
Ann. Henri Poincaré 17 (2016), 979–1002
c© 2015 Springer Basel
1424-0637/16/040979-24
published online May 26, 2015
DOI 10.1007/s00023-015-0414-0 Annales Henri Poincaré

An Alexandrov–Fenchel-Type Inequality
in Hyperbolic Space with an Application
to a Penrose Inequality

Levi Lopes de Lima and Frederico Girão

Abstract. We prove a sharp Alexandrov–Fenchel-type inequality for star-
shaped, strictly mean convex hypersurfaces in hyperbolic n-space, n ≥ 3.
The argument uses two new monotone quantities along the inverse mean
curvature flow. As an application we establish, in any dimension, an op-
timal Penrose inequality for asymptotically hyperbolic graphs carrying a
minimal horizon, with the equality occurring if and only if the graph is
an anti-de Sitter–Schwarzschild solution. This sharpens previous results
by Dahl–Gicquaud–Sakovich and settles, for this class of initial data sets,
the conjectured Penrose inequality for time-symmetric space–times with
negative cosmological constant. We also explain how our methods can be
easily adapted to derive an optimal Penrose inequality for asymptotically
locally hyperbolic graphs in any dimension n ≥ 3. When the horizon has
the topology of a compact surface of genus at least one, this provides
an affirmative answer, for this class of initial data sets, to a question
posed by Gibbons, Chruściel and Simon on the validity of a Penrose-type
inequality for exotic black holes.

1. Introduction

If Σ ⊂ R
n is a convex hypersurface, then the Alexandrov–Fenchel inequalities

say that ˆ
Σ

σk(κ)dΣ ≥ Cn,k

(ˆ
Σ

σk−1(κ)dΣ
)n−k−1

n−k

, (1.1)

where σk(κ), 1 ≤ k ≤ n − 1, is the kth elementary symmetric function of the
principal curvature vector κ = (κ1, . . . , κn−1) of Σ and Cn,k > 0 is a universal
constant. Moreover, the equality holds in (1.1) if and only if Σ is a round
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sphere. Classically, (1.1) follows from the general theory of mixed volumes so
that convexity is used in an essential way; see [32]. Recently, however, Guan
and Li [21] used a suitable normalization of a certain inverse curvature flow
to extend the validity of (1.1), with the corresponding rigidity statement, for
any Σ which is star-shaped and k-convex [which means that σi(κ) ≥ 0 for
i = 1, . . . , k].

An interesting question is to establish versions of these inequalities for
appropriate classes of hypersurfaces in more general ambient manifolds, prefer-
ably with a corresponding rigidity statement for the case of equality. Here we
focus on the case k = 1 of (1.1), namely

cn

ˆ
Σ

HdΣ ≥ 1
2

(
A

ωn−1

)n−2
n−1

, (1.2)

where A is the area, H = σ1(κ) is the mean curvature,

cn =
1

2(n − 1)ωn−1
,

and ωn−1 is the area of the unit sphere S
n−1 ⊂ R

n. We take a first step to-
ward solving this problem by establishing a natural analogue of (1.2) for star-
shaped, strictly mean convex hypersurfaces in hyperbolic n-space, n ≥ 3; see
Theorem 1.1. The proof is partly inspired by [21] and uses two new monotone
quantities for the inverse mean curvature flow in hyperbolic space. The precise
asymptotics for this flow, which is a key ingredient in our analysis, has been
recently established by Gerhard [18,19]; see [14] for previous work on this
subject. Also, a Heintze–Karcher-type inequality due to Brendle [4] plays a
key role in our proof. We also make use of a special case of a sharp geometric
inequality by Brendle et al. [5]. We note that Gallego and Solanes [15] proved
related isoperimetric inequalities using integral-geometric methods, but their
results do not seem to be sharp.

The inequality (1.2) has recently become relevant in the context of the
Penrose inequality for asymptotically flat graphs carrying a minimal horizon
[11,27] and for asymptotically hyperbolic graphs carrying a constant mean
curvature horizon [13]. As an application of Theorem 1.1 we establish an op-
timal Penrose inequality for asymptotically hyperbolic graphs carrying a min-
imal horizon, including the rigidity statement according to which the equality
holds only if (M, g) is the graph realization of an anti-de Sitter–Schwarzschild
solution; see Theorem 1.2. This Penrose inequality improves recent results by
Dahl et al. [10] and settles, for this class of initial data sets, the conjectured
Penrose inequality for time-symmetric space-times with negative cosmological
constant [6,29]. We remark that the proof of the rigidity statement follows
from the arguments in a recent paper by Huang and Wu [24], as adapted to
the asymptotically hyperbolic case in [10, Section 5]; see also [12].

To explain our results, let us consider the hyperbolic n-space H
n with

coordinates (r, θ) ∈ R
+ × S

n−1 and endowed with the metric

g1 = dr2 + sinh2 r h, (1.3)
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where r is the geodesic distance to a chosen origin corresponding to r = 0 and h
is the round metric on S

n−1. We say that a closed, embedded hypersurface Σ ⊂
H

n is star-shaped if it can be written as a radial graph over a geodesic sphere
centered at the origin. Also, it is strictly mean convex if its mean curvature H
is positive everywhere. We also consider ρ1 : Hn → R,

ρ1(r) = cosh r. (1.4)

With this notation at hand we can state the hyperbolic Alexandrov–Fenchel-
type inequality.

Theorem 1.1. If Σ ⊂ H
n is a star-shaped and strictly mean convex hypersur-

face, then

cn

ˆ
Σ

ρ1HdΣ ≥ 1
2

((
A

ωn−1

)n−2
n−1

+
(

A

ωn−1

) n
n−1

)
, (1.5)

where A is the area of Σ. Moreover, the equality holds if and only if Σ is a
geodesic sphere centered at the origin.

We now explain the relevance of this result for a certain Penrose inequal-
ity. Recall that a Riemannian manifold (Mn, g) is said to be asymptotically
hyperbolic (AH) if there exists a compact subset K ⊂ M and a diffeomorphism
Ψ: M − K → H

n − K0, where K0 ⊂ H
n is compact, such that

‖Ψ∗g − g1‖g1 = O(e−σr), ‖∇g1Ψ∗g‖g1 = O(e−σr), (1.6)

as r → +∞, for some σ > n/2. We also assume that the difference between
scalar curvatures, namely

Rg = Rg + n(n − 1),

is such that ρ1Rg is integrable. For any chart at infinity as in (1.6) it is possible
to associate a mass-like invariant mΨ which lies in L

n+1, the Lorentzian space
endowed with the metric

(z, w) = z0w0 − z1w1 − · · · − znwn; (1.7)

see Sect. 2 for more details on this construction. It turns out that the causal
character of mΨ is invariant under coordinate changes at infinity. Moreover,
the numerical invariant m(M,g) defined by

m2
(M,g) = |(mΨ,mΨ)| (1.8)

does not depend on the chart Ψ and is termed the mass of (M, g). It is natural
to choose m(M,g) > 0 if mΨ is time-like and future directed.

The positive mass conjecture in this context asserts that if Rg ≥ 0, then
mΨ is time-like and future-directed or vanishes, the latter occurring only if
(M, g) is isometric to (Hn, g1). Equivalently, m(M,g) ≥ 0 with equality holding
only for hyperbolic space. This has been proved for the spin case by Chruściel
and Herzlich [7], generalizing a previous contribution by Wang [34]; see also
[2] for a similar result in low dimensions with the spin condition removed.
Moreover, if M carries a (possibly disconnected) compact, outermost minimal
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boundary Γ (a horizon) of area A, then the corresponding Penrose conjecture
says that

m(M,g) ≥ 1
2

((
A

ωn−1

)n−2
n−1

+
(

A

ωn−1

) n
n−1

)
, (1.9)

with equality holding only if (M, g) is the (exterior) anti-de Sitter–Schwarz-
schild solution. We refer to Sect. 2 and the surveys [6,29] for background on
this conjecture.

Progress in establishing (1.9) has been restricted so far to the case of
graphs, as we now pass to explain. Recall that the metric

g1 = ρ2
1dτ2 + g1, τ ∈ R, (1.10)

realizes H
n × R as the hyperbolic (n + 1)-space H

n+1. Using this model we,
then, say that a complete immersed hypersurface M ⊂ H

n+1 is AH if there
exists a compact subset K ⊂ M such that M − K can be written as a vertical
graph associated with a smooth function u : Hn − K0 → R, where K0 ⊂ H

n

is compact, so that (1.6) holds for the chart Ψ given by Ψ(x, u(x)) = x,
x ∈ M − K0; see Definition 2.1 below. As explained in [13], if additionally M
carries a minimal horizon Γ, then we may assume that mΨ is time-like and
future oriented so that after composing Ψ with an isometry we have

m(M,g) = mΨ(ρ1), (1.11)

where here we use that ρ1 = z0|Hn if we view H
n ⊂ L

n+1 as the standard
hyperboloid. Charts with this property are called balanced. Now let M be
balanced in the sense that nonparametric coordinates at infinity are balanced
as above. Moreover, assume that Γ lies on a totally geodesic hypersurface
P ⊂ H

n+1 defined by τ = τ0, τ0 ∈ R and that M meets P orthogonally along
Γ, so that Γ is minimal (hence, a horizon indeed). Under these conditions and
starting from (1.11) it is shown in [13] that

m(M,g) = cn

ˆ
M

ΘRgdM + cn

ˆ
Γ

ρ1HdΓ, (1.12)

where Θ = 〈N, ∂/∂t〉, with N being the unit normal to M pointing upward at
infinity and H being the mean curvature of Γ ⊂ P with respect to its inward
pointing unit normal; compare to the more general formula in (2.24).

We remark that if M is a graph, then (1.12) has been previously proved
in [10]. If this is the case, so that Θ > 0, and if we assume further that Rg ≥ 0,
then we obtain from (1.12) that

m(M,g) ≥ cn

ˆ
Γ

ρHdΓ. (1.13)

In [10] this estimate is used to obtain several sub-optimal versions of (1.9).
For instance, assuming that Γ ⊂ P = H

n is h-convex (in the sense that all
principal curvatures are at least 1) and encloses the origin of P , the authors
show that

m(M,g) ≥ 1
2

((
A

ωn−1

)n−2
n−1

+ sinh rin
A

ωn−1

)
,
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where rin is the radius of the largest geodesic ball centered at the origin and
contained in the region enclosed by Γ. Notice that this only yields the conjec-
tured inequality (1.9) if Γ is a geodesic sphere centered at the origin. In view
of Theorem 1.1, however, if we take Σ = Γ we immediately obtain the first
statement in the following theorem; a more general result, covering the locally
hyperbolic case, can be found in Theorem 2.2 below. Recall that a hypersurface
is said to be mean convex if its mean curvature is non-negative everywhere.

Theorem 1.2. Let (M, g) ⊂ H
n+1 be a balanced AH graph carrying a minimal

horizon Γ as above. If we assume further that Γ ⊂ P = H
n is star-shaped (with

respect to the origin) and mean convex, then (1.9) holds if Rg ≥ −n(n − 1).
Moreover, the equality occurs if and only if (M, g) is the graph realization of
an (exterior) anti-de Sitter–Schwarzschild solution [which is obtained by taking
ε = 1 in (2.23) below].

As remarked above, the rigidity statement requires a separate argument
and is based on results in a recent preprint by Huang and Wu [24].

This paper is organized as follows: In Sect. 2 we recall the definitions and
main properties of mass-type invariants for asymptotically locally hyperbolic
(ALH) manifolds. The proofs of Theorems 1.1 and 1.2, which use the material
on the inverse mean curvature flow discussed in Sect. 3 and in Appendix A,
are presented in Sect. 4. We observe that the Penrose inequality (1.9) admits
a natural generalization to the case in which the geometry at infinity is as-
ymptotically locally hyperbolic. In Appendix B we indicate how the arguments
leading to the proofs of Theorems 1.1 and 1.2 can be adapted to prove a sharp
Penrose-type inequality for ALH graphs, which is described in Theorem 2.2
below.

2. Mass-Type Invariants and Penrose Inequalities
for Asymptotically Locally Hyperbolic Manifolds

In this section we review the main properties of mass-type invariants for as-
ymptotically hyperbolic manifolds; see [7,8,23,30] for more details. The class
of invariants presented here, which appear in natural generalizations of the
classical Penrose inequality, is just a special case of a much more general con-
struction due to Chruściel, Herzlich and Nagy [7,8,23]. Their definition applies
in particular to the class of ALH manifolds we consider here.

We start by describing the corresponding locally hyperbolic (LH) reference
metrics. Fix ε = 0,±1 and let (Nn−1, h) be a closed space form of sectional
curvature ε. In the product manifold Pε = Iε × N , where I−1 = (1,+∞) and
I0 = I1 = (0,+∞), define the metric

gε =
dr̃2

ρε(r̃)2
+ r̃2h, r̃ ∈ Iε, (2.14)

where
ρε(r̃) =

√
r̃2 + ε. (2.15)
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It is easy to check that (Pε, gε) is locally hyperbolic in the sense that its
sectional curvature is constant and equal to −1. We also note that the manifold
Qε = R × Pε, endowed with the metric

gε = ρ2
εdτ2 + gε, (2.16)

is locally hyperbolic as well. Moreover, if τ0 ∈ R, then the horizontal slice
P τ0

ε ⊂ Qε given by τ = τ0 is totally geodesic. This follows from the fact that
the vertical vector field ∂τ is Killing. In particular, each P τ0

ε can be naturally
identified to Pε. Notice that if we take ε = 1 and (N,h) to be a round sphere,
then we recover hyperbolic space as in the Introduction; compare (2.14)–(2.15)
with (1.3)–(1.4) after setting r̃ = sinh r.

Let (Mn, g) be a complete n-dimensional Riemannian manifold, possibly
carrying a compact inner boundary Γ. For simplicity we assume that M has a
unique end, say E. We say that (M, g) is ALH if there exists a chart Ψ taking
E to the end of Pε corresponding to r̃ = +∞ so that, as r̃ → +∞,

‖Ψ∗g − gε‖gε
+ ‖dΨ∗g‖gε

= O
(
r̃−σ

)
, (2.17)

for some σ > n/2. We also assume that Rg = Rg + n(n − 1) is such that ρεRg

is integrable. If ε = 1 and N = S
n−1 we say that (M, g) is AH.

It turns out that each model space Pε is static in the sense that the space

Ngε
= {f ∈ C∞(Pε); (Δgε

f)gε − ∇2
gε

f + fRicgε
= 0} (2.18)

is non-trivial, as we can easily check that ρε ∈ Ngε
. If Ψ is a chart at infinity

as above, we define the corresponding mass functional mΨ : Ngε
→ R by

mΨ(ϕ) = lim
r→+∞ cn

ˆ
Nr

(
ϕ (divgε

e − dtrgε
e) − i∇gεϕe + (trgε

e)dϕ
)
(νr)dNr,

(2.19)
where e = Ψ∗g − gε, νr is the unit normal to Nr = {r} × N and

cn =
1

2(n − 1)ϑn−1
, ϑn−1 = area(N,h).

If Φ is another chart at infinity one verifies that

mΦ(ϕ) = mΨ(ϕ ◦ I−1), (2.20)

where I ∈ Isom(Pε) satisfies

‖Φ ◦ Ψ−1 − I‖gε
= O(r̃−σ).

Thus, to get a numerical invariant out of this scheme we need a detailed
description of the structure of the action of Isom(Pε) on Ngε

appearing on
the right-hand side of (2.20).

We first consider the case ε = 1 and N1 = S
n−1 so that P1 = H

n. Here,
Ng1 is generated by {zi|Hn}n

i=0, where we view H
n ⊂ L

n+1, the Lorentz space
endowed with the metric (1.7). Since the action of Isom(Hn) on Ng1 = L

n+1

preserves (1.7), with ρ1 = z0 being time-like and future oriented, it follows
that the real number m(M,g) defined up to a sign by (1.8) does not depend
on the chart Ψ and is termed the mass of (M, g). We note that the causal
character of mΨ is also invariant under coordinate changes at infinity, so it is
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natural to choose m(M,g) > 0 if mΨ is time-like and future directed. As already
observed in Sect. 1, if M carries a minimal horizon Γ, then we may assume,
after composition with an isometry, that (1.11) holds.

In contrast to the hyperbolic case described in the previous paragraph,
it is known that for ε ≤ 0 the space Ngε

is one-dimensional, generated by ρε.
Thus, in all the cases considered here a mass-type numerical invariant m(M,g)

is obtained by evaluating the right-hand side of (2.19) on ϕ = ρε.
An ALH manifold (M, g) as above can be thought of as the initial data

set of a time-symmetric solution of the Einstein field equations with negative
cosmological constant. The invariant m(M,g) is then interpreted as the total
mass of the solution. Physical reasoning predicts that m(M,g) should have the
appropriate sign under the relevant dominant energy condition, namely Rg ≥ 0
[equivalently, Rg ≥ −n(n − 1)]. When M carries a compact minimal horizon
Γ one expects the invariant to satisfy a Penrose-type inequality in the sense
that it should be bounded from below by a suitable expression involving the
area |Γ| of Γ. In order to figure out the correct form of this inequality, we
consider the so-called Kottler black hole metrics, which are deformations of
the LH metrics gε above.

Let us introduce a real parameter m > 0 and consider the metric

gε,m =
dr̃2

ρε,m(r̃)2
+ r̃2h, (2.21)

where

ρε,m(r̃) =

√
r̃2 + ε − 2m

r̃n−2
.

For each m as above, it is easy to see that the function

r̃ 
→ fε,m(r̃) = r̃n + εr̃n−2 − 2m

is strictly positive for r̃ > r̃ε,m, where r̃ε,m is the unique positive zero of fε,m.
Thus, the metric gε,m is well defined on the product Pε,m = Iε,m × N , where
Iε,m = {r̃; r̃ > r̃ε,m}. Moreover, it extends smoothly to the slice r̃ = r̃ε,m, the
so-called horizon, denoted Hε,m. This terminology can be justified as follows:
The metric gε,m is static in the sense that ρε,m ∈ Ngε,m

. It is well-known that
this is equivalent to the assertion that the Lorentzian metric

g̃ε,m = −ρ2
m,εdτ2 + gε,m,

defined on Qε,m = R × Pε,m, is a solution to the vacuum field equations with
negative cosmological constant:

Ricg̃ε,m
= −ng̃ε,m.

Moreover, the null hypersurface r̃ = r̃ε,m defines the event horizon surround-
ing the central singularity r̃ = 0. This justifies the horizon terminology and
explains why gε,m is termed a black hole metric.

A computation shows that if (θ1, . . . , θn−1) are coordinates in Nr̃, then
the sectional curvatures of gε,m are

K(∂r̃, ∂θi
) = −1 − (n − 2)

m

r̃n
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and

K(∂θi
, ∂θj

) = −1 +
2m

r̃n−2
.

This not only shows that gε,m satisfies the appropriate dominant energy condi-
tion, since its scalar curvature is Rgε,m

= −n(n−1), but also suggests that gε,m

is ALH in the sense described above. In fact, a straightforward computation
gives

‖gε,m − gε‖gε
+ ‖dgε,m‖gε

= O
(
r̃−n

)
,

as expected. Using (2.19) with ϕ = ρε we finally conclude that m(Pε,m,gε,m) =
m, which shows that m should be interpreted as the total mass of gε,m.

One immediately finds that the area |Hε,m| of the horizon Hε,m of (Pε,m,
gε,m) relates to its mass m by means of

m =
1
2

(( |Hε,m|
ϑn−1

) n
n−1

+ ε

( |Hε,m|
ϑn−1

)n−2
n−1

)
.

Thus, in analogy with the standard Penrose inequality (1.9), it is natural to
conjecture that if (M, g) is an n-dimensional ALH manifold (with respect to the
reference metric gε) carrying an outermost minimal horizon Γ and satisfying
Rg ≥ −n(n − 1) everywhere, then there holds

m(M,g) ≥ 1
2

(( |Γ|
ϑn−1

) n
n−1

+ ε

( |Γ|
ϑn−1

)n−2
n−1

)
, (2.22)

with the equality occurring if and only if g is isometric to the corresponding
black hole metric.

Remark 2.1. For ε ≤ 0 and in the physical dimension n = 3, Eq. (2.22)
first appears in [9] as a conjectured inequality whose veracity would follow
in case the use of the so-called Geroch’s monotonicity of the Hawking mass
under the inverse mean curvature flow, as envisaged by Gibbons [20], could
be justified. Contrary to this rather optimistic initial expectation, Neves [31]
has shown that, at least in the AH case, the convergence properties of the
flow at infinity are insufficient to implement Geroch’s scheme. Similar remarks
should also apply in the general ALH context, even though Lee and Neves [28]
have recently established that Geroch’s strategy works in the so-called ‘non-
positive mass range’; see Remark 2.3. Despite these negative results, Theorem
2.2 below confirms that our methods apply to handle the special case of graphs
in any dimension n ≥ 3.

To motivate our setting we observe that each (Pε,m, gε,m) can be isomet-
rically immersed as a radially symmetric vertical graph inside (Qε, gε): the
defining function uε,m : Iε,m → R satisfies uε,m(r̃ε,m) = 0 and

ρε(r̃)2
(

duε,m

dr̃2

)2

=
1

ρε,m(r̃)2
− 1

ρε(r̃)2
(2.23)
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It is clear from this that the horizon Hε,m lies on the totally geodesic horizontal
slice P 0

ε , with the intersection M ∩ P 0
ε being orthogonal along Hε,m. This

motivates us to consider a more general class of hypersurfaces in (Qε, gε).

Definition 2.1. We say that a complete hypersurface (M, g) ⊂ (Qε, gε), possibly
carrying a compact inner boundary Γ, is ALH if there exists a compact set
K ⊂ M so that M − K can be written as a graph over the end E0 of the
horizontal slice P 0

ε ⊂ Qε, with the graph being associated to a smooth function
u such that the asymptotic condition (2.17) holds for the nonparametric chart
Ψu(x, u(x)) = x, x ∈ E0. Moreover, we assume that ρεRg is integrable. As
usual, if ε = 1 and N = S

n−1, then we say that (M, g) is AH.

Under these conditions, the mass m(M,g) can be computed by taking
Ψ = Ψu in (2.19); as in the “Introduction” we assume that Ψu is balanced if
ε = 1. More precisely, if the inner boundary Γ lies on some totally geodesic,
horizontal slice P τ0

ε , which we of course identify with Pε, and moreover that
the intersection M ∩ P τ0

ε is orthogonal along Γ, so that Γ ⊂ M is minimal
and hence a horizon indeed, then the computations in [13] actually give the
following integral formula for the mass:

m(M,g) = cn

ˆ
M

Θ (Rg + n(n − 1)) dM + cn

ˆ
Γ

ρεHdΓ, (2.24)

where Θ = 〈∂/∂t,N〉, N is the unit normal to M , which we choose so as to
point upward at infinity, and H is the mean curvature of Γ ⊂ Pε with respect
to its inward pointing unit normal, which means that the normal points in
the direction opposite to the end of Pε given by r̃ = +∞. In particular, if
Rg ≥ −n(n − 1) and M is a graph (Θ > 0), then

m(M,g) ≥ cn

ˆ
Γ

ρεHdΓ. (2.25)

We are now in a position to state the following Alexandrov–Fenchel-type
inequality, which extends Theorem 1.1 to the case ε ≤ 0.

Theorem 2.1. Let Σ ⊂ Pε = P be a compact embedded hypersurface which is
star-shaped in the sense that it can be written as a radial graph over a slice
Nr̃ = {r̃} × N and strictly mean convex in the sense that its mean curvature
satisfies H > 0. Then there holds

cn

ˆ
Σ

ρεHdΣ ≥ 1
2

(( |Σ|
ϑn−1

) n
n−1

+ ε

( |Σ|
ϑn−1

)n−2
n−1

)
, (2.26)

with the equality occurring if and only if Σ is a slice.

By making Σ = Γ and combining (2.25) and (2.26) we immediately obtain
the following sharp Penrose-type inequality, which extends Theorem 1.2 to the
case ε ≤ 0.
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Theorem 2.2. If M ⊂ Q0,ε is an ALH graph as above, so that its horizon
Γ ⊂ P τ0

ε is star-shaped and mean convex in the sense that H ≥ 0, then

m(M,g) ≥ 1
2

(( |Γ|
ϑn−1

) n
n−1

+ ε

( |Γ|
ϑn−1

)n−2
n−1

)
, (2.27)

with the equality holding if and only if (M, g) is (congruent to) the graph
realization (2.23) of the corresponding black hole solution.

Remark 2.2. Under the conditions of Theorem 2.2, the mass m(M,g) is always
positive due to (2.25). In particular, if ε = −1 the lower bounds (2.26) and
(2.27) only are effective if we further assume that |Γ| > ϑn−1.

As already observed, the following corollary provides a positive answer
to a question posed by Gibbons [20] and Chruściel and Simon [9] for the class
of initial data sets we consider.

Corollary 2.1. If the horizon Γ is a surface of genus γ ≥ 1, then

m(M,g) ≥
(

4π

ϑ2

)3/2
√

|Γ|
16π

(
1 − γ +

|Γ|
4π

)
, (2.28)

where for γ = 1 we assume the normalization ϑ2 = 4π. Moreover, the equal-
ity holds if and only if (M, g) is (congruent to) the graph realization of the
corresponding black hole solution.

Proof. If γ ≥ 2 this follows by taking n = 3 and ε = −1 in the theorem and
observing that Gauss–Bonnet gives ϑ2 = 4π(γ −1). If γ = 1 we take ε = 0 and
use the normalization. �

The proofs of Theorems 2.1 and 2.2 are straightforward adaptations of
the proofs of Theorems 1.1 and 1.2. The necessary modifications are briefly
described in Appendix B. We note that further results in this direction have
been obtained in [16].

Remark 2.3. As discussed in [9], when ε = −1 the Kottler metrics (2.21) also
describe static black hole solutions when the parameter m becomes negative
up to a certain critical value, namely

mcrit = − (n − 2)
n−2
2

n
n
2

.

In this regard we mention that Lee and Neves [28] used the Huisken–Ilmanen’s
formulation of the inverse mean curvature flow to establish a
Penrose-type inequality for conformally compact ALH 3-manifolds in this mass
range. More precisely, they prove (2.28) with the mass replaced by the supre-
mum of the mass aspect function, which is assumed to be non-positive along
the boundary at infinity. In particular, their manifolds always have non-positive
mass while our graphs necessarily satisfy m(M,g) > 0; see Remark 2.2. Thus,
their result and Corollary 2.1 are in a sense complementary to each other.
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3. Geometric Flows for Hypersurfaces

As mentioned above, the proof of Theorem 1.1 uses the inverse mean curvature
flow recently studied by Gerhardt [18,19]; see also [14]. As a preparation for
the argument, let us start by considering a closed, isometrically immersed
hypersurface Σ ⊂ H

n with unit normal ξ. As usual, we denote by g1 both
the standard metric on H

n and its restriction to Σ. Also, b is the second
fundamental form of Σ. For simplicity we set D = ∇g1 . Thus, if X and Y are
vector fields tangent to Σ,

b(X,Y ) = g1(aX, Y ) = 〈aX, Y 〉,
where

aX = −DXξ,

is the shape operator. As before, we denote by κ = (κ1, . . . , κn−1) the principal
curvature vector of Σ, so that

H = σ1(κ) = trg1b (3.29)

is the mean curvature. It follows from the Cauchy–Schwarz inequality that

(n − 1)|a|2 ≥ H2, (3.30)

with the equality occurring at a given point if and only if Σ is umbilical there.
We also consider the extrinsic scalar curvature of the immersion, namely

K = σ2(κ) =
∑
i<j

κiκj =
1
2

(
H2 − |a|2) . (3.31)

Notice that these invariants are related by the Newton–MacLaurin inequality:

2K ≤ n − 2
n − 1

H2, (3.32)

with the equality holding at a given point only if Σ is umbilical there [22]. We
also recall the support function

p = 〈Dρ, ξ〉, (3.33)

where we set ρ = ρ1 for simplicity. This relates to ρ and H by means of the
following Minkowski identity:

Δρ = (n − 1)ρ + Hp, (3.34)

where Δ = div ◦ ∇ is the Laplacian of g1|Σ. This is a consequence of the fact
that the vector field Dρ is conformal, that is,

DXDρ = ρX, (3.35)

for any vector field X on H
n. Another useful consequence of (3.35) is the

formula
div (G∇ρ) = (n − 2)ρH + 2pK, (3.36)

where
G = HI − a (3.37)

is the Newton tensor of a; see [1] for further details.
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We now consider an one-parameter family X(t, ·) : Σn−1 → H
n, t ∈ [0, ε),

of closed, isometrically immersed hypersurfaces evolving according to
∂X

∂t
= Fξ, (3.38)

where ξ is the unit normal to Σt = X(t, ·) and F is a general speed function. To
save notation we also denote the evolving hypersurface simply by Σ whenever
no confusion arises. The following evolution equations are well-known [35]:

Proposition 3.1. Under the flow (3.38) we have:
1. The unit normal evolves as

∂ξ

∂t
= −∇F. (3.39)

2. The area element dΣ evolves as
∂

∂t
dΣ = −FHdΣ. (3.40)

In particular, if A is the area of Σ, then
dA

dt
= −

ˆ
Σ

FHdΣ. (3.41)

3. The mean curvature evolves as
∂H

∂t
= ΔF + (|a|2 − (n − 1))F. (3.42)

If Σ is star-shaped and mean convex, then our conventions imply that ξ
is the inward pointing unit normal vector. Thus, in the model (1.3), Σ can be
graphically represented by means of a map of the type

θ ∈ S
n−1 
→ (u(θ), θ) ∈ H

n, (3.43)

for some smooth function u. In particular, if θ = (θ1, . . . , θn−1) is a local
coordinate system on S

n−1 and Ei = ∂/∂θi, then the tangent space to the
graph is spanned by

Zi = ui
∂

∂r
+ Ei, ui = Ei(u), i = 1, . . . , n − 1, (3.44)

so we can take

ξ =
1
W

(
ui

ρ̇(u)2
Ei − ∂

∂r

)
, W =

√
1 + |∇v|2h, (3.45)

where
v = ϕ(u), ϕ̇ = 1/ρ̇, (3.46)

with

ρ̇(u) = sinhu;

see [18] or [14]. Also,

p = − sinh u

W
. (3.47)

Notice that p ≤ 0.
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From now on we assume that Σ = Σt = X(t, ·) is a one-parameter fam-
ily of star-shaped, strictly mean convex hypersurfaces evolving according to
(3.38). This assumption will be justified later on for the flows we shall consider;
see Proposition 3.6 and Remark 3.1.

Proposition 3.2. Under the above conditions, the function ρ evolves along the
flow (3.38) according to

∂ρ

∂t
= pF. (3.48)

Proof. As noted above, we can graphically represent Σ by (3.43), where u is
time dependent so that (3.38) implies

∂u

∂t
= − F

W
.

Since u = r along Σ we have
∂ρ

∂t
= sinh u

∂u

∂t
= − sinhuF

W
,

and the result follows from (3.47). �

The following proposition computes the variation of the curvature inte-
gral:

I(Σ) =
ˆ

Σ

ρHdΣ (3.49)

on the left-hand side of (1.5).

Proposition 3.3. Along the flow (3.38) we have

dI
dt

= 2
ˆ

Σ

pHFdΣ − 2
ˆ

Σ

ρKFdΣ. (3.50)

Proof. Using Propositions 3.1 and 3.2,
dI
dt

=
ˆ

Σ

∂ρ

∂t
HdΣ +

ˆ
Σ

ρ
∂H

∂t
dΣ +

ˆ
Σ

ρH
∂

∂t
dΣ

=
ˆ

Σ

pHFdΣ +
ˆ

Σ

ρ
(
ΔF +

(|a|2 − (n − 1)
)
F

)
dΣ

−
ˆ

Σ

ρH2FdΣ

=
ˆ

M

pHFdΣ +
ˆ

Σ

FΔρdΣ +
ˆ

Σ

ρ
(|a|2 − (n − 1)

)
FdΣ

−
ˆ

Σ

ρH2fdΣ,

and the result follows, after some cancelations, from (3.31) and (3.34). �

Proposition 3.4. Along the flow (3.38), the support function evolves according
to

∂p

∂t
= Fρ − 〈∇ρ,∇F 〉. (3.51)



992 L. L. de Lima and F. Girão Ann. Henri Poincaré

As a consequence,
d
dt

ˆ
Σ

pdΣ = n

ˆ
Σ

FρdΣ. (3.52)

Proof. Using (3.33), (3.35) and (3.39) we compute

∂p

∂t
=

∂

∂t
〈Dρ, ξ〉

= F 〈DξDρ, ξ〉 + 〈Dρ,D∂/∂tξ〉
= Fρ − 〈∇ρ,∇F 〉,

which proves (3.51). Now, using this and (3.40),

d
dt

ˆ
Σ

pdΣ =
ˆ

Σ

∂p

∂t
dΣ +

ˆ
Σ

p
∂

∂t
dΣ

=
ˆ

Σ

FρdΣ −
ˆ

Σ

〈∇ρ,∇F 〉dΣ −
ˆ

Σ

pFHdΣ

=
ˆ

Σ

FρdΣ +
ˆ

Σ

FΔρdΣ −
ˆ

Σ

pFHdΣ,

so that (3.52) follows from (3.34). �

The following proposition, proved in [4], plays a central role in our argu-
ment.

Proposition 3.5. If Σ ⊂ H
n is star-shaped and strictly mean convex, then

(n − 1)
ˆ

Σ

ρ

H
dΣ ≥ −

ˆ
Σ

pdΣ. (3.53)

Moreover, the equality holds if and only if Σ is totally umbilical.

Proof. This is a rather special case of the Heintze–Karcher-type inequality
proved in [4], so we merely sketch the elegant argument there. The idea is to
let Σ flow under

∂X

∂t
= ρξ, (3.54)

so we take F = ρ in (3.38). Using (3.42), (3.48), (3.34) and (3.30) we see that,
as long as the flow exists,

∂

∂t

ρ

H
=

1
H

∂ρ

∂t
− ρ

H2

∂H

∂t

=
pρ

H
− ρ

H2

(
Δρ +

(|a|2 − (n − 1)
)
ρ
)

= − ρ2

H2
|a|2

≤ − ρ2

n − 1
,

so that by (3.40),

d
dt

ˆ
Σ

ρ

H
dΣ ≤ − n

n − 1

ˆ
Σ

ρ2dΣ.
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Combining this with (3.52) we finally get

d
dt

(
(n − 1)

ˆ
Σ

ρ

H
dΣ +

ˆ
Σ

pdΣ
)

≤ 0,

that is, the quantity within parenthesis is monotone non-increasing along the
flow (3.54). The next step is to investigate the asymptotic behavior of solutions
of (3.54). This might appear problematic at first sight but the key observation
is that (3.54) is equivalent to the standard flow by inward parallel hypersurfaces
(F = 1) in the conformal metric

g̃1 = ρ−2g1 =
dr2

cosh2 r
+ tanh2 rh.

Thus, any solution becomes extinct in a certain finite time t∗ > 0 so that

lim
t→t∗

(n − 1)
ˆ

Σ

ρ

H
dΣ +

ˆ
Σ

pdΣ = 0,

as desired. In fact, an additional complication arises from the fact that the
flow might develop singularities before the extinction time due to the appear-
ance of cut points but, as explained in [4], a regularization procedure can be
implemented to take care of this. �

Remark 3.1. It follows from the computation above that

∂

∂t

H

ρ
≥ H2

n − 1
,

which implies that strict mean convexity is preserved under (3.54).

From now on we specialize to the flow

∂X

∂t
= − ξ

H
, (3.55)

so that F = −1/H. This is the famous inverse mean curvature flow, which has
been extensively studied in a variety of contexts [17,25,31,33]. Here we will
make use of recent results by Gerhardt [18,19] for evolving hypersurfaces in
hyperbolic space, which we collect below.

Proposition 3.6. If the initial hypersurface is star-shaped and strictly mean
convex, then the corresponding solution is defined for all t > 0 and expands the
evolving hypersurfaces toward infinity while maintaining star-shapedness and
strictly mean convexity. Moreover, the hypersurfaces become strictly convex
exponentially fast and also more and more umbilical in the sense that

|bj
i − δj

i | ≤ Ce− t
n−1 , t > 0, (3.56)

that is, the principal curvatures are uniformly bounded and converge expo-
nentially fast to 1. Moreover, there exists f : Sn−1 → R smooth so that, as
t → +∞, the graphing function u satisfies

lim
t→+∞

∥∥∥∥u − t

n − 1
− f(θ)

∥∥∥∥
C∞(Sn−1)

= 0. (3.57)
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In particular,

ρ(u) = cosh u = O(e
t

n−1 ), ρ̇(u) = sinhu = O(e
t

n−1 ), (3.58)

and
|∇u|h + |∇2u|h = O(1). (3.59)

Remark 3.2. It is claimed in [18] that the function f above is actually a con-
stant, which means that the flow would deform the induced metric on the
hypersurface to a round one after a suitable scaling. This is, however, not cor-
rect, as the concrete example in [26] shows. The correct asymptotics (3.57)
appears in [19].

4. The Proofs of Theorems 1.1 and 1.2

The proof of Theorem 1.1 involves the consideration of two new monotone
quantities along the solution of (3.55) with Σ as the initial hypersurface. Thus,
for any closed Σ ⊂ H

n we set

J (Σ) = −
ˆ

Σ

pdΣ, (4.60)

K(Σ) = ωn−1A(Σ)
n

n−1 , (4.61)

where A(Σ) = A/ωn−1, and

L(Σ) =
I(Σ) − (n − 1)K(Σ)

A(Σ)
n−2
n−1

. (4.62)

To save notation, sometimes we write I(t) = I(Σt), etc. As we shall see below,
the new monotone quantities are L and A− n

n−1 (J − K).

Proposition 4.1. On a geodesic sphere we have

L ≥ (n − 1)ωn−1. (4.63)

Moreover, the equality holds if and only if the geodesic sphere is centered at
the origin.

Proof. If a geodesic sphere has radius r, then its area is A = ωn−1 sinhn−1 r
and its mean curvature is H = (n − 1) coth r. Furthermore, if it is centered at
the origin, then its support function is p = − sinh r by (3.47). The equality in
(4.63) then follows by a direct computation. On the other hand, if Σ ⊂ H

n is
any geodesic sphere of radius r, then

K =
(n − 1)(n − 2)

2
coth2 r,

so that (3.36) yields ˆ
Σ

ρHdΣ = − 2
n − 2

ˆ
Σ

pKdΣ

= −(n − 1) coth2 r

ˆ
Σ

pdΣ.
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Furthermore, if B is the geodesic ball bounded by Σ, (3.33), (3.35) and the
divergence theorem implyˆ

Σ

pdΣ = −
ˆ

B

ΔHnρdHn = −n

ˆ
B

ρdHn,

so that

I(Σ) =
ˆ

Σ

ρHdΣ = n(n − 1) coth2 r

ˆ
B

ρdHn.

It is clear from (4.62) and this way of writing I(Σ) as a volume integral in-
volving ρ that the strict inequality in (4.63) holds if Σ is not centered at the
origin. �

Remark 4.1. Inequality (4.63) above just means that the inequality in Theorem
1.1 holds for any geodesic sphere, with the equality occurring if and only if it
is centered at the origin.

Proposition 4.2. If the initial hypersurface Σ in (3.55) is star-shaped and
strictly mean convex, then

dA
dt

= A (4.64)

and
dK
dt

=
n

n − 1
K. (4.65)

Also,
dJ
dt

≥ n

n − 1
J , (4.66)

with the equality occurring if and only if Σ is totally umbilical.

Proof. The relation (4.65) follows from (4.64), which is a consequence of (3.41)
with F = −1/H. Also, Eq. (4.66) follows immediately from (3.52) and (3.53).

�

The above result is crucial in establishing the existence of monotone
quantities for the flow (3.55).

Proposition 4.3. If Σ is star-shaped and strictly mean convex, then

d
dt

J − K
A n

n−1
≥ 0, (4.67)

along any solution of (3.55). Also, in any interval where J ≤ K, there holds

dL
dt

≤ 0. (4.68)

Moreover, if the equality holds in any of these inequalities for some t, then Σt

is totally umbilical.
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Proof. By (4.65) and (4.66) we get

d
dt

(J − K) ≥ n

n − 1
(J − K) ,

which by (4.64) clearly yields (4.67). Moreover, by (3.50) with F = −1/H,

dI
dt

= 2
ˆ

Σ

ρK

H
dΣ + 2J ,

so that by (3.32),

dI
dt

≤ n − 2
n − 1

I + 2J .

From (4.65), after a rearrangement of terms, we get

d
dt

(I − (n − 1)K) ≤ n − 2
n − 1

(I − (n − 1)K) + 2 (J − K) ,

which reduces to
d
dt

(I − (n − 1)K) ≤ n − 2
n − 1

(I − (n − 1)K) ,

whenever J ≤ K. In the presence of (4.64), this immediately gives (4.68).
Finally, if the equality holds in either (4.67) or in (4.68), then it holds in
(3.53) as well. �

We start the proof of Theorem 1.1 by noticing that in [5, Theorem 1.1] the
authors establish a sharp geometric inequality for strictly mean convex, star-
shaped hypersurfaces in the anti-deSitter–Schwarzschild space. By sending the
mass parameter to zero, it follows from their work that if we set

M =
I − (n − 1)J

An−2
n−1

, (4.69)

then there holds
M(Σ) ≥ (n − 1)ωn−1, (4.70)

for any Σ ⊂ H
n strictly mean convex and star-shaped, with the equality hold-

ing if and only if Σ is a geodesic sphere centered at the origin. Notice that this
implies (1.5) whenever J (Σ) ≥ K(Σ), so we may assume that J (Σ) < K(Σ).

We now let Σ flow under (3.55). In case J (Σt) > K(Σt) for some t > 0,
let t0 be the first value of the time parameter so that J (Σt0) = K(Σt0). Notice
that t0 exists because by (4.67) the quantity A− n

n−1 (J − K) is monotone
nondecreasing along any solution of (3.55). Since J (Σt) ≤ K(Σt) for t ≤ t0,
it then follows from Proposition 4.3 that L(Σ) ≥ L(Σt0) = M(Σt0) ≥ (n −
1)ωn−1, where we used (4.70) in the last step. Thus, our main inequality (1.5)
is also established in this case, so it remains to consider the case in which
J (Σt) < K(Σt) for any t > 0. However, if this is the case, then it follows again
by Proposition 4.3 that L is monotone nonincreasing for all t > 0. But by
Proposition A.1 we have

lim inf
t→+∞ L(t) ≥ (n − 1)ωn−1,
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so that

L(0) ≥ (n − 1)ωn−1,

which is just a rewriting of (1.5). Finally, we note that whenever the equality
holds, then it also holds in (3.53), which implies that Σ is a geodesic sphere
necessarily centered at the origin by Remark 4.1. This completes the proof of
Theorem 1.1.

As remarked in the Introduction, the Penrose inequality in Theorem 1.2
follows immediately from (1.13) and the Alexandrov–Fenchel inequality (1.5)
in Theorem 1.1. On the other hand, the rigidity statement follows from the
arguments in [10, Section 5]. This completes the proof of Theorem 1.2.
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Appendix A. The Asymptotic Behavior of L
In this appendix we present a proof of the following proposition, which provides
the expected limiting estimate for the quantity L along solutions of the inverse
mean curvature flow. This asymptotic behavior is used in the proof of Theorem
1.1.

Proposition A.1. If Σt is a solution of (3.55) with Σ0 strictly mean convex and
star-shaped, then

lim inf
t→+∞ L(Σt) ≥ (n − 1)ωn−1. (A.71)

We write the evolving hypersurfaces as graphs of a function u = u(t, θ),
θ ∈ S

n−1. Recall that ρ(u) = cosh u so that ρ̇(u) = sinhu and

ρ2 = ρ̇2 + 1. (A.72)

Also, if v = ϕ(u), ϕ̇ = 1/ρ̇, as in (3.46), then it follows from (3.58) and (3.59)
that

|∇v|h + |∇2v|h = O
(
e− t

n−1

)
(A.73)

and
|ρ(u) − ρ̇(u)| = O

(
e− t

n−1

)
. (A.74)

Moreover, by (3.45),

W−1 = 1 − 1
2
|∇v|2h + O

(
e− 4t

n−1

)
. (A.75)
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The induced metric is

g1ij = ρ̇2(hij + vivj) (A.76)

so that
√

det g1 = ρ̇n−1
√

det h

(
1 +

1
2
|∇v|2h + O

(
e− 4t

n−1

))
, (A.77)

so we get the expansions

A(Σt) =
 

ρ̇n−1 + O
(
e

(n−3)t
n−1

)
, (A.78)

and

A(Σt)
n−2
n−1 =

( 
ρ̇n−1

)n−2
n−1

+ O
(
e

(n−4)t
n−1

)
, (A.79)

where  
=

1
ωn−1

ˆ

and the integration is over S
n−1.

Recall that our intention is to estimate from below the function

L(Σt) =

´
Σt

ρHdΣt − (n − 1)ωn−1 (A(Σt))
n

n−1

A(Σt)
n−2
n−1

.

In terms of v, the second fundamental form of the evolving hypersurface is

bij =
ρ̇

W

(
ρ(hij + vivj) − (∇2v)ij

)
.

Notice also that by (A.76) the inverse metric is

gij
1 = ρ̇−2

(
hij − vivj

W 2

)
,

where vi = hijvj , so that the shape operator is

ai
j = gik

1 bkj =
ρ

Wρ̇
δi
j − 1

Wρ̇
h̃ik(∇2v)kj ,

where

h̃ij = hij − vivj

W 2
,

and from this we see that

ρH = (n − 1)W−1 ρ2

ρ̇
− W−1 ρ

ρ̇
Δv + O

(
e− 3t

n−1

)
. (A.80)
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Thus, if we combine this with (A.77) and (A.75) we obtainˆ
Σt

ρHdΣt = (n − 1)
ˆ

ρ2ρ̇n−2 −
ˆ

ρ̇n−1Δv + O
(
e

(n−3)t
n−1

)

= (n − 1)
ˆ

ρ2ρ̇n−2 + (n − 1)
ˆ

ρ̇n−2〈∇ρ̇,∇v〉h + O
(
e

(n−3)t
n−1

)

= (n − 1)
ˆ

ρ2ρ̇n−2 + (n − 1)
ˆ

ρ2ρ̇n−2|∇v|2h + O
(
e

(n−3)t
n−1

)
.

On the other hand, by Hölder inequality and (A.77) we find that

ωn−1A(Σt)
n

n−1 ≤
ˆ

(
√

det g1)
n

n−1

=
ˆ

ρ̇n +
n

2(n − 1)

ˆ
ρ̇n|∇v|2h + O

(
e

n−4
n−1 t

)
.

Thus, by (A.72) we obtainˆ
Σt

ρHdΣt − (n − 1)ωn−1A(Σt)
n

n−1 ≥ (n − 1)
ˆ

ρ̇n−2 +
n − 2

2

ˆ
ρ̇n|∇v|2h

+ O
(
e

n−3
n−1 t

)

= (n − 1)
ˆ

ρ̇n−2

+
n − 2

2

ˆ
ρ̇n−4|∇ρ̇|2h + O

(
e

n−3
n−1 t

)
,

so if we take (A.79) into account we see that proving (A.71) amounts to check-
ing that

(n − 1)
ˆ

ρ̇n−2 +
n − 2

2

ˆ
ρ̇n−4|∇ρ̇|2h ≥ (n − 1)ω

1
n−1
n−1

(ˆ
ρ̇n−1

)n−2
n−1

. (A.81)

But, as observed in [5], this is an immediate consequence of a sharp Sobolev
type inequality by Beckner [3]. This completes the proof of Proposition A.1.

Appendix B. The Asymptotically Locally Hyperbolic Case

In this appendix we briefly describe how the argument leading to Theorem 1.2
can be easily adapted to recover its generalization given by Theorem 2.2.

Clearly, the key step is to prove the Alexandrov–Fenchel-type inequality
(2.26) in Theorem 2.1. We start by observing that Propositions 3.2–3.4 remain
true with ρ replaced by ρε, since their proofs only use that the ambient manifold
is locally hyperbolic and carries the conformal field ∇gε

ρε; see (3.35). Also,
since this ambient manifold satisfies the structural conditions in the main
result in [4], the analogue of Proposition 3.5 also holds true. Taken together,
these facts imply that the analogue of Proposition 4.3 still holds true, so that
the proof of (2.26) boils down to checking that

lim inf
t→+∞ L(Σt) ≥ (n − 1)ϑn−1ε, (B.82)
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where Σt is the solution to the inverse mean curvature flow having Σ as initial
hypersurface; compare with (A.71). We note that the left-hand side of (B.82)
makes sense because the analogue of Proposition 3.6 remains true, which fol-
lows straightforwardly from the methods in [18,19]. Taking into account that
(A.72) should be replaced by ρ2 = ρ̇2+ε, we see that (B.82) reduces to proving
that

(n − 1)ε
ˆ

N

ρ̇n−2 +
n − 2

2

ˆ
N

ρ̇n−4|∇ρ̇|2h ≥ (n − 1)εω
1

n−1
n−1

(ˆ
N

ρ̇n−1

)n−2
n−1

;

compared to (A.81). Since the validity of this inequality is immediate for
ε = 0,−1, and the rigidity statement follows from a simple adaptation of
the arguments in [10, Section 5], the proof of Theorem 2.2 is completed.
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