude ζ

(N−1)
H\Kτ

(γτ ; y2, . . . , yN )
over the randomness of the domain (H\Kτ ; γτ ,∞) that remains after the first
visit. That will be achieved if we can construct a martingale for the condi-
tioned SLE, whose value at the time τ is ζ

(N−1)
H\Kτ

(γτ ; y2, . . . , yN ). The key point
is that such a martingale is constructed using the formula for ζ(N) that we
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find in the present work—namely we set

Mt =
N∏

j=2

|g′
t(yj)|h × ζ(N)(Xt; gt(y1), . . . , gt(yN ))

χ(1)(Xt; gt(y1))
.

This is a local martingale by the differential Eq. (A.3) that our ζ(N) satis-
fies, and its value at time τ is the desired (N − 1)-point zig-zag amplitude
in the random domain H\Kτ essentially by the asymptotics conditions (2.7)
we impose on ζ(N). What remains is to show that (Mt)t∈[0,τ ] is a uniformly
integrable martingale. This relies partly on a priori estimates of SLE proba-
bilities [10,39] and on careful control of the functions appearing in the spin
chain–Coulomb gas correspondence of the present article and in [30]. One also
needs to control some approximations made, but roughly speaking at this stage
optional stopping for the martingale (Mt) proves that ζ(N) gives the N -point
boundary zig-zag amplitude or N -point order refined SLE Green’s function on
the boundary.

Carrying out the proof with this strategy is the topic of a subsequent
work in collaboration with Konstantin Izyurov.

6. Comparisons with Lattice Model Simulations

It is somewhat intricate and computationally demanding to obtain satisfactory
computer simulations of SLE curves [29]. Therefore, comparing our results with
direct numerics of SLEs would be difficult. A more practical alternative is to
simulate lattice models whose interfaces tend to SLEs in the scaling limit. The
boundary visits in such lattice models indeed constitute a natural interpre-
tation and an important physical application of our results, as discussed in
Sect. 5.4.1. In the present section we elaborate on the idea in the context of
various lattice models. We discuss simulation of these models and their inter-
faces and boundary visits of the interfaces. Finally, we compare the numerical
results obtained from these simulations to our solution presented in Sects. 3
and 4.

On physical grounds it is completely natural to expect that the scaling
limit of renormalized lattice interface visit probabilities is proportional to the
SLE Green’s functions χ(N) and ζ(N). We nevertheless remark that even in
models whose interface is rigorously known to converge to a chordal SLE in
the scaling limit (e.g., Sects. 6.1.2–6.1.4 below), highly nontrivial additional
mathematical work would be needed to establish this. Actually, the validity
of the physically unsurprising equivalence is highly sensitive to the details of
the lattice approximation of the domain boundary, and again even valid ap-
proximation schemes lead to different non-universal proportionality constants.
Incidentally, the equivalence of the two formulations has been rigorously es-
tablished for one case: one- and two-point boundary visits of the FK-Ising
model interface (Sect. 6.1.4 below) on boundary segments parallel to coor-
dinate axes—the boundary visit probabilities (or equivalent boundary spin
correlation functions) were used in [27] as a technique to control the scaling
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limit of an interface in a dual model (the Ising model with particular bound-
ary conditions). Our simulation results below of course show a good match
to our analytical solution, and thus clearly support the physically expected
equivalence of the formulations.

Let us still make general comments about the numerical comparison of
simulation data with our main results. Small lattice mesh sizes δ are of course
desirable to reduce finite size scaling effects, i.e., to obtain better approxima-
tions to the conformally invariant scaling limit situation. As always, however,
small mesh size δ or corresponding large size of the simulated system quickly in-
creases needed computational resources, particularly so in critical models that
we are interested in. For our question, there is yet another difficulty. With lat-
tice mesh δ, the probability of having N boundary visits by the interface is of
order δNh, where h = h1,3(κ) = 8−κ

κ > 0 and κ depends on the model. We are
thus interested in rare events, whose probability further decreases with mesh
size δ and number of visit points N , so in order to obtain acceptable statistics,
we need increasingly large numbers of samples. The trade-off between reduc-
ing finite size effects and improving statistics is, therefore, a major issue. High
values of the exponent h1,3(κ), or correspondingly models with small κ are the
most problematic. We have simulated models corresponding to κ = 2 (LERW,
Sect. 6.1.2), κ = 24

5 , and κ = 16
3 (different FK-models, Sect. 6.1.4), and κ = 6

(percolation, Sect. 6.1.3). In the most difficult case κ = 2 we are essentially
limited to N ≤ 2, and significant finite size effects still remain in the data (see
Fig. 10). In the least problematic case κ = 6, finite size effects can be made
reasonably small up to N = 4 (see Fig. 13). The issues in numerical evaluation
of our analytical results have been separately discussed in Appendix D, and
we note that besides large N , difficulties also arise due to small κ.

6.1. Lattice Model Interfaces

6.1.1. Relevant Domains and Conformal Maps. We have simulated different
statistical models in lattice approximations of domains of the simplest possible
shapes: the square and the equilateral triangle. The frequencies of boundary
visits of interfaces have been collected, and for comparison with our formulas
they need to be transported to the half-plane H by conformal maps. The
domains, lattice approximations, and the conformal maps are described below.

The unit square

S = {z ∈ C|0 < �e(z) < 1, 0 < �m(z) < 1}
will be discretized by a square lattice of small mesh size δ: the vertex set
is Sδ = δZ

2 ∩ S and edges connect vertices at distance δ. A conformal map
fS : S → H from the square to the half-plane is the Jacobi elliptic sine function
sn composed with a Möbius transform, and our choice is

fS(u) =
sn ((2u − 1)K;m) + 1

sn ((2u − 1)K;m) − 1/
√

m

sn (K;m) − 1/
√

m

sn (K;m) + 1
,

where m is the elliptic modulus of square and K = K(m) is the corresponding
complete elliptic integral of the first kind. This choice is such that the lower
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left corner is mapped to the origin, the top right corner to infinity, and the
bottom right and top left corners to +1 and −1, respectively.

The unit equilateral triangle

T =

{
z ∈ C

∣∣∣∣∣ − 1
2

< �e(z) <
1
2
, 0 < �m(z) <

√
3

2
−

√
3 |�e(z)|

}

will be discretized by a fine triangular lattice. The small mesh size δ is the
distance between its neighboring vertices, and Tδ denotes the set of such tri-
angular lattice vertices in T . A conformal map fT : T → H from the triangle
to the half-plane is the inverse of a Schwarz-Christoffel map,

f−1
T (z) =

Γ( 5
6 )√

π Γ( 1
3 )

×
∫ z

0

(1 − w)−2/3(1 + w)−2/3dw.

The choice is such that fT maps the midpoint of the bottom side to the origin,
and the left and right bottom corners to −1 and +1, respectively.

6.1.2. Loop-Erased Random Walk. The loop-erased random walk (LERW) is
a path obtained by performing loop erasure to a finite piece of a simple random
walk. The conformal invariance of the scaling limit of interior-to-boundary
LERW was shown in [38]. Different LERW variants, including the one we
study here, were proven to have conformally invariant scaling limits in [53].
The scaling limit of the path we describe below is chordal SLE2.

We consider the square lattice domain Sδ, which approximates the unit
square, as in Sect. 6.1.1. We send a simple random walk (Wn)∞

n=0 at the lower
left corner W0 = δ + iδ. We condition on the event that the walk exits the
square via the upper right corner, and we denote the time of exit by τ . The
loop-erased random walk is the simple path γδ which is obtained from (Wn)τ−1

n=0

by chronologically erasing all loops (sequences of consecutive steps which start
and end at the same vertex). Figure 5 shows a realization of a LERW in Sδ

with lattice mesh δ = 1
150 . The figure also suggests that the loop-erased path is

unlikely to come close to the boundary except at the two end points, indicating
the difficulties of sampling boundary visits of this model with fine lattice mesh.

We define boundary visit as the event that the path γδ passes through a
vertex x at distance δ from the boundary ∂S of the square. The behavior of
the boundary visit probabilities should be

P[γδ visits x1, x2, . . . , xN ]

≈ const. ×
N∏

j=1

(|f ′(xj)| δ)h × ζ(N)(0; f(x1), . . . , f(xN )), (6.1)

where h = h1,3(2) = 3 and f = fS : S → H is the conformal map from the
unit square to the half-plane given in Sect. 6.1.1.

The simulation is done as follows: we sample a conditioned random walk
using explicitly calculated transition probabilities, then perform the loop era-
sure of the random walk, and collect data of visited boundary points of the
loop erasure. We correct the boundary visit frequencies obtained from the
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Figure 5. A loop-erasure of a random walk in a box, from
the bottom-left corner to the top-right corner

simulations by dividing by the factor
∏N

j=1 (|f ′
S(xj)| δ)h that appears in (6.1),

and then compare with our SLE boundary visit amplitude ζ(N) at κ = 2. Note
that the probabilities decay as δNh and due to the high value of the exponent
h = h1,3(2) = 3 it is very hard to obtain good statistics with a small mesh
size, especially for higher N . Figures 8 and 10 present data from simulations
with lattice mesh δ = 1

120 and 107 realizations and with lattice mesh δ = 1
60

and 108 realizations, respectively. The agreement with our analytical results
is reasonable. The otherwise difficult small κ turns out to have one advantage:
the orders of magnitude of the visits in different pieces of the plot are rather
different, and one notes in particular that the universal ratio of the boundary
visit amplitudes with y2 < x = 0 and y2 > y1 = 1 obtained by our method
is undeniably correct—a single multiplicative constant has been fitted for the
two pieces ζ

(2)
++ and ζ

(2)
+− in Fig. 10.

6.1.3. Percolation. Percolation is an easily defined model of statistical
physics, showing nevertheless interesting critical behavior. Its conformal in-
variance had been predicted in [32], and impressive exact results had been
predicted using conformal field theory. The proof of conformal invariance of
scaling limit of site percolation on triangular lattice was obtained by Smirnov
in [45], based on a formula found by Cardy [12]. The interface that we define
below converges in the scaling limit to chordal SLE6, see [14,45].

We take a domain Tδ which is a triangular lattice approximation of an
equilateral triangle as in Sect. 6.1.1. Triangular lattice site percolation with
parameter p ∈ (0, 1) associates with each vertex of a domain in the triangular
lattice (which we portray as a hexagon, a face of the dual lattice) a color:
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Figure 6. Critical percolation in a triangle, the exploration
path starting from the middle of the bottom side leaves white
hexagons to its left and black hexagons to its right

white with probability p and black with probability 1 − p, independently. One
studies questions concerning connected components of sites of one color at the
critical parameter value p = pc = 1

2 . We impose white boundary conditions
on the left half of the boundary ∂Tδ ∩ {�e(z) < 0}, and black on the right
half ∂Tδ ∩ {�e(z) > 0}. There is a unique path γδ on the dual lattice from the
midpoint of the bottom side of the triangle to the top vertex of the triangle,
leaving white vertices on the left and black vertices on the right. This path,
commonly called the percolation exploration path, is our interface. Figure 6
shows a realization of the exploration path in Tδ with lattice mesh δ = 1

40 .
Quite the contrary to Fig. 5, here there is no shortage of places on the boundary
that are visited by the path.

We define boundary visit as the event that the path γδ passes through the
exteriormost corner x of a hexagon next to the boundary layer. The behavior
of the boundary visit probabilities should be given by Eq. (6.1), where now
h = h1,3(6) = 1

3 and f = fT : T → H is a conformal map from the triangle to
the half-plane given in Sect. 6.1.1.

The simulation of percolation configurations hardly requires any com-
ments. The only computationally intensive step is to extract the interface
from the configuration. Another practical issue for high N , small δ, and large
number of samples is the storage of the obtained data of boundary visits. Once
the data of boundary visit frequencies is collected, we again correct them by
dividing by the factor

∏N
j=1 (|f ′

T (xj)| δ)h and then compare with our SLE
boundary visit amplitude ζ(N) at κ = 6. Figures 8, 9, 11, and 13 present data
for N = 1, 2, 3, 4, respectively, obtained from simulations with lattice mesh
δ = 1

500 and 105 realizations, with lattice mesh δ = 1
300 and 2 × 106 realiza-

tions, with lattice mesh δ = 1
80 and 106 realizations, and with lattice mesh

δ = 1
160 and 2 × 108 realizations, respectively. The agreement with our an-

alytical results is nearly perfect. Note again that for any fixed N , only one
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Figure 7. FK-model (random cluster model) interface
closely follows the outer boundary of the cluster connected
to the wired part of the boundary: the left and top sides

multiplicative constant has been fitted, and the ratios of the magnitudes of
boundary visit frequencies in different pieces of the plots are obtained from
our results.

6.1.4. FK-Model. The random cluster model (also called FK-model, named
after Fortuin and Kasteleyn [21]) with parameters (p,Q) is a generalization
of bond percolation, which for integer values of Q is closely related to the
Q-Potts model. For Q ∈ [0, 4] it is expected to undergo a continuous phase
transition at the critical value p = pc(Q) =

√
Q

1+
√

Q
,13 and behave conformally

invariantly at the critical point. With Dobrushin boundary conditions, there is
an interface somewhat analogous to the exploration path of percolation, which
at the critical point is expected to converge in the scaling limit to (chordal)
SLEκ, where κ = κ(Q) = 4π

arccos(−√
Q/2)

. The SLE scaling limit is rigorously
known in two special cases: the case Q = 2 is known as the FK-Ising model
and the techniques of [46,47] led to a proof [13], and the limiting case Q = 0
corresponds to the uniform spanning tree treated in [38]. Figure 7 shows a
realization of Q = 4 FK-model interface with lattice mesh δ = 1

30 , together
with the interface.

It is worth noticing that the probabilities of boundary visits of the inter-
face can be used to express the boundary magnetization, and more generally
boundary spin correlation functions of the Potts model, with one of the bound-
ary arcs having fixed spin. These exemplify some of the physical applications
of the boundary visit problem.

For simulations in this article we restrict our attention to the values
Q = 2 and Q = 3. Integer values of Q are convenient because there exists a

13 That this self-dual value is critical has been established in [9] for Q ≥ 1.
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Monte Carlo Markov chain by Swendsen and Wang, which does not suffer as
much of critical slowing down as the more common Markov chains based on
local updates [50]. This efficiency of simulation is important, because we need
good statistics to get accurate information about the small probability events
of multiple boundary visits. Swendsen–Wang algorithm works for all integer
Q, but for Q > 4 the model has a first-order phase transition and does not
exhibit conformal invariance. For Q = 4 the finite-size corrections scale too
badly for reliable simulations.

We define the model in the lattice approximation Sδ of the unit square S
given in Sect. 6.1.1. The random cluster model is a random subset ω of edges
of Sδ, with probability proportional to

P(p,Q)[{ω}] ∝
(

p

1 − p

)|ω|
Qk(ω),

where k(ω) denotes the number of connected components (“clusters”) of the
subgraph of Sδ defined by all vertices and the edges ω. The appropriate Do-
brushin boundary conditions amount to conditioning on the event that all
edges of the left and top boundaries of the square are in ω. The interface γδ is
the path obtained as the boundary of the δ

4 -thickening of the component con-
nected to the left and top, i.e., a path closely surrounding the “wired cluster”,
see Fig. 7.

The interface being defined on a lattice different from the square lattice,
it is now natural to define boundary visits to points with half-lattice-unit
coordinates. Moreover, the wiring of the boundary introduces some asymmetry
in the definition. On the bottom we say that (x + 1

2 )δ is visited if the path
goes outside the domain at (x + 1

2 )δ − δ
4 i, and on the right a similar definition

is used. On the left we say that i(y + 1
2 )δ is visited if the path comes to the

point i(y+ 1
2 )+ δ

4 , and on the top a similar definition is used. These definitions
are natural, as is illustrated by the figure of the interface. The behavior of
the boundary visit probabilities should again be given by Eq. (6.1), where
now h = h1,3( 16

3 ) = 1
2 for Q = 2 and h = h1,3( 24

5 ) = 2
3 for Q = 3, and

f = fS : S → H is the conformal map from the unit square to the half-plane
as in Sect. 6.1.1.

Our simulation runs the Swendsen–Wang Monte Carlo Markov chain and
collects time averages of the boundary visiting events. Neither the initial tran-
sient nor the autocorrelation time at the stationary distribution causes any
noticeable statistical errors—the inevitable trade-off between finite size effects
and computational time is the main source of numerical error. We correct the
boundary visit frequencies obtained from the simulations by dividing by the
factor

∏N
j=1 (|f ′

S(xj)| δ)h and then compare with our SLE boundary visit am-
plitude ζ(N) at κ = κ(Q). For N ≤ 3 we get good enough statistics and the
agreement with our analytical results is very good: Figs. 8 and 9 show N = 1
and N = 2 data for both Q = 2 and Q = 3, with δ = 1

100 and 107 samples
in each case. We have included the plot of three-point boundary visit data in
Fig. 12 only for Q = 3 because the value of κ (κ = 24

5 ) is sufficiently different
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Figure 8. Data of one-point boundary visit frequencies col-
lected from simulations of lattice models. We have set x = 0
and plotted the conformally corrected frequency of visits as a
function of y1 on log-log scale. The solid lines are fitted power
laws, in accordance with ζ(1)(x, y1) ∝ |y1 − x|−h. The simula-
tions are done in polygonal domains (triangle for percolation
and square for the other models), and the bumps in the data
in the middle of the plots are due to a corner of the polygonal
domain. Upper plot percolation (top, blue), FK-Ising model
(middle, red), FK model with Q = 3 (bottom, green). Lower
plot loop-erased random walk (color figure online)

from the case of percolation (κ = 6) so that the shapes of the functions are
clearly distinct (for this we use δ = 1

100 and 5 × 106 samples).
We still point out how remarkably much is known of the FK-Ising case

Q = 2, largely owing to the techniques of discrete complex analysis [15,16,47,
48]. This is the only lattice model for which the scaling limit of renormalized
boundary visiting probabilities has in fact been proven to exist, and even the
corresponding non-universal constants for N = 1 and N = 2 have been found
explicitly [27]. The exact N = 1 formula reads for x away from the corners

1√
δ

1√|f ′
S(x)| PFK-Ising [γδ visits x] −→

δ↘0

√
1 +

√
2

2π
× |fS(x)|−1/2.
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Figure 9. Data of two-point boundary visit frequencies col-
lected from simulations of lattice models: percolation (top,
blue), FK-Ising model (middle, red), FK-model with Q = 3
(bottom, green). We set x = 0, y1 = 1 and plot the conformally
corrected frequency as a function of y2 on logarithmic scale.
The solid curves are multiples of the two-point boundary visit
amplitudes ζ(2)(x; y1, y2), with the same multiplicative con-
stant used for the two pieces: ζ++(x; y1, y2) when y2 > 1 and
ζ+−(y2;x; y1) when y2 < 0. For FK-Ising we have used the
known exact multiplicative constant from [27], for other mod-
els this non-universal constant is fitted to data (color figure
online)

Figure 10. Data of two-point boundary visit frequencies col-
lected from simulations of LERW. We set x = 0, y1 = 1 and
plot the conformally corrected frequency as a function of y2 on
logarithmic scale. The solid curves are multiples of the two-
point boundary visit amplitudes ζ(2)(x; y1, y2), with again the
fitted multiplicative constant being the same for the two pieces

We find excellent numerical agreement of the exponent value (best fit gives
0.499872 instead of 1

2 ) and the non-universal multiplicative constant (best fit

gives 0.618241 instead of
√

1+
√

2
2π ≈ 0.619866). The exact N = 2 formula reads
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Figure 11. Data of three-point boundary visit frequencies
collected from simulations of critical percolation. In the upper
plot we set x = 0, y1 = 1, y3 = −1, and in the lower plot
we set x = 0, y1 = 1, y3 = 2. In both plots the conformally
corrected frequency is shown as a function of y2 on logarith-
mic scale. The solid curves are multiples of the three-point
boundary visit amplitudes ζ(3)(x; y1, y2, y3) (that is, combi-
nations of ζ+−− and ζ++− on the upper and of ζ+−+ and
ζ+++ on the lower plot). The fitted multiplicative constant is
again the same for all the different pieces

for x1, x2 away from corners and on the same side
1
δ

1√|f ′
S(x1)| |f ′

S(x2)|
PFK-Ising [γδ visits x1 then x2]

−→
δ↘0

(4 + 2
√

2) Γ( 3
4 )2

π5/2
×

2F1

(
−1
2 , 3

4 ; 3
2 ; 1 − fQ(x1)

fQ(x2)

)

√
fQ(x1)

√
fQ(x2) − fQ(x1)

.

The solid line in the middle plot in Fig. 9 uses this explicit non-universal
multiplicative constant. This comparison to an exact scaling limit result gives
a fair idea of the finite-size effects present in the simulation data of the FK-Ising
model, but one must remember that the finite-size corrections scale differently
for other models.
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6.2. Simulation Data and Results of the Comparison

Simulation data and corresponding plots of our analytical results are presented
in Figs. 8, 9, 10, 11, 12 and 13. The general conclusion is that the boundary visit
probabilities of lattice model interfaces are in agreement with the predictions
of type (6.1), where the amplitudes ζ(N) are given by our main results. The
main source of numerical error is finite-size effects.

Figure 8 shows one-point visit amplitudes on a log-log scale. The data
from all models follow the power law ζ(1)(x; y) = |y − x|−h over a range of
scales. The slope h is so different for κ = 2 that we have included a separate
plot for the LERW case. Particular finite-size effects caused by error near the
corners of the polygonal domain (triangle or square) are seen as bumps in the
data. This effect diminishes for smaller δ, but it is visibly present in our data
for all N . We have centered the N = 1 data so that the bump appears in the
middle of the plot. For N ≥ 2 this error affects a part of the data points across
the whole range of the plot, resulting in an apparent failure of a perfect data
collapse seen as thickness of the data point cloud.

Figures 9 and 10 show two-point boundary visit data on a logarithmic
scale both in the case where the points y1, y2 to be visited are on the same
side and in the case where they are on different sides. We have scaled to the
case y1 = 1 and plotted as a function of y2, so that ideally all data from
a given model should collapse on the curve constructed from the two pieces
ζ
(2)
++(0; 1, y2) (for y2 > 1) and ζ

(2)
+−(0; 1, y2) (for y2 < 0). The same fitted

multiplicative constant is used on both pieces for each model, and a clear
agreement is observed in all cases. For the FK-Ising model case we have even

Figure 12. Data of three-point boundary visit frequencies
collected from simulations of FK random cluster model with
Q = 3. In this plot we set x = 0, y1 = 1, y3 = 2. The plot shows
conformally corrected frequency as a function of y2 on loga-
rithmic scale. The solid curves are multiples of the three-point
boundary visit amplitudes ζ(3)(x; y1, y2, y3) (that is, combina-
tions of ζ+−+ and ζ+++). The fitted multiplicative constant
is again the same for the different pieces
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avoided fitting, as we have been able to use the rare known explicit non-
universal constant mentioned in Sect. 6.1.4. Data from all models show some
finite-size effects, and roughly these are worse for smaller κ. The functional
shape of all plots is nevertheless clearly correct. Again the shape for κ = 2 is
so different from others that we have plotted it separately.

Figures 11 and 12 show three-point boundary visit data on a logarithmic
scale for critical percolation and the critical Q = 3 FK-model, respectively.
Data from percolation are still very well on the curves of our analytical results.
In the Q = 3 FK-model the finite-size effects are more apparent. Again, a
single fitted multiplicative constant has been used for all pieces. In particular
the several orders of magnitude difference of the boundary visit frequencies on
the two sides of Fig. 12 is in excellent agreement with our analytical results,

Figure 13. Data of four-point boundary visit frequencies col-
lected from simulations of critical percolation. On the upper
plot we set x = 0, y1 = −1, y2 = 1, y4 = 2 and plot as
a function of y3. On the lower plot we set x = 0, y1 = 1,
y2 = −1, y4 = 2 and plot as a function of y3. The conformally
corrected frequencies in both plots are on a logarithmic scale.
The solid curves are multiples of the four-point boundary visit
amplitudes ζ(3)(x; y1, y2, y3, y4) (that is, ζ−+++ on the upper
and combinations of ζ+−++ and ζ+−−+ on the lower plot).
The fitted multiplicative constant is again the same for all
the different pieces
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even if, due to finite size effects, the data points otherwise only serve to give
a sketchy idea of the shape of the function here.

Figure 13 shows four-point boundary visit data on a logarithmic scale
for critical percolation. Both the numerical evaluation of our results ζ(4) and
decent simulation results are starting to be computationally very heavy—we
have had to interpolate the analytical result from the calculations at the points
shown on the plots. Nevertheless, the plot shows agreement of simulation data
with our result.

7. Conclusions and Outlook

We have presented a method based on quantum group calculations, which gives
explicit solutions of the chordal SLEκ boundary visit probability amplitudes
ζ(N) and χ(N) for arbitrary numbers N of marked boundary points. The an-
swers are expressed in terms of linear combinations of Coulomb gas integrals
and can be transformed to regularized real integrals. They give the universal
answer to various formulations of the SLE boundary visit question, up to an
overall non-universal constant, which depends on the formulation. In partic-
ular, they give the renormalized scaling limit boundary visit probabilities for
lattice model interfaces.

Our results are obtained by solving a partial differential equation system
with boundary conditions given recursively by the solutions with smaller num-
ber N of marked points. The system is suggested by plausible considerations
of asymptotics, but we have not fully justified the use of this procedure. In
an ongoing work with Konstantin Izyurov we plan to implement the strat-
egy outlined in Sect. 5.4.3 to prove rigorously that the formulas obtained in
the present article indeed give the SLE multi-point Green’s functions on the
boundary.

The method we have used is an application of the spin chain–Coulomb
gas correspondence presented in a more general setup in [30] and applied to the
problem of multiple SLE pure geometries and crossing probabilities in [31]. The
method provides a systematic approach to a class of SLE and CFT problems
depending on arbitrary numbers of marked points. It works directly only for
irrational values of κ, but for questions such as boundary visit amplitudes,
one can naturally extend the final results to all κ by requiring continuity. It
would be interesting to generalize the spin chain–Coulomb gas correspondence
itself to rational values of κ. This would presumably involve non-semisimple
representation theory of the corresponding quantum group as well as results
that correspond to logarithmic conformal field theory correlation functions.

It would be interesting to find also formulas for boundary visit proba-
bilities for other variants of SLE, such as the radial SLEκ and dipolar SLEκ,
SLEκ(ρ), or even more general variants. Finally, one of the most natural re-
maining open questions about SLE is the bulk analogue of the question an-
swered in the present article: finding a formula for the multi-point Green’s
function of the chordal SLE (for recent progress on this, see [10,36,39,41]).



Vol. 17 (2016) SLE Boundary Visits 1315

Acknowledgements

Konstantin Izyurov and Eveliina Peltola have shared with us many of their
insights during related collaborations and discussions. We also thank Dmitry
Beliaev, Denis Bernard, Steven Flores, Christian Hagendorf, Clément Hongler,
Peter Kleban, Antti Kupiainen, Greg Lawler, Jacob Simmons, and
Stanislav Smirnov for interesting discussions and helpful comments. We also
thank the anonymous referees for useful comments. This work was initiated in
the ISF workshop “Random matrices and integrability: from theory to applica-
tions” in Yad Hashmona, and parts of it were carried out at Technion and Uni-
versity of Haifa at Oranim, at the University of Southern Denmark in Odense,
and at the University of Geneva—we gratefully acknowledge the hospitality.
We also acknowledge the Centro de Supercomputación de Galicia (CESGA)
Supercomputing Center for computational time. It would be impossible to
list the innumerable breweries which provided constant inspiration during the
course of this work. N.J. is funded in part by the Spanish Grant FPA2011-
22594, by Xunta de Galicia (Conselleria de Educación, Grants INCITE09-
206-121-PR and PGIDIT10PXIB206075PR), by the Consolider-Ingenio 2010
Programme CPAN (CSD2007-00042), and by FEDER. N.J. is also supported
by the Juan de la Cierva program. M.J. was supported in part by Grants
PERG07-GA-2010-268246, PIF-GA-2011-300984, the EU program “Thales”
and “HERAKLEITOS II” ESF/NSRF 2007-2013 and was also co-financed by
the European Union (European Social Fund, ESF) and Greek national funds
through the Operational Program “Education and Lifelong Learning” of the
National Strategic Reference Framework (NSRF) under “Funding of propos-
als that have received a positive evaluation in the 3rd and 4th Call of ERC
Grant Schemes”. K.K. is supported by the Academy of Finland grant “Confor-
mally invariant random geometry and representations of infinite dimensional
Lie algebras”.

Appendix A. SLE Derivations of the Exponent and a PDE

This appendix provides SLE calculations for the N = 1 case, to establish the
same value of the exponent h with the two alternative notions of boundary
visits given in Sect. 5.3. Visits to small boundary intervals are treated in Ap-
pendix A.1, and visits to small conformal distance neighborhoods in Appendix
A.2. The latter implies up to constant bounds for the probabilities of boundary
visits with the notion used in the introduction, since the conformal distance
ρH\γ(y) is proportional to the ordinary distance d(γ, y). This up to constants
estimate had also been derived differently in [2]. The work [34] establishes the
existence of the SLE boundary Green’s function in complete generality.

In Appendix A.3 we relate the second-order differential Eq. (2.3) to a
martingale for the chordal SLE.

We do not provide a direct justification of the third-order differential
Eq. (2.4) for the boundary visit amplitudes with SLE analysis, but instead only
discuss them from the point of view of conformal field theory in Appendix B.2.
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We nevertheless note that in [18,19,30,31] these equations were shown to hold
for limiting cases of multiple SLE partition functions, and it is natural to
interpret the boundary visiting SLE as a degeneration of such multiple SLEs.

A.1. Touching a Small Boundary Interval

One can write down the exact solution for the probability of a chordal SLE to
hit a boundary interval [y, y + ε] (for y > x) and do the asymptotics as ε ↘ 0,
see, e.g., [3,5]. We include the argument briefly here.

Assume that x < l < r and let P (x, l, r) be the probability that a chordal
SLEκ in the half-plane H from x to ∞ touches the interval [l, r], and note that
by translation and scaling invariance it can be reduced to a function of one
variable,

P (x, l, r) := P(H;x,∞)[γ ∩ [l, r] 	= ∅], P (x, l, r) = p

(
l − x

r − x

)
.

By domain Markov property we create a martingale (Mt)t≥0: we define Mt

as the above probability conditionally on the knowledge of an initial segment
γ[0, t]

Mt = P(H;x,∞)[γ ∩ [l, r] 	= ∅|Ft] = P(Ht;γ(t),∞)[γ ∩ [l, r] 	= ∅].

By conformal invariance under the map gt in (5.1) this can be written as

Mt = P(H;Xt,∞) [γ ∩ [gt(l), gt(r)] 	= ∅] = P (Xt, gt(l), gt(r)) .

Stochastic calculus tells that for this to be a martingale, the drift term

κ

2
∂2

∂x2
P +

2
l − x

∂

∂l
P +

2
r − x

∂

∂r
P

in the Itô derivative must vanish. This is an ordinary differential equation for
p,

p′′(u) +
−4 + (2κ − 4)u

κu(1 − u)
p′(u) = 0.

Integrating with the boundary conditions p(0) = 1, p(1) = 0 we obtain that
(for 4 < κ < 8)

P(H;x,∞)[γ ∩ [l, r] 	= ∅] =
4
√

π

28/κ Γ( 8−κ
2κ ) Γ(κ−4

κ )

∫ 1

l−x
r−x

u− 4
κ (1 − u)2

4−κ
κ du.

From this exact answer we find that the probability of hitting a small interval
of size ε at y scales as εh with amplitude |y − x|−h

P(H;x,∞)[γ ∩ [y, y + ε] 	= ∅] ∼ ε
8−κ

κ
4
√

π κ

(8 − κ) 28/κ Γ( 8−κ
2κ ) Γ(κ−4

κ )
(y − x)

κ−8
κ .

(A.1)

Also the multiplicative constant in

lim
ε↘0

(
ε−h × P[γ ∩ Iε(y) 	= ∅]

)
= const. × ζ(1)(x; y)



Vol. 17 (2016) SLE Boundary Visits 1317

is explicit here, but it is given by a somewhat complicated expression, and
such constants are in any case non-universal.

A.2. Reaching a Small Conformal Distance from Boundary Point

Another derivation of the scaling exponent is based on the notion of boundary
visit defined in terms of conformal distance. Namely, one can find explicitly the
asymptotics of the probability that the chordal SLE reaches a small conformal
distance from a marked boundary point. The strategy is similar to the above,
but the martingale argument leads to a parabolic partial differential equation,
which we do not solve explicitly, but instead we just find the leading eigenvector
and eigenvalue of the generator, and hence deduce the small neighborhood size
asymptotics of solutions.

For the martingale argument we need to keep track of one more point, the
rightmost point r in the image of the SLE hull. Choose, therefore, x < r < y
and let Q(x, r, y, s) be the probability that for a chordal SLEκ γ in the half-
plane H from x to ∞ the conformal radius of y in H\(γ ∪ (−∞, r]) (with a
Schwarz reflection as before) is at most e−s. In the limit r ↘ x this correctly
measures the conformal distance to the curve γ only. By translation and scaling
invariance Q can be reduced to a function of two variables,

Q(x, r, y, s) := P(H;x,∞)[ρH\(γ∪(−∞,r])(y) ≤ e−s],

Q(x, r, y, s) = q

(
r − x

y − r
, s + log(y − r)

)
.

By domain Markov property we again create a martingale (Mt)t≥0

Mt = P(H;x,∞)[ρH\(γ∪(−∞,r])(y) ≤ e−s
∣∣Ft],

and by conformal invariance we write it as

Mt = P(H;Xt,∞)[ρH\(γ∪(−∞,gt(r)])(gt(y)) ≤ e−s+log |g′
t(y)|]

= Q (Xt, gt(r), gt(y), s − log |g′
t(y)|) .

For this to be a martingale, the Itô derivative drift term

κ

2
∂2

∂x2
Q +

2
r − x

∂

∂r
Q +

2
y − x

∂

∂y
Q +

2
(y − x)2

∂

∂s
Q

must vanish. This is a parabolic partial differential equation for q,
[

∂

∂σ
− G
]

q(θ, σ) = 0

with generator G =
κ

4
θ(1 + θ)2

∂2

∂θ2
+ (1 + θ)(1 + 2θ)

∂

∂θ
.

The asymptotics of small neighborhood size ε = e−s → 0 correspond to s →
+∞ and, therefore, σ → +∞ in the above parabolic equation. In this limit the
solution behaves like q(θ, σ) ∼ eλ0σq0(θ), where q0 is the positive eigenvector
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and λ0 the corresponding leading eigenvalue of the generator G. One finds
explicitly

q0(θ) = (1 + θ)1− 8
κ , [Gq0](θ) =

(
1 − 8

κ

)
q0(θ), i.e., λ0 = 1 − 8

κ
.

From this asymptotic we find that the probability of reaching a small conformal
distance e−s = ε at y scales as eλ0s = εh with the correct scaling exponent
h = −λ0 = 8−κ

κ .

A.3. The Second Order PDE from Stochastic Calculus

Let γ be the chordal SLEκ curve in (H;x,∞) parametrized as in Sect. 5.1.
By the domain Markov property, conditionally on an initial segment γ− =
γ
∣∣
[0,T ]

of the curve up to a stopping time T , the rest of the curve γ+ =

γ
∣∣
[T,∞)

is a chordal SLEκ in the domain H\KT from the tip γ(T ) of the
initial segment to ∞. Consider stopping times T smaller than the time at
which any boundary visit happens. Then, conditionally on the initial segment
γ−, the contribution to the boundary visit amplitude ζ(N)(x; y1, . . . , yN ) is
ζ
(N)
(H\KT ;γ(T ),∞)(y1, y2, . . . , yN ). Using the conformal map gT : H\KT → H and

conformal covariance of ζ
(N)
(Λ;a,b), the conditional contribution equals

MT =

⎛

⎝
N∏

j=1

g′
T (yj)h

⎞

⎠× ζ(N)(XT ; gT (y1), . . . , gT (yN )). (A.2)

By construction, then, (Mt)t≥0 is a local martingale. We can compute the Itô
derivative of Mt and require that the drift term in it vanishes, leading to the
second-order partial differential equation

⎡

⎣κ

2
∂2

∂x2
+

N∑

j=1

(
2

yj − x

∂

∂yj
− 2h

(yj − x)2

)⎤

⎦ ζ(N)(x; y1, . . . , yN ) = 0,

which is Eq. (2.3) in the PDE system of Sect. 2.1. The alternative explanation
of this equation by conformal field theory is given in Appendix B.2.

Appendix B. Conformal Field Theory Considerations

B.1. Boundary Visit Amplitudes as Conformal Field Theory Correlation
Functions

From conformal field theory point of view, the boundary visit amplitudes
are essentially correlation functions of boundary primary fields of conformal
weights h in a conformal field theory with central charge c(κ) = (3κ−8)(6−κ)

2κ ,
see [5]. We remark that the value (1.1) is a conformal weight in the Kac table,
h = h1,3(κ) = 8−κ

κ . This suggests the possibility of a degeneracy at grade three,
which we argue to give rise to the third-order PDEs (2.4) below in Appendix
B.2.
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The covariance rule (5.2) reflects the conformal transformation properties
of primary fields. More precisely, the boundary zig-zag amplitude should be
thought of as a ratio

ζ(N)(x; y1, y2, . . . , yN ) =
〈ψ1,2(x)ψ1,3(y1) · · · ψ1,3(yN )ψ1,2(∞)〉

〈ψ1,2(x)ψ1,2(∞)〉 ,

where
• The numerator 〈ψ1,2(x)ψ1,3(y1) . . . ψ1,3(yN )ψ1,2(∞)〉 is a correlation func-

tion of N boundary primary fields ψ1,3 of conformal weight h = h1,3(κ) =
8−κ

κ located at y1, y2, . . . , yN , and two boundary primary fields ψ1,2 of con-
formal weight δ = h1,2(κ) = 6−κ

2κ located at x and ∞.
• The denominator 〈ψ1,2(x)ψ1,2(∞)〉 is the correlation function of two bound-

ary primary fields ψ1,2 located at x and ∞. This correlation function is in
fact just a constant (independent of x), but the presence of the fields ψ1,2(x)
both in the numerator and denominator is the reason why the conformal
covariance rule (5.2) does not contain a Jacobian factor |f ′(x)|δ.

B.2. Singular Vectors and Differential Equations

From the point of view of conformal field theory, partial differential equations
such as (2.3) and (2.4) are consequences of conformal Ward identities if the
relevant boundary primary fields have vanishing descendants.

At the tip of the SLE curve, the boundary changing field is a primary
field |ψ1,2〉 of conformal weight δ = h1,2(κ) = 6−κ

2κ , which has a vanishing
descendant

(
L2

−1 − 4
κL−2

) |ψ1,2〉 = 0 at level 2 [6–8]. The associated conformal
Ward identity is the second-order PDE (2.3).

At the points to be visited by the SLE curve, the boundary fields are pri-
maries |ψ1,3〉 of conformal weights h = h1,3(κ) = 8−κ

κ , and they have vanishing
descendants (

L3
−1 − 16

κ
L−2L−1 +

8(8 − κ)
κ2

L−3

)
|ψ1,3〉 = 0

at level 3. The associated conformal Ward identities are the third-order PDEs
(2.4).

B.3. Asymptotics from Operator Product Expansions

Conformal field theory allows a finite number of different asymptotics as the
distance of any two arguments of ζ(N) or χ(N) tends to zero. The reason is
that the boundary primary field ψ1,2(x) is degenerate at level two [6–8], and
similarly the boundary primary fields ψ1,3(yj) are degenerate at level three [5]
(this level three degeneracy is not a priori granted, but it is suggested by known
N = 1 and N = 2 cases and justified a posteriori by a proof of our formula).
The degeneracies imply selection rules for the fusion of the corresponding fields.
A fusion of primary fields located at z and w, with respective conformal weights
h(z) and h(w), to a field of conformal weight h(∞) and its descendants, leads
to terms of the form

(z − w)h(∞)−h(z)−h(w) × reg.
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in the operator product expansion. Here and below, reg. stands for functions
that are holomorphic and non-vanishing on the “diagonal” z = w. Taking into
account the selection rules, conformal field theory suggests the following:
• Possible asymptotics as two visit points approach each other The fusion of

the fields at yj and yk may contain primary fields of weights h1,1 = 0,
h1,3 = 8−κ

κ , h1,5 = 2(12−κ)
κ . Correspondingly the functions ζ(N) and χ(N)

have the form

(yj − yk)2(1− 8
κ ) × reg. + (yj − yk)1− 8

κ × reg. + (yj − yk)
8
κ × reg. (B.1)

as |yk − yj | → 0.
• Possible asymptotics as the starting point and a visit point approach each

other The fusion of the fields at x and yj may contain primary fields of
weights h1,2 = 6−κ

2κ , h1,4 = 3(10−κ)
2κ . Correspondingly the functions ζ(N) and

χ(N) have the form

(x − yk)1− 8
κ × reg. + (x − yk)

4
κ × reg. (B.2)

as |yj − x| → 0.
The possible asymptotics above can also be viewed directly as resulting

from the indicial equations for the Frobenius series solutions to the system
of partial differential equations given in Sect. 2. This point of view to fusion
is adopted in the article [19], where also the justification of Frobenius series
ansatz and more profound consequences are studied.

Appendix C. Some Explicit Quantum Group Formulas

C.1. Explicit Normalization Conventions for Subrepresentations

In the spin chain–Coulomb gas correspondence, the asymptotics of the func-
tions may be read off from projections to irreducible subrepresentations in
consecutive tensorands. We specifically make use of the tensor products

M3 ⊗ M3
∼= M1 ⊕ M3 ⊕ M5

and

M2 ⊗ M3
∼= M2 ⊕ M4, M3 ⊗ M2

∼= M2 ⊕ M4.

We will need projections to the irreducible subrepresentations. Note that if
we want to identify the subrepresentations concretely with the irreducibles de-
scribed in Sect. 3.2.2, we have to fix normalization factors. This corresponds
to a choice of embedding of the irreducibles to the tensor products as subrep-
resentations. Our normalization conventions given below are specializations of
[30, Lemma 2.4].

For the former tensor product representation, M3 ⊗ M3, we denote the
projections to the three irreducible subrepresentations by π(d) : M3 ⊗ M3 →
Md ⊂ M3 ⊗ M3, where d ∈ {1, 3, 5}. For the latter two, M2 ⊗ M3 and M3 ⊗
M2, we denote the projections to the two irreducible subrepresentations by
π(d) : M2 ⊗ M3 → Md ⊂ M2 ⊗ M3 and π(d) : M3 ⊗ M2 → Md ⊂ M3 ⊗ M2,
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where d ∈ {2, 4}. Although the same notation is used for these latter two
different projections, the meaning should always be clear from the context.

Our embeddings of the irreducibles to the tensor products are the follow-
ing. It is enough to specify the image of the highest weight vector e0 in the
tensor product, and our normalization choices are

M1 ↪→ M3 ⊗ M3 : e0 �→ 1
(q2 − q−2)2

(e0 ⊗ e2 − e1 ⊗ e1 + q−2e2 ⊗ e0)

M3 ↪→ M3 ⊗ M3 : e0 �→ 1
q2 − q−2

(−q2e0 ⊗ e1 + e1 ⊗ e0)

M5 ↪→ M3 ⊗ M3 : e0 �→ e0 ⊗ e0

and

M2 ↪→ M2 ⊗ M3 : e0 �→ q4

1 − q4
e0 ⊗ e1 − q

1 − q2
e1 ⊗ e0

M4 ↪→ M2 ⊗ M3 : e0 �→ e0 ⊗ e0

and

M2 ↪→ M3 ⊗ M2 : e0 �→ q2

1 − q2
e0 ⊗ e1 − q2

1 − q4
e1 ⊗ e0

M4 ↪→ M3 ⊗ M2 : e0 �→ e0 ⊗ e0.

These choices of normalizing constants strike a compromise between simplicity
of formulas for the quantum group representations and for the asymptotics of
the corresponding functions treated in Sect. 3.3.2.

When an identification with a smaller tensor product is implied in a
projection to subrepresentation, we indicate this with a hat: we thus define
π̂(1) : M3 ⊗ M3 → C, π̂(3) : M3 ⊗ M3 → M3, π̂(2) : M2 ⊗ M3 → M2, and
π̂(2) : M3 ⊗ M2 → M2 with the identifications of the subrepresentations given
above. We finally need to act on two consecutive components of the following
big tensor product:

M⊗R
3 ⊗ M2 ⊗ M⊗L

3 .

We define the following projections to a doublet subrepresentation in the tensor
product of the doublet tensorand in the middle and a triplet on either side of
it, according to the “±”-symbol:

π̂
(2)
+ : M⊗R

3 ⊗ M2 ⊗ M⊗L
3 → M

⊗(R−1)
3 ⊗ M2 ⊗ M⊗L

3

π̂
(2)
+ = (idM3)

⊗(R−1) ⊗ π̂(d) ⊗ (idM3)
⊗L

π̂
(2)
− : M⊗R

3 ⊗ M2 ⊗ M⊗L
3 → M⊗R

3 ⊗ M2 ⊗ M
⊗(L−1)
3

π̂
(2)
− = (idM3)

⊗R ⊗ π̂(2) ⊗ (idM3)
⊗(L−1).
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Likewise, we define the following projections in two consecutive triplet factors
(in the mth and (m + 1)st factors on the left or on the right)

π̂
(3)
+;m : M⊗R

3 ⊗ M2 ⊗ M⊗L
3 → M

⊗(R−1)
3 ⊗ M2 ⊗ M⊗L

3

π̂
(3)
+;m = (idM3)

⊗(R−m−1) ⊗ π̂(3) ⊗ (idM3)
⊗(m−1) ⊗ idM2 ⊗ (idM3)

⊗L

π̂
(3)
−;m : M⊗R

3 ⊗ M2 ⊗ M⊗L
3 → M⊗R

3 ⊗ M2 ⊗ M
⊗(L−1)
3

π̂
(3)
−;m = (idM3)

⊗R ⊗ idM2 ⊗ (idM3)
⊗(m−1) ⊗ π̂(3) ⊗ (idM3)

⊗(L−m−1).

Finally, we also define the following projections in two consecutive triplet fac-
tors (in the mth and (m + 1)st factors on the left or on the right)

π̂
(1)
+;m : M⊗R

3 ⊗ M2 ⊗ M⊗L
3 → M

⊗(R−2)
3 ⊗ M2 ⊗ M⊗L

3

π̂
(1)
+;m = (idM3)

⊗(R−m−1) ⊗ π̂(1) ⊗ (idM3)
⊗(m−1) ⊗ idM2 ⊗ (idM3)

⊗L

π̂
(1)
−;m : M⊗R

3 ⊗ M2 ⊗ M⊗L
3 → M⊗R

3 ⊗ M2 ⊗ M
⊗(L−2)
3

π̂
(1)
−;m = (idM3)

⊗R ⊗ idM2 ⊗ (idM3)
⊗(m−1) ⊗ π̂(1) ⊗ (idM3)

⊗(L−m−1).

Additionally, we denote by π
(2)
± , π

(4)
± , π

(1)
±;m, π

(3)
±;m, π

(5)
±;m the projections

M⊗R
3 ⊗ M2 ⊗ M⊗L

3 → M⊗R
3 ⊗ M2 ⊗ M⊗L

3

analogous to the hatted counterparts π̂
(2)
± , π̂

(4)
± , π̂

(1)
±;m, π̂

(3)
±;m, π̂

(5)
±;m,

respectively, but without the identification of the submodule with a shorter
tensor product.

C.2. The Quantum Group Solutions for Some 4-Point Visits

For brevity, we factor out the constant

C4 =
q7
(
q4 + q2 + 1

)3

(q2 − 1)4 (q2 + 1)5 ((q12 + 2q8 + q6 + 2q4 + q2 + 2) q4 + 1)
.

Then, with a shorthand notation similar to that in Sects. 3.5.2 and 3.5.3, the
normalized solutions for the cases needed for Fig. 13 are

v
(4)
+−++ = C4(

(
q2 + 1

) (
q4 + 1

)
q6e00112 − q4e00202 − (q2 + 1

)
q5e00211 + q4e22000

+
(
q2 + 1

) (
q4 + 1

)
q8e01012 − (q2 + 1

)
q6e01102 − (q2 + 1

)2
q7e01111

+
(
q5 + q3

)
e01201 +

(
q6 + q4

)
e01210 − q8e02002 − (q2 + 1

)
q9e02011 + e20200

+
(
q7 + q5

)
e02101 +

(
q8 + q6

)
e02110 +

(−q4 − 1
)
e02200 +

(
q4 − 1

)
q5e12001

− (q2 + 1
) (

q5 + q
)2

e10012 +
(−q8 + q6 + q2

)
e10102 +

(
q4 − 1

)
q6e12010

+
(−q11 + q7 + q5 + q3

)
e10111 +

(
q4 − 1

)
qe10201 +

(
q4 − 1

)
q2e10210

+
(−q10 + q8 + q4

)
e11002 +

(−q13 + q9 + q7 + q5
)
e11011 +

(
q8 + q4

)
e20002

+
(
q2−1

) (
q2+1

)2
q3e11101+

(
q2−1

) (
q2+1

)2
q4e11110 +

(−q6 − q2 + 1
)
e11200

− (q6 + q2 − 1
)
q2e12100 +

(
q2 + 1

) (
q4 + 1

)
q5e20011 − (q2 + 1

)
q3e20101

− (q2 + 1
)
q4e20110 − (q2 + 1

)
q5e21001 − (q2 + 1

)
q6e21010 +

(
q4 + q2

)
e21100)
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v
(4)
+−−+ = C4

((
q4+1

) (
q4+q2+1

)
q5e00022

q2+1
+
(
q4+1

) (
q4+q2+1

)
q6e00112+

(
q3−q9

)
e21100

−(q4+1
) (

q4+q2+1
)
q2e00121−(q4+q2+1

)
q4e01012+

(
q2−q8

)
e01021

−(q4+q2+1
)
q5e01102+

(−q11−q9+q5+q3
)
e01111+

(
q7+q5+q3

)
e01120

+

(
q3+

q

q2+1

)
e02002+

(
q4+q2−1

)
qe02011+

(
q2+

1

q2+1
−2

)
qe02020

+
(
q4+q2−1

)
q2e02101+

(
q4−q2−1

)
q2e02110−(q4+q2+1

)
q6e10012

+
(
q4−q10

)
e10021−

(
q4+q2+1

)
q7e10102+

(
q2−q8

)
e21010+

(
q6+2q4−1

)
q3e11011

+
(
q9+q7+q5

)
e10120+

(
q7+q5+q3

)
e11002−(q8+q6−q2−1

)
q5e10111

+
(
q4−q2−1

)
q3e11020+

(
q6+2q4−1

)
q4e11101+

(
q6−2q2−1

)
q4e11110

−(q4+q2+1
)
q2e12001+

(
1−q6

)
e12010+

(
q−q7

)
e12100+

(
q9+q7+q5

)
e20002

q2+1

−
(−q9+q7+q5

)
e20020

q2+1
−(q4+q2+1

)
q4e21001+

(
q4+1

) (
q4+q2+1

)
qe22000

q2+1

+
(
q4+q2−1

)
q5e20011+

(
q4−q2−1

)
q6e20110+

(
q4+q2−1

)
q6e20101

)

v
(4)
−+++ = C4(

(
q2+1

) (
q4+q2+1

)
q6e00112+

(
q4+1

) (
q4+q2+1

)
q2e20002

+
(
q8+q6−q2−1

)
q4e01012+

(
q8+q6−q2−1

)
q6e01102+

(
q6+q4+q2

)
e22000

−(q6+2q4−1
)
q5e01201+

(
q2+1

) (
q4+q2+1

)
q2e01210−(q4+q2+1

)
q6e02002

+
(−q9+2q5+q3

)
e02011+

(−q11+2q7+q5
)
e02101+

(
q8+q6−q2−1

)
e02110

+
(
q6−1

)
q2e02200−(q2+1

) (
q4+q2+1

)
q4e10012−(q2+1

) (
q4+q2+1

)
q6e10102

+
(−q12+2q6+q4+q2

)
e11002+

(−q11+2q7+q5
)
e10201+

(
q8+q6−q2−1

)
e10210

−(q2+1
)2 (

q4−q2−1
)
q3e10111−(q2+1

)2 (
q4+q2−1

)
q3e01111

−(q2+1
) (

q8−2q6−q4+1
)
q3e11101+

(
q2+1

) (
q8−q4−2q2+1

)
e11110

+
(
q10−q6−2q4+q2

)
e11200+

(
q8+q6−q2−1

)
q3e12001+

(
1−q4

(
q2+2

))
e12010

+
(−q8−2q6+q2

)
e12100+

(
q8+q6−q2−1

)
qe20011+

(
q4+q2+1

)
q8e00202

+
(
q8+q6−q2−1

)
q3e20101+

(
1−q4

(
q2+2

))
e20110−(q4+q2−1

)
q2e20200

−(q2+1
) (

q4+q2+1
)
q3e21001+

(−q6+2q2+1
)
e21010+

(−q8+2q4+q2
)
e21100

−(q2+1
) (

q8−2q6−q4+1
)
qe11011−(q2+1

) (
q4+q2+1

)
q3e00211).

Appendix D. Numerical Evaluation of the Integrals

Let us then describe how the integral expressions can be evaluated numerically
in practice. We have implemented two methods with symbolic computation
software:
1. Direct evaluation of the complex loop integrals ϕt−

L ,...,t−
2 ,t−

1 ;d;t+1 ,t+2 ,...,t+R
.

2. Evaluation of the (real) integrals ρt−
L ,...,t−

2 ,t−
1 ;d;t+1 ,t+2 ,...,t+R

by using the ε-
regularization scheme described above.

Both of these approaches have advantages and disadvantages. The loop inte-
grals are well defined as such for all values of κ, but involve complex integrands
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and complicated numerical contours which slow down the integration. Real ε-
regularized integrals are faster to evaluate, but one needs to add counterterms
which also involve integrals, thus increasing the total number of integrations.
In addition, the remaining ε-dependence of the result needs to be controlled.

In both methods, low values of κ are the most challenging. In the loop
integrals, the variations in the absolute value of the integrand increase with
decreasing κ, leading to more and more precise cancellations between contribu-
tions from different sections of the integrations contours. In order to make the
ε-regularization work, a larger number of counterterms is necessary at small
κ than at values of κ close to κ = 8, which practically limits this method to
κ � 4. As it turns out, probability amplitudes with N = 3 boundary visits are
still relatively fast to evaluate, in particular when κ is close to eight, whereas
it is already computationally demanding to evaluate the N = 4 amplitudes.
For N = 3 the calculation of the loop integrals is the faster method. We have
controlled the numerical errors by comparing the results obtained by the two
methods for the final result of the probability amplitude.

D.1. Evaluation of the Loop Integrals

In order to evaluate the loop integrals, we first need to specify the integration
contours. We choose the anchor point in the lower half plane. Each contour is
chosen to be a combination of two straight lines and an arc of a circle, with
the center of the circle located at the encircled charge, and the lines being
tangential to the circle (see Fig. 14). The radii of the circles are chosen such
that the minimum distance between any pair of charges is (approximately)
maximized. The contours wk = ck(sk) are parametrized in terms of the real
variables sk ∈ [0, 1], such that wk moves around the charge in the counterclock-
wise direction with increasing sk. The parametrization can be chosen such that
c′
k(sk) is continuous at the points where the arc joins with the lines.

The most tricky step is to write the multi-branched integrand in terms
of the principal branches of the power functions such that it is an analytic
function on the integration contours, and the phase convention of Fig. 3 is

x y1 y2 y3 y4

Figure 14. An example of the integration contours used for
numerical evaluation of our results
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realized. By the principal branch we mean that

xy = exp (y log(x)) ,

where the principal branch of the logarithm satisfies −π < �m (log(x)) ≤ π for
all complex x 	= 0. Let us denote by ŝk the value of sk where �mwk takes its
largest value. It is then easy to check that the various terms of the integrand
can be defined as follows:
• If the contours with indices k1 and k2 encircle two different charges yj1 and

yj2 , with yj1 < yj2 , we take

(wk2 − wk1)
8/κ = exp

(
8
κ

log(wk2 − wk1)
)

.

Similar definition holds when either of the contours is around x.
• If the contours with indices k1 and k2 encircle the same charge, with ck1

being the innermost contour, we take

(wk2 − wk1)
8/κ = exp

(
8
κ

log(wk2 − wk1)
)

if 0 ≤ sk2 ≤ ŝk2

(wk2 − wk1)
8/κ = exp

(
8π

κ
i +

8
κ

log(wk1 − wk2)
)

if ŝk2 < sk2 ≤ 1.

• If the contour ck encircles yj1 we take for each yj2 	= yj1

(wk − yj2)
−8/κ = exp

(
− 8

κ
log(wk − yj2)

)
if yj1 > yj2

(yj2 − wk)−8/κ = exp
(

− 8
κ

log(yj2 − wk)
)

if yj1 < yj2 ,

and for the contribution from the charge yj1 we use

(wk − yj1)
−8/κ = exp

(
− 8

κ
log(wk − yj1)

)
if 0 ≤ sk ≤ ŝk

(wk − yj1)
−8/κ = exp

(
−8π

κ
i − 8

κ
log(yj1 − wk)

)
if ŝk < sk ≤ 1.

The terms involving wk and x are treated analogously.
The numerical integration can then be done after changing the integration
variables to sk. It turns out that the integration on our symbolic computation
software is often faster, if each of the contours is explicitly divided into the
three pieces containing the two lines and the arc, and the contributions are
integrated separately.

The probability amplitudes ζ(N) often have zeroes of poles at the rational
values of κ of interest to us, but then one may just straightforwardly modify
the normalizing constants. For example, at κ = 6, N = 3 we can add a
normalization factor ∝ 1/(κ − 6) and study ζ(3)/(κ − 6) in the limit κ → 6.
The numerical integration cannot be done, however, arbitrary close to κ = 6,
because the integrals contributing to ζ(3) do not vanish term by term, and noise
due to the limited numerical precision of such integrals will grow as 1/|κ − 6|
as κ → 6. We evaluated the amplitude for values of κ near the critical one,



1326 N. Jokela et al. Ann. Henri Poincaré

say, at κ = 6.05 and κ = 5.95, and estimated the amplitude at κ = 6 as the
average of the results. More elaborate fitting, as a function of κ, can also be
done.

D.2. Evaluation of the ε-Regularized Integrals

The most involved step in the evaluation of the ε-regularized integrals is the
identification of the counterterms. In Sect. 4.3 we already discussed how this
can be done, and considered explicitly a simple example. Computation of the
terms at higher N and to higher order in ε is in principle straightforward,
but the complexity of the expressions grows relatively fast. We have written
a code on symbolic computation software which automatically finds the coun-
terterms for a given integral. All leading order terms in the expansion of the
divergent terms at ε = 0 [i.e., the k = 0 terms O (ε−n(8/κ−1)

)
in (4.2), with

n = 1, 2, . . . , N ] and at least the leading divergence from the next-to-leading
order term of the series [i.e., the terms O (ε−(N−1)(8/κ−1)ε

)
] are generated.

Including these terms, the method converges for N = 2 integrals when κ > 4,
and for N = 3 integrals when κ > 16/3. In practice the limits can be somewhat
higher due to limited numerical precision.

After the counterterms have been identified, it is straightforward to evalu-
ate the sum of the regularized integral and all counterterms for any fixed value
of the cutoff ε. Notice also that since we are not able to subtract counterterms
to all orders, some dependence on ε remains, and we need to extrapolate the
result down to ε = 0. It is useful to calculate the amplitude at various values
of ε, and fit the remaining ε-dependence by using the highest order term which
was not subtracted. Moreover, a similar interpolation as a function of κ, as
was described above for the loop integrals, is usually also required.
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