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On the K-Theoretic Classification
of Topological Phases of Matter

Guo Chuan Thiang

Abstract. We present a rigorous and fully consistent K-theoretic frame-
work for studying gapped phases of free fermions. It utilizes and profits
from powerful techniques in operator K-theory, which from the point
of view of symmetries such as time reversal, charge conjugation, and
magnetic translations, is more general and natural than the topologi-
cal version. In our model-independent approach, the dynamics are only
constrained by the physical symmetries, which can be completely encoded
using a suitable C∗-superalgebra. Contrary to existing literature, we do
not use K-theory groups to classify phases in an absolute sense, but to
classify topological obstructions between phases. The Periodic Table of
Kitaev is exhibited as a special case within our framework, and we prove
that the phenomena of periodicity and dimension shifts are robust against
disorder and magnetic fields.

1. Introduction

In [30], it was proposed that gapped phases of non-interacting fermions can
be classified using the techniques of topological K-theory. In this approach,
there are 2 + 8 = 10 classes of systems to consider in each spatial dimension
d, based on the presence or absence of time reversal and/or U(1) symmetry.
The classification groups exhibit a certain periodicity with respect to d and
were attributed, somewhat mysteriously, to Bott periodicity. A Periodic Table
was partially drawn up, with each symmetry class in each spatial dimension
having one of the K-theory groups of a point as its classification group. A series
of authors provided their own accounts [1,15,42,45] of this story, but with
considerable variations in their treatments. Subsequent work on crystalline
and weak topological insulators revealed the existence of phases which are
not directly accounted for by the Periodic Table. Despite the lack of a proper
proof of (or even the necessary definitions or assumptions in) the Periodic
Table, a consensus that it unambiguously provides a complete K-theoretic
classification of free-fermion phases appears to have been reached; for instance,
see the review papers [18,41].
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With the exception of the excellent Freed–Moore paper [15] (which does
not address the matter of dimension shifts in the Periodic Table), there has
been very little attempt to put K-theoretic classification ideas on a firm math-
ematical footing. Furthermore, there seems to be a number of inconsistencies
in the existing literature on topological phases and K-theory (see Sect. 2).
Consequently, the full machinery of K-theory has not been substantially uti-
lized yet. While K-theory might appear abstract, it is really a generalization
of cohomology and had actually been lurking in the background for some
time. Examples can be found in rigorous work on the integer quantum Hall
effect (IQHE) [6], bulk-edge correspondence [27–29] and Fermi surfaces [21].
In addition, the Chern numbers commonly used in the physics literature as
(cohomological) topological invariants can more fundamentally be understood
in K-theoretic terms [40].

This paper seeks to address these issues by providing a complete and
consistent framework for the use of K-theory in the study of gapped topologi-
cal phases. Our treatment of quantum mechanical symmetries borrows heavily
from the comprehensive analysis in [15]. Subsequently, this paper diverges from
existing work in several important ways. First, we utilize operator K-theory
rather its commutative (topological) version, which makes available power-
ful theorems such as the Connes–Thom isomorphisms, the Packer–Raeburn
decomposition and stabilization theorems, and various exact sequences for the
K-theory of crossed product algebras. The second difference is physical: our
representation spaces for the symmetries and Hamiltonians are single-particle
Hilbert spaces for charged free fermions. In some cases, they may also be
regarded as Dirac–Nambu spaces—this point of view is taken by some other
authors [1,15,20,42].

Conceptually, the Clifford algebras enter our K-theoretic framework in a
fundamental way—as twisted group algebras of time-reversal and/or charge-
conjugation symmetries—which generalizes to more complicated symmetry
data. Our important physical definitions are completely new and relates to
K-theory in a mathematically precise way. For instance, Definition 7.1 gives
a precise notion of homotopic phases, and Definition 7.3 illustrates how a
K-theoretic group K0(·) classifies obstructions in passing between phases. No
unnatural Grothendieck group completion needs to be carried out, and inverses
arise simply by taking differences in the opposite order. Indeed, one need not
expect that physical phases form a group,1 and even the idea of classifying
phases up to homotopy in an absolute sense can be problematic (see Exam-
ple 2.2 and [11,46]). The philosophy of using K-theory to classify differences
between phases appears, in any case, to be the original intention of Kitaev
in [30]. Furthermore the concept of a relative index had already been studied
in the context of the quantum Hall effect in [5]. The relative picture is also
suited for generalizing bulk-edge correspondences to interfaces. After we have
set up the crucial definitions, the machinery of K-theory takes over and allows

1 For example, the basic thermodynamic phases {solid, liquid, gas} merely form an ordered
three-element set.
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us to derive the Periodic Table of Kitaev (when appropriately interpreted)
as a simple corollary. Our main result is Theorem 10.5, which demonstrates
that the phenomenon of “dimension shifts” and periodicity in the K-theoretic
classification remains even in the presence of disorder and magnetic fields.

Recall that Wigner’s theorem says that a topological symmetry group G
(which is not assumed to be compact) for the dynamics of a quantum mechan-
ical system may be represented projectively on a complex Hilbert space H as
unitary or antiunitary operators. A continuous homomorphism φ : G → {±1}
distinguishes the unitarily implemented subgroup Gu := ker(φ) from the antiu-
nitarily implemented subset Ga = G − Gu. For any two x, y ∈ G, their repre-
sentatives θx, θy satisfy θxθy = σ(x, y)θxy, with σ : G×G → U(1) a generalized
2-cocycle,

σ(x, y)σ(xy, z) = σ(y, z)xσ(x, yz), (1)

where for λ ∈ U(1), λx := λ if φ(x) = +1 and λx := λ if φ(x) = −1. Thus,
interesting topology resides not only in the group of symmetries, but also in
the cohomological data of (φ, σ). We go a step further and consider charge-
conjugating symmetries on the same fundamental level as other symmetries,
leading to Z2-graded representations. This step is already suggested by the
central role of charge-conjugation in relativistic quantum theories, and is vin-
dicated in our context by the unifying role of super-algebra in K-theory.

Our approach may be summarized as follows: the topology which appears
in free-fermion topological phases originates from symmetry data, defined
broadly. The data consists of a topological group G, a 2-cocycle σ, a grad-
ing homomorphism c : G → {±1}, and an action α of G on a disorder algebra.
Associated to the algebra A determined by this data is a derived “topological
space” (e.g. a Brillouin torus), which is generally noncommutative and is of
secondary importance. Instead of forcing a vector bundle picture, we extract
topological invariants directly from A.

Outline. Section 2 contains some general comments on the existing literature.
We establish our conventions for symmetry-compatible free-fermion dynam-
ics in Sect. 3. Sections 4 and 5 review mathematical material on dynamical
systems and twisted crossed products, and can be skimmed over by experts.
The relationship between Clifford algebras, group algebras of CT -subgroups,
and the tenfold way is explained in Sect. 6. We move on to the K-theoretic
classification of symmetry-compatible gapped Hamiltonians proper in Sect. 7,
whose computation is illustrated by examples in Sect. 8. The special case of
topological band insulators is treated in Sect. 9. A Periodic Table in the gen-
eral sense of Kitaev is derived in Sect. 10, and we prove that periodicity and
dimension shifts persist under very general conditions in Theorem 10.5.

2. Remarks on the Existing Literature

We discuss some subtleties in the mathematics and physical interpretation of
K-theory groups which seem to have been missed in the existing literature.
They are further elaborated upon and rectified in the main body of the paper.
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1. A general definition of a symmetry-compatible topological phase begins
with the space Y of Hamiltonians (gapped or otherwise) which are com-
patible with a certain given representation of some symmetry data. This
space is sometimes called the “classifying space”, which should be distin-
guished from the mathematical notion with the same name. Two Hamil-
tonians which are path-connected within this space are identified, so the
set of phases is the set of path-components π0(Y ). On the other hand, a
K-theory invariant has the crucial and useful additional structure of an
abelian group. It is important and non-trivial to check whether the alge-
braic structure (e.g. composition, inverses etc.) of mathematical invariants
have natural counterparts in the physical interpretation.

Example 2.1. For Class A systems in 0D, a spectrally flattened gapped
Hamiltonian (see Sect. 3.1) is just a grading operator on a Hilbert space
C

N . The space of such Hamiltonians is the union of the Grassmannians
of k-planes in C

N , with k = 0, 1, . . . , N , each of which is connected.
Therefore the phases, up to homotopy, form an (N + 1)-element set.
Passing to a “large-N limit”, we obtain a countably infinite set of phases,
which is a different object from the abelian group Z ∼= K0(�).

2. In d > 0 with Z
d as a discrete group of translational symmetries, Bloch

theory leads to the study of vector bundles over the (compact) Brillouin
torus X = T

d. The group K0(X) of a compact Hausdorff space X can
be realized as the Grothendieck completion of the monoid (under direct
sum) of isomorphism classes of complex vector bundles over X, thus the
K0 functor enters naturally. Its reduced version K̃0 ignores the rank of
the bundle, and is sometimes motivated by restricting attention to sta-
ble isomorphism classes of vector bundles. Physically, stabilization entails
identifying systems which differ only by some “topologically trivial” sub-
system. In the d = 0 case, the reduced K-theory of a point is trivial since
all (finite dimensional) complex vector spaces in question are stably equiva-
lent. To recover the Z-classification for d = 0 which appears in many tables
[30,42], we should use the unreduced K-theory group. We note that higher
reduced K-theory groups of X do not admit an interpretation in terms
of stabilized bundles over X. For example, K−1(X) ∼= K̃−1(X), whereas
K0(X) ∼= K̃0(X) ⊕ Z. It is sometimes assumed that the Brillouin zone is a
d-sphere Sd rather than a torus, so the K-theory groups of spheres are stud-
ied instead. This should be distinguished from the appearance of K̃0(Sd)
when systems with continuous R

d translational symmetry are considered.
There, the momentum space (topologically also R

d) is non-compact, and
its K0 group is defined to be the reduced K̃0 group of the one-point com-
pactification Sd.

In this paper, we will study the unreduced K-theory of the appropri-
ate space or algebra as determined by the symmetry constraints at hand.
Furthermore, we deal primarily with the zeroth K-theory functor, or more
precisely, K0 as defined in Definition 7.3, and provide it with a uniform
physical interpretation applicable for all choices of symmetry data. Higher
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K-theory groups only appear secondarily though mathematical identities
such as Proposition 7.8. The meaning of the groups which appear in Table 2
is thereby clarified.

3. The precise equivalence relation defining a topological phase should be
clearly defined. Topological insulators are often modeled by graded vector
bundles, possibly with extra structure dictated by symmetries. Such bun-
dles can be organized into isomorphism classes, graded or otherwise. Intu-
itively, a notion of “homotopy classes of bundles” is desired.2 Isomorphism
classes of ungraded vector bundles correspond to homotopy classes of maps
from the base space to an appropriate classifying space, not those of the
bundle itself. On the other hand, a gapped Hamiltonian determines a grad-
ing on a vector bundle, and it is homotopy within the space of allowed grad-
ings which actually captures the physical intuition of “homotopic gapped
Hamiltonians”.

Within a single fixed realization of relevant symmetries on a given
representation space, it makes sense to consider homotopies between the
compatible Hamiltonians. It is less straightforward to compare Hamiltoni-
ans defined on different spaces: a choice of identification between the two
spaces is first required.

4. A detailed treatment of the IQHE, which does not make the assumption
of rational flux and includes the effects of disorder, utilizes tools from non-
commutative geometry and operator K-theory [6]. Despite this, the IQHE
is usually included in expositions on the Periodic Table which assume the
presence of a meaningful Brillouin zone. Furthermore, it has already been
recognized that the presence of point symmetries leads to different classi-
fication groups from those in the original table.

5. The Altland–Zirnbauer (AZ) classification of disordered fermionic systems
[2,20] is based on the compact classical symmetric spaces which provide
spaces of symmetry-compatible time evolutions. While large-N versions of
symmetric spaces also feature in the classifying spaces of K-theory, the AZ
classification (and indeed its Wigner–Dyson predecessor) made no explicit
reference to gapped Hamiltonians, whereas K-theory is supposed to classify
gapped phases. The general approach in the literature (with [15] being an
exception) is to keep only the data of the negative-energy states (or valence
bands of topological insulators) for the purposes of classification. As long as
charge-conjugating (i.e. Hamiltonian reversing) symmetries are not present,
this makes good sense and can even be motivated physically. In such cases,
the valence and conduction bands separately determine topological invari-
ants of the insulating system, with the former usually more interesting.
However, one should note that the availability of an interpretation of K-
theory groups referring only to the valence band, distinguishes the A, AI
and AII classes from the other seven classes in the tenfold way (see Sect.

2 Note that the total space of a bundle can always be retracted onto its base space, which
is usually fixed to be T

d, so this is not the relevant notion of homotopy.
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9.3). These are the three classes whose topological invariants (the Chern
numbers and Kane–Mele Z2 invariants) have been studied most closely.

6. The use of KR-theory to account for time-reversal and charge-
conjugation operators is redundant in our operator K-theory approach.
Actually, band insulators with such discrete symmetries are not yet the
Real bundles required for a KR-theory analysis. The proper construction
of an associated Real bundle is somewhat involved (e.g. see Corollary 10.25
of [15]).

Example 2.2 (Homotopy and isomorphism of band insulators). Consider a band
insulator in one spatial dimension which has one valence band and one con-
duction band, as well as sublattice/chiral symmetry. Physically, this is a Class
AIII insulator, which we model by a rank-two Z2-graded complex hermitian
vector bundle E over S1, equipped with an odd fiberwise unitary involution S
implementing the sublattice symmetry.

Fix a global trivialization E �→ (θ, v) ∈ S1 × C
2 ∼= E such that S acts

diagonally as
(

1 0
0 −1

)
on each fiber. According to the usual prescription

in the literature [40,42], a compatible gapped Hamiltonian is a grading Γ of
E, such that the grading operator Γθ on each fiber Eθ anticommutes with Sθ.
Since the Γθ are traceless and hermitian, they must be of the off-diagonal form

Γθ =
(

0 q(θ)
q(θ)† 0

)
, for some continuous function θ �→ q(θ) ∈ U(1) = S1.

A homotopy between two such functions is precisely a homotopy between the
two bundle gradings (AIII band insulator structures) that they determine.
Therefore, the set of phases, up to homotopy, is π1(S1) ∼= Z, labeled by the
integer winding number of q.

With respect to the pre-defined trivialization, the phase labeled by n ∈ Z

has a representative Γn defined by Γn(θ) =
(

0 e−inθ

einθ 0

)
. A straight-

forward calculation shows that for any n, n′ ∈ Z, the unitary bundle map
Un′−n : (θ, (v1, v2)) �→ (θ, (e−i(n′−n)θv1, v2)) preserves the S-action and inter-
twines Γn with Γn′ . Thus (E,Γn) and (E,Γn′) differ by a change of coordinates
(gauge transformation) which respects S. The reference (zero) phase Γ0, rep-

resented by
(

0 1
1 0

)
, is a relative notion which depends on the initial choice

of trivialization. More generally, to compare two two-band insulators (E′,Γ′)
and (E,Γ), we need to first choose an identification between E and E′ (which
respects the S-action). Different choices of identifications may lead to differ-
ent conclusions on whether Γ and Γ′ are homotopic. This suggests that it is
more meaningful to classify relative phases. For a more detailed discussion of
isomorphism and homotopy of Type AIII systems, see [46] and the detailed
study of “chiral” vector bundles in [11].

2.1. Some Differences with the Freed–Moore Approach

In the Freed and Moore [15] approach, higher twisted K-theory groups are
constructed using bundles of graded Clifford modules, quotiented by a certain
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algebraic relation, in analogy to the Atiyah–Bott–Shapiro (ABS) construction
of the K-theory ring of a point. However, we make the important observation
that there are two inequivalent ways of taking parity reversals in the con-
struction, with each choice leading to opposite orderings of the classification
groups.3 Also, not all the standard (untwisted) K-theory groups are recov-
ered using their approach. For example, K−1(S1) ∼= Z, whereas all bundles of
graded Cl1-modules over S1 are “trivial” in the sense of Definition 8.5 in [15].

Some usual assumptions on the group of symmetries are: (i) distinguished
time-reversing and charge-conjugating elements which are involutary in the
full symmetry group, and (ii) a direct product factorization into translational
symmetries, point group symmetries, and time-reversal or charge-conjugation
symmetries. As emphasized by Freed–Moore, these assumptions do not hold in
many realistic systems. Because of this, they are led to twisted equivariant K-
theory, although only some special twistings occur. In our approach, twistings
appear in the form of twisted group algebras, and only the untwisted K-theory
of these algebras enters. Furthermore, abstract results of Packer and Raeburn
[36] allow these twistings to be untwisted without compromising the K-theory
(see Sect. 8).

3. Symmetries, Spectral-Flattening, and Positive Energy
Quantization

Following the general arguments of [15], elements of the symmetry group
G for the dynamics of a quantum mechanical system are presumed to be
endowed with Hamiltonian and/or time preserving/reversing properties, which
are encoded by a pair of continuous homomorphisms c, τ : G → {±1}. An
element g ∈ G preserves (resp. reverses) the arrow of time if τ(g) = +1
(resp. τ(g) = −1); it commutes (resp. anticommutes) with the Hamiltonian if
c(g) = +1 (resp. c(g) = −1). A third homomorphism φ : G → {±1} specifies
whether g is implemented unitarily (φ(g) = +1) or antiunitarily (φ(g) = −1).
Writing ut for the unitary dynamics generated by the Hamiltonian H, and g
for the unitary/antiunitary representative of g, the time-reversal equation

gutg
−1 = uτ(g)t

leads to φ · τ · c ≡ 1, so any two of φ, τ, c specifies the third. Often, c ≡ 1
is assumed (all symmetries commute with the Hamiltonian), then φ = τ
and antiunitarity becomes synonymous with time-reversal. However, in our
description of free-fermion dynamics, we want to consider symmetries that
effect charge-conjugation (see Sect. 3.1), so we allow c(g) = −1. Then any two
of φ, τ, c may be independently specified. We also allow the symmetries to be
projectively realized, i.e. there may be a non-trivial cocycle σ.

The possibility of charge-reversing symmetries (present or otherwise) for
free-fermion dynamics requires, logically, a notion of charged dynamics and
charged representations of the canonical anticommutation relations (CARs), as

3 A closely related construction of super representation rings can be found in [32].
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opposed to their neutral counterparts. The latter describes neutral (Majorana)
fermions. Non-degeneracy of the dynamics (i.e. a gapped Hamiltonian) allows
us to distinguish between particle and antiparticle sectors, and we would like
both species to have positive energy in second quantization. For instance, the
Fermi level of a band insulator (which may be set to 0) lies in a gap of the
Hamiltonian, providing the particle–hole distinction. We recall the algebraic
formalism of positive energy charged field quantization, and refer to [12,13,16]
for the neutral case and technical details. Then, we establish our conventions
for dynamical symmetries, including time and charge reversal.

3.1. Non-Degenerate Unitary Dynamics and Second Quantization

Let ut be a strongly continuous 1-parameter unitary group on a complex
Hilbert space Y with inner product h, which is non-degenerate in the sense
that its self-adjoint generator (Hamiltonian) H is gapped (ker(H) = {0}). We
may define

Γ = sgn(H), J = i sgn(H) = iΓ, |H| =
√

H2 > 0,

and rewrite ut as etJ|H|. Note that J is unitary, skew-adjoint and commutes
with H,Γ and |H|. Furthermore, Y is graded by the charge operator Γ (or the
spectrally flattened Hamiltonian) into Y+⊕Y−, where Y± is the ±1 eigenspace
of Γ. Writing Z for the space Y equipped with the modified complex unit J
instead of i, we have Z = Y+ ⊕ Y−, where Y− is given the inner product dual
to h|Y− . The subspaces Y± are invariant for Γ,H and |H|, so we may regard
these operators as self-adjoint operators on Z, in which case a subscript is
appended, e.g., HZ .

On the Fock space
∧∗ Z, the charged fields are

a∗(y) = a∗(y+) + a(y−), a(y) = a(y+) + a∗(y−), y = (y+, y−) ∈ Y+ ⊕ Y−,

where a∗ and a are the standard creation and annihilation operators on
∧∗ Z.

The maps a∗ and a furnish a charged CAR representation over (Y, h) on Fock
space, called the positive energy Fock quantization for the non-degenerate uni-
tary dynamics ut. There are second quantized versions of the Hamiltonian and
charge operators,

H = dΛ(|H|Z) ≥ 0, Q = dΛ(ΓZ),

which implement the dynamics and charge symmetry on Fock space,

eitHa(y)e−itH = a(uty), eiθQa(y)e−iθQ = a(eiθy).

3.1.1. Charge and Time Reversal in Non-Degenerate Unitary Dynamics. A
symmetry operator g on (Y, h) is required to be unitary or antiunitary
according to φ(g), and time preserving or reversing [Eq. (3)] according to
τ(g) = c · φ(g). A short computation leads to the following commutation rela-
tions

gHg−1 = c(g)H, g|H|g−1 = |H|, gΓg−1 = c(g)Γ, gJg−1 = τ(g)J,
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from which we find that gZ (i.e. the map g considered as an operator on Z) is
unitary or antiunitary according to τ(g). We may then amplify gZ to a unitary
or antiunitary operator ĝ = Λ(gZ) on Fock space.

Remark 3.1. The modified imaginary unit J is determined by the dynamics
ut = eitH only through the spectrally flattened Hamiltonian sgn(H).

Remark 3.2. Whether symmetries commute with the Hamiltonian (e.g. [20]),
or are allowed to anticommute with the Hamitonian (e.g. [15,42]), depends on
whether one is in a first-quantized (with Hamiltonian H) or second-quantized
(with Hamiltonian H = dΛ(|H|Z)) setting.

We stress that the presence of a time/charge reversing symmetry does
not imply that of a distinguished charge/time reversal operator. Indeed, Freed
and Moore [15] have pointed out that there are physically relevant examples
that do not fit into the tenfold way [20,42], as the latter requires distinguished
charge/time reversal operators C,T. We prefer to work more generally, and
think of time/charge reversal as properties of a symmetry g ∈ G. Under certain
splitting assumptions on G, we can recover the usual T and/or C operators,
see Sect. 6.

3.2. Other Conventions for Free-Fermion Dynamics with Symmetries

In many treatments of the tenfold way [1,2,15,20,30,42,43], the single-particle
“Hamiltonian” in certain symmetry classes is taken to act on a Nambu space
W = V ⊕ V rather than a single-particle Hilbert space V . A Dirac–Nambu
space is a vector space of second-quantized creation operators and annihilation
operators, and is a useful auxiliary space often used for studying Bogoliubov
de Gennes Hamiltonians. It is necessarily even-dimensional, and comes with
a canonical real structure Σ: (v1, v2) �→ (v2, v1) which exchanges the creation
operators with the annihilation operators. The fixed points of Σ form the real
mode space M of Majorana operators, and M inherits a real inner product
from W by restriction. The operator J = i ⊕ −i on W = V ⊕ V = M ⊗ C

restricts to an orthogonal complex structure on M, and (M, J |M) ∼= V . One
considers dynamics on Fock space

∧∗
V , generated by a second-quantized

Hamiltonian HF which is required to be quadratic in the creation and annihi-
lation operators. Such dynamics can be reformulated on Nambu space V ⊕ V ,
with generating “Hamiltonian” HN subject to certain symmetry constraints.
Alternatively, the dynamics can be specified by a skew-symmetric operator
A on M, whose complexification is iHN. The gapped condition is sometimes
imposed on HN . An example is the Bogoliubov–de Gennes (BdG) Hamiltonian
for the quasi-particle dynamics of a superconducting system. It is important to
note that the polarization J , and thus the Fock space in second quantization,
is already implicit in the Nambu space formulation, whereas it is determined
by H in positive energy Fock quantization. Also, particle number is not nec-
essarily conserved [because a(v)a(v′) and a∗(v)a∗(v′) terms are allowed in the
second-quantized Hamiltonian HF], so A may not have a U(1)-symmetry (i.e.
it may not commute with J). The definition of symmetries of a Hamiltonian,



766 G. C. Thiang Ann. Henri Poincaré

especially those of charge-conjugation and time-reversal, also differ between
authors.

In our approach, the Hamiltonian H generating the non-degenerate uni-
tary dynamics on (Y, h) determines the particle–antiparticle distinction in sec-
ond quantization. In practice, we impose a stronger gapped condition on H, i.e.
0 �∈ spec(H). We allow antiunitary symmetries, as well as charge-conjugating
symmetries which reverse H, or equivalently, Γ = sgn(H). Two symmetry-
compatible gapped Hamiltonians H1,H2 are identified if they have the same
spectral flattening, sgn(H1) = Γ1 = Γ2 = sgn(H2). Then, the specification of
charged free-fermion dynamics respecting the symmetry data (G, c, φ, σ), up to
spectral-flattening,4 is precisely that of a graded projective unitary–antiunitary
representation (PUA-rep) for (G, c, φ, σ), as defined in Sect. 4.3.

We remark that a graded PUA-rep for (G, c, φ, σ) may also be inter-
preted as an ordinary quantum mechanical system. We usually combine such
quantum mechanical systems using the tensor product. On the other hand,
at the one-particle level, we combine free-fermion systems using the direct
sum operation, which only gets translated into the tensor product at the Fock
space level. We are only concerned with describing free-fermion dynamics and
its symmetries at the one-particle level, so the direct sum applies. Thus it
makes sense to construct abelian monoids of free-fermion systems and to use
K-theoretic methods in their classification. Certain graded PUA-reps can also
be interpreted as describing BdG Hamiltonians [42,43], but we note that the
extra structure (Σ and even-dimension condition) are not generally kept track
of in K-theory.

4. The General Notion of Twisted Covariant Representations

We outline the basic definitions and constructions of twisted covariant rep-
resentations of twisted C∗-dynamical systems [8,34,36]. We make a simple
generalization to Z2-graded twisted covariant representations, and show that
they arise naturally as graded PUA-reps in the context of quantum systems
with time/charge-reversing symmetries. All gradings will be Z2-gradings.

4.1. Ungraded Covariant Representations

Let A be a separable, possibly non-unital, real or complex C∗-algebra.5 We
denote its multiplier algebra by MA, and its group of unitary elements {u ∈
MA : u∗u = uu∗ = 1MA} by UMA. If F is the ground field of A, we write
AutF(A) for the group of F-linear ∗-automorphisms of A. Let G be a locally
compact, second countable, amenable6 group, with left Haar measure μ and

4 If the gapped H is bounded, sgn(·) is continuous on spec(H) and homotopic to the identity
function. If H is unbounded, sgn(H) can still be defined, but care must be taken in order to
interpret spectral-flattening as a homotopy in a precise sense, see Appendix D of [15].
5 A reference for basic facts about real C∗-algebras is Chapter 1 of [44].
6 Amenability holds in all the physical examples that we consider in this paper, and is made
in order to avoid having to distinguish between reduced and full crossed products later on.
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identity element e. As in Section 2 of [36], we give UMA the strict topology,
and AutF(A) the point-norm topology.

Definition 4.1 (Twisted C∗-dynamical system [8,34]). A pair (α, σ) of Borel
maps α : G → AutF(A) and σ : G × G → UMA satisfying

α(x)α(y) = Ad(σ(x, y)) ◦ α(xy), (2a)

σ(x, y)σ(xy, z) = α(x)(σ(y, z))σ(x, yz), (2b)

σ(x, e) = 1 = σ(e, x), (2c)

α(e) = idA, x, y, z ∈ G, (2d)

is called a twisting pair for (G,A). The map σ is called a 2-cocycle with values
in UMA, or simply a cocycle, and the quadruple (G,A, α, σ) is called a twisted
C∗-dynamical system.

For notational ease, we write αx ≡ α(x) and ax ≡ αx(a) ≡ α(x)(a).

Definition 4.2 (Twisted covariant representation). A twisted covariant repre-
sentation of a twisted C∗-dynamical system (G,A, α, σ) is a non-degenerate
∗-representation of A as bounded operators on a separable Hilbert space H
over F, along with a compatible Borel map θ : x �→ θx from G to the unitary7

operators on H , in the sense that

θxθy = σ(x, y)θxy, (3a)

θx(am) = ax(θxm), x, y,∈ G, a ∈ A, m ∈ H . (3b)

Note that (3b) can be restated as ax = Ad(θx)(a), and then we see
that (3a) is consistent with (2a). In the untwisted case, i.e. σ ≡ 1, the Borel
map α is a homomorphism, hence continuous (Theorem D.11 of [49]). Then
(G,A, α, 1) is a (untwisted) C∗-dynamical system (G,A, α) in the usual sense
(e.g. 7.4.1 of [39], 2.1 of [49], or 10.1 of [7]). Similarly, θ becomes a strongly
continuous homomorphism from G to the unitary group of H . Thus, θ is
a (untwisted) covariant representation of (G,A, α) in the usual sense (e.g.
7.4.8 of [39] or 10.1 of [7]), and no harm is done by dropping the adjective
“twisted” when σ ≡ 1. We say that two twisted covariant representations
(θ,H ), (θ′,H ′) of (G,A, α, σ) are equivalent if there is a unitary A-linear
intertwiner U : H → H ′ such that UθxU−1 = θ′

x for all x ∈ G.
There is an action of the group of Borel functions λ : G → UMA on

twisting pairs (Section 3 of [36]), defined by

α′(x) = Ad(λ(x)) ◦ α(x), (4a)

σ′(x, y) = λ(x)αx(λ(y))σ(x, y)λ(xy)−1. (4b)

Two twisting pairs (α, σ) and (α′, σ′) are exterior equivalent if they are related
by such a transformation, and there is a 1–1 correspondence between the
covariant representations of (G,A, α, σ) and those of (G,A, α′, σ′), via the
adjustments θx �→ λ(x)θx. This generalizes the familiar notion of equivalence
of cocycles for projective unitary group representations (where A = C). If the

7 When F = R, we also use “orthogonal” for emphasis.
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cocycle σ is assumed to be central in A, there is no effect of λ on α in (4a).
The conjugation in (2a) and the condition (2d) are then redundant, and we
also have α(x−1) = α(x)−1. A central cocycle is trivial if there is a Borel
function λ : G → Z(UMA) such that σ(x, y) = λ(x)λ(y)xλ(xy)−1, i.e. σ is
a coboundary in the sense of cohomology. We say that two central cocycles
σ1, σ2 are equivalent, or in the same cocycle class, if σ1σ

−1
2 is trivial. Note that

if σ is not necessarily central, α and σ must be modified concurrently when
making an adjustment θx �→ λ(x)θx. In many of our physical examples, the
representative σ in a cocycle class can be chosen to make certain computations
more convenient, e.g. Proposition 6.2 and Lemma 10.4.

4.2. Graded Covariant Representations

Let A be a graded real or complex C∗-algebra, i.e. A has a direct sum
decomposition into two self-adjoint closed subspaces A = A0 ⊕ A1, satis-
fying AiAj ⊂ Ai+j (mod 2). Let AutF(A) now denote its group of even F-
linear ∗-automorphisms, i.e. ∗-automorphisms that preserve the decomposition
A = A0 ⊕A1. We assume that the cocycles σ take values in the even elements
UMA0 of UMA. These grading restrictions are consistent with Eqs. (2a) and
(2b) for a twisting pair (α, σ). Suppose that the group G is also equipped with
a continuous homomorphism c : G → {±1}. The quintuple (G, c,A, α, σ) is
called a graded twisted C∗-dynamical system.

Definition 4.3 (Graded twisted covariant representation). A graded covariant
representation of a graded twisted C∗-dynamical system (G, c,A, α, σ) is a
graded ∗-representation of A on a graded Hilbert space H = H0 ⊕H1 over F

(i.e. AiHj ⊂ Hi+j (mod 2)), along with a compatible Borel map θ : G → U(H ),
in the sense of (3a) and (3b), with the additional condition that θx is an even
(resp. odd) operator if c(x) = +1 [resp. c(x) = −1]. Two such graded covariant
representations (θ,H ), (θ′,H ′) are graded equivalent, or simply equivalent, if
there is an even unitary A-linear map U : H → H ′ intertwining θ with θ′.

In most of our applications, A is trivially graded, i.e. purely even, and
the only complication comes from the data of c : G → {±1}.

4.3. Special Cases I: Graded Projective Unitary–Antiunitary Representations
and Gapped Hamiltonians

A complex Hilbert space (H , h) is equivalently a real Hilbert space (H , b) with
real inner product b = Re(h), along with a b-orthogonal complex structure J
(i.e. J2 = −1) playing the role of multiplication by i. The complex inner prod-
uct h may be recovered from b and J by setting h(u, v) = b(u, v) + ib(Ju, v).
Note that h induces the same norm on H as b does. An orthogonal operator
on (H , b) is (anti)-unitary as an operator on (H , h), iff it (anti)-commutes
with J .

Let φ : G → {±1} be a continuous homomorphism, and σ be a U(1)-
valued 2-cocycle as in (1). A projective unitary–antiunitary representation8

(PUA-rep) θ of (G,φ, σ) on a complex Hilbert space (H , h) is a Borel map

8 See [38,49] for some topological matters.
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x �→ θx such that θx is a unitary (resp. antiunitary) operator on (H , h) if
φ(x) = +1 [resp. φ(x) = −1], and θxθy = σ(x, y)θxy. By regarding (H , b) as a
real Hilbert space, and i as a complex structure J as above, we can equivalently
define a PUA-rep of (G,φ, σ) as a map θ from G to the orthogonal operators
on (H , b), subject to

θxθy = σ(x, y)θxy, x, y ∈ G,

θxJ = φ(x)Jθx.

Suppose φ is surjective, and let A = C as a purely even real C∗-algebra.
Thus A = R ⊕ iR as a real vector space, with basis {1, i}, i2 = −1, and the ∗-
operation taking i to −i. There are two elements of AutR(C), namely complex
conjugation K and the identity idC. A ∗-representation of A = C is a real
Hilbert space (H , b) along with a linear operator J representing i, such that
J2 = −1 and J∗ = −J , i.e. J is an orthogonal complex structure. Define the
map α : G → AutR(C) by

αx ≡ α(x) :=

{
idC if φ(x) = +1,
K if φ(x) = −1.

Equations (3a) and (3b) say that a covariant representation θ of (G, C, α, σ)
on a real Hilbert space (H , b), is precisely a PUA-rep of (G,φ, σ) on H .

Suppose that a PUA-rep for (G,φ, σ) has, additionally, a gapped self-
adjoint Hamiltonian H, and that G has a second continuous homomorphism
c : G → {±1} such that θxH = c(x)Hθx, or equivalently,

θxΓ = c(x)Γθx, ∀x ∈ G, (5)

where Γ = sgn(H). Thus, H is compatible with the symmetries specified by
the data (G, c, φ, σ). A graded PUA-rep θ of (G, c, φ, σ) on a graded complex
Hilbert space H = H0 ⊕ H1 is a PUA-rep of (G,φ, σ), along with a self-
adjoint grading operator Γ satisfying (5). Such a Γ represents the family of
(G, c, φ, σ)-compatible Hamiltonians on H whose spectral flattening is Γ. Note
that a graded covariant representation of (G, c, C, α, σ) is precisely a graded
PUA-rep of (G, c, φ, σ).

4.4. Special Case II: Disordered Systems and Covariant Representations

Disordered systems are often modeled on a disorder space Ω, on which the
group G acts by homeomorphisms. More generally, the disorder space can be
non-commutative, and so G acts as automorphisms on an algebra A. We can
generalize PUA-reps to include disorder, by replacing C with the algebra A and
working with twisted dynamical systems and their covariant representations.
Such objects were considered in the analysis of the IQHE in [6], but without
the additional data of φ or c.
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5. Graded Twisted Crossed Products and Covariant
Representations

In the previous section, we explained how the implementation of symmetry
and compatible gapped Hamiltonians leads to graded twisted C∗-dynamical
systems (G, c,A, α, σ) and their covariant representations. In this section, we
explain how all the symmetry data can be concisely and faithfully encoded
in a graded twisted crossed product C∗-algebra A �(α,σ) G, which we may
simply call the symmetry algebra. This device will be very convenient for the
application of K-theory in the later sections.

5.1. Twisted Crossed Products and Covariant Representations

Let L1(G,A, α, σ) be the Banach ∗-algebra of integrable functions9 F : G →
A with the L1-norm ‖F‖1 =

∫
G

‖F (x)‖dx, equipped with a (α, σ)-twisted
convolution product � and involution ∗,

(F1 � F2)(y) :=
∫

G

F1(x)
(
F2(x−1y)

)x
σ(x, x−1y) dx, (6a)

F ∗(x) := σ(x, x−1)∗ (
F (x−1)∗)x

Δ(x−1), (6b)

where Δ is the modular function on G. There is a one-to-one correspon-
dence between covariant representations θ of (G,A, α, σ), and non-degenerate
∗-representations of L1(G,A, α, σ), given by taking the “integrated form” θ̃ of
θ, see Theorem 3.3 of [8] and Remark 2.6 of [36]. A pre-C∗-norm is defined on
L1(G,A, α, σ) by

‖F‖max = sup{‖θ̃(F )‖ : θ is a covariant representation of (G,A, α, σ)}.

Definition 5.1 (Twisted crossed product C∗-algebra [8]). Let (G,A, α, σ) be a
twisted dynamical system. The twisted crossed product C∗-algebra associated
with (G,A, α, σ), denoted by A �(α,σ) G, is defined to be the completion of
L1(G,A, α, σ) in the norm ‖·‖max.

The group G and the algebra A are embedded into M(A �(α,σ) G) via
the Borel map (not necessarily homomorphic) jG : G → UM(A �(α,σ) G) and
the ∗-homomorphism jA : A → M(A �(α,σ) G), which are defined by

(jG(g)(F ))(x) := (F (g−1x))gσ(g, g−1x), (7a)

(jA(a)(F ))(x) := a(F (x)), (7b)

where F ∈ L1(G,A, α, σ), g, x ∈ G, a ∈ A.
When σ ≡ 1, we recover the untwisted crossed product C∗-algebra asso-

ciated with the untwisted C∗-dynamical system (G,A, α). If α ≡ 1, we call
R�(1,σ) G (resp. C�(1,σ) G) the real (resp. complex) twisted group C∗-algebra

9 The integral of a A-valued function on G is a Bochner integral, see Appendix B of [49]
and the preliminary section of [36].
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of (G, σ). If σ ≡ 1 as well, we use a shortened notation10
R � G (resp. C � G)

for the real (resp. complex) group C∗-algebra of G. More generally, when α ≡ 1
and σ ≡ 1, we will write A � G := A �(1,1) G to ease notation.

Although there are universal characterizations of twisted crossed prod-
ucts, (see 2.4 of [36], as well as [37]), we only need the following result.

Proposition 5.2 [8,36,37]. There is a one-to-one correspondence between the
covariant representations of (G,A, α, σ), and the non-degenerate ∗-repre-
sentations of A �(α,σ) G.

5.2. Graded Twisted Crossed Products

For a graded twisted C∗-dynamical system (G, c,A, α, σ), we assign a grad-
ing to A �(α,σ) G as follows. Let G0 := ker(c) and G1 := G − G0. The even
subalgebra of A �(α,σ) G is the completion in ‖·‖max of L1(G0,A0, α, σ) ⊕
L1(G1,A1, α, σ), and the odd subspace is the completion of L1(G0,A1, α, σ)⊕
L1(G1,A0, α, σ). Note that (6a) and (6b) respect this grading due to
the restriction to even automorphisms αx and even cocycles σ. Graded
∗-representations of the graded twisted crossed product A �(α,σ) G then
correspond one-to-one to graded covariant representations of (G, c,A, α, σ).

6. CT -Symmetries, Clifford Algebras, and the Tenfold Way

Let G = {±1}n, n ≥ 0, where {±1}0 means the trivial group. Suppose m of the
{±1} generators Ui, 1 ≤ i ≤ m are to be represented unitarily (φ(Ui) = +1),
while the other n − m generators Ak, 1 ≤ k ≤ n − m are to be represented
antiunitarily (φ(Ak) = −1). We will write Ui := θUi

and Ak := θAk
for their

representatives in a graded PUA-rep θ of ({±1}n, c, φ, σ). As always, Ui and
Ak are odd/even according to c.

Lemma 6.1. We may assume, without loss of generality, that there are at most
two antiunitaries A1,A2.

Proof. Let A be the image of (φ, c) : {±1}n → {±1} × {±1}, and B be its
kernel. Every non-identity element of A,B and {±1}n has order 2. Regarding
the groups as finite-dimensional vector spaces over the two-element field F2,
we have {±1}n ∼= B × A. Any F2-basis for B provides a set of even unitarily
implemented generators Ui. Since dimF2(A) ≤ 2, there are at most two Ak ∈ A
with φ(Ak) = −1 providing antiunitary operators Ak. �

A basis for A can be chosen to be one of the following: (i) empty, (ii)
{odd Un}, (iii) {even A1}, (iv) {odd A1}, or (v) {even A1, odd A2}.

The graded PUA-rep theory of ({±1}n, c, φ, σ) can be simplified by using
the U(1) phase freedom for the operators θx, x ∈ G to make certain stan-
dardizations. Since U2

i = σ(Ui, Ui)θe = σ(Ui, Ui), we can modify Ui �→
±σ(Ui, Ui)−1/2Ui to fix U2

i = +1. This does not work for Ak, since (λAk)(λAk)

10 It is also standard to write R � G for a semi-direct product of the group R with G.
Nevertheless, the correct meaning should be clear from the context.
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= λλA2
k = A2

k for any λ ∈ U(1). Setting x = y = z = Ak in (1) leads to
σ(Ak, Ak) = σ(Ak, Ak), so A2

k = σ(Ak, Ak) = ±1 are invariants of the cocycle
class of σ. For two unitaries Ui,Uj , i < j, we write λij := σ(Ui, Uj)/σ(Uj , Ui)
so that UiUj = λijUjUi. Then Uj = U2

iUj = λ2
ijUjU

2
i = λ2

ijUj , so λij = ±1.
For any a1, a2 ∈ C, we have (a1A1)(a2A2) = a1ā2σ(A1, A2)θA1A2 , and
(a2A2)(a1A1) = a2ā1σ(A2, A1)θA1A2 . Let a1 = ±σ(A2, A1)1/2, a2 = ±σ(A1,
A2)1/2, and redefine A′

1 = a1A1,A
′
2 = a2A2 and θ′

A1A2
= a1a2θA1A2 , then

A′
1A

′
2 = θ′

A1A2
= A′

2A
′
1. Finally, UiAk = νikAkUi, where νik := σ(Ui, Ak)/σ(Ak,

Ui). The equation Ak = U2
iAk = ν2

ikAkU
2
i = ν2

ikAk means that νik = ±1, which
cannot be fixed by utilizing the residual ±1 phase freedom in Ui,Ak. In sum-
mary:

Proposition 6.2. Let θ be a graded PUA-rep of ({±1}n, c, φ, σ), with 0 ≤ m ≤
n (resp. 0 ≤ n − m ≤ 2) unitarily (resp. antiunitarily) implemented group
generators Ui (resp. Ak), as in Lemma 6.1. We can adjust Ui and Ak, while
staying in the same cocycle class, so that U2

i = +1, A2
k = ±1, AkAl = AlAk,

UiUj = ±UjUi, and UiAk = ±AkUi, for all 1 ≤ i, j ≤ m and 1 ≤ k, l ≤ n−m.

Let i = {i1, . . . , ip} and k = {k1, . . . , kq} be (possibly empty) increasing
subsets of {1, . . . , n} and {1, . . . , n − m ≤ 2} respectively. Let Ui and Ak

denote the group elements Ui1 , . . . , Uip and Ak1 , . . . , Akq
respectively, with

U∅ = 1 = A∅. In particular, Ui = U{i} and Ak = A{k}. Every element of
{±1}n can be uniquely written as UiAk for some i,k. The phase freedom for
the representatives of UiAk with |i| + |k| ≥ 2 can be used to fix the condition
θUiAk

= Ui1 , . . . ,UipAk1 , . . . ,Akq
. The cocycle for this standardized θ is then

completely determined by the set of ±1 in Proposition 6.2.

6.1. Clifford Algebras Associated with CT -Subgroups: The Tenfold Way

We define the CT -group to be {±1}2 = {1, T, C, S}, which has (φ, c)(T ) =
(−1,+1), (φ, c)(C) = (−1,−1), (φ, c)(S) = (+1,−1). The elements T,C and
S = CT = TC refer to time-reversal, charge-conjugation, and sublattice (or
chiral) symmetries respectively. We are interested in the graded PUA-reps of
(A, σ), where A ⊂ {1, T, C, S} is a CT -subgroup and the homomorphisms
φ, c on A are implicit. The representatives of T, C and S (where present) are
denoted by T, C and S, respectively.

First, consider the full CT -group A = {1, T, C, S}. In the standard form
of Proposition 6.2, there are four choices T2 = ±1,C2 = ±1, and we may
assume that TC = S = CT. The mutually anticommuting set of odd operators
{C, iC, iCT} generates a graded real Clifford algebra Clr,s with r (resp. s)
determined by the number of negative skew-adjoint (resp. positive self-adjoint)
Clifford generators in this set. Thus, a graded PUA-rep for the full CT -group
is precisely a graded ∗-representation of an appropriate Clr,s. For the subgroup
{1, C}, there are two choices for C2 = ±1, and we take {C, iC} as the set of
odd Clifford generators for Cl0,2 or Cl2,0. For the subgroup A = {1, S}, there
is only one standard choice S2 = +1, and {S} generates the complex graded
Clifford algebra Cl1. For A = {1, T}, there are two choices T2 = ±1. The
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anticommuting set {i,T, iTΓ} generates the ungraded Clifford algebra Cl1,2

when T2 = +1 and Cl3,0 when T2 = −1.
There are Morita equivalences between Clifford algebras,

Clr,s ⊗ M2(R) ∼= Clr,s ⊗ Cl1,1
∼= Clr+1,s+1

Cln ⊗ M2(C) ∼= Cln+2

Cln,0 ⊗ M16(R) ∼= Cln+8,0

Cl0,n ⊗ M16(R) ∼= Cl0,n+8,

as well as a 1–1 correspondence between graded representations of Clr,s and
ungraded representations of Clr,s+1 [4,33]. Using these, we may summarize the
above discussion in Table 1.

Remark 6.3. The Clifford algebras constructed in this section can also be
interpreted as twisted group algebras for Z

n
2 (additive notation), where the

group generators are taken from a subset of {C, T, i,Γ} in the real case, and
a subset of {S,Γ} in the complex case. By redefining the group generators as
above, the Clifford algebras can be written as Clr,s ∼= R �(1,σr,s) Z

r+s
2 and

Cln ∼= C �(1,σn) Z
n
2 , where for x,y ∈ Z

n
2 or x,y ∈ Z

r+s
2 as appropriate,

σr,s(x,y) =
( − 1

) ∑
j<i

xiyj+
∑
i≤r

xiyi

, σn(x,y) =
( − 1

) ∑
j<i

xiyj

.

7. The K-Theoretic Difference-Group
of Symmetry-Compatible Gapped Hamiltonians

Prelude: Representation Group of a Locally Compact Group

Let G be a compact group. Its unitary representation theory can be summa-
rized by the Peter–Weyl theorem. In C∗-algebraic language, this says that the
group C∗-algebra C � G decomposes as a (possibly countably infinite) direct
sum of matrix algebras over the unitary dual Ĝ,

C � G ∼=
⊕

[V ]∈Ĝ

Mdim(V )(C).

For a proof, see Proposition 3.4 of [49]. The complex representation group
(we do not need the ring structure) RC(G) of G is the Grothendieck group
of the monoid of isomorphism classes of finite-dimensional unitary represen-
tations of G under the direct sum. By complete reducibility, RC(G) is freely
generated by the elements of the unitary dual Ĝ. In terms of K-theory, there
is an isomorphism RC(G) ∼= K0(C � G) ∼= KG

0 (C) (see Section 11.1 of [7]),
where KG

0 denotes the equivariant K-theory group. For projective unitary
representations of (G, σ), we can define the (twisted) representation group
RC(G, σ) := K0(C �(1,σ) G). If G is locally compact but not compact, we
choose the K-theoretic option and define RC(G, σ) to be K0(C �(1,σ) G), gen-
eralizing the compact case.11 Finally, for a general twisted dynamical system

11 This is a departure from the unitary representation theory of G, but is well-motivated by
Bloch theory in condensed matter physics: C � Z

d ∼= C(Td) and its K0-group is generated
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(G,A, α, σ), we define the (twisted) representation group of (G,A, α, σ) to be
K0(A �(α,σ) G), which subsumes all the earlier definitions.

Preliminaries on Graded Modules

A graded module for a graded algebra A is an (ungraded) A-module W which
admits a direct sum decomposition into W = W0 ⊕ W1, such that AiWj ⊂
Wi+j (mod 2). The right parity-reversed module WΠ has the same underlying
vectors as W but with the reversed grading, WΠ

0 = W1,W
Π
1 = W0, and retains

the same graded action of A. The left parity reversal ΠW also has ΠW0 =
W1,

ΠW1 = W0 but the A-action is, on homogeneous elements,

a · (πL(w)) = πL((−1)|a|a · w), a ∈ A0 ∪ A1, w ∈ W,

where |a| ∈ Z2 is the parity of a. Both πR : W → WΠ and πL : W → ΠW ,
which fix the underlying vectors, are odd maps and involutary operations on
graded A-modules: π2

R = id = π2
L. We write wπ := πR(w) and πw := πL(w),

which distinguishes them from w ∈ W . As graded A-modules, WΠ and ΠW
are equivalent under the even map WΠ � wπ ≡ wπ

0 +wπ
1 �→ πw0 − πw1 ∈ ΠW .

Despite this, πR commutes with A, whereas πL graded commutes with A.
For a graded unital algebra A, a graded finitely generated free A-module

is one of the form Am ⊕ (AΠ)n =: Am|n, where A is regarded as a graded
A-module by left multiplication on itself, and AΠ is its right parity reverse.12

A graded finitely generated projective (f.g.p.) A-module is defined to be a
graded A-module which is a direct summand of Am|n for some (m,n). It can
be shown [19] that a graded f.g.p. A-module is the same thing as a graded
A-module which is f.g.p. in the ungraded sense. In what follows, all modules
are assumed to be f.g.p. unless otherwise stated.

7.1. K-Theory as Topological Obstructions Between Gapped Hamiltonians

Standard presentations of K-theory in terms of Grothendieck completions and
suspension constructions (e.g., in [7,33,48]) do not directly relate to the study
of gapped phases, because the latter generally entails studying graded sym-
metry algebras. We have already seen this in Sect. 6, when studying graded
representations of CT -subgroups. The ABS isomorphisms [4],

Kn(R) ∼= KO−n(�) ∼= GR(Clr,s)/i∗GR(Clr+1,s), n = r − s (mod 8), (8a)

Kn(C) ∼= K−n(�) ∼= GR(Cln)/i∗GR(Cln+1), (8b)

provide an example of the central unifying role of super-algebra in K-theory.
Here GR(Clr,s) is the free abelian group generated by the irreducible graded
Clr,s-modules and i∗ is restriction-of-scalars induced by i : Clr,s ↪→ Clr,s+1

(similarly for the complex case). We will instead utilize a version of K-theory
due to Karoubi [23], which remains well defined for graded C∗-algebras, and
is consistent with more commonly used definitions for ungraded C∗-algebras.

Footnote 11 continued
by finitely generated projective C(Td)-modules, which the Serre–Swan theorem identifies as
the sections of finite-rank vector bundles over T

d (Bloch bundles).
12 Note that the left parity reverse ΠA can also be used in this definition.
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The central object is the K-theoretic difference-group. Although the definitions
in this section are guided by the mathematics, we will motivate and interpret
them physically, with the connection to Karoubi’s K-theory only made towards
the end.

Recall that the grading operator Γ on a graded f.g.p. module W for
the graded algebra A = B �(α,σ) G can be interpreted as a spectrally flat-
tened gapped Hamiltonian which is compatible with the symmetry data
(G, c,B, α, σ). The difference-group K0(A) will be defined in terms of graded
f.g.p. modules for A, which may be regarded as graded Hilbert A-modules13

on which there is a notion of self-adjointness for the adjointable (and bounded)
operators B∗(W ). In fact, B∗(W ), along with the grading operator Γ, form
a (evenly) graded C∗-algebra under the operator norm. The self-adjoint uni-
tary grading operator for B∗(W ) is Γ, and it also makes sense to talk about
continuous functions of Γ and homotopies between them.

Example 7.1 (Noncommutative Bloch theory [17]). When A = C�Z
d ∼= C(Td),

a graded f.g.p. C(Td)-module is, as a Hilbert C(Td)-module, the set of contin-
uous sections of some graded Hermitian vector bundle over T

d, on which there
is a continuous [i.e. C(Td)-valued] fiberwise inner product. The restriction of
the grading operator Γ to a fiber can be viewed as the (flattened and gapped)
Bloch Hamiltonian for that fiber. Here, we are assuming that the Bloch Hamil-
tonians have a band structure, giving rise to a continuous family of fiberwise
grading operators. The positively graded sub-bundle is the conduction band,
while the negatively graded sub-bundle is the valence band. The usual Bloch–
Floquet picture of a direct integral decomposition of L2(Rd) over the character
space T

d, can be recovered by passing to the GNS representation induced by a
faithful trace on C(Td). In non-commutative Bloch theory, C(Td) is replaced
by a possibly non-commutative A. The grading operator Γ for a f.g.p. graded
A-module W is interpreted as a (flattened and gapped) Hamiltonian on the
non-commutative graded “vector bundle” W .

Given an ungraded A-module W , we can consider the set GradA(W ) of
possible grading operators on W turning it into a graded A-module. There is
a standard Banach space structure on W (either from its Hilbert A-module
structure or induced from the free module An which it is a direct summand of),
which determines a norm topology on the bounded linear maps W → W . Thus,
there is a natural induced topology on GradA(W ) ⊂ EndA(W ) ⊂ End(W )
(e.g. see I.6.22 of [23], 11.2 of [7], or Chapter 15 of [48]).14 We can then talk
about the homotopy classes of symmetry-compatible gapped Hamiltonians on
W :
13 A Hilbert C∗-module over A [7,31,48], is an A-module with an A-valued “inner product”

〈·, ·〉, whose associated norm |||x||| = ‖〈x, x〉‖1/2 is complete. A f.g.p. A-module can be
endowed with the structure of a Hilbert A-module, see Theorem 15.4.2 in [48].
14 The use of Hilbert C∗-modules is motivated physically by Example 7.1, and the topol-

ogy for GradA(W ) is convenient for the application of Karoubi’s K-theory later. It should
be contrasted with the approach in [15], where a continuous family of gapped quantum
mechanical systems was defined in terms of families of non-spectrally flattened and possibly
unbounded Hamiltonians.
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Definition 7.1 (Symmetry compatible gapped Hamiltonians). Consider the
graded twisted C∗-dynamical system (G, c,B, α, σ), and suppose the alge-
bra A = B �(α,σ) G is unital. Let W be an ungraded f.g.p. A-module. We
call GradA(W ) the set of (G, c,B, α, σ)-compatible, or A-compatible, or sim-
ply symmetry-compatible (flattened) gapped Hamiltonians on W . Two grading
operators Γ1,Γ2 ∈ GradA(W ) are homotopic if there is a norm-continuous
path between Γ1 and Γ2 within GradA(W ); in this case, we write Γ1 ∼h Γ2.

Intuitively, Γ1 ∼h Γ2 means that the two Hamiltonians can be contin-
uously deformed into one another, while respecting the symmetries encoded
by the algebra A, and maintaining the gapped condition. Regarding W as a
Hilbert C∗-module, we may further assume that the Hamiltonians Γi are self-
adjoint (and unitary), and that a homotopy between Γ1 and Γ2 takes place
within such self-adjoint grading operators (see 4.6 of [7]).

The set π0(GradA(W )) of homotopy classes is interesting in itself [30,42,
45], but it does not come with any additional structure, much less that of an
abelian group. To make the connection to K-theory groups, we do not follow
the usual arguments in these references—they typically involve taking some
“large-N limit” of symmetric spaces as the classifying spaces for K-theory—
because the connection to the Hamiltonians is difficult to make precise. Rather,
we use a modified version of Karoubi’s K-theory, in which the elements of the
K-theory of A represent differences or topological obstructions between pairs
of A-compatible Hamiltonians.

Definition 7.2 (Trivial differences between Hamiltonians). Let W be a graded
f.g.p. module for a graded unital C∗-algebra A, and let Γ1,Γ2 ∈ GradA(W ) be
a pair of compatible gapped Hamiltonians. We call (W,Γ1,Γ2) a trivial triple
if Γ1 ∼h Γ2 in GradA(W ).

A triple (W,Γ1,Γ2) represents the (ordered) difference between two A-
compatible gapped Hamiltonians on W , and we do not distinguish between
two Hamiltonians which can be continuously deformed into one another. We
want to be able to consider all graded modules concurrently, and to combine
two or more systems with the same symmetry constraints. The direct sum
gives a natural abelian monoid structure to the collection GradA of all triples,
where some obvious identifications have been made to ensure commutativity
and associativity. The collection of trivial triples forms a submonoid Gradt

A.

Definition 7.3 (Difference-group of Hamiltonians). Let K0(A) be the quotient
monoid of GradA by the congruence generated by Gradt

A, i.e. [W,Γ1,Γ2] =
[W ′,Γ′

1,Γ
′
2] in K0(A) if there are trivial triples (F, ζ1, ζ2) and (F ′, ζ ′

1, ζ
′
2) such

that (W ⊕ F,Γ1 ⊕ ζ1,Γ2 ⊕ ζ2) = (W ′ ⊕ F ′,Γ′
1 ⊕ ζ ′

1,Γ
′
2 ⊕ ζ ′

2) in GradA. We call
K0(A) the difference-group of A-compatible gapped Hamiltonians.

Proposition 7.4. K0(A) is an abelian group, with [W,Γ1,Γ2] = −[W,Γ2,Γ1].
Furthermore, two isomorphic triples (in the natural sense) define the same
class in K0(A).
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Proof. Γ1 ⊕ Γ2 ∼h Γ2 ⊕ Γ1 in GradA(W ⊕ W ) via the homotopy

Γ(θ) =
(

cos θ − sin θ
sin θ cos θ

) (
Γ1 0
0 Γ2

) (
cos θ sin θ

− sin θ cos θ

)
, θ ∈

[
0,

π

2

]
, (9)

so (W ⊕W,Γ1 ⊕Γ2,Γ2 ⊕Γ1) is trivial, i.e. [W,Γ2,Γ1] = −[W,Γ1,Γ2] in K0(A).
For isomorphic triples (W,Γ1,Γ2) and (W ′,Γ′

1,Γ
′
2), let α : W → W ′ be the

isomorphism of ungraded A-modules, such that Γ′
i = αΓiα

−1, i = 1, 2. Then
Γ2 ⊕ Γ′

1 ∼h Γ1 ⊕ Γ′
2 in GradA(W ⊕ W ′) via the homotopy

Γ(θ)=
(

cos θ −α−1 sin θ
α sin θ cos θ

)(
Γ1 0
0 Γ′

2

)(
cos θ α−1 sin θ

−α sin θ cos θ

)
, θ∈

[
0,

π

2

]
.

so 0 = [W ⊕ W ′,Γ1 ⊕ Γ′
2,Γ2 ⊕ Γ′

1] = [W,Γ1,Γ2] − [W ′,Γ′
1,Γ

′
2]. Since A acts

diagonally, it follows that it graded commutes with Γ(θ) in both cases.

Proposition 7.5. (Path and homotopy independence of differences) The equa-
tion [W,Γ1,Γ2] + [W,Γ2,Γ3] = [W,Γ1,Γ3] holds in K0(A). Furthermore, the
class [W,Γ1,Γ2] depends only on the homotopy class of Γi in GradA(W ).

Proof. We need to show that [W ⊕W ⊕W,Γ1 ⊕Γ2 ⊕Γ3,Γ2 ⊕Γ3 ⊕Γ1] is trivial.
Since Γ2 ⊕ Γ3 ⊕ Γ1 can be obtained from Γ1 ⊕ Γ2 ⊕ Γ3 by conjugation with

the permutation matrix

⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠ ∈ SO(3), and SO(3) is path-connected,

it follows that Γ2 ⊕ Γ3 ⊕ Γ1 ∼h Γ1 ⊕ Γ2 ⊕ Γ3 in GradA(W ⊕ W ⊕ W ). If
Γ′

i ∼h Γi, i = 1, 2, then (W,Γ′
1,Γ1) and (W,Γ2,Γ′

2) are trivial, so [W,Γ′
1,Γ

′
2] =

[W,Γ′
1,Γ1] + [W,Γ1,Γ2] + [W,Γ2,Γ′

2] = [W,Γ1,Γ2]. �

For non-unital A, its unitization A+ is assigned the grading (A+)0 =
{(a, λ) : a ∈ A0, λ ∈ F}, (A+)1 = {(a, 0) : a ∈ A1}, then A is a graded
two-sided ideal in A+. We define K0(A) to be the kernel of the homomor-
phism p∗ : K0(A+) → K0(F) ∼= Z induced by the even projection p : A+ → F.
Note that a triple (W,Γ1,Γ2) gets mapped to (p∗(W ), p∗(Γ1), p∗(Γ2)), where
p∗(W ) = F⊗̂A+W , p∗(Γi) = 1⊗̂Γi, so Γ1 ∼h Γ2 implies p∗(Γ1) ∼h p∗(Γ2) as is
required for consistency.

Remark 7.6. The classes in the difference-group which can be written as
[W,Γ,−Γ] form a subgroup of K0(A). Such classes can be “represented” by
the single graded A-module (W,Γ). The right parity reversal WΠ = (W,−Γ)
“represents” the class [W,−Γ,Γ], and “cancels” (W,Γ) in the sense that
[W,Γ,−Γ] = −[W,−Γ,Γ]. The left parity reversal (ΠW,−Γ) “represents”
[ΠW,−Γ,Γ], which also “cancels” (W,Γ) using the homotopy (9).

If W is homotopic to WΠ, i.e. Γ ∼h −Γ, then [W,Γ,−Γ] = 0. For example,
suppose (W,Γ) admits an extra “supersymmetry”, in the sense that there is
an odd involution I on W which graded commutes with A,

a · (Iw) = (−1)|a|I(a · w), a ∈ A0 ∪ A1, w ∈ W.

Then Γ(θ) = (cos θ)Γ + (sin θ)I, θ ∈ [0, π] provides a homotopy Γ ∼h −Γ.
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Remark 7.7. When an arbitrary reference Hamiltonian Γ0 on W has been
chosen, all other Γ ∈ GradA(W ) may be measured in relation to Γ0 through
the difference class [W,Γ0,Γ]. Then two homotopic Γ,Γ′ ∈ GradA(W ) differ
from Γ0 by the same amount: 0 = [W,Γ,Γ′] = [W,Γ0,Γ′]−[W,Γ0,Γ]. They may
be said to be in the same phase relative to Γ0. A canonical Γ0 can sometimes
(but not always) be chosen (see Example 2.2).

Relation to Ordinary K-Theory Groups. For purely even Aev, our definition
of K0(Aev) is equivalent to either of Karoubi’s two definitions of K ′0,0(Aev) in
III.4.15 and III.4.19 of [23], and K ′0,0(Aev) is itself isomorphic to his K0,0(Aev)
as defined in III.4.11 and II.2.13 of the same reference. Both K ′0,0(Aev) and
K0,0(Aev) were shown to be isomorphic to the ordinary K-theory group K0

(Aev) (Theorem III.4.12 of [23]). In particular, a virtual module [W0 � W1] ∈
K0(Aev) corresponds to [W0 ⊕W1, 1⊕−1,−1⊕1] in K0(Aev). Since Karoubi’s
K ′0,0(·) and our K0(·) continue to make sense and coincide for graded algebras
A, we shall take the difference-group K0(A) to be a definition of the K0-group
of a graded algebra A [25]. We denote this group using bold-faced notation
K0(A), to avoid confusion with the ordinary K0(A) in which A is regarded as
an ungraded algebra.

If we define Ks,r(A) := K0(A⊗̂Clr,s) for real graded algebras A, we
obtain an alternative definition of Karoubi’s K ′r,s(A) as introduced (initially
for ungraded A) in III.4.11 of [23]. Due to the periodicity properties of the Clif-
ford algebras, the Ks,r(A) and K ′r,s(A) groups depend only on (r−s) (mod 8).
Thus, the singly indexed groups Kn(A) := K0(A⊗̂Cl0,n) are 8-periodic. In
the complex case, we can similarly define Kn(A) := K0(A⊗̂Cln), which are
2-periodic. Karoubi also showed the following difficult result:

Proposition 7.8 (Clifford suspension [22,23,25]). There are isomorphisms K ′0,1

(A) ≡ K ′0,0(A⊗̂Cl0,1) ∼= K ′0,0(C0(R,A)).

Thus, tensoring Aev by Cl0,n shifts the index of K� in the same way that
the ordinary suspension of Aev shifts the index of K�,

Kn(Aev) ≡ K0(Aev⊗̂Cl0,n) ∼= K0(C0(Rn,Aev)) ≡ Kn(Aev);

similarly for the complex case.

8. Computing K0(A) by Decomposing A
We state a very useful decomposition theorem for twisted crossed products,
which facilitates the computation of some K-theoretic difference-groups arising
from physical examples. In certain cases, a description of these groups in terms
of topological K-theory is possible, but this is not generic.

Theorem 8.1 (Packer–Raeburn decomposition theorem [36]). Consider a gra-
ded twisted C∗-dynamical system (G, c,A, α, σ), and let N ⊂ ker(c) be a closed
normal subgroup of G. There is an isomorphism of graded C∗-algebras

A �(α,σ) G ∼= (A �(α,σ) N) �(β,ν) G/N, (10)
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where the twisting pair (β, ν) is determined by a choice of Borel section s : G/N
� p �→ sp ∈ G such that seN = 1. For each x ∈ G, there is a γx ∈ AutF(A�(α,σ)

N) such that

γx(a) = αx(a) ≡ ax, a ∈ A, (11a)

γx(n) = σ(x, n)σ(xnx−1, x)−1xnx−1, n ∈ N, (11b)

where the canonical embeddings jA, jN [Eqs. (7a), (7b)] are implied. The for-
mulae for (β, ν) are, for p, q ∈ G/N ,

βp := β(p) = γsp
, (12a)

ν(p, q) = σ(sp, sq)σ(spsqs
−1
pq , spq)−1spsqs

−1
pq . (12b)

Part of the theorem says that up to isomorphism, the iterated crossed
product does not depend on the choice of section s. Theorem 8.1 was proved in
[36] for ungraded complex twisted crossed products, but the generalization to
the real and/or graded cases still holds. We have required N ⊂ ker(c) to ensure
that c descends to the quotient group G/N , and that the automorphisms βp

and cocycle ν(·, ·) are even, independently of s. Then one checks that the
standard grading on either side of (10) agrees with the other.

8.1. Finitely Generated Projective Modules in Equivariant K-Theory

We make a short digression to define the notion of a f.g.p. (G,A, α)-module
W , following Chapter 11.2 of [7]. Here, A is a (ungraded) unital C∗-algebra,
and α is a Borel homomorphism (hence continuous) from a compact group G
to AutF(A). Such modules are needed to define the G-equivariant K-theory
of A, and when A is commutative, they provide the link to the corresponding
topological equivariant K-theory.

We write L (W ) for the set of bounded linear operators on W , GL (W )
for the subgroup of invertible operators, and B(W ) for the subalgebra of mod-
ule maps. A f.g.p. (G,A, α)-module is a f.g.p A-module W , together with a
strongly continuous homomorphism θ : G → GL (W ), such that

θx(aw) = ax(θxw), x ∈ G, a ∈ A, w ∈ W.

The equivariant K-theory group KG
0 (A) is defined to be the Grothendieck

group of the monoid (under the direct sum) of equivalence classes of f.g.p.
(G,A, α)-modules.15 The Green–Julg theorem says that an equivariant K0-
group is isomorphic to the ordinary K0-group of the crossed product,

KG
0 (A) ∼= K0(A �(α,1) G).

Graded f.g.p. (G, c,A, α)-modules W are similarly defined, with the operators
θx required to be odd or even according to c(x).

Example 8.1 (Decomposing group C∗-algebras over an abelian normal sub-
group). Consider the case where α = c = σ ≡ 1, N is a discrete abelian group,
P := G/N is compact, and G is a topological semidirect product G = N � P .

15 If A is non-unital, KG
0 (A) is defined to be the kernel of the the induced map

p∗ : KG
0 (A+) → KG

0 (F), where A+ has the induced action from α, F has the trivial G-

action, and p is the equivariant projection A+ → F.
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The Fourier transform gives an isomorphism C � N ∼= C(N̂), where N̂ is the
Pontryagin dual of N . In physical applications, N is the subgroup of transla-
tional symmetries of a crystal lattice and P is a compact point group. Thus N̂
is the Brillouin torus, over which the Bloch bands of solid-state physics reside.
Since c ≡ 1, A = C � G is purely even and K0(A) ∼= K0(A).

The standard homomorphic section s : p �→ (e, p) ∈ N � P satisfies
(e, p)(n, e)(e, p−1) = (p · n, e), where n �→ p · n is the defining automorphic
action of p ∈ P on N . From (11b) and (12a), the automorphisms βp act on
δn ≡ jN (n) by βp(δn) = δp·n; in terms of functions C � N � f : N → C,
this is βp(f)(n) = f(p−1 · n). Under the Fourier transform f �→ f̂ ∈ C(N̂),
the automorphisms βp become β̂p, defined by β̂p(f̂)(χ) := f̂(p−1 · χ), where
(p · χ)(n) := χ(p−1 · n) is the dual P -action on N̂ . Also, (12b) gives ν ≡ 1, so
we may decompose A = C �G as C(N̂)�(β̂,1) P , then K0(A) ∼= KP

0 (C(N̂)) ∼=
K0

P (N̂). Thus a f.g.p. A-module corresponds to the sections of some finite-rank
P -equivariant vector bundle over N̂ .

If G is not assumed to be a semidirect product of N and P (this is
the case when G is a non-symmorphic space group), there is a non-trivial
central cocycle ν(p, q) = spsqs

−1
pq ∈ N according to (12b). The automorphism

β̂p is now the dual of conjugation by sp, i.e. β̂p(f̂)(χ) = f̂(p−1 · χ) where
(p ·χ)(n) := χ(s−1

p nsp). The isomorphism C�G ∼= C(N̂)�(β̂,ν) P suggests the

interpretation of a “f.g.p. (P,C(N̂), β̂, ν)-module” as the sections of a vector
bundle E → N̂ , equipped with a “ν-twisted equivariant P -action”. There is a
family of projective representations of P , with p ∈ P mapping the fiber over
χ ∈ N̂ linearly to the fiber over p · χ.

Note that when N is not discrete, N̂ is non-compact. Topological equi-
variant K-theory groups for N̂ must then be interpreted using vector bun-
dles trivialized outside a compact subspace of N̂ , i.e. K-theory with “com-
pact supports”. Such a situation arises, for instance, when N = R

d, which
has a very different topological nature to Z

d. If N is projectively realized (so
σ �≡ 1), then C �(1,σ) N is noncommutative in general. This occurs when there
is magnetic translational symmetry, e.g. in the IQHE [6]. Our non-commutative
approach bears fruit here, since it still makes sense to study the K-theory of
C �(1,σ) G ∼= (C �(1,σ) N) �(β,ν) P .

Example 8.2 (A Clifford algebra factorises in the symmetry algebra). Consider
the symmetry data (G, c, φ, σ), and assume that G = (N � Q) × A where A ∼=
Im(φ, c) ⊂ {±1}2, ker(φ, c) = N �Q, N is abelian, and Q is compact. A should
be thought of as one of the subgroups of the CT -group, by identifying {±1}2

with {1, T, C, S} as in Sect. 6.1. We also assume that σ(nq, ·) = 1 = σ(·, nq)
for all nq in N � Q, then σ is simply specified by its restriction to A. This
is the setting (with Q usually assumed trivial) that is often considered in the
literature when studying band structures with time-reversal and/or charge-
conjugation symmetry.

Let A = C �(α,σ) G, with α determined by φ as usual. There is a non-
trivial grading on A if c �≡ 1. We denote the images, under jA, of C, T, S in MA
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by C,T,S. As in Sect. 6.1, we can choose σ such that CT = TC = S, then σ is
simply specified by T2 = ±1,C2 = ±1, while S2 = +1 can be assumed. There
are ten possibilities for (A, σ), each with a corresponding Clifford algebra, as
listed in Table 1. Decomposing A with respect to the subgroup N � Q, and
noting that ν reduces to σ in (12b), we obtain

A ∼= (C � (N � Q)) �(γ,σ) A ∼= (C � (N � Q)) �(γ,σ) A

∼=
(
C0(N̂) �(β̂,1) Q

)
�(γ,σ) A,

where β̂ is determined as in Example 8.1, and γr, r ∈ A are some automor-
phisms of C � (N � Q). Since A appears as a direct product factor in G, it
acts only on C in C � (N � Q), so γr effects complex conjugation if φ(r) = −1
and does nothing otherwise.

If A ⊂ {1, S} so that φ ≡ 1 (complex case), we have

A ∼=
(
C0(N̂) �(β̂,1) Q

)
⊗̂C

(
C �(1,σ) A

) ∼=
(
C0(N̂) �(β̂,1) Q

)
⊗̂ Cln, (13)

where the complex Clifford algebra is Cl1 if A = {1, S} and Cl0 if A = {1}.
For discrete N , a graded f.g.p. (Q,C(N̂), β̂)-module corresponds to a graded
Q-equivariant complex vector bundle over N̂ , which is just the direct sum of
two ungraded such bundles. When n = 1, there is an additional graded action
of Cl1 on the fibers which commutes with the Q-action.

If φ �≡ 1 (real case) so that either of C and T is present, we first write
C � (N � Q) = (R � (N � Q)) ⊗R C. Then we obtain

A ∼= ((R � (N � Q)) ⊗R C) �(γ,σ) A = (R � (N � Q)) ⊗R

(
C �(α,σ) A

)
∼= (R � (N � Q)) ⊗̂Clr,s, (14)

where the Clifford algebra Clr,s is determined by (A, σ) as usual.
It is possible to formulate things in terms of Real bundles in the sense

of Atiyah [3], with Clifford modules as fibers [15,47]. However, doing this
directly by Fourier transforming C � N to C(N̂) requires a fairly complicated
and opaque auxiliary construction in the real case. The is because the real
C∗-algebra R � N does not simply translate into C0(N̂ , R) under the Fourier
transform. Instead, we have to consider N̂ as a Real space with involution given
by the map taking a character χ to its complex conjugate χ̄. Upon taking the
Fourier transform C�N ∼= C0(N̂), complex conjugation on C�N (which fixes
R � N) turns into the antilinear involution ¯̂

f(χ) := f̂(χ̄). Thus,

R � N ∼= C0(iN̂) :=
{

f̂ ∈ C0(N̂) : f̂(χ) = f̂(χ̄)
}

. (15)

If we had performed a Fourier transform in (14), a Clifford algebra cannot be
nicely factorized, and the analysis becomes unnecessarily obscured.

Equations (13) and (14) express A as the tensor product of a purely even
algebra with a graded Clifford algebra. According to Sect. 7, this effects a
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degree shift in K-theory, so the difference-group K0(A) is easy to compute:

K0(A) ∼=
{

Kn(C0(N̂) �(β̂,1) Q) ∼= K−n
Q (N̂) complex case,

Ks−r(C0(iN̂) �(β̂,1) Q) real case.
(16)

There is a correspondence between a C0(iN̂)-module and the sections of a Real
bundle over N̂ [with antilinear involution (·) lifting χ �→ χ̄] which are fixed
under the induced involution s(χ) = s(χ̄); then we may rewrite

K0(A) ∼= KR
r−s (mod 8)
Q (N̂), real case. (17)

9. Applications to Topological Band Insulators

9.1. Band Insulators and K-Theory

The computations in Example 8.1 include the special case of topological band
insulators, in which N = Z

d. When we assumed G = Z
d

� P as well as σ ≡ 1,
we obtained A = C �(α,1) G ∼= C(Td) �(β̂,1) P . Underlying a graded f.g.p.
A-module is a graded f.g.p. C(Td)-module, and thus a graded complex vector
bundle E → T

d which we call a graded Bloch bundle.
Allowing for non-trivial homomorphisms (φ, c) but with N ⊂ ker(φ, c),

the maps (φ, c) descend to P and tell us whether p ∈ P acts complex-linearly/
antilinearly and preserves/reverses the particle–hole distinction. The initial
and final fibers depend on the action of p on Z

d and whether φ(p) = +1 or
−1. The positively graded subbundle can be interpreted as the conduction
band lying above the Fermi level EF (taken to be 0), while the negatively
graded subbundle is the valence band. This description does not require any
distinguished involutary time-reversal, charge-conjugation, or chiral symmetry
element in P .

In Sect. 8.2, we allowed σ �≡ 1, and found that a significant simplification
occurs when G = (Zd

� Q) × A with A ∼= Im(φ, c) ⊂ {1, T, C, S} and σ is
only non-trivial between elements of A. The data of (A, σ) are associated with
one of ten possible Clifford algebras, which factorizes in the symmetry algebra
A = C�(α,σ) G. In the two complex cases, the graded Bloch bundle underlying
a graded f.g.p. A-module is a graded Q-equivariant complex bundle E → T

d. If
A = {1, S}, there is an additional commuting graded Cl1-action on each fiber,
generated by the complex-linear, odd, and involutary map IS representing S.
For the remaining eight real cases, the elements T,C of A (whenever present)
act through the antilinear maps IT, IC representing T,C, which are even and
odd respectively. Unlike IS, the maps IT, IC do not commute with the bundle
projection, but take the fiber over χ ∈ T

d to the fiber over χ̄. The map IT is
the standard time-reversal operator on the Bloch bundle E, and both cases
I2T = ±1 can occur. Similarly, IC is the standard particle–hole conjugation
operator. Note that IT, IC do not commute with C(Td), so the graded Bloch
bundle is not a bundle of Clifford modules.
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The difference-groups of (G, c, φ, σ)-compatible band insulators can be
read off from (16) and (17),

K0(A) =

{
K−n

Q (Td) complex case,
KR

r−s (mod 8)
Q (Td) real case,

with n, r, s determined by Table 1.

9.2. The Three Special Purely Even Cases

If A ⊂ {1, T}, there are three possibilities for C�(α,σ)A, all of which are purely
even algebras: it is either the complex algebra C, the real algebra M2(R), or
the real algebra H, with the latter two real algebras generated by i and T.
This means that (13) and (14) should give16

A = C �(α,σ) G =

⎧⎪⎨
⎪⎩

C � (N � Q) A = {1},

R � (N � Q) ⊗R M2(R) A = {1, T},T2 = +1,
(R � (N � Q)) ⊗R H A = {1, T},T2 = −1,

with difference-groups or ordinary K-theory groups

K0(A) ∼= K0(A) =

⎧⎪⎨
⎪⎩

K0
Q(N̂) A = {1},

KR0
Q(N̂) A = {1, T},T2 = +1,

KR−4
Q (N̂) A = {1, T},T2 = −1.

For band insulators (N = Z
d), these three cases are usually labeled by A, AI

and AII, respectively.
The third case (T2 = −1), which resulted in a KR−4 group, can be mod-

ified to resemble the first two cases more closely. In that case, we identify a
f.g.p. A-module with the sections of a Q-equivariant “Quaternionic” vector
bundle over N̂ . “Quaternionic” bundles resemble the Real bundles of KR-
theory in that they are complex vector bundles over a Real space (X, ς), but
they are equipped with a lift of ς to an antilinear anti-involution Θ (Θ2 = −1)
rather than an antilinear involution. Such bundles were considered in the con-
text of Type AII topological insulators in [10], in which detailed definitions
and references for “Quaternionic” bundles can be found. The corresponding
topological K-theory is called KQ-theory, and there is a useful isomorphism
KR−4(X, ς) ∼= KQ0(X, ς) (see [14] and the Appendix of [10]). This estab-
lishes a KR−4 group as a Grothendieck group KQ0 of “Quaternionic” bun-
dles. Therefore, K0(A) may be interpreted as a Grothendieck group of vector
bundles in all the three cases where A = C �(α,σ) G is purely even but not in
the other seven.

16 Recall that in the third case, we replaced H by the graded Clifford algebra Cl4,0
∼=

Cl0,4 in (14), which we used to arrive at (17), c.f. Theorem III.4.12 of [23] which says that

K′0,0(B ⊗R H) ∼= K′0,4(B) for any ungraded B.
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9.3. Finite Versus Infinite Rank Bundles

In many realistic Hamiltonians compatible with a subgroup N = Z
d ⊂ G of

translational symmetries of a lattice, the Bloch Hamiltonians are unbounded
operators on a bundle of infinite-dimensional Hilbert spaces over the Brillouin
torus N̂ = T

d. In our application of K-theory, we have confined ourselves
to the finite-rank situation. We can motivate this physically by imposing an
energy cut-off, or by assuming that there are finite-rank conduction and valence
bands which we restrict attention to. As such, Γ refers not to the flattened
version of the full Hamiltonian, but to the flattened version of its restriction
to the relevant low energy modes. Likewise, the symmetries act only on this
restricted (invariant) subspace. Also, in certain tight-binding models, the Bloch
Hamiltonians do have finite rank, so the K-theory classification makes sense
for the full Hamiltonian. It is actually very important to distinguish the finite-
and infinite-rank cases.

In the Hilbert C∗-module description of Bloch theory [17], the Bloch
Hamiltonians act on a continuous field of infinite-dimensional separable Hilbert
spaces over the Brillouin torus T

d, whose sections form a countably generated
Hilbert C(Td)-module. In [15], the authors considered graded bundles E+⊕E−

over T
d, such that E+ is infinite-dimensional, while E− is a finite-rank bundle.

They called such bundles “Type I” insulators, while graded bundles with finite
rank E+ and E− were called “Type F” insulators. We can make this distinction
in non-commutative language.

Definition 9.1 (Type I and Type F insulators). Let A be a graded unital C∗-
algebra. A Type I insulator is a graded A-module E = E0 ⊕ E1 =: E+ ⊕ E−

such that E− is an ungraded f.g.p. A-module and E+ is a countably generated
(but not finitely generated) Hilbert A-module. A Type F insulator is a graded
f.g.p. A-module.

Suppose A arises from the symmetry data (G, c,B, φ, σ). For Type I
insulators, there is no possibility of an invertible odd operator taking E+ to
the f.g.p. submodule E−, so c ≡ 1 and A is purely even. We define GVI(A)
to be the abelian monoid, under the direct sum, of equivalence classes of
Type I insulators. Note that we have to formally introduce the zero mod-
ule as a zero element in GVI(A). This monoid is really the direct sum of the
monoid V+(A) of ungraded countably generated Hilbert A-modules E+, and
the monoid V−(A) of ungraded f.g.p. A-modules. The Grothendieck comple-
tion GRI(A) of GVI(A) = V+(A) ⊕ V−(A) simplifies upon performing an
“Eilenberg swindle” on the V+ part:

Proposition 9.2. The Grothendieck completion of V+(A) is the trivial group.

Proof. There is a “standard” countably generated Hilbert A-module HA (see
15.1.7 of [48]), defined by

HA :=

{
(ak) ∈

∞∏
k=1

A :
∞∑

k=1

a∗
kak converges in norm in A

}
,
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with component-wise operations and A-valued inner product 〈(ak), (bk)〉 :=∑
k a∗

kbk. The Kasparov stabilization theorem (see 15.4.6 of [48] for a proof
and original references), says that HA is absorbing in the sense that every
countably generated Hilbert A-module E+ satisfies E+ ⊕ HA ∼= HA. Then
any virtual module [E+ � E′+] in the Grothendieck completion of V+(A)
satisfies [E+ � E′+] = [(E+ ⊕ HA) � (E′+ ⊕ HA)] = [HA � HA] = 0. �
Corollary 9.3. GRI(A) is isomorphic to the Grothendieck completion K0(A)
of V−(A).

Corollary 9.3 provides yet another interpretation of K0(A) (with A nec-
essarily purely even). Namely, a virtual class [E− �0] ∈ K0(A) ∼= GRI(A) can
be represented by a Type I insulator whose “bundle of negative eigenstates”
is E−. Therefore, GRI(A) retains only the information of E−. More generally,
[E− � E′−] ∈ K0(A) is represented by the formal difference of (the negative
eigenstates of) two Type I insulators. This is more familiar than it looks. The
Hall conductivity in the IQHE is related to the K-theory element [E− � 0]
associated to a Type I Landau Hamiltonian [6]. Here, there is generally no
Brillouin zone in the ordinary sense, so our definition of a “noncommutative”
Type I insulator has genuine physical relevance. Similarly, the Kane–Mele Z2

invariant for T -invariant insulators is determined by (formal differences of) the
negative-energy bundles of Type I insulators in Class AII, and was studied in
[15]. On the other hand, the group GRI(A) does not generally make sense for
Type F insulators, since the latter includes those with A having non-trivial
grading.

In summary: the interpretation of ordinary K-theory groups either as
GRI(A) in the Type I case, or as virtual classes of ungraded A-modules in
the Type F case, cannot be used in a unified picture which includes charge-
conjugating symmetries (c �≡ 1). On the other hand, the difference-group has
general applicability.

10. Periodic Table of Difference-Groups and Dimension Shifts

10.1. Zero-Dimensional Gapped Phases

In Sect. 6.1, we showed that the graded PUA-reps of each of the ten choices
of (A, σ) are in 1–1 correspondence with the graded representations of an
associated Clifford algebra. Based on the ABS isomorphisms (8a) and (8b),
we can introduce a notion of trivial Clifford modules, namely those which
admit the action of an extra negative Clifford generator—such modules may
be interpreted as those which actually belong to a different symmetry class.
Then we can say that 0-dimensional gapped topological phases compatible
with (A, σ), modulo the trivial ones, are classified by K−n(�) ∼= Kn(C) or
KO−n(�) ∼= Kn(R), according to Table 1. The same K-theory groups also
classify the differences of (A, σ)-compatible gapped Hamiltonians, due to the
isomorphisms K0(Clr,s) ∼= Ks−r(R) and K0(Cln) ∼= Kn(C).
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Table 1. Classification of 0-dimensional gapped topological
phases and their difference-classes

n Class (A, σ) C2 T2 Cl0,n or Cln Kn(R) or Kn(C)

0 AI T +1 Cl0,0 Z

1 BDI C, T +1 +1 Cl0,1 Z2

2 D C +1 Cl0,2 Z2

3 DIII C, T +1 −1 Cl0,3 0
4 AII T −1 Cl0,4 Z

5 CII C, T −1 −1 Cl0,5 0
6 C C −1 Cl0,6 0
7 CI C, T −1 +1 Cl0,7 0

0 A N/A N/A Cl0 Z

1 AIII S S2 = +1 Cl1 0
The next-to-last column lists the Clifford algebra Cl0,n or Cln in the graded Morita class

of the algebra A associated with (A, σ). The K-theory group in the last column is
isomorphic to K0(A)

10.2. Higher Dimensional Gapped Phases

In the literature, it has been suggested [30,42,45] that the K-theoretic clas-
sification of gapped topological phases in d spatial dimensions is the same as
that in 0 dimensions, except for a shift in the K-theory index by d. We have
located the appropriate K-theoretic object (the difference-group) for which
such a phenomenon might be plausible. We will prove a robust version of
this dimension shift using some powerful results from the K-theory of crossed
product C∗-algebras.

Theorem 10.1 (Packer–Raeburn stabilization trick [36]). Let (G,A, α, σ) be a
twisted C∗-dynamical system, and let K denote the compact operators on the
Hilbert space L2(G). There is an isomorphism

(A �(α,σ) G) ⊗ K ∼= (A ⊗ K) �(α′,1) G,

for some untwisted action α′ of G on A ⊗ K.

Theorem 10.2 (Connes–Thom isomorphism [9,26,44]). Let (R,A, α) be a C∗-
dynamical system, with A a real or complex (ungraded) C∗-algebra. Then
Kn(A �(α,1) R) ∼= Kn−1(A).

Remarkably, Theorem 10.2 holds for any continuous α : R → AutF(A).

Corollary 10.3 (Dimension shifts). Let (Rd,A, α, σ) be a twisted C∗-dynamical
system. Then Kn(A �(α,σ) R

d) ∼= Kn−d(A).

Proof. Iterating Theorem 8.1 yields

A �(α,σ) R
d ∼= (A �(α1,σ1) R) �(α2,σ2) R

d−1

...
∼= (

. . .
(
(A �(α1,σ1) R) �(α2,σ2) R

)
�(α3,σ3) . . .

)
�(αd,σd) R,

for some sequence of twisting pairs (αi, σi), i = 1, . . . , d. Then, Theorem 10.1
says that we can untwist each of the iterated crossed products, provided we
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stabilize the algebras. Using the fact that K-theory is invariant under stabi-
lization, as well as the Connes–Thom isomorphisms, we have

Kn(A �(α,σ) R
d) ∼= Kn

((
. . .

(
(A �(α′

1,1) R) �(α′
2,1) R

)
� . . .

)
�(α′

d,1) R
)

∼= Kn−d(A),

so the effect on K-theory is to lower the index by d. �
Lemma 10.4. Let σ be a U(1)-valued 2-cocycle for (G,φ) and suppose there is
an element w ∈ G with φ(w) = −1. Then the restriction of σ to the centralizer
ZG(w) of w in G is equivalent to one which takes only {±1} values.

Proof. Let ς(x, y) := σ(x, y)/σ(xyx−1, x), so that θxθyθ−1
x = ς(x, y)θxyx−1 is

an identity in any PUA-rep θ of (G,φ, σ), and let y, z ∈ ZG(w). Then

θwθyθ−1
w θwθzθ

−1
w = ς(w, y)θwyw−1ς(w, z)θwzw−1

= ς(w, y)ς(w, z)yθyθz

= ς(w, y)ς(w, z)yσ(y, z)θyz. (18)

The left-hand-side of (18) can also be written as

θwθyθzθ
−1
w = σ(y, z)wθwθyzθ

−1
w = σ(y, z)−1ς(w, yz)θyz,

so σ(y, z)−2 = ς(w, y)ς(w, z)yς(w, yz)−1 is the coboundary of the function
λ : y �→ ς(w, y). The function λ

1
2 acts on σ [Eq. (4b)] to give an equivalent

2-cocycle σw, i.e. σw(y, z) := {λ(y)λ(z)yλ(yz)−1} 1
2 σ(y, z), corresponding to

the phase modification θy �→ λ
1
2 θy in terms of PUA-reps. Then

σw(y, z)2 =
λ(y)λ(z)y

λ(yz)
σ(y, z)2 = 1,

and the new 2-cocycle σw is {±1}-valued when restricted to ZG(w). �
We can now state the main result of this paper. Let (G̃, c,Bev, α, σ) be

a twisted C∗-dynamical system with Bev a purely even complex C∗-algebra.
We assume that σ is U(1)-valued so that α is a homomorphism. If there is
any complex-antilinear automorphism in the range of α, we further assume
that Bev = Bev

R
⊗R C, and that each αx, x ∈ G̃ is either the complex-linear

or complex-antilinear extension of a real-linear automorphism (which we also
denote by αx) of Bev

R
. Thus, there is a homomorphism φ : G̃ → {±1} keeping

track of whether αx is complex linear or antilinear.

Theorem 10.5 (General periodicity and dimension shift theorem). Let Ã be the
graded twisted crossed product for the twisted C∗-dynamical system (G̃, c,Bev,

α, σ) described in the above paragraph. Assume that G̃ = G̃0 × A where G̃0 =
ker(φ, c), and that the U(1)-valued cocycle σ is trivial between elements of G̃0

and A. Suppose G̃0 is an extension of a group G0 by R
d, i.e. 1 → G0 → G̃0 →

R
d → 1 is exact. Let Aev

(R) be the even twisted crossed product associated with
the subsystem (G0,Bev

(R), α, σ). Then

K0(Ã) ∼=
{

Ks−r−d(Aev
R

), φ �≡ 1,

Kn−d(Aev), φ ≡ 1,
(19)
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where (r, s) or n is determined by the Clifford algebra associated with the data
(A, c, φ, σ).

Proof. In the φ �≡ 1 case, there is a w ∈ A such that φ(w) = −1. By Lemma
10.4, we may assume that σ is {±1}-valued on G̃0 ⊂ ZG̃(w), so the imag-
inary unit i ∈ Bev is completely decoupled from the sub-dynamical system
(G̃0,Bev

R
, α, σ). Thus Ã has the form

Ã ∼= (Aev
R

�(β,ν) R
d
) ⊗̂Clr,s

for some Clr,s determined by (A, c, φ, σ) as in Sect. 6, and some twisting pair
(β, ν) arising from the R

d extension of G0 as in Theorem 8.1. Similarly, a
complex Clifford algebra Cln can be factorized in the φ ≡ 1 case, giving Ã ∼=(Aev

�(β,ν) R
d
) ⊗̂ Cln. Using the dimension shift in K� effected by tensoring

with a Clifford algebra, along with K�(Aev
(R)) ∼= K�(Aev

(R)) and Corollary 10.3,
we arrive at (19). �

In Theorem 10.5, Bev might be an algebra used to model disorder [6],
and (G̃, c,Bev, α, σ) can be interpreted as the full set of symmetry data for the
gapped dynamics in question. Even when the additional R

d symmetries are
realized projectively (e.g. as magnetic translations in the presence of a constant
magnetic field as in the IQHE), Eq. (19) continues to hold. Therefore, under
fairly general assumptions about additional R

d symmetries and disorder, the
difference-group for the symmetry algebra becomes that for d = 0, provided
we lower the K-theory index by d.

Some other arguments for the dimension shift phenomenon are model-
dependent and utilize suspensions [30,45], and only work if the extra R

d sym-
metries are assumed to enter in a trivial way. Furthermore, the ordinary sus-
pension operation raises rather than lowers the index in K-theory. Although
this is not a problem in 2-periodic complex K-theory, it matters greatly in real
K-theory where there are two distinct notions of suspension (see Appendix A).
A restricted notion of degree shifts can be explained by using the correct type
of suspension,17 and is a special case of our general result.

There is a weaker discretized version of the dimension shift phenomenon.
To understand this, we first consider the simplest example of the graded twisted
group C∗-algebra of G = Z

d × A, where Z
d acts trivially on C, and σ is only

non-trivial between elements of A. Then

A = C �(α,σ) (Zd × A) ∼=
{

(R � Z
d)⊗̂Clr,s ∼= C(iTd)⊗̂Clr,s real case,

(C � Z
d)⊗̂Cln ∼= C(Td, C)⊗̂Cln complex case,

where C(iTd) is defined in Appendix A. The K0(A) groups reduce to ordinary
K-theory groups, and when d = 1, we can use (21a) and (21b) to obtain

K0(C �(α,σ) (Z × A)) ∼=
{

Ks−r(R) ⊕ Ks−r−1(R) real case,
Kn(C) ⊕ Kn−1(C) complex case.

17 Topological KR-theory does admit two suspensions, which are related to S and S̄ in real
operator K-theory (see Appendix A).
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Thus, a trivial crossed product with Z results in K0(·) acquiring an extra K-
theory group with index lowered by 1. As in Theorem 10.5, we can replace
C by Bev, but it will then be necessary to assume that Bev is trivially acted
upon by Z (the Connes–Thom isomorphism does not apply). Assuming this
and using (21a) and (21b) repeatedly, we obtain

K0

(Bev
�(α,σ) (Zd × A)

) ∼=
{⊕d

k=0

(
d
k

)
Ks−r−k(Bev

R
) real case,⊕d

k=0

(
d
k

)
Kn−k(Bev) complex case.

(20)

Note that there is always a single extra Ks−r−d(Bev
R

) or Kn−d(Bev) factor, just
as in the case of extra R

d symmetries. Equation (20) generalizes the topological
KR-theory calculations of Kitaev in equations 25–27 of [30]. In particular, if we
take A = {1, T}, T2 = −1, Bev = C and d = 3, we obtain the difference-group
for 3D T -invariant insulators,

K0(C �(α,σ) (Zd × {1, T})) ∼=
3⊕

k=0

(
3
k

)
K4−k(R)

= K4(R) ⊕ 3K3(R) ⊕ 3K2(R) ⊕ K1(R)
= Z ⊕ 4Z2,

a result obtained by KR-theory methods in Theorem 11.14 of [15]. We stress
that the expression (20) assumes some specific structure of the symmetry data
(G, c,Bev, α, σ), in particular, the way in which Z

d sits inside G. These assump-
tions do not hold when there is spatial inversion symmetry, which acts on Z

d

non-trivially.
Table 2 summarizes the periodicities in the difference-groups, in the spe-

cial case where G is a CT -subgroup. The groups appearing there are the same
as those in various Periodic Tables in the literature [30,42,43], but their phys-
ical interpretation is very different.

Remark 10.6. Despite the projectively realized translational symmetry in the
physically important case of the IQHE, it fits nicely into our version of the
Periodic Table. We also see, in a model-independent way, why time-reversal
symmetry needs to be broken (by a magnetic field or otherwise) in order to
exhibit a quantized Hall conductivity. For Type I insulators in two dimensions
with T2 = +1 (assuming spin-0), the relevant K-theory group is trivial; how-
ever, a Z2-invariant is possible if the spin-1

2 nature of electrons is taken into
account, so that T2 = −1.

Conclusion. We have treated all physical symmetries on an equal footing in
this paper: they include time/charge preserving/reversing symmetries, pro-
jectively realized symmetries, Z

d-symmetries underlying band insulators, and
R

d translations in extra spatial dimensions. We have also introduced the K-
theoretic difference-group, which is well-defined and has a uniform physical
interpretation for all symmetry classes. Furthermore, Theorem 10.5 shows that
the phenomenon of “dimension shifts” is very robust, and does not depend on
the details of how the extra spatial dimensions come into play.
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Table 2. Periodic Table of difference-groups for gapped
topological phases in d dimensions with only CT -type sym-
metries, and their relation to the K-theory groups of a point
(d = 0 column)

n Class C2 T2 K0(A) ∼= Kn−d(R) or Kn−d(C)

d = 0 d = 1 d = 2 d = 3 d = 4

0 AI +1 Z 0 0 0 Z

1 BDI +1 +1 Z2 Z 0 0 0
2 D +1 Z2 Z2 Z 0 0
3 DIII +1 −1 0 Z2 Z2 Z 0
4 AII −1 Z 0 Z2 Z2 Z

5 CII −1 −1 0 Z 0 Z2 Z2

6 C −1 0 0 Z 0 Z2

7 CI −1 +1 0 0 0 Z 0

0 A N/A Z 0 Z 0 Z

1 AIII S2 = +1 0 Z 0 Z 0

The degree shifts also occur for more general symmetries, and are due to various
isomorphisms in K-theory (Theorem 10.5). Vertically, it is due to the effect on K0(A) of
tensoring with a Clifford algebra; horizontally, it is due to the Connes–Thom isomorphism
and the Packer–Raeburn theorems. The two- and eightfold periodicities are due to Bott

periodicity in the Clifford algebras and K-theory
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Appendix A. K-Theory Results

A reference for the topological K-theory of spaces, which discusses Clifford
algebras and the ABS isomorphisms, is [33]. For the ordinary (ungraded) K-
theory of C∗-algebras, we refer to [48] which also treats Hilbert C∗-modules
and f.g.p. modules, and [7] which discusses graded C∗-algebras and KK-theory.
The K-theory of real C∗-algebras is covered in detail in [44]; many complex K-
theory results carry over to the real case, but require rather different proofs. A
different approach emphasizing Clifford algebras, from which we have borrowed
heavily in defining Kn(·) in Sect. 7, can be found in Karoubi’s [23] (especially
Ch. III) and Chapter 2 of [35], as well as references therein. Some of the
connections between the ABS constructions in [3], Karoubi’s K-theory, as well
as twisted K-theory, are described in [24,25]. The following results are taken
from these references.
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Let C0(R, C) (resp. C0(R, R)) be the complex (resp. real) non-unital C∗-
algebra of continuous functions R → C (resp. R → R) vanishing at infinity.
The suspension SA of a complex (resp. real) C∗-algebra A is defined to be
SA := A⊗C0(R, C) (resp. SA := A⊗C0(R, R)). The higher K-theory groups
are defined to be Kn(A) ≡ K0(SnA). In the complex case, we have A � R ∼=
A ⊗ C0(R̂, C) ∼= SA, where R̂ is the Fourier transform (dual) of R. In the real
case, we have A � R ∼= A ⊗ C0(iR̂) instead [see Eq. (15)], which suggests the
definition S̄A := A ⊗ C0(iR̂). It turns out that S̄ is the K-theoretic “inverse”
operation to S,

Kn(SS̄A) ∼= Kn(S̄SA) = Kn(A ⊗ C0(iR̂) ⊗ C0(R, R)) ∼= Kn(A),

and so Kn(S̄A) ∼= Kn−1(A), which is a special case of Theorem 10.2. Bott
periodicity in K-theory says that

Kn(A) ∼= Kn+8(A) real case,

Kn(A) ∼= Kn+2(A) complex case,

and leads to cyclic long exact sequences in K-theory, with six terms in the
complex case and 24 terms in the real case.

Let (Td, ς) be the Real space T
d with involution z �→ ς(z) := z̄, and

let C(iTd) be the real C∗-algebra of continuous functions f : T
d → C such

that f(ς(z)) = f(z). The group C∗-algebras of Z
d are R � Z

d ∼= C(iTd) and
C � Z

d ∼= C(Td, C). There are isomorphisms

Kn(A ⊗ C(iT1)) ∼= Kn(A) ⊕ Kn−1(A) real case, (21a)

Kn(A ⊗ C(T1, C)) ∼= Kn(A) ⊕ Kn−1(A) complex case, (21b)

which follow from the Pimsner–Voiculescu exact sequence (Theorem 10.2.1 of
[7], Theorem 1.5.5 of [44]) for the K-theory of crossed products by Z.
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