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Abstract. We develop a renormalization group (RG) approach to the
study of existence and uniqueness of solutions to stochastic partial dif-
ferential equations driven by space-time white noise. As an example, we
prove well-posedness and independence of regularization for the φ4 model
in three dimensions recently studied by Hairer and Catellier and Chouk.
Our method is “Wilsonian”: the RG allows to construct effective equa-
tions on successive space-time scales. Renormalization is needed to control
the parameters in these equations. In particular, no theory of multiplica-
tion of distributions enters our approach.

1. Introduction

Nonlinear parabolic PDEs driven by a space-time decorrelated noise are ubiq-
uitous in physics. Examples are thermal noise in fluid flow, random deposition
in surface growth and stochastic dynamics for spin systems and field theories.
These equations are of the form

∂tu = Δu + F (u) + Ξ (1)

where u(t, x) is defined on Λ ⊂ R
d, F (u) is a function of u and possibly its

derivatives which can also be non-local and Ξ is white noise on R×Λ, formally

E Ξ(t′, x′)Ξ(t, x) = δ(t′ − t)δ(x′ − x). (2)

Usually in these problems, one is interested in the behavior of solutions in large
time and/or long distances in space. In particular, one is interested in station-
ary states and their scaling properties. These can be studied with regularized
versions of the equations where the noise is replaced by a mollified version
that is smooth in small scales. Often one expects the large scale behavior is
insensitive to such regularization.

Supported by Academy of Finland.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00023-015-0408-y&domain=pdf


498 A. Kupiainen Ann. Henri Poincaré

From the mathematical point of view and sometimes also from the phys-
ical one it is of interest to inquire the short-time short-distance properties,
i.e., the well-posedness of the equations without regularizations. Then, one is
encountering the problem that the solutions are expected to have very weak
regularity, they are distributions, and it is not clear how to set up the solution
theory for the nonlinear equations in distribution spaces.

Recently, this problem was addressed by Martin Hairer [1] who set up a
solution theory for a class of such equations, including the KPZ equation in
one spatial dimension and the nonlinear heat equation with cubic nonlinearity
in three spatial dimensions. The latter case was also addressed by Catellier
and Chouk [2] based on the theory of paracontrolled distributions developed
in [3]. The class of equations discussed in these works is subcritical in the sense
that the nonlinearity vanishes in small scales in the scaling that preserves the
linear and noise terms in the equation. In physics terminology, these equations
are superrenormalizable. This means the following. Let Ξε be a mollified noise
with short scale cutoff ε. One can write a formal series solution to the mollified
version of Eq. (1) by starting with the solution ηε(t) = ηε(t, ·) of the linear
(F = 0) equation and iterating:

uε(t) = ηε(t) +
∫ t

0

e(t−s)ΔF (ηε(s))ds + · · · (3)

Typically, the random fields (apart from η) occurring in this expansion have
no limits as ε → 0: even when tested by smooth functions their variances blow
up. These divergencies are familiar from quantum field theory (QFT). Indeed,
the correlation functions of uε have expressions in terms of Feynman diagrams
and as in QFT, the divergencies can be canceled in this formal expansion by
adding to F extra ε-dependent terms, so-called counter terms. In QFT, there
is a well-defined algorithm for doing this and in the superrenormalizable case
rendering the first few terms in the expansion finite cures the divergences in
the whole expansion. Hairer’s work can be seen as reformulating this pertur-
bative renormalization theory as a rigorous solution theory for the subcritical
equations. It should be stressed that [1] goes further by treating also rough
non-random forces.

In QFT, there is another approach to renormalization pioneered by K.
Wilson in the 1960s [4]. In Wilson’s approach adapted to the SPDE, one would
not try to solve Eq. (1), call it E , directly but rather go scale by scale starting
from the scale ε and deriving effective equations En for larger scales 2nε := εn,
n = 1, 2, . . .. Going from scale εn to εn+1 is a problem with O(1) cutoff when
transformed to dimensionless variables. This problem can be studied by a
standard Banach fixed point method. The possible singularities of the original
problem are present in the large n behavior of the corresponding effective
equation. One views n → En as a dynamical system and attempts to find an
initial condition at n = 0, i.e., modify E so that if we fix the scale εn = ε′ and
then let ε → 0 (and as a consequence n → ∞) the effective equation at scale ε′

has a limit. It turns out that controlling this limit for the effective equations
allows one then to control the solution to the original equation (1).
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In this paper, we carry out Wilson’s renormalization group analysis to
the cubic nonlinear heat equation in three dimensions. This equation is a good
test case since its renormalization is non-trivial in the sense that a simple
Wick ordering of the nonlinearity is not sufficient. Our analysis is robust in
the sense that it works for other subcritical cases like the KPZ equation. We
prove almost sure local well-posedness for the mild (integral equation) version
of (1) thereby recovering the results in [1]. Our renormalization group method
is a combination of the one developed in [5] for parabolic PDEs and the one
in [6] used for KAM theory. A similar scale decomposition appears also in [7].

The content of the paper is as follows. In Sect. 2, we define the model and
state the result. The RG formalism is set up in a heuristic fashion in Sects. 3
and 4. Sections 5 and 6 discuss the leading perturbative solution and set up
the fixed point problem for the remainder. Section 7 states the estimates for
the perturbative noise contributions and in Sect. 8 the functional spaces for
RG are defined and the fixed point problem solved. The main result is proved
in Sect. 9. Finally, in Sects. 10 and 11 estimates for the covariances of the
various noise contributions are proved.

2. The ϕ4
3 Model

Let Ξ(t, x) be space-time white noise on x ∈ T
3, i.e., Ξ = β̇ with β(t, x)

Brownian in time and white noise in space. Given a realization of the noise Ξ,
we want to make sense and solve the equation

∂tϕ = Δϕ − ϕ3 − rϕ + Ξ, ϕ(0) = ϕ0 (4)

on some time interval [0, τ ] and show τ > 0 almost surely.
Due to the nonlinearity, the Eq. (4) is not well defined. We need to define

it through regularization. To do this, we first formally write it in its integral
equation form

ϕ = G(−ϕ3 − rϕ + Ξ) + etΔϕ0 (5)

where

(Gf)(t) =
∫ t

0

e(t−s)Δf(s)ds.

(for f = Ξ this stands for (Gξ)(t) =
∫ t

0
e(t−s)Δdβ(s) ). Next, introduce a

regularization parameter ε > 0 and define

(Gεf)(t) =
∫ t

0

(1 − χ((t − s)/ε2))e(t−s)Δf(s)ds. (6)

where χ ≥ 0 is a smooth bump, χ(t) = 1 for t ∈ [0, 1] and χ(t) = 0 for
t ∈ [2,∞). The regularization of (5) with ϕ0 = 0 is then defined to be

ϕ = Gε(−ϕ3 − rεϕ + Ξ). (7)

We look for rε such that (7) has a unique solution ϕ(ε) which converges as
ε → 0 to a non-trivial limit. Note that, since only t − s ≥ ε2 contribute in (6)
GεΞ is a.s. smooth.
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Our main result is

Theorem 1. There exits rε s.t. the following holds. For almost all realizations
of the white noise Ξ there exists t(Ξ) > 0 such that the Eq. (7) has for all
ε > 0 a unique smooth solution ϕ(ε)(t, x), t ∈ [0, t(Ξ)] and there exists ϕ ∈
D′([0, t(Ξ)] × T

3) such that ϕ(ε) → ϕ in D′([0, t(Ξ)] × T
3). The limit ϕ is

independent of the regularization χ.

Remark 2. We will find that the renormalization parameter is given by

rε = r + m1ε
−1 + m2 log ε + m3 (8)

where the constants m1 and m3 depend on χ whereas the m2 is universal, i.e.,
independent on χ. They of course agree with the mass renormalization needed
to make sense of the formal stationary measure of (4)

μ(dφ) = e− 1
4

∫
T3 φ(x)4ν(dφ) (9)

where ν is Gaussian measure with covariance (−Δ + r)−1 [8–12].

Remark 3. This result can be extended to a large class of initial conditions,
deterministic or random. As an example, we consider the random case where
φ0 = η0 where η0 is the gaussian random field on T

3 with covariance − 1
2Δ−1,

independent of Ξ (this is the stationary state of the linear equation). Then,
Theorem 1 holds a.s. in the initial condition and Ξ, see Remark 7.

Remark 4. One can as well introduce the short scale cutoff only to the spatial
dependence of the noise by replacing Ξ with Ξε := ρε � Ξ where ρε(x) =
ε−3ρ(x/ε) with ρ smooth non-negative compactly supported bump integrating
to one. Then, the regularized equation is

ϕ = G(−ϕ3 − rεϕ + Ξε). (10)

See Remark 12 for more discussion. This cutoff has the advantage that (10)
represents a regular (Stochastic) PDE.

3. Effective Equation

Consider the cutoff problem

ϕ = Gε(V (ϕ) + Ξ) (11)

for ϕ(t, x) on (t, x) ∈ [0, τ ] × T
3 with

V (ϕ)(t, x) = −ϕ3(t, x) − rεϕ(t, x).

Let us attempt increasing the cutoff ε to ε′ > ε by solving the Eq. (11)
for scales between ε and ε′. To do this split

Gε = Gε′ + Γε,ε′

with

(Γε,ε′f)(t) =
∫ t

0

(χ((t − s)/ε′2) − χ((t − s)/ε2))e(t−s)Δf(s)ds.
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Thus, Γε,ε′ involves temporal scales between ε2 and ε′2 (and due to the heat
kernel spatial scales between ε and ε′). Next, write

ϕ = ϕ′ + Z (12)

and determine Z = Z(ϕ′) as a function of ϕ′ by solving the small scale equation

Z = Γε,ε′(V (ϕ′ + Z) + Ξ). (13)

Equation (11) will then hold provided ϕ′ is a solution to the “renormalized”
equation

ϕ′ = Gε′(V ′(ϕ′) + Ξ) (14)

where

V ′(ϕ′) = V (ϕ′ + Z(ϕ′)).

Equation (14) is of the same form as (11) except that the cutoff has increased
and V is replaced by V ′. Combining (13) and (14) we see that the new V ′ can
be obtained by solving a fixed point equation

V ′ = V (· + Γε,ε′(V ′ + Ξ)). (15)

Finally, the solution of (11) is gotten from (12) as

ϕ = ϕ′ + Γε,ε′(V ′(ϕ′) + Ξ) (16)

Our aim is to study the flow of the effective equation V ′ at scale ε′ as ε′

increases from ε to τ
1
2 where [0, τ ] is the time interval where we try to solve

the original equation. It will be convenient to do this step by step. We fix a
number λ < 1 (taken to be small in the proof to kill numerical constants) and
take the cutoff scale

ε = λN . (17)

The corresponding V is denoted as

V (N)(ϕ) = −ϕ3 − rλN ϕ. (18)

Let V
(N)
n be the solution of (15) with ε′ = λn. We will construct these

functions iteratively in n, i.e., derive the effective equation on scale λn−1 from
that of λn:

V
(N)
n−1 = V (N)

n (· + Γλn,λn−1(V (N)
n−1 + Ξ)). (19)

The solution of (11) is then also constructed iteratively: let

F
(N)
N (ϕ) := ϕ

and define

F
(N)
n−1 = F (N)

n (· + Γλn,λn−1(V (N)
n−1 + Ξ)). (20)

Then, the solution of (11) is

ϕ = F (N)
n (ϕn).

where ϕn solves

ϕn = Gλn(V (N)
n (ϕn) + Ξ). (21)
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Finally, we want to control the limit N → ∞ where the regularization is
removed, i.e., construct the limits Vn = limN→∞ V

(N)
n and Fn = limN→∞ F

(N)
n

which are then shown to describe the solution of (4) on time interval [0, λ2n].
How long this time interval will be, i.e., how small n we can reach in the
iteration depends on the realization of the noise. In informal terms, let Am be
the event that these limits exist for n ≥ m. We will show

P(Am) ≥ 1 − O(λRm). (22)

with large R, i.e., the set of noise s.t. the Eq. (4) is well posed on time interval
[0, τ ] has probability 1 − O(τR).

4. Renormalization Group

The Eq. (19) deals with scales between λn and λn−1. Instead of letting the
scale of the equations vary it will be more convenient to rescale everything to
fixed scale (of order unity) after which we need to iterate a O(1)-scale problem.
This is the “Wilsonian” approach to Renormalization Group.

Let us define the space-time scaling sμ by

(sμf)(t, x) = μ
1
2 f(μ2t, μx).

The Green function of the heat equation and the space-time white noise trans-
form in a simple way under this scaling:

sμGs−1
μ = μ2G, sμGεs

−1
μ = μ2Gε/μ, sμΞ d= μ−2Ξμ

as one can easily verify by a simple changes of variables. Here, Ξμ is space-time
white noise on R × μ−1

T
3. Set

φn = sλnϕn (23)

where ϕn solves (21). Note that, φn(t, x) is defined on x ∈ Tn with

Tn := λ−n
T

3 (24)

Since ϕn was interpreted as a field involving spatial scales on [λn, 1] φn may
be thought as a field involving scales on [1, λ−n].

In these new variables, Eq. (21) becomes

φn = G1(v(N)
n (φn) + ξn) (25)

provided we define

v(N)
n := λ2nsλn ◦ V (N)

n ◦ s−1
λn

and

ξn := λ2nsλnΞ.

ξn is distributed as a space-time white noise on R × Tn. Defining

f (N)
n := sλn ◦ F (N)

n ◦ s−1
λn

the solution of (11) is given by

ϕ = s−1
λn f (N)

n (φn). (26)
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The iterative equations (19) and (20) have their unit scale counterparts:
recalling (17), denoting s := sλ and using sλn+1 = s ◦ sλn , Eq. (19) becomes

v
(N)
n−1(φ) = λ−2s−1v(N)

n (s(φ + Γ(v(N)
n−1(φ) + ξn−1))) (27)

where

(Γf)(t) =
∫ t

0

(χ(t − s) − χ((t − s)/λ2))e(t−s)Δf(s)ds. (28)

Note the integrand is supported on the interval [λ2, 2].
Equation (20) in turn becomes

f
(N)
n−1(φ) = s−1f (N)

n (s(φ + Γ(v(N)
n−1(φ) + ξn−1))). (29)

Our task then is to solve the Eq. (27) for v
(N)
n−1 to obtain the RG map

v
(N)
n−1 = Rnv(N)

n (30)

and then iterate this and (29) starting with

v
(N)
N (φ) = −λNφ3 − λ2NrλN φ

= −λNφ3 − (λNm1 + λ2N (m2 log λN + m3))φ (31)

f
(N)
N (φ) = φ (32)

If the noise is in the set Am (to be defined) we then show the functions v
(N)
n

and f
(N)
n have limits as N → ∞ and n ≥ m and allow to construct the solution

to our original equation on time interval [0, λ2m].
Equations (27), (29) and (25) involve the operators Γ and G1, respec-

tively. These operators are infinitely smoothing and their kernels have fast
decay in space-time. In particular, the noise ζ = Γξn entering Eqs. (27) and
(29) has a smooth covariance which is short range in time

Eζ(t, x)ζ(s, y) = 0 if |t − s| > 2λ−2, (33)

and it has gaussian decay in space. Hence, the fixed point problem (27) turns
out to be quite easy.

As usual in RG studies one needs to keep track of the leading “relevant”
terms of v

(N)
n which are revealed by a first- and second-order perturbative

study of (27) to which we turn now.

5. Linearized Renormalization Group

We will now study the fixed point Eq. (27) to first order in v. Define the map

(Lnv)(φ) := λ−2s−1v(s(φ + Γξn−1)) (34)

Then, (27) can be written as

v
(N)
n−1(φ) = (Lnv(N)

n )(φ + Γv
(N)
n−1(φ)) (35)
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and we see that Ln = DRn(0), the derivative of the RG map. The linear flow
un−1 = Lnun from scale N to scale n is easy to solve by just replacing λ by
λN−n:

un = (Ln+1Ln+2 . . . LNuN )(φ) = λ−2(N−n)sn−NuN (sN−n(φ + η(N)
n ))

where

η(N)
n = ΓN

n ξn. (36)

Here, ξn is space-time white noise on Tn = λ−n
T

3 and ΓN
n is given by (28)

with λ replaced by λN−n, i.e., its integral kernel is

ΓN
n (t, s, x, y) = χN−n(t − s)Hn(t − s, x − y) (37)

where we denoted

Hn(t, x − y) = etΔ(x, y)

the heat kernel on Tn and

χN−n(s) := χ(s) − χ(λ−2(N−n)s) (38)

is a smooth indicator of the interval [λ2(N−n), 2].
The linearized flow is especially simple for a local u as the one we start

with (31). For uN = φk we get

un = λn(k−5)/2(φ + η(N)
n )k

and so we have “eigenfunctions”

Ln(φ + η(N)
n )k = λ(k−5)/2(φ + η

(N)
n−1)

k.

For k < 5, these are “relevant”, for k > 5 they are “irrelevant” and for k = 5
“marginal”.

The covariance of η
(N)
n is readily obtained from (37) (let t′ ≥ t):

Eη(N)
n (t′, x′)η(N)

n (t, x)

=
∫ t

0

Hn(t′ − t + 2s, x′ − x)χN−n(t′ − t + s)χN−n(s)ds

:= C(N)
n (t′, t, x′, x) (39)

In particular, we have

Eη(N)
n (t, x)2 =

∫ t

0

Hn(2s, 0)χN−n(s)2ds. (40)

This integral diverges as N − n → ∞ and is the source of the first renormal-
ization constant in (31).

We need to study the N and χ dependence of the solution to (7). Since
these dependencies are very similar we deal with them together. Thus, let
Γ′(N)

n the operator (37) where the lower cutoff in (38) is modified to another
bump χ′:

χ′
N−n(s) = χ(s) − χ′(λ−2(N−n)s). (41)
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Varying χ′ allows to study cutoff dependence of our scheme. Taking χ′(s) =
χ(λ−2s) in turn implies Γ′(N)

n = Γ(N+1)
n and this allows us to study the N

dependence and the convergence as N → ∞. The following lemma controls
these dependencies for (40):

Lemma 5. Let

ρ :=
∫ ∞

0

(8πs)−3/2(1 − χ(s)2)ds. (42)

Then,

Eη(N)
n (t, x)2 = λ−(N−n)ρ + δ(N)

n (t)

with

|δ(N)
n (t)| ≤ C(1 + t−

1
2 ) (43)

and

|δ(N)
n (t) − δ′(N)

n (t)| ≤ C(t−
1
2 1[0,2λ2(N−n)](t) + e−cλ−2N

)‖χ − χ′‖∞ (44)

The Lemma is proved in Sect. 10. We will fix in (31) the first renormalization
constant

a = −3ρ (45)

Defining

ρk = λ−kρ, (46)

the first-order solution to our problem is

u(N)
n := −λn((φ + η(N)

n )3 + 3ρN−n(φ + η(N)
n )). (47)

Remark 6. Note that, since we have the factor λn in u
(N)
n , the counting of

what terms are relevant, marginal or irrelevant depends on the order in λn.
Thus, λn(φ+η

(N)
n )k is relevant for k < 3, marginal for k = 3 and irrelevant for

k > 3. Similarly, λ2n(φ + η
(N)
n )k is marginal for k = 1 which is the source of

the renormalization constant b in (8). The terms of order λ3n are all irrelevant.
For a precise statement, see Proposition 10.

Remark 7. Consider the random initial condition discussed in Remark 3. We
realize it in terms of the white noise on (−∞, 0] × Tn. In a regularized form,
we replace etΔϕ0 in(5) by∫ 0

−∞
(1 − χ((t − s)/ε2))e(t−s)ΔΞ(s)ds. (48)

This initial condition can be absorbed to η
(N)
n . Indeed, the covariance (39) is

just replaced by the stationary one

Eη(N)
n (t′, x′)η(N)

n (t, x)

=
∫ t

−∞
Hn(t′ − t + 2s, x′ − x)χN−n(t′ − t + s)χN−n(s)ds (49)
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and in particular δ
(N)
n = 0 which makes the analysis in Sect. 11 actually less

messy.

6. Second-Order Calculation

We will solve Eq. (27) by a fixed point argument in a suitable space of v
(N)
n .

Before going to that we need to spell out explicitly the leading relevant (in
the RG sense) terms. By Remark 6, this requires looking at the second-order
terms in v

(N)
n . To avoid too heavy notation, we will drop the superscript (N)

in v
(N)
n , η

(N)
n and other expressions unless needed for clarity.

Let us first separate in (27) the linear part:

vn−1 = Lnvn + Gn(vn, vn−1) (50)

where we defined

Gn(v, v̄)(φ) = (Lnv)(φ + Γv̄(φ)) − (Lnv)(φ) (51)

Recalling the first-order expression un in (47), we write

vn = un + wn

so that wn satisfies

wn−1 = Lnwn + Gn(un + wn, un−1 + wn−1), (52)

with the initial condition

wN (φ) = −λ2N (m2 log λN + m3)φ. (53)

The reader should think about un as O(λn) and wn as O(λ2n).
Next, we separate from the Gn-term in (52) the O(λ2n) contribution.

Since Lnun = un−1, we have

Gn(un, un−1)(φ) = un−1(φ + Γun−1(φ)) − un−1(φ) (54)

which to O(λn) equals Dun−1Γun−1 where

Dun−1 = −3λn−1((φ + ηn−1)2 − ρN−n+1).

Hence,

wn−1 = Lnwn + Dun−1Γun−1 + Fn(wn−1) (55)

where

Fn(wn−1) = Gn(un + wn, un−1 + wn−1) − Dun−1Γun−1 (56)

Fn is O(λ3n) and will turn out to be irrelevant under the RG (i.e., it will
contract in a suitable norm under the linear RG map Ln).

It is useful to solve (55) without the Fn term: let Un satisfy

Un−1 = LnUn + Dun−1Γun−1, UN = −λ2N (m2 log λN + m3)φ (57)

The solution is

Un = DunΓN
n un − λ2n(m2 log λN + m3)(φ + ηn) (58)
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where ΓN
n is defined in (38). This can be seen by a direct calculation or, just

noting that un−1 + Un−1 equals Rn . . . RN (uN + UN ) computed up to second
order and since Rn is a semigroup we can do this is one step with λ replaced
by λN−n. Now, write

wn = Un + νn (59)

so that νn−1 satisfies the equation

νn−1 = Lnνn + Fn(Un−1 + νn−1), νN = 0 (60)

Equation (60) is a fixed point equation that we will solve by contraction
in a suitable space.

7. Noise Estimates

The time of existence for the solution depends on the size of the noise. In this
Section, we state probabilistic estimates for this size.

The noise enters the fixed point Eq. (60) in the form Γξn−1 that enters
the definition of Ln in (34) and in the polynomials un (47) and Un (58) of the
random field ηn (36). According to Remark 6 in the second-order term Un only
the constant in φ term should be relevant under the linear RG and the linear
in φ term should be marginal (neutral), the rest being irrelevant (contracting).
We will see this indeed is the case and accordingly write

Un(φ) = Un(0) + DUn(0)φ + Vn(φ) (61)

where explicitly

Un(0) = 3λ2n(η2
n − ρN−n)ΓN

n (η3
n − 3ρN−nηn) − λ2n(m2 log λN + m3)ηn

:= λ2nωn (62)

and

(DUn(0)φ)(t, x) = λ2nzn(t, x)φ(t, x) + λ2n

∫
zn(t, x, s, y)φ(s, y)dsdy (63)

where

zn = 6ηnΓN
n (η3

n − 3ρN−nηn) (64)

and

zn = 9(η2
n − ρN−n)ΓN

n (η2
n − ρN−n) − m2 log λN − m3 (65)

(here, η2
n − ρN−n is viewed as a multiplication operator).

The random fields whose size we need to constrain probabilistically are
then

ηn, η2
n − ρN−n, η3

n − 3ρN−nηn, ωn, zn, zn (66)

They belong to the Wiener chaos of white noise of bounded order and their
size and regularity are controlled by studying their covariances. For finite cutoff
parameter N , these noise fields are a.s. smooth, but in the limit N → ∞ they
become distribution valued. These fields enter in the RG iteration (35) in the
combination Γvn−1, i.e., they are always acted upon by the operator Γ which



508 A. Kupiainen Ann. Henri Poincaré

is infinitely smoothing. Therefore, we estimate their size in suitable (negative
index) Sobolev-type norms which we now define. In addition to the fields (66),
we also need to constrain the Gaussian field Γξn.

Let K1 be the operator (−∂2
t + 1)−1 on L2(R), i.e., it has the integral

kernel

K1(t, s) =
1
2
e−|t−t′| (67)

Let K2 = (−Δ + 1)−2 on L2(Tn) which has a continuous kernel K2(x, y) =
K2(x − y) satisfying

K2(x) ≤ Ce−|x|. (68)

Set

K := K1K2. (69)

Define Vn to be the completion of C∞
0 (R+ × Tn) with the norm

‖v‖Vn
= sup

i
‖Kv‖L2(ci) (70)

where ci is the unit cube centered at i ∈ Z × (Z3 ∩ Tn). To deal with the
bi-local field zn in (65) we define for z(t, x, s, y) in C∞

0 (R+ × Tn × R+ × Tn)

‖z‖Vn
= sup

i

∑
j

‖K ⊗ Kz‖L2(ci×cj) (71)

Now, we can specify the admissible set of noise. Let γ > 0 and define
events Am, m > 0 in the probability space of the space-time white noise Ξ as
follows. Let ζ

(N)
n denote any one of the fields (66). We want to constrain the size

of ζ
(N)
n on the time interval [0, τn−m] where we will denote τn−m = λ−2(n−m).

To do this, choose a smooth bump h on R with h(t) = 1 for t ≤ −λ2 and
h(t) = 0 for t ≥ −1

2λ2 and set hk(t) = h(t − τk) so that hk(t) = 1 for
t ≤ τk − λ2 and hk(t) = 0 for t ≥ τk − 1

2λ2 (the reason for these strange
choices will become clear in Sect. 8). The first condition on Am is that for all
N ≥ n ≥ m the following hold:

‖hn−mζ(N)
n ‖Vn

≤ λ−γn (72)

We need also to control the N and χ dependence of the noise fields ζ
(N)
n .

Recall that we can study both by varying the lower cutoff in the operator
Γ(N)

n in (37). We denote by ζ
′(N)
n any of the resulting noise fields. Our second

condition on Am is that for all N ≥ n ≥ m and all cutoff functions χ, χ′ with
bounded C1 norm

‖hn−m(ζ ′(N)
n − ζ(N)

n )‖Vn
≤ λγ(N−n)λ−γn. (73)

The final condition concerns the fields Γξn entering the RG iteration (27).
Note that, these fields are N independent and smooth and we impose on them
a smoothness condition given in (74). We have:

Proposition 8. There exist renormalization constants m2 and m3 such that for
some γ > 0 almost surely Am holds for some m < ∞.
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On Am we will control the RG iteration for scales n ≥ m. This will enable
us to solve the Eq. (4) on the time interval [0, λ2m].

8. Fixed Point Problem

We will now fix the noise Ξ ∈ Am for some m > 0 and set up a suitable space
of functions νn(φ) for the fixed point problems (60) for n ≥ m.

Since the noise contributions take values in Vn we let νn take values
there as well. The noise enters in (27) in the argument of vn in the combina-
tion Γ(vn−1 + ξn−1). Since Γ is infinitely smoothing this means that we may
take the domain of νn(φ) to consist of suitably smooth functions φ. Since the
noise contributions become distributions in the limit N → ∞ and enter mul-
tiplicatively with φ, e.g., in (47) we need to match the smoothness condition
for φ with that of the noise. Finally, since (25) implies φn ≡ 0 on [0, 1] we let
the φ be defined on [1, τn−m].

With these motivations, we take the domain Φn of vn to consist of φ :
[1, τn−m] × Tn → C which are C2 in t and C4 in x with ∂i

tφ(1, x) = 0 for
0 ≤ i ≤ 2 and all x ∈ Tn. We equip Φn with the sup norm

‖φ‖Φn
:=

∑
i≤2,|α|≤4

‖∂i
t∂

α
x φ‖∞.

We will now set up the RG map (35) in a suitable space of vn, vn−1

defined on Φn and Φn−1, respectively.
First, note that for φ ∈ Φn−1, sφ(t, x) = λ

1
2 φ(λ2t, λx) is defined on

[λ−2, τn−m] × Tn. We extend it to [1, τn−m] × Tn by setting sφ(t, x) = 0 for
1 ≤ t ≤ λ−2. Next, Γξn−1 vanishes (a.s.) on [0, λ2] and thus sΓξn−1 vanishes
on [0, 1]. We can now state the final condition for the set Am: for all n > m
we demand

‖sΓξn−1‖Φn
≤ λ−γn. (74)

Let Bn ⊂ Φn be the open ball centered at origin of radius rn = λ−2γn and
Wn(Bn) be the space of analytic functions from Bn to Vn equipped with the
supremum norm which we denote by ‖ · ‖Bn

(see [6] for a summary of basic
facts on analytic functions on Banach spaces). We will solve the fixed point
problem (35) in this space. We collect some elementary properties of these
norms in the following lemma, proven in Sect. 10:

Lemma 9. (a) sΓ : Vn−1 → Φn and hn−1−mΓ : Vn−1 → Vn−1 are bounded
operators with norms bounded by C(λ). Moreover, sΓhn−1−mv = sΓv as
elements of Φn.

(b) s : Φn−1 → Φn and s−1 : Vn → Vn−1 are bounded with

‖s‖ ≤ λ
1
2 , ‖s−1‖ ≤ Cλ− 1

2 .

(c) Let φ ∈ C2,4(R × Tn) and v ∈ Vn. Then, φv ∈ Vn and ‖φv‖Vn
≤

C‖φ‖C2,4‖v‖Vn
.

The linear RG (34) is controlled by
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Proposition 10. Given λ < 1, γ > 0 there exists n(γ, λ) s.t. for n ≥ n(γ, λ)
Ln maps Wn(Bn) into Wn−1(λ− 1

2 Bn−1) with norm ‖Ln‖ ≤ Cλ− 5
2 .

Proof. Let v ∈ Wn(Bn) and φ ∈ λ− 1
2 Bn−1. By (74) and Lemma 9(a,b)

‖s(φ + Γξn−1)‖Φn
≤ λ−2γ(n−1) + λ−γn ≤ λ−2γn

for n ≥ n(γ, λ). Hence, v(s(φ+Γξn−1)) is defined and analytic in φ ∈ λ− 1
2 Bn−1,

i.e., Ln maps Wn(Bn) into Wn−1(λ− 1
2 Bn−1) and by Lemma 9(b)

‖Lnv‖
λ− 1

2 Bn−1
≤ Cλ− 5

2 ‖v‖Bn

�

As a corollary of Lemma 9(c) and (72) we obtain for n ≥ m and N ≥ n
(recall (47) and (62)):

‖hn−mu(N)
n ‖RBn

≤ CR3λ(1−6γ)n (75)

and

‖hn−m(U (N)
n (0) + DU (N)

n (0)φ)‖RBn
≤ CRλ(2−3γ)n (76)

for all R ≥ 1 (since they are polynomials in φ with coefficients the noise
fields ζn).

Next, we will rewrite the fixed point Eq. (35) in a localized form. Define
ṽ
(N)
n = hn−mv

(N)
n so that

ṽ
(N)
n−1(φ) = hn−1−m(Lnv(N)

n )(φ + Γṽ
(N)
n−1(φ)) (77)

where we used Lemma 9(a) in the argument. By (34)

hn−m−1Ln = Lnhn−m−1(λ2·) (78)

and hn−1−m(λ2·) is supported on [0, τn−m − 1
2 ]. Since hn−m = 1 on [0, τn−m −

λ2] we get

hn−m−1(λ2t) = hn−m−1(λ2t)hn−m(t) (79)

so that (77) can be written as

ṽ
(N)
n−1(φ) = hn−1−m(Lnṽ(N)

n )(φ + Γṽ
(N)
n−1(φ)). (80)

Hence, the ν fixed point problem (60) becomes

ν̃n−1 = hn−1−m(Lnν̃n + F̃n(Ũn−1 + ν̃n−1)), ν̃N = 0 (81)

where F̃n is as in (56), i.e.,

F̃n(w) = Gn(ũn + w̃n, ũn−1 + w) − Dũn−1Γũn−1 (82)

Thus, with only a slight abuse of notation we will drop the tildes and h
factors in the norms in the following:
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Proposition 11. There exist λ0 > 0, γ0 > 0 so that for λ < λ0, γ < γ0 and
m > m(γ, λ) if Ξ ∈ Am then then for all N ≥ n − 1 ≥ m the Eq. (81) has a
unique solution ν

(N)
n−1 ∈ Wn(Bn−1). These solutions satisfy

‖ν(N)
n ‖Bn

≤ λ(3− 1
4 )n (83)

and ν
(N)
n converge in Wn(Bn) to a limit νn ∈ Wn(Bn) as N → ∞. νn is

independent on the small scale cutoff: νn = ν′
n.

Proof. We solve (81) by Banach fixed point theorem in the ball ‖νn−1‖B′ ≤
λ(3− 1

4 )(n−1) where B′ = λ− 1
2 Bn−1 (we only need to prove analyticity in Bn−1,

but for bounding Un the larger region is needed). By Proposition 10 we have

‖Lnνn‖B′ ≤ Cλ− 5
2 λ(3− 1

4 )n = Cλ
1
4 λ(3− 1

4 )(n−1) (84)

Next, we estimate the Fn term in (81). Fn is given in (82), so we need to start
with Gn given in (54). Let v ∈ Wn(Bn) and v̄ ∈ Wn−1(B′) and define

f(v, v̄)(φ) := λ−5/2s−1v(s(φ + Γξn−1 + Γv̄(φ)). (85)

For φ ∈ B′ we have by Lemma 9(a) and (74)

‖s(φ + Γξn−1 + Γv̄(φ))‖Φn
≤ λ−2γ(n−1) + λ−γn + C(λ)‖v̄‖B′

Hence, f(v, v̄) ∈ Wn−1(B′) provided

‖v̄‖B′ ≤ c(λ)λ−2γn (86)

We use this first to estimate

gn := G(un, un−1) − Dun−1Γun−1.

We have gn = f(1) − f(0) − f ′(0) where f(z) = f(un, zun−1). By (86) f is
analytic in

|z| < c(λ)λ−2γn‖un−1‖−1
B′

and so by a Cauchy estimate and (75)

‖gn‖B′ ≤ C(λ)λ4γn‖un‖Bn
‖un−1‖2

B′ ≤ C(λ)λ(3−14γ)n (87)

Next, we write

Fn(w) = gn + Gn(wn, un−1 + w) + hn(w) (88)

with

hn(w) = Gn(un, un−1 + w) − G(un, un−1)

We have hn(w) = f̃(1) − f̃(0) with f̃(z) = f(un, un−1 + zw) which is analytic
in

|z| < c(λ)λ−2γn‖w‖−1
B′ .

Hence, by a Cauchy estimate

‖hn(w)‖B′ ≤ C(λ)λ2γn‖un‖Bn
‖w‖B′ . (89)

Finally, in the same way,

‖Gn(wn, un−1 + w)‖B′ ≤ C(λ)‖wn‖Bn
(‖un−1‖B′ + ‖w‖B′). (90)
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Recalling (59), we have

‖wn‖Bn
≤ ‖Un‖Bn

+ ‖νn‖Bn
(91)

so to proceed we need a bound for Un. It is defined iteratively in (57) which
we write as

Un−1 = LUn + Ũn−1

where Ũn−1 = Dun−1Γun−1 = f ′(0) where f(z) = f(un, zun−1) as above.
Again by Cauchy, we get

‖Ũn−1‖B′ ≤ C(λ)λ2(1−6γ)n+2γn. (92)

Recall the definition of Vn in (61). It satisfies

Vn−1(φ) = (LnVn)(φ) − (LnVn)(0) − D(LnVn)(0)φ + Ṽn−1(φ).

where Ṽn−1 = Ũn−1 − Ũn−1(0) − DŨn−1(0)φ. From (92) we get

‖Ṽn−1‖B′ ≤ C(λ)λ(2−10γ)n. (93)

Assume inductively

‖Vn‖Bn
≤ λ(2−11γ)n. (94)

Proposition 10 combined with a Cauchy estimate (here we use B′ =λ− 1
2 Bn−1)

and (93) gives

‖Vn−1‖Bn−1 ≤ Cλ−3/2‖Vn‖Bn
+ C(λ)λ(2−10γ)n (95)

which proves the induction step taking γ small enough and n ≥ n(λ). Since
UN is linear by (57) the induction starts with VN = 0. Combining (94) with
(76) and the initial condition in (57), we then arrive at

‖Un‖Bn
≤ 2λ(2−11γ)n.

Combining this bound with (87), (89) and (90) gives, for γ small enough

‖Fn(Un−1 + νn−1)‖Bn−1

≤ λ(3− 1
4 )n + λ

1
2n(‖νn−1‖Bn−1 + ‖νn‖Bn

) + ‖νn−1‖Bn−1‖νn‖Bn

Recalling (84) and Lemma 9(c) to bound the hn−1−m factor in (81) we conclude
that the ball ‖νn−1‖Bn−1 ≤ λ(3− 1

4 )(n−1) is mapped by the RHS of (81) to itself.
The map is also a contraction if n ≥ n(λ) since by (84) this holds for L and

‖Fn(Un−1 + ν1) − Fn(Un−1 + ν2)‖Bn−1 ≤ C(λ)λ(1−6γ)n‖ν1 − ν2‖Bn−1 .

Let us address the convergence as N → ∞ and cutoff dependence of
νn = ν

(N)
n . Recall we can deal with both questions together with ν′

n. Since un

and Un − Vn are polynomials in φ with coefficients ζn satisfying the estimate
(73) we get

‖un − u′
n‖Bn

≤ Cλγ(N−n)λ(1−6γ)n (96)

‖(Un − Vn) − (U ′
n − V ′

n)‖Bn
≤ Cλγ(N−n)λ(2−3γ)n. (97)
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To study Vn := Vn − V ′
n we need to estimate (recall (93)) Ṽn − Ṽ ′

n which in
turn is determined by Ũn − Ũ ′

n. This is again estimated by Cauchy and we get

‖Ũn − Ũ ′
n‖B′ ≤ C(λ)λγ(N−n)λ(2−10γ)n.

Proceeding as in the derivation of (95) we get

‖Vn−1‖Bn−1 ≤ Cλ−3/2‖Vn‖Bn
+ C(λ)λγ(N−n)λ(2−10γ)n

leading to

‖Vn‖Bn
≤ C(λ)λγ(N−n)λ(2−10γ)n.

Combining this with (97) we arrive at

‖Un − U ′
n‖Bn

≤ λγ(N−n)λ(2−11γ)n. (98)

Finally, using (96) and (98) it is now straightforward to prove, for γ suitably
small,

‖Fn − F ′
n‖Bn−1 ≤ λγ(N−n)λ(3− 1

4 )n + λ
1
2n‖νn−1 − ν′

n−1‖Bn−1 .

As in (84) we get

‖Ln(νn − ν′
n)‖Bn−1 ≤ Cλ− 5

2 ‖νn − ν′
n‖Bn

(99)

Hence, for small γ we obtain inductively for m ≤ n ≤ N

‖νn − ν′
n‖Bn

≤ Cλγ(N−n)λ(3− 1
4 )n.

This establishes the convergence of ν
(N)
n to a limit that is independent on the

short-time cutoff. �

Remark 12. Let us briefly indicate how the cutoff (10) can be accommodated
to our scheme. We only need to modify the first RG step. For n = N in (27)
the noise is replaced by the spatially smooth noise ξ̃N−1 = ρ ∗ ξn−1 and Γ by
Γ̃ where we use the cutoff χ(t − s) in (28). Γ̃ is not infinitely smoothing, but
sΓ̃vN

N−1 ∈ BN nevertheless since at this scale vN
N−1 is as smooth as φ is.

9. Proof of Theorem 1

We are now ready to construct the solution φ(ε) of the ε cutoff Eq. (7). Recall
that formally φ(ε) is given on time interval [0, λ2m] by Eq. (26) (with n = m)
with φm given as the solution of Eq. (25) on time interval [0, 1]. Hence, we
first need to study the f iteration Eq. (29). This is very similar to the v
iteration (27) except there is no fixed point problem to be solved and there is
no multiplicative λ−2 factor. As in (80) for v

(N)
n , we study instead of (29) the

localized iteration

f̃
(N)
n−1(φ) = hn−1−ms−1f̃ (N)

n (s(φ + Γ(ṽ(N)
n−1(φ) + ξn−1))) (100)

for f̃
(N)
n = hn−mf

(N)
n . The following Proposition is immediate :
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Proposition 13. Let ν̃
(N)
n ∈ Wn(Bn), m ≤ n ≤ N be as in Proposition 11.

Then, for m ≤ n ≤ N f̃
(N)
n ∈ Wn(Bn) and

f (N)
n (φ) = φ + η(N)

n + g(N)
n (φ). (101)

with

‖g̃(N)
n ‖Bn

≤ λ
3
4n. (102)

and g
(N)
n converge in Wn(Bn) as N → ∞ to a limit g̃n ∈ Wn(Bn) which is

independent on the short-time cutoff.

Proof. We have

g̃
(N)
n−1(φ) = hn−1−m(Γṽ

(N)
n−1(φ) + s−1g̃(N)

n (s(φ + Γ(ṽ(N)
n−1(φ) + ξn−1)))

Since ‖ṽ
(N)
n−1‖Bn−1 ≤ Cλ(1−3γ)(n−1) Lemma 9(b) implies

‖g̃
(N)
n−1‖Bn−1 ≤ C(λ)λ(1−3γ)(n−1) + Cλ− 1

2 λ
3
4n ≤ λ

3
4 (n−1)

The convergence and cutoff independence follows from that of v
(N)
n . �

We need the following lemma:

Lemma 14. G1 is a bounded operator from Vn to Φn and G1(hn−1−m(λ2·)v) =
G1v.

Proof of Theorem 1. We claim that if Ξ ∈ Am the solution ϕ(N) of equation
(7) with ε = λN is given by (recall (26))

ϕ(N) = s−mf̃ (N)
m (0) (103)

on the time interval [0, 1
2λ−2m]. Let φn ∈ Φn be defined inductively by φm = 0

and for n > m

φn = s(φn−1 + Γ(ṽ(N)
n−1(φn−1) + ξn−1)). (104)

We claim that for all m ≤ n ≤ N φn ∈ Bn and

φn = G1(ṽ(N)
n (φn) + ξn). (105)

Indeed, this holds trivially for n = m since the RHS vanishes identically on
[0, 1]. Suppose φn−1 ∈ Bn−1 satisfies

φn−1 = G1(ṽ
(N)
n−1(φn−1) + ξn−1). (106)

Then, first by Lemma 9(b)

‖φn‖Φn
≤ λ

1
2 ‖φn−1‖Φn−1 + C(λ)λ−γn ≤ λ−2γn

so that φn ∈ Bn. Second, we have by (106) and (104)

φn = s((G1 + Γ)(ṽ(N)
n−1(φn−1) + ξn−1)) = G1λ

2s(ṽ(N)
n−1(φn−1) + ξn−1)

= G1(hn−1−m(λ2·)ṽ(N)
n (φn) + ξn) = G1(ṽ(N)

n (φn) + ξn) (107)

where in the third equality we used the RG iteration (77) and in the last
equality Lemma 14.
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From (100) we have since φm = 0

f̃ (N)
m (0) = h0s

−1f̃
(N)
m+1(φm+1) = h0h1(·/λ2)s−2f̃

(N)
m+2(φm+2)

= h0s
−2f̃

(N)
m+2(φm+2)

where we used (79). Iterating we get

f̃ (N)
m (0) = h0s

−(N−m)f̃
(N)
N = h0hN−m(·/λ2(N−m))s−(N−m)φN

= h0s
−(N−m)φN (108)

again by (79). Now φN ∈ BN solves (105) with ṽ
(N)
N (φ) = hN−mv

(N)
N (φ) with

v
(N)
N given by (31). Since hN−m = 1 on [0, τN−m − λ2] we obtain

φN = G1(ṽ(N)
n (φn) + ξn) = G1(v(N)

n (φn) + ξn).

and thus ϕ(N) = s−NφN solves (103) on the time interval [0, λ−2m]. (108) then
gives

h0(λ−2m·)ϕ(N) = s−mf̃ (N)
m (0)

so that (103) holds on the time interval [0, 1
2λ−2m].

By Proposition 13 f
(N)
m (0) converges in Vm to a limit ψm which is inde-

pendent on the short-distance cutoff. Convergence in Vm implies convergence
in D′([0, 1]×Tm). The claim follows from continuity of s−m : D′([0, 1]×Tm) →
D′([0, λ2m] × T1). �

10. Kernel Estimates

In this Section, we prove Lemmas 9, 14 and 5 and give bounds for the various
kernels entering the proof of Proposition 8.

10.1. Proof of Lemmas 9 and 14

Lemma 9 (a) and Lemma 14 Let v ∈ C∞
0 (R+ × Tn−1). Then,

sΓv(t) =
∫ ∞

0

k(λ2t − s)e(λ2t−s)Δv(s)ds

where k(τ) = λ
1
2 (χ(τ)−χ(τ/λ2)) vanishes for τ ≤λ2. Hence, sΓv ∈ C∞

0 ([1,∞)
× Tn). Next, write v = (−∂2

t + 1)(−Δ + 1)2Kv so that setting w = Kv we
have

sΓv(t) =
∫
R

k(λ2t − s)(−Δ + 1)2e(λ2t−s)Δ(−∂2
s + 1)w(s)ds (109)

Integrating by parts we get

sΓv(t) =
∫
R

((−∂2
s + 1)k(λ2t − s)(−Δ + 1)2e(λ2t−s)Δ)w(s)ds.

The kernels ∂a
t (k(λ2t−s)∂α

x e(λ2t−s)Δ(x−y)) are smooth, exponentially decreas-
ing in |x − y| and supported on λ2t − s ∈ [λ2, 2] for all a and α. Hence, the
corresponding operators Oaα satisfy

|(Oaα1ci
w)(t, x)| ≤ C(λ)e−cd(i,(t,x))‖w‖L2(ci)
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which in turn yields our claim ‖sΓv‖Φn
≤ C(λ)‖v‖Vn−1 . Hence, sΓ extends to

a bounded operator from Vn−1 to Φn.
G1v is given by (109) with k is replaced by 1−χ(t−s). The time integral

is confined to [0, τn−m] so that ‖G1v‖Φn
≤ C(λ, n)‖v‖Vn

.
Lemma 9 (b). Recall (sφ)(t, x) = λ

1
2 φ(λ2t, λx) on [λ−2, τn−1−m] × Tn−1.

Since λ < 1 we then get ‖sφ‖Φn
≤ λ

1
2 ‖φ‖Φn−1 . Next, let v ∈ C∞

0 (R+ × Tn)
and w = Kv. First, write

Ks−1v = Ks−1(−∂2
t + 1)(−Δ + 1)2w = K1(−λ4∂2

t + 1)K2(−λ2Δ + 1)2s−1w.

Next, K1(−λ4∂2
t + 1) = λ4 + (1 − λ4)K1 and

K2(−λ2Δ + 1)2 = λ4 + 2λ2(1 − λ2)(−Δ + 1)−1 + (1 − λ2)2K2.

Thus, we need to show the operators Ki, (−Δ + 1)−1 and λ
1
2 s−1 are bounded

in the norm supi ‖ · ‖L2(ci) uniformly in λ. For Ki this follows from the bounds
(67) and (68) and for the third one from (−Δ+1)−1(x, y) ≤ Ce−c|x−y||x−y]−1.
Finally, let ci/λ := {(t/λ2, x/λ)|(t, x) ∈ ci}

‖λ
1
2 s−1w‖2

L2(ci)
= λ5

∫
ci/λ

|w|2 ≤ λ5
∑

c∩(ci/λ) �=∅
‖w‖2

L2(c) ≤ C

Lemma 9 (c) Let φ ∈ C2,4(R × Tn) and v ∈ C∞
0 (R+ × Tn) and set again

w = Kv so that

φv = φ(−∂2
t + 1)(−Δ + 1)2w

Using φ∂2
t f = ∂2

t (φf)−2∂t(∂tφf)+∂2
t φf and similar commuting for Δ we get

K(φv) = φw +
∑

a

Oa(φaw)

where the operators Oa belong to the set {∂n
t K1, ∂

α
x K2, ∂

n
t K1∂

α
x K2} with n ≤

1 and |α| ≤ 3. The functions φa are multiples of ∂m
t ∂β

xφ with m ≤ 2 and
|β| ≤ 4 and hence bounded in sup norm by C‖φ‖C2,4 . We get

‖φv‖Vn
≤ C‖φ‖C2,4 max

a
sup

i

∑
j

‖Oa‖L2(cj)→L2(ci)

The operators ∂tK1 and K1 have bounded exponentially decaying kernels.
The operators ∂α

x K2 are bounded in L2 hence from L2(A) → L2(B) with
A,B ⊂ Tn. Moreover, their kernels ∂α

x K2(x − y) are smooth for x − y �= 0 and
exponentially decaying. We conclude

‖Oa‖L2(cj)→L2(ci) ≤ Ce−c|i−j|

and then

‖φv‖Vn
≤ C‖φ‖C2,4‖v‖Vn

.

�
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10.2. Proof of Lemma 5

Let H(t, x) = etΔ(0, x) = (4πs)−3/2e−x2/4t be the heat kernel on R
3. Then,

Hn(t, x) =
∑
i∈Z3

H(t, x + λ−ni). (110)

Denoting ε = λ2(N−n) and separating the i = 0 term, we have

Eη(N)
n (t, x)2 =

∫ t

0

(8πs)−3/2(χ(s)2 − χ(s/ε2)2)ds + α(t) (111)

where

|α(t)| ≤
∑
i�=0

∫ 2

0

(8πs)−3/2e−i2/(4sλ2n) ≤ Ce−cλ−2n

.

Let α′(t) have the lower cutoff replaced by χ′. Then,

|α(t) − α′(t)‖ ≤ C

∫
s−3/2|χ(s/ε′2)2 − χ(s/ε2)2|e−λ−2n/4sds

≤ Ce−cλ−2N ‖χ − χ′‖∞.

Denote the first term in (111) by β(t, ε) and β′(t, ε) where the lower cutoff is
χ′. Then,

β′(∞, ε) = ε−1

∫ ∞

0

(8πs)−3/2(χ(ε2s)2 − χ′(s)2)ds = ε−1ρ′ − ρ

So

δ(N)
n (t) = α(t) + ρ − γ(t, ε)

with

γ(t, ε) = β(∞, ε) − β(t, ε) =
∫ ∞

t

(8πs)−3/2(χ(s)2 − χ(s/ε2)2)ds ≤ Ct−
1
2 .

Moreover,

|γ(t, ε) − γ′(t, ε)| =
∫ ∞

t

(8πs)−3/2|χ(s/ε2)2 − χ′(s/ε2)2|ds

≤ Ct−
1
2 ‖χ − χ′‖∞1[0,ε](t).

�

10.3. Covariance and Response Function Bounds

We prove now bounds for the covariance and response kernels (37) and (39)
that are needed for the probabilistic estimates in Sect. 11. These kernels are
translation invariant in the spatial variable and we will denote C

(N)
n (t′, t, x′, x)

simply by C
(N)
n (t′, t, x′ − x) and similarly for the other kernels. As before

primed kernels and fields have the lower cutoff χ′. We need to introduce the
mixed covariance

C ′(N)
n (t′, t, x′ − x) := Eη′(N)

n (t′, x′)η(N)
n (t, x) (112)
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Let us define

Cn(τ, x) = sup
|t′−t|=τ

sup
N≥n

C ′(N)
n (t′, t, x)

CN
n (τ, x) = sup

|t′−t|=τ

|C ′(N)
n (t′, t, x) − C(N)

n (t′, t, x)|

Gn(t, x) = sup
N≥n

ΓN
n (t, x)

GN
n (t, x) = |Γ′N

n (t, x) − ΓN
n (t, x)|

The regularity of these kernels is summarized in

Lemma 15. Cn ∈ Lp(R × Tn) uniformly in n for p < 5 and

‖CN
n ‖p ≤ Cλγp(N−n)‖χ − χ′‖∞. (113)

for γp > 0 for p < 5. Gn ∈ Lp(R × Tn) uniformly in n for p < 5/3 and

‖GN
n ‖p

p ≤ Cλγ′
p(N−n)‖χ − χ′‖∞. (114)

for γ′
p > 0 for p < 5/3.

Proof. As in (39) we have, for t′ ≥ t:

C ′(N)
n (t′, t, x′ − x) =

∫ t

0

Hn(|t′ − t| + 2s, x′ − x)χ1
N−n(t′ − t + s)χ2

N−n(s)ds

(115)

where χ1 = χ′, χ2 = χ or vice versa depending on t′ > t or t′ < t.
The heat kernel Hn is pointwise positive. Using χ1

N−n(t′ − t + s)χ2
N−n(s) ≤

1[0,2](s)1[0,2](t′ − t), we may bound

C ′(N)
n (t′, t, x) ≤ Cn(t′ − t, x)1[0,2](t′ − t) (116)

where

Cn(τ, x) =
∫ 2

0

Hn(τ + 2s, x)ds

From (110) we get

Hn(τ, x) =
∑

m∈Z3

(4πt)−3/2e− (x+λ−nm)2

4t . (117)

Therefore,

Cn(τ, x) =
∑

m∈Z3

c(τ, x + λ−nm) (118)

where

c(τ, x) =
∫ 2

0

(4π(τ + 2s))−3/2e− x2
4(τ+2s) ds

≤ C(e−cx2
(x2 + τ)− 1

2 1τ∈[0,2] + τ−3/2e−cx2/τ1τ>2)). (119)

Combining with (118) and (116) (with χ′ = χ)

Cn(τ, x) ≤ Ce−cx2
(x2 + τ)− 1

2 1[0,2](τ) (120)
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and so Cn ∈ Lp if p < 5. To get (113) use

|χ1
k(t′ − t + s)χ2

k(s) − χ1
k(t′ − t + s)χ2

k(s)| ≤ 1[0,2λ2k](s)1[0,2](t′ − t)‖χ − χ′‖∞.

Hence,

CN
n (τ, x) ≤

∑
m∈Z3

cN−n(τ, x + λ−nm)1[0,2](τ)‖χ − χ′‖∞

where

cM (τ, x) :=
∫ 2λ2M

0

(4π(τ + 2s))−3/2e− x2
4(τ+2s) ds = λ−Mc0(λ−2Mτ, λ−Mx).

(121)

Hence, using (119)

‖cM1[0,2]‖p
p = λ(5−p)M‖c01[0,2λ−2M ]‖p

p

≤ λ(5−p)M (1 +
∫

τ
3
2 (1−p)1[2,2λ−2M ]dt) ≤ CλγM

with γ > 0 for p < 5. This yields (113).
In the same way,

Gn(t, x) ≤ Ct−3/2e−cx2/t1[0,2](t) (122)

which is in Lp for p < 5/3. (113) follows then as above. �

We will later also need the properties of the kernel

S(N)
n (t′, t, x) := C(N)

n (t′, t, x)ΓN
n (t′, t, x). (123)

Set

Sn(τ, x) := sup
|t′−t|=τ

sup
N≥n

S(N)
n (t′, t, x) (124)

We get from (120) and (122)

Sn(t, x) ≤ Ct−2e−cx2/t1[0,2](t) ∈ Lp, p < 5/4.

Finally, let S′N
n have χ′ in all the lower cutoffs in CN

n and ΓN
n and set

S ′(N)
n (τ, x) = sup

|t′−t|=τ

|S′(N)
n (t′, t, x) − S(N)

n (t′, t, x)|.

Then,

‖SN
n ‖p

p ≤ Cλγ′′
p (N−n)‖χ − χ′‖∞. (125)

for some γ′′
p > 0 for p < 5/4.

Remark 16. Recall from Remark 7 that for the initial condition (48) the covari-
ance of η

(N)
n is the stationary one (49). Hence, Lemma 15 holds for it as well.
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11. Proof of Proposition 8

In this section, we prove Proposition 8. The strategy is straightforward. We
need to compute the covariances of the various fields in (66) and establish
enough regularity for them. Covariance estimate is all we need since the prob-
abilistic bounds are readily derived from it. The covariances have of course
expressions in terms of Feynman diagrams only one of which is diverging as
N → ∞. The renormalization constant b is needed to cancel that divergence.
We do not introduce the terminology of diagrams since the ones that enter are
simple enough to be expressed without that notational device.

11.1. Covariance Bound

We will deduce Proposition 8 from a covariance bound for the fields in (66).
Let ζ

(N)
n (t, x) or ζ

(N)
n (t, x, s, y) be any of the fields in (66). Let

K̃(t′, t, x) = e
1
2dist(t′,I)K(t′ − t, x)hn−m(t) (126)

where I = [0, λ−2(n−m)] and define

ρ(N)
n = K̃ζ(N)

n or ρ(N)
n = K̃ ⊗ K̃ζ(N)

n .

Then,

‖Kζ̃(N)
n ‖L2(ci) ≤ Ce− 1

2dist(i0,I)‖ρ(N)
n ‖L2(ci). (127)

where i0 is the time component of i and similarly for the bi-local case. We
bound the covariance of ρ

(N)
n :

Proposition 17. There exist renormalization constants m1,m2,m3 and γ > 0
s.t. for all 0 ≤ n ≤ N < ∞

Eρ(N)
n (t, x)2 ≤ C (128)

E(ρ′(N)
n (t, x) − ρ(N)

n (t, x))2 ≤ Cλγ(N−n)‖χ − χ′‖∞ (129)

Eρ(N)
n (t, x, s, y)2 ≤ Ce−c(|t−s|+|x−y|) (130)

E(ρ′(N)
n (t, x, s, y) − ρ(N)

n (t, x, s, y))2 ≤ Cλγ(N−n)e−c(|t−s|+|x−y|)‖χ − χ′‖∞
(131)

Proof of Proposition 8. ρ
(N)
n (t, x)2 belongs to the inhomogeneous Wiener

Chaos of bounded order m (in fact m ≤ 10). Thus, we get for all p > 1

Eρ(N)
n (t, x)2p ≤ (2p − 1)pm(Eρ(N)

n (t, x)2)p (132)

(see [14], page 62). Using Hölder, (132) and (128) in turn we deduce

E(‖ρ(N)
n ‖2p

L2(ci)
) ≤ E(‖ρ(N)

n ‖2p
L2p(ci)

) =
∫

ci

E(ρ(N)
n (t, x))2p

≤ Cp

∫
ci

((Eρ(N)
n (t, x))2)p ≤ Cp (133)

and thus by (127)

E(‖Kζ̃(N)
n ‖2p

L2(ci)
) ≤ Cpe−pdist(i0,In)
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so that

P(‖Kζ̃(N)
n ‖L2(ci) ≥ R) ≤ Cp(R−1e− 1

2dist(i0,In))2p

and finally

P(‖ζ̃(N)
n ‖Vn

≥ λ−γn) ≤
∑

i

Cp(λγne− 1
2dist(i0,In))2p ≤ Cpλ

2γpnλ2mλ−5n.

(134)

For the bi-local fields, we proceed in the same way. First, as in (133) we deduce

E(‖ρ(N)
n ‖2p

L2(ci×cj)
) ≤ Cp

∫
ci×cj

((Eρ(N)
n (t, x, s, y)2)p ≤ Cp(Ce−cdist(ci,cj))2p

and then use exponential decay to control

P(‖ζ̃(N)
n ‖Vn

≥ λ−γn)

≤
∑
i,j

Cp(λγne−c(dist(i0,In)+dist(ci,cj)))2p ≤ Cpλ
2pγnλ2mλ−5n.

Next we turn to (73) which we recall we want to hold for all cutoff func-
tions χ, χ′ with bounded C1 norm. We proceed by a standard Kolmogorov
continuity argument.

Let f(χ) := Kζ̃
(N)
n . Without loss we may consider χ in the ball Br of

radius r at origin in C1[0, 1]. As above we conclude from (129)

E(‖f(χ) − f(χ′)‖2p
L2(ci)

) ≤ Cp(ε‖χ − χ′‖∞e−dist(i0,In))p (135)

with ε = λγ(N−n). Let χn, n = 1, 2, . . . be the Fourier coefficients of χ in
the basis 1, sin 2πx, cos 2πx, sin 4πx, cos 4πx, . . . . Hence, |χn| ≤ Crn−1. Let
χm

n = χn for n ≤ m and χm
n = χ′

n for n > m. Let QN be the dyadic rationals
in [0, 1]. Then, for β ∈ (0, 1)

‖f(χ) − f(χ′)‖L2(ci) ≤
∞∑

m=1

‖f(χm) − f(χm+1)‖L2(ci)

≤
∞∑

m=1

|χm − χ′
m|β

∞∑
N=0

2βNΔN,m

where

ΔN,m = sup
t,t′∈QN ,|t−t′|=2−N

‖gm(t) − gm(t′)‖L2(ci)

and gm(t) = f(χ1, . . . , χm−1, t, χ
′
m+1, . . . ). Using (135) for gm we get

P(ΔN,m > R) ≤ C2N (R−2ε2−Ne−dist(i0,In))p

and then, taking β < 1
2 and 2βp > 1

P

(
sup

χ,χ′∈Br

‖f(χ) − f(χ′)‖L2(ci) > R

)
≤

∑
m,N

P(ΔN,m > R|χm − χ′
m|−β2−βN )

≤
∑
m,N

C2N (R−2ε2−N(1−2β)rβe−dist(i0,In)m−2β)p ≤ C(R−2εrβe−dist(i0,In))p
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since |χm − χ′
m| ≤ Crm−1. We conclude then

P

(
sup

χ,χ′∈Br

‖ζ̃ ′(N)

n − ζ̃(N)
n ‖Vn

≥ λ
1
2γ(N−n)λ−γn

)

≤ Cpr
βpλpγ(N−n)λ(2γp−5)nλ2m. (136)

We still need to deal with the last condition on Am in (74). By (28)
ζ := Γξn−1 is a Gaussian field with covariance

Eζ(t′, x′)ζ(t, x) =
∫ t

0

Hn(t′ − t + 2s, x′ − x)χ(t′ − t + s)χ(s)ds

where χ is smooth with support in [λ2, 2]. Eζ(t′, x′)ζ(t, y) is smooth, compactly
supported in t′−t and exponentially decaying in x−y. We get then by standard
Gaussian estimates [13] for a ≤ 2, |α| ≤ 4

P(‖∂a
t ∂α

x Γξn+1‖L∞(ci) > r) ≤ C(λ)e−c(λ)r2

and thus

P(‖sΓξn−1‖Φn
> λ−2γn) ≤ C(λ)λ2mλ−5ne−c(λ)λ−4n

(137)

Combining (134), (136) and (137) with a Borel–Cantelli argument gives the
claims (72) and (73). �

11.2. Normal Ordering

Since the fields (66) are polynomials in gaussian fields, the computation of their
covariances is straightforward albeit tedious. To organize the computation it is
useful to express them in terms of “normal-ordered” expressions in the field ηn.
This provides also a transparent way to see why the renormalization constant
b is needed. We suppress again the superscript (N) unless needed for clarity.

Define the “normal-ordered” random fields

: ηn := ηn, : η2
n := η2

n − Eη2
n, : η3

n := η3
n − 3ηnEη2

n (138)

and (recall Lemma 5)

δn(t) := E(η(N)
n (t, x))2 − ρN−n. (139)

Then,

η2
n − ρN−n =: η2

n : +δn, η3
n − 3ρN−nηn =: η3

n : +3δnηn

In virtue of Lemma 5 δn terms will turn out to give negligible contribution.
These normal-ordered fields have zero mean and the following covari-

ances:

E : η2
n : (t, x) : η2

n : (s, y) = 2Cn(t, s, x, y)2 (140)

and

E : η3
n : (t, x) : η3

n : (s, y) = 6Cn(t, s, x, y)3. (141)

where Cn is defined in (39).
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Next, we process ωn, ζn and zn:

ωn = 3 : η2
n : ΓN

n : η3
n : +(m2 log λN + m3)ηn + 3δnΓN

n : η3
n : +9 : η2

n

: ΓN
n δnηn + 9δn : ΓN

n δnηn

zn = 6ηnΓN
n : η3

n : +18ηnΓN
n δnηn

zn = 9 : η2
n : ΓN

n : η2
n : +(m2 log λN + m3) + 9δnΓN

n : η2
n : +9 : η2

n : ΓN
n δn

(Recall that ωn(t, x) and zn(t, x) are functions, whereas zn(t, x, s, y) is a ker-
nel). Consider first the terms not involving δn, call them ω̃n, z̃n and z̃n. We
normal order ω̃n and z̃n:

ω̃n = (18C2
nΓN

n − m2 log λN − m3)ηn + 18 : ηnCnΓN
n η2

n : +3 : η2
nΓN

n η3
n :

(142)

z̃n = (18C2
nΓN

n − m2 log λN − m3) + 36 : ηnCnΓN
n ηn : +9 : η2

nΓN
n η2

n : (143)

where the product means pointwise multiplication of kernels, e.g., the operator
C2

nΓN
n has the kernel

Bn(t, x, s, y) := Cn(t, x, s, y)2ΓN
n (t, x, s, y). (144)

For Proposition 17, it suffices to bound separately the covariances of all the
fields in (142) and (143) as well as the δn-dependent ones.

11.3. Regular Fields

We will now prove the claims of Proposition 17 for the fields ζn not requiring
renormalization.

It will be convenient to denote the space-time points (t, x) by the symbol
z. We recall from (67) and (68) the bounds for the kernel K(z′ − z) of the
operator K which imply a similar bound for K̃ of (126):

0 ≤ K̃(z′, z) ≤ Ce− 1
2 |z′−z| := K(z′ − z). (145)

We start with the local fields. Let ζn(z) be one of them and

Eζn(z1)ζn(z2) := Hn(z1, z2)

Then, (Hn is non-negative, see below)

Eρn(z)2 =
∫

K̃(z, z1)K̃(z, z2)Hn(z1, z2)dz1dz2

≤ C

∫
e− 1

2 (|z−z1|+|z−z2|)Hn(z1, z2)dz1dz2 ≤ C‖Hn‖1 (146)

where

Hn(z) := sup
z1−z2=z

Hn(z1, z2)

Since Hn is given in terms of products of the covariances Cn and ΓN
n we get

an upper bound for H by replacing Cn and ΓN
n by the translation invariant

upper bounds Cn and GN
n defined and bounded in Lemma 15. Let us proceed

case by case.
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(a) ζn =: ηi
n :. Using (140) and (141) we have

Hn(z) ≤ Cn(z)i

so by Lemma 15 ‖Hn‖1 ≤ ‖Cn‖i
i < ∞. In the same way, we get

E(ρ′
n(z) − ρn(z))2 ≤ C‖Cn‖i−1

i ‖C(N)
n ‖i ≤ Cλ

5−i
i (N−n) ≤ Cλ

2
3 (N−n)

(b) ζn =: ηnCnΓ(N)
n η2

n :. We have

E : ηn(z1)ηn(z2)2 :: ηn(z3)ηn(z4)2

:= 2Cn(z1, z3)Cn(z2, z4)2 + 4Cn(z1, z4)Cn(z2, z3)Cn(z2, z4)

and so

Eζn(z1)ζn(z3) =
∫

(2Cn(z1, z3)Cn(z2, z4)2 + 4Cn(z1, z4)Cn(z2, z3)Cn(z2, z4))

· S(z1, z2)S(z3, z4)dz2dz4 (147)

where

S(z1, z2) := Cn(z1, z2)Γn(z1, z2) ≤ Sn(z12)

where we use the notation z12 = z1 − z2 and Sn is defined in (124).
Thus,

0 ≤ Eζn(z1)ζn(z3) ≤ 2Cn(z13)
∫

Sn(z12)Sn(z34)Cn(z24)2dz2dz4

+ 4
∫

Sn(z12)Sn(z34)Cn(z14)Cn(z23)Cn(z24)dz2dz4

:= A(z13) + B(z13) (148)

so that

Eρn(z)2 ≤ C(‖A‖1 + ‖B‖1). (149)

Since A = Cn(Sn ∗ Sn ∗ C2
n) we get by Hölder and Young’s inequalities

‖A‖1 ≤ ‖Cn‖p‖Sn ∗ Sn ∗ C2
n‖q ≤ ‖Cn‖p‖Sn‖2

r‖C2
n‖s

where 2 + 1
q = 2

r + 1
s . We can take, e.g., p = 3, q = 3/2, r = 1 and s = 3/2

and by Lemma 15 this is finite. As for B, we write

‖B‖1 = 4
∫

Sn(z − z2)Sn(z4)Cn(z − z4)Cn(z2)Cn(z24)dzdz2dz4

= (Sn ∗ (Cn(Sn ∗ Cn)) ∗ Cn)(0) ≤ ‖Sn‖r‖Cn(Sn ∗ Cn)‖p‖Cn‖q

by Young’s inequality with 2 = 1
r + 1

p + 1
q . Since Cn ∈ La for a < 5 and Sn ∈ Lb

for b < 5/4 we have Sn ∗ Cn ∈ Lc for c < ∞ and so Cn(Sn ∗ Cn) ∈ Lp for p < 5.
So, we may take, e.g., p = q = 2 and r = 1.

In the same way, using (113) and (125) we obtain

E(ρ′
n(z) − ρn(z))2 ≤ Cλγ(N−n)‖χ − χ′‖∞ (150)

for some γ > 0.
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(c) ζn =: η2
nΓN

n η3
n :. Now

E : ηn(z1)2ηn(z2)3 :: ηn(z3)2ηn(z4)3 := 12Cn(z1, z3)2Cn(z2, z4)3

+36Cn(z1, z4)2Cn(z2, z3)2Cn(z2, z4)
+36Cn(z1, z3)Cn(z1, z4)Cn(z2, z3)Cn(z2, z4)2. (151)

The first two terms have the same topology (as Feynman diagrams!) as the A
and B above and we call their contributions with those names again. Thus,

‖A‖1 ≤ ‖C2
n‖p‖ΓN

n ∗ ΓN
n ∗ C3

n‖q ≤ ‖C2
n‖p‖ΓN

n ‖2
r‖C3

n‖s

where 2+ 1
q = 2

r + 1
s . Now ΓN

n is in Lr for r < 5/3. So, we may take for instance
p = 2, q = 2, s = 4/3, r = 8/7 so that ‖A‖1 ≤ C‖Cn‖5

4‖ΓN
n ‖2

8/7. For B we get

‖B‖1 = 36(ΓN
n ∗ (Cn(ΓN

n ∗ C2
n)) ∗ C2

n)(0) ≤ 36‖ΓN
n ‖r‖Cn(ΓN

n ∗ C2
n)‖p‖C2

n‖q

with 2 = 1
r + 1

p + 1
q . Since Cn ∈ La for a < 5 and ΓN

n ∈ Lb for b < 5/4 we have
by Young ΓN

n ∗ C2
n ∈ Lc for c < 5 and so Cn(ΓN

n ∗ Cn) ∈ Lp for p < 5/2. So we
may take, e.g., p = q = 2 and r = 1.

Finally, the last term in (151), call it D, is bounded by

‖D‖1 ≤ 36
∫

Cn(z)ΓN
n (z − z2)ΓN

n (z4)Cn(z − z4)Cn(z2)Cn(z24)2dzdz2dz4

:=
∫

f(z2, z4)g(z2, z4)dz2dz4

where f(z2, z4) =
∫ Cn(z)ΓN

n (z − z2)Cn(z − z4)dz. We have∫
f(z2, z4)dz2 = (Cn ∗ Cn)(z4) (152)

which is in L∞ since Cn ∈ Lp, p < 5. Hence,

‖D‖1 ≤ C

∫
g(z2, z4)dz2dz4 = C(Cn ∗ C2

n ∗ ΓN
n )(0) < ∞

since ΓN
n ∈ L1 and Cn ∗ C2

n ∈ L∞.
Now, we turn to the bi-local fields ζ(z1, z2) and set

Eζ(z1, z2)ζ(z3, z4) := Hn(z)

We proceed as in (146)

Eρn(z′, z)2 ≤ C

∫
(R×Tn)4

e− 1
2 (|z−z1|+|z−z3|+|z′−z2|+|z′−z4|)Hn(z)dz. (153)

Let

Y := sup
i

∑
j

sup
z′∈ci,z∈cj

Eρn(z′, z)2ec|z−z′|.

(130) follows from Y < ∞. Let

Hn(z) := sup
u

Hn(z1 + u, z2 + u, z3 + u, z4 + u)e
1
2 (|z1−z2|+|z3−z3|)
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We have

Y ≤ C sup
z

×
∫
(R×Tn)4

e−
1
2 (|z−z1|+|z−z3|+|z′−z2|+|z′−z4|+|z1−z2|+|z3−z3|)ec|z−z′|Hn(z)dz.

The integrand is actually independent on z as Hn is translation invariant:

Hn(z) = H̃n(z14, z24, z34)

with H̃n(z1, z2, z3) = H(z1, z2, z3, 0). We can then conclude

Y ≤ C‖H̃n‖1

i.e., we need to show for the various bi-local fields that ‖H̃n‖1 < ∞. Let us
again proceed by cases.
(d) ζn =: ηnCnΓN

n ηn :. We have

e
1
2 (|z12|+|z34|)Hn(z)) ≤ S̃n(z12)S̃n(z34)(Cn(z13)Cn(z24) + Cn(z14)Cn(z23))

where S̃n(z) = ec|z|Sn(z) so that

‖H̃n‖1 ≤ 2‖S̃n ∗ Cn‖2
2 < ∞

since by Lemma 15, S̃n is in Lp, p < 5/4 and Cn is in Lp, p < 5 so that
S̃n ∗ Cn ∈ Lp, p < ∞. (131) goes in the same way where at least one of the Cn

or Sn is replaced by C(N)
n or S(N)

n .
(e) ζn =: η2

nΓN
n η2

n :. We get

e
1
2 (|z12|+|z34|)Hn(z)) ≤ 4Γ̃N

n (z12)Γ̃N
n (z23)(Cn(z13)2Cn(z24)2

+ Cn(z14)2Cn(z23)2 + Cn(z13)Cn(z24)Cn(z14)Cn(z23))

The first two terms on the RHS have the same topology as in (d): their con-
tribution to ‖H̃n‖1 is bounded by C‖Γ̃N

n ∗ C2
n‖2

2 which is finite since Γ̃N
n is in

L1 and C2
n in L2.

The third term is treated as the analogous one D in (c), let us call it D
again. Again its L1 norm is given by ‖D‖1 =

∫
f(z2, z3)g(z2, z3)dz2dz3 where

f is as above and is in L∞. g(z2, z3) = Cn(z2 − z3)Cn(z2)ΓN
n (z3)and thus

‖D‖1 ≤ C

∫
g(z2, z4)dz2dz4 = C(Cn ∗ Cn ∗ ΓN

n )(0) < ∞.

Let us finally turn to the δn terms in ωn, ζn and zn. Starting with ωn,
and the term ζn = δnΓN

n : η3
n : we have

Hn(z1, z2) ≤ δn(t1)δn(t2)(ΓN
n ∗ C3

n ∗ ΓN
n )(z12).

The function gn = ΓN
n ∗ C3

n ∗ ΓN
n is in Lp, p < 5/3. Letting fn(zi) =

e−c|z−zi|δn(ti) we see from Lemma 5 that fn ∈ Lp, p < 2 and so

Eρn(z)2 ≤ C(fn ∗ gn ∗ fn)(0)

is finite by Young. To get the bound (131) we use (43) to get for p < 2

‖f ′
n − fn‖p ≤ Cλ

2−p
2p (N−n)‖χ − χ′‖∞.
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Consider next the case where δn is on the “other side”: ζn =: η2
n : ΓN

n δnηn.
Replacing Cn by the translation invariant upper bound Cn we have

Hn(z1, z2) ≤
∫

Gn(z1, z2, z3, z4)δn(t3)δn(t4)dz3dz4

with

Gn(z) = ΓN
n (z13)ΓN

n (z24)(2Cn(z12)2Cn(z34) + 4Cn(z12)Cn(z13)Cn(z24)
+ 4Cn(z12)Cn(z14)Cn(z23))

At the cost of replacing Cn and ΓN
n by C̃n and Γ̃N

n we may replace δn by the f
in the upper bound for Eρn(z)2:

Eρn(z)2 ≤
∫

G̃n(z1, z2, z3, z4)f(z3)f(z4)dz1dz2dz3dz4

=
∫

gn(z3 − z4)f(z3)f(z4)dz3dz4

This is bounded if gn is in Lp, p > 1 which is now straightforward.
As the last case consider an example of a bi-local field the second last

term in zn: ζn = δnΓN
n : η2

n :. By the now familiar steps

Eρn(z)2 ≤
∫

g(z1 − z2)f(z1)f(z2)dz1dz2

with g = Γ̃N
n ∗ C̃2 ∗ Γ̃N

n in Lp, p < 5/2. �

11.4. Renormalization

We are left with the first terms in (142) and (143) that require fixing the
renormalization constants m2 and m3. Define (product is of kernels as usual)

B(N)
n = (C(N)

n )2ΓN
n (154)

Let B∞ denote the set of bounded operators L∞(R×Tn) → L∞(R×R
3)

and B1 the ones L∞,1(R × Tn) → L∞(R × R
3) (here L∞,1 has L∞-norm in t

and L1-norm in x). We prove:

Proposition 18. There exist constants βi s.t. the operator

R(N)
n := K̃(B(N)

n − (β2 log λN−n + β3) id)

satisfies

‖R(N)
n ‖Bi

≤ C, ‖R′(N)
n − R(N)

n ‖Bi
≤ Cλ(N−n)‖χ − χ′‖∞, i = 1,∞ (155)

uniformly in 0 ≤ n ≤ N < ∞. β2 universal (i.e., independent on χ).

We fix the renormalization constants mi = 18βi. This means that, e.g.,
the first term in (142) becomes

18R(N)
n ηn + (m2 log λn + m3)ηn.

The second term once multiplied by λ2n fits into the bound (76).
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The i = ∞ case of Proposition 18 takes care of the deterministic term in
(143) since

‖hn−m(B(N)
n − β1 log λN−n + β2)φ‖Vn

≤ ‖R(N)
n ‖B∞‖φ‖∞.

and ‖φ‖∞ ≤ ‖φ‖Φn
. The i = 1 case is needed for the first term in (142).

Indeed, we have

Eρ(N)
n (z)2 =

∫
(R(N)

n (t, t1) ∗ R(N)
n (t, t2) ∗ C(N)

n (t1, t2))(0)dt1dt2

where ∗ is spatial convolution. We have

sup
t1,t2

‖C(N)
n (t1, t2)‖1 < ∞

so that indeed

Eρ(N)
n (z)2 ≤ C‖R(N)

n ‖B∞‖‖R(N)
n ‖B1 .

Recall also that by (146) a sufficient condition for ‖K̃B‖Bi
to be bounded is

sup
t

|B(t + ·, t, ·)| ∈ L1(R × Tn). (156)

Proof. Let us first remark that it suffices to work in R
3 instead of Tn. Indeed,

recall B
(N)
n = 18(C(N)

n )2B(N)
n where the product is defined as pointwise mul-

tiplication of kernels. Let C̃
(N)
n and Γ̃(N)

n be given by (39) and (37) where the
Tn heat kernels Hn are replaced by the R

3 heat kernel H and similarly let

δB(N)
n (t′, t, x) := B(N)

n (t′, t, x) − B̃(N)
n (t′, t, x)

From (118) and a similar representation for Γ(N)
n , we infer that C

(N)
n − C̃

(N)
n

and Γ(N)
n − Γ̃(N)

n are in Lp(R×Tn) for all 1 ≤ p ≤ ∞. Proceeding as in Lemma
15 we then conclude supt |δB(N)

n (t+τ, t, x)| is in Lp for p < 5/4 and the analog
of (125) holds. Hence, (156) holds.

For the rest of this Section, we work in R × R
3 and fix the UV cut-

off λN−n := ε and denote the operators simply by C and Γ. Also, we set
χε(s) := χ(s)−χ(s/ε2). With these preliminaries, we will start to work towards
extracting from the operator B

(N)
n (144) the divergent part responsible for the

renormalization. First, we will derive a version of the fluctuation–dissipation
relation relating C and Γ:

∂t′C(t′, t) = −1
2
Γ(t′, t) + A(t′, t). (157)

where A(t′, t) will give a non-singular contribution to B. To derive (157) write
(39) in operator form and differentiate in t′:

∂t′C(t′, t) = e(t′−t)Δ

∫ t

0

(Δ + ∂t′)e2sΔχε(t′ − t + s)χε(s)ds
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Next, write Δe2sΔ = 1
2∂se2sΔ and integrate by parts to get

∂tC(t′, t)

= −1
2
e(t′+t)Δχε(t′)χε(t)+e(t′−t)Δ

∫ t

0

e2sΔ(∂t− 1
2
∂s)(χε(t′ − t + s)χε(s))ds

:= a0(t′, t) + ã(t′, t)

Now, recall that χε(s) = χ(s) − χ(ε−2s) and write denoting τ = t′ − t:(
∂t′ − 1

2
∂s

)
(χε(t′ − t + s)χε(s)) = ρ1(τ, s) + ρ2(τ, s) + ρ3(τ, s) (158)

with

ρ1(τ, s) =
1
2
(−χε(τ + s)χ′(s) + χ′(τ + s)χε(s))

ρ2(τ, s) = −1
2
χε(s)∂sχ(ε−2(τ + s))

ρ3(τ, s) =
1
2
χε(τ + s)∂sχ(ε−2s)

and correspondingly

ã(t′, t) = a1(t′, t) + a2(t′, t) + a3(t′, t).

ρ1 localizes s-integral to s > O(1) and gives a smooth contribution as ε → 0.
dμ(s) := −∂sχ(ε−2s)ds is a probability measure supported on [ε2, 2ε2] so ρ2

localizes s and τ to O(ε2). The main term comes from ρ3

a3(t′, t) = −1
2
eτΔ

∫ t

0

e2sΔχε(τ + s)dμ(s)

= −1
2
Γ(t′, t) + a4(t′, t) (159)

where

a4(t′, t) =
1
2
eτΔ

∫ t

0

(χε(τ) − e2sΔχε(τ + s))dμ(s) (160)

(157) follows then with

A(t′, t) = a0(t′, t) + a1(t′, t) + a2(t′, t) + a4(t′, t). (161)

Inserting (157) into (144) and using
∫

dy

∫ t

0

ds∂tC(t, s, x − y)3φ(s, y)

= ∂t

∫
dy

∫ t

0

dsC(t, s, x − y)3φ(s, y) −
∫

C(t, t, x − y)3φ(t, y)dy

we obtain

(Bφ)(t) = D(t) ∗ φ(t) + ∂t(Eφ)(t) + (Fφ)(t) (162)
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with

D(t, x) = 12C(t, t, x)3

(Eφ)(t, x) = −12∂t

∫
dy

∫ t

0

dsC(t, s, x − y)3φ(s, y)

(Fφ)(t, x) = −36
∫

dy

∫ t

0

dsA(t, s, x − y)C(t, s, x − y)2φ(s, y).

We estimate these three operators in turn.
(a) D. The Fourier transform of D in x is given by

D̂(t, p) =
∫

Ĉ(t, t, p + k)Ĉ(t, t, k + q)Ĉ(t, t, q)dkdq (163)

where

Ĉ(t, t, q) =
∫ t

0

e−sq2
χε(s)2ds (164)

The integral in (163) diverges at p = 0 logarithmically as ε → 0. Doing the
gaussian integrals over k, q, we have

D̂(t, p) = (4π)−3

∫
[0,t]3

e−α(s)p2
d(s)−3/2

3∏
i=1

χε(si)2dsi

where α(s) := − s1s2s3
d(s) and d(s) := s1s2 + s1s3 + s2s3. Let us study the cutoff

dependence of D̂. First, by differentiating and changing variables

ε∂εD̂(t, p) = − 3
32π3

∫
[0,t/ε2]3

e−α(s)(εp)2d(s)−3/2s1∂s1χ(s1)2ds1

×
3∏

i=2

(χ(ε2si)2 − χ(si)2)dsi. (165)

Let

αε(t, p)

:= − 3
32π3

∫
[0,t/ε2]3

e−α(s)(εp)2d(s)−3/2s1∂s1χ(s1)2ds1

3∏
i=2

(1 − χ(si)2)dsi.

(166)

and set α̃ε(t, p) = ε∂εD̂(t, p) − αε(t, p). Since the s1 integral is supported on
[1, 2] and the others on si ≥ 1 we have d(s) � s2s3, α(s) � 1 which leads to

|α̃ε(t, p)| ≤ C

∫
R

3
+

(s2s3)−3/21[1,2](s1)1[ε−2,∞)(s2)1[1,∞)(s3) ≤ Cε. (167)

Furthermore, let α̃′
ε(t, p) be gotten by replacing the lower cutoffs χ(si) by

another one χ′(si). Then,

|α̃′
ε(t, p) − α̃ε(t, p)| ≤ Cε‖χ − χ′‖∞. (168)
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Since α̃0(t, p) = 0 we get that
∫ ε

0
α̃ε′(t, p)dε′

ε′ satisfies (167) and (168) as well.
Thus, all the divergences come from αε(t, p). Note that, α0(t, p) = α0 is inde-
pendent on t and p. Set aε(t, p) = αε(t, p) − α0. We get

|aε(t, p)| ≤ C((ε2p2 + ε/
√

t) ∧ 1) (169)

We fix the renormalization constant β2 = α0 and define

d(t, p) := D̂(t, p) − α0 log ε. (170)

Combining above, we get

|d(t, p)| =
∣∣∣∣
∫ 1

ε

(α̃ε′(t, p) + aε′(t, p))
dε′

ε′

∣∣∣∣ ≤ C(1 + log(1 + p2 + 1/
√

t)).(171)

Next, we write

αε(t, p) = − 1
32π3

∫
[0,t/ε2]3

e−α(s)(εp)2d(s)−3/2
∑

i

si∂si

3∏
i=1

(1 − χ(si)2)dsi

= − 1
32π3

∫ ∞

0

dλ

∫
[0,t/λε2]3

δ

(
3∑

i=1

si − 1

)
e−λα(s)(εp)2d(s)−3/2∂λ

×
3∏

i=1

(1 − χ(λsi)2)dsi (172)

At ε = 0 this implies after an integration by parts

α0 = − 1
32π3

∫
R

3
+

δ

(
3∑

i=1

si − 1

)
d(s)−3/2

3∏
i=1

dsi.

That is α0 is universal (i.e., independent of χ). Finally, let us vary the cutoff.
Replace χ by χσ = σχ+(1−σ)χ′. Since ∂σaε = ∂σ(aε −a0) we get from (172)

∂σαε(t, p) =
∫ ∞

0

dλ

∫
[0,t/λε2]3

α(s)(εp)2e−λα(s)(εp)2d(s)−3/2dμ(s)

+
3∑

i=1

∫ ∞

0

dλ(t/λ2ε2)
∫

[0,t/λε2]2
e−λα(s)(εp)2d(s)−3/2dμ(s)|si=t/λε2

(173)

where

dμ(s) =
3

16π3
δ

(
3∑

i=1

si − 1

)
(χσ(λs1) − χ′

σ(λs1))χσ(λs1)
3∏

i=2

(1 − χσ(λsi)2).

Start with the first term in (173). Since λsi ≥ 1 the λ-integral is supported in
λ ≥ 3. On the support of χσ(λs1) − χ′

σ(λs1) s1 ∈ [λ−1, 2λ−1]. By symmetry
we may assume s2 ≤ s3 and then s3 ≥ 1/6. Hence, in the support of the χ’s
α � s1 and d � s2. We get the bound



532 A. Kupiainen Ann. Henri Poincaré

C(εp)2e−(εp)2
∫ ∞

1/3

dλ

∫ 2/λ

1/λ

ds1

∫ 1

1/λ

ds2s
−3/2
2 ε‖χ − χ′‖∞

≤ C(εp)2e−(εp)2‖χ − χ′‖∞.

For the second term, if i = 1 then s1 = t/λε2 ∈ [1/λ, 2/λ] implies t ∈ [ε2, 2ε2].
Again α � s1, d � s2 ≤ s3 and we end up with the bound

C1(t ∈ [ε2, 2ε2])‖χ − χ′‖∞.

If i �= 1 the same bound results. We may summarize this discussion in

|d(t, p) − d′(t, p)| ≤ C(ε + 1(t ∈ [ε2, 2ε2])‖χ − χ′‖∞. (174)

The operator K(t′, t)d(t) acts as a Fourier multiplier with 1
2e−|t′−t|(p2 +

1)−2d(t, p). Since d(t, p) is analytic in a strip |Im p| ≤ c we get in x-space
from the above bounds

|(K(t′, t)d(t))(x)| ≤ Ce−|t′−t|−c|x|(1 + log(1 + t−
1
2 ))

|(K(t′, t)(d′(t) − d(t)))(x)| ≤ Ce−|t′−t|−c|x|(ε + 1(t ∈ [ε2, 2ε2]))‖χ − χ′‖∞.

Hence,

|(K̃dφ)(t′, x)| ≤
∫

e− 1
2 |t′−t|−c|x−y|(1 + log(1 + t−

1
2 ))φ(t, y)dtdy

which is in L∞ for φ ∈ L∞ × L∞ and for φ ∈ L∞ × L1 as well. This gives the
first bound in (155). The second is similar.
(b) E. We have Eφ = ∂tC

3φ where C3(t, s, x) := C(t, s, x)3. Thus integrating
by parts

Khn−mEφ = K∂thn−mC3φ + ∂tKhn−mC3φ. (175)

By (67) |∂tK(z)| = K(z) so we may use (145) for the second term as well to
get

‖K̃hn−mEφ‖∞ ≤ C‖K ∗ C3 ∗ φ‖∞.

By Lemma 15 C3 is in L1(R × Tn) and hence K ∗ C3 is in L1(R × Tn) and
in L1(R) × L∞(Tn) so that the first estimate of (155) follows. The second is
similar.
(c) F . By (161), F has four contributions, call them F0, F1, F2, F4. Start with
F1. Since ρ1 is supported in s ≥ 1 the kernel is bounded (in fact smooth)

|a1(t′, t, x)| ≤ Ce−c|x].

and so by (120) we get

|F1(t + τ, t, x)| ≤ Ce−c|x](x2 + τ)−1.

Hence, (156) holds for F1 uniformly in ε and the first bound in (155) follows.
For the second one we proceed as in Lemma 15 to get for f1(τ, x) := supt |F1(t+
τ, t, x) − F ′

1(t + τ, t, x)| that ‖f1‖1 ≤ Cεγ for some γ > 0.
Consider next F2 = −36a2C

2. We show:

F2(t′, t, x) = ε−5p((t′ − t)/ε2, x/ε) + r(t′, t, x) (176)
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where

|p(τ, x)| ≤ Ce−cx2
1τ≤2 (177)

and r satisfies (155). To derive (176) we note that by a change of variables

a2(t + τ, t, x) = −1
2

∫ t/ε2

0

H(τ + 2ε2s, x)(1 − χ(s))∂sχ(τ/ε2 + s)ds

where we also noted since ∂sχ is supported on [1, 2] χ(ε2s) = 1. Using scaling
property of the heat kernel H(τ + ε2s, x) = ε−3H(τ/ε2 + 2s, x/ε) we get then

a2(t + τ, t, x) = ε−3α

(
τ

ε2
,

t

ε2
,
x

ε

)

with

α(τ, t, x) = −1
2

∫ t

0

H(τ + s, x)(1 − χ(s))∂sχ(τ + s)ds. (178)

Note that, α depends on t only on t ≤ 2 and is bounded by

|α(τ, t, x)| ≤ Ce−cx2
1τ≤2, |α(τ, t, x) − α(τ,∞, x| ≤ Ce−cx2

1τ≤21t≤2.

Comparing two lower cutoffs χ and χ′ we get

|α(τ, t, x) − α′(τ, t, x| ≤ Ce−cx2
1τ≤2‖χ − χ′‖∞.

By similar manipulations, we obtain

C(t + τ, t, x)2 = ε−2c

(
τ

ε2
,

t

ε2
,
x

ε
; ε

)2

where

c(τ, t, x; ε) =
∫ t

0

H(τ + 2s, x)(χ(ε2(τ + s)) − χ(τ + s))(χ(ε2s) − χ(s))ds.

Since H(τ + 2s, x) ≤ C(1 + s)−3/2 on support of the integrand we get

|c(τ, t, x; ε)| ≤ C(1 + |x|)−1

and

|c(τ, t, x; ε) − c(τ,∞, x; 0)| ≤ C(ε(1 + ε|x|)−1 + (1 + |x| + t)− 1
2 )

with an extra ‖χ − χ′‖∞ factor if we compare two lower cutoffs.
(176) follows with

p(τ, x) = −36c(τ, x,∞, 0)2α(τ,∞, x).

The error term satisfies

|r(t + τ, t, x)| ≤ Cε−5(ε + (1 + t/ε2)− 1
2 + 1t≤2ε2)e−cx2/ε21τ≤2ε2 (179)

with an extra ‖χ − χ′‖∞ factor if we compare two lower cutoffs. Hence,

|(K̃rφ)(t′, x′)| ≤
∫

e−c|t′−τ−t|+|x′−x||r(t + τ, t, x − y)|φ(t, y)|dτdx ≤ Cε‖φ‖

both in the norm L∞ × L∞ and in L∞ × L1. This and similar statement with
‖χ − χ′‖∞ gives (155).
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Let p̃ be the operator with the kernel ε−5p((t′−t)/ε2, (x′−x)/ε)−p0δ(z′−
z) where p0 =

∫
p(z)dz. Then,

(Khn−mp̃)(z + v, z) =
∫

(K(v − uε)h(z + uε) − K(v)hn−m(z))p(u)du.(180)

where uε = (ε2u0, εu). The bound (177) then implies ‖K̃p̃φ‖∞ ≤ Cε‖φ‖ in
both norms. A similar statement holds with ‖χ − χ′‖∞. p0 contributes the
renormalization constant m2.

The analysis of F4 = −36a4C
2 parallels that of F2 so we are brief:

F2(t′, t, x) = ε−5q((t′ − t)/ε2, x/ε) + s(t′, t, x) (181)

where s satisfies (155) and

q(τ, x) = −36c(τ, x,∞, 0)2a(τ, x)

with

a(τ, x) =
∫

(H(τ, x)(1 − χ(τ)) − H(τ + 2s, x)(1 − χ(τ + s))∂sχ(s)ds.

Since ∂sχ is supported on [1, 2] and 1 − χ on τ ≥ 1 we get |a(τ, x)| ≤ (1 +
τ)−5/2e−cx2/τ . Since c(τ, x,∞, 0) ≤ C(1 + |x|)−1 we end up with

|q(τ, x| ≤ C(1 + τ)−5/2(1 + |x|)−2e−cx2/τ .

We may now proceed as in (180).
The analysis of the term F0 proceeds along similar lines and is omitted.

�
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