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Semi-Classical Analysis of Non-Self-Adjoint
Transfer Matrices in Statistical Mechanics I

Margherita Disertori and Sasha Sodin

Abstract. We propose a way to study one-dimensional statistical me-
chanics models with complex-valued action using transfer operators. The
argument consists of two steps. First, the contour of integration is de-
formed so that the associated transfer operator is a perturbation of a
normal one. Then the transfer operator is studied using methods of semi-
classical analysis. In this paper, we concentrate on the second step, the
main technical result being a semi-classical estimate for powers of an
integral operator which is approximately normal.

1. Introduction

Operator-theoretic methods are known to be of great help in one-dimensional
statistical mechanics.

Consider the following prototypical example. Let V : R → R be a po-
tential growing sufficiently fast at infinity. It is known that, for any value of
W > 0 , there exists a unique probability measure (Gibbs measure) μV,W on
the space of configurations in one dimension R

Z such that, for every M,N ∈ N,
the conditional probability density at φ ∈ R

Z given φ|{−M,··· ,N}c is propor-
tional to

exp

⎧
⎨

⎩
−

N∑

j=−M

V (φj) −
N∑

j=−M−1

W 2(φj − φj+1)2

⎫
⎬

⎭
. (1.1)

The existence of μV,W is a consequence of general theory, independent of the
dimension of the lattice (see [9, Chapter 7]). The uniqueness can be proved
using the transfer matrix formalism described below; it also follows for example
from the van Hove theorem as stated in the book of Ruelle [9, Section 5.6.6],
combined with the Dobrushin–Shlosman theorem [4].
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One says that the measure μV,W corresponds to the (real-valued) action

S(φ) =
∑

j

V (φj) +
∑

j

W 2(φj − φj+1)2. (1.2)

The properties of μV,W , such as exponential decay of correlations (be-
tween φj and φk as |j − k| → ∞), are encoded in the spectral structure of
the self-adjoint operator K (called the transfer operator, or transfer matrix),
acting on L2(R) as an integral operator with kernel given by

K(x, y) = exp
{

−W 2(x − y)2 − V (x) + V (y)
2

}

. (1.3)

When W � 1 is large, semi-classical analysis allows to relate the spectral
properties of K to those of a simpler operator K̃, which depends only on the
behaviour of V at its minima. If the minima of V are non-degenerate, the
potential corresponding to K̃ is quadratic, and thus K̃ is referred to as the
harmonic approximation to K. In this case, computations can be performed
explicitly; the small quantity W−1 plays the rôle of the semi-classical parame-
ter �.

In the case when V has a unique non-degenerate minimum V (0) = 0, K̃
is given by the harmonic oscillator

K̃(x, y) = exp
{

−W 2(x − y)2 − V ′′(0)
4

(x2 + y2)
}

. (1.4)

When V has several minima, K is approximated by a direct sum of several
harmonic oscillators.

The semi-classical approach to various problems of one-dimensional sta-
tistical mechanics is presented in detail in the monograph of Helffer [5].

On the other hand, in many questions in statistical mechanics the poten-
tial V is complex-valued. This problem, often referred to as the “sign problem”
or “complex action problem”, is inherent, for example, to lattice quantum chro-
modynamics (see for example Muroya et al. [8] and Splittorff and Verbaarschot
[12]), and also arises in supersymmetric models appearing in the study of ran-
dom operators (see the reviews of Spencer [10,11]).

A naive attempt to apply the methods tailored for real-valued action
to this situation encounters immediate obstacles. In the context of transfer
operators, neither K nor K̃ is self-adjoint; thus perturbation theory is not
easily set on a rigorous basis, and on the other hand the spectrum of K is
not directly connected to the semigroup (Kn)n≥0. We refer to the articles of
Davies [1,2] and further to the monograph of Helffer [6, Chapters 13–15] and
to the PhD thesis of Henry [7], where difficulties in the semi-classical analysis
of non-self-adjoint operators are discussed, along with some positive results.

Our goal in this paper is to suggest a strategy which allows to apply
semi-classical analysis to models with complex-valued action, in spite of these
difficulties. Here we apply it to a toy model (with one saddle); in a subsequent
work, we hope to apply it to a statistical mechanics model arising from the
supersymmetric analysis of a class of random band matrices; see [3] for an
analysis of a related three-dimensional model, and the review of Spencer [10]
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for a discussion of supersymmetric models arising from random band matrices,
and the possible transfer matrix approach.

The strategy we suggest is as follows. Before setting up the transfer oper-
ator, we deform the contour of integration so that the harmonic approximation
K̃ is almost normal (in appropriate sense). Then we set up the transfer op-
erator and analyse it using (semi-) classical tools. In this paper, we restrict
ourself to the simplest deformation

φ ← ζφ, |ζ| = 1; (1.5)

in general, a more complicated deformation (similar to (1.5) near each saddle
point but different away from the saddles) may be required.

To motivate the idea, let us consider the differential operator

L = − 1
W 2

d2

dx2
+ (a + ib)x2, a > 0.

One can always find ζ, |ζ| = 1, so that after the change of variables x ← ζx
the operator L becomes normal, i.e. a scalar multiple of

L̂ = − 1
W 2

d2

dx2
+ |a + ib|x2.

In a similar way, for an integral operator K, one can rotate the contour so
that the harmonic approximation to K near the saddle point (i.e. an operator
with quadratic V ) becomes normal.

The main result of this paper justifies the approximation K ≈ K̃ for
a class of operators K of a form similar to (1.3) by the corresponding har-
monic approximation K̃, in the case when K̃ is almost normal. The precise
statement and conditions are given in Sect. 2 below. The proof of this result
occupies the central part of this paper, and appears in Sect. 4. It is preceded by
Sect. 3, in which several properties of the non-self-adjoint harmonic oscillator
are collected.

In Sect. 5, we show an application to a statistical mechanics model with
complex-valued potential; namely, we find the sharp exponential decay of cor-
relations for this model.

2. Main Result

2.1. Statement of the Main Technical Result

Let K : L2(R) → L2(R) be an operator defined by its kernel

K(x, y) = exp
{

−W 2ζ2(x − y)2 − 1
2
U(x) − 1

2
U(y)

}

, (2.1)

where ζ ∈ C is a complex number with |ζ| = 1 and �ζ2 > 0; W > 0 is a large
parameter, and the potential U : R → C satisfies the following assumptions:
U1) U is smooth and U(0) = U ′(0) = 0;
U2) ζ2U ′′(0) > 0; [this condition ensures that the operator is approximately

normal near the saddle]
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U3) �U(x) ≥ 1
C min(1, |x|2) for all x ∈ R; [in particular, 0 is the unique

minimum of �U ]
U4) U has an analytic extension to a strip |
z| ≤ c about the real axis which

satisfies |U ′(z)| ≤ C(max(1,�[U(z)]))γ for some γ > 1 and all z in this
strip.

We use the analyticity assumption to justify saddle point approximations; the
second red part of the condition is a mild regularity assumption which rules
out wildly oscillating potentials such as x2(1 + exp(sin ex)).

Main Proposition. Let K be an operator given by (2.1), where U satisfies the
assumptions U1)–U4). Denote

α = W
√

ζ2U ′′(0)/2, μ =
√

π

W 2ζ2 + α
, (2.2)

and

gα(x) =
(

2α

π

)1/4

exp(−αx2). (2.3)

Let

K =
√

π

W 2ζ2 + α

(
A B
C D

)

= μ

(
A B
C D

)

(2.4)

be the block representation of K corresponding to the decomposition L2(R) =
Cgα⊕(Cgα)⊥; more formally, if K̂ = μ−1K, and P is the orthogonal projection
to g⊥

α ,
(

A B
C D

)

=
(

(1 − P )K̂(1 − P ) (1 − P )K̂P

PK̂(1 − P ) PK̂P

)

.

Then
(

A B
C D

)

=

(
1 + O(W−1−δ) O(W−1−δ)

O(W−1−δ) of norm ≤ 1 −
√

|U ′′(0)|
2

�ζ2

W + O(W−1−δ)

)

,

meaning that

A = 1 + O(W−1−δ), (2.5)

‖B‖, ‖C‖ = O(W−1−δ), (2.6)

‖D‖ ≤ 1 −
√

|U ′′(0)|
2

�ζ2

W
+ O(W−1−δ); (2.7)

the exponent δ > 0 depends only on γ, and the implicit constants in the O-
notation depend on γ and the implicit constants in the assumptions.

Note that by assumption U2) above α > 0, hence gα is a real-valued func-
tion. Here and forth, we slightly abuse notation and identify scalar multiples
of 1 − P with complex numbers.
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2.2. The Main Corollary

Let λ0 be the largest eigenvalue (in absolute value) of K; the existence of λ0

is part of the statement of Corollary 2.1 below. Let u0 be the corresponding
eigenfunction. Since u0 is complex valued, we can fix the following normalisa-
tion conditions:

‖u0‖2 = 〈u0, u0〉 = 1, and 〈u0, gα〉 ≥ 0, (2.8)

where gα was defined in (2.3) above. The Main Proposition yields the following
corollary:

Corollary 2.1. In the setting of the Main Proposition, K has a largest eigen-
value (in absolute value), which satisfies

λ0 =
√

π

W 2ζ2 + α
(1 + O(W−1−δ)) = μ(1 + O(W−1−δ)), (2.9)

and the corresponding eigenfunction u0 (with the normalisation conditions
(2.8)) satisfies ‖u0 − gα‖ ≤ CW−δ. For any natural n and any u in the in-
variant subspace ū⊥

0 of K,

‖Knu‖ ≤ |λ0|n
(

1 −
√

|U ′′(0)|
2

�ζ2

W
+ O(W−1−δ)

)n

‖u‖. (2.10)

We remark that (2.9) can be restated as

λ0 = λ̃0(1 + O(W−1−δ)),

where λ̃0 is the largest eigenvalue of the harmonic approximation

K̃(x, y) = exp
{

−W 2ζ2(x − y)2 − U ′′(0)
4

(x2 + y2)
}

. (2.11)

This remark is justified by the formulæ of Sect. 3 below.

Proof of Corollary 2.1. According to the Main Proposition, K̂ = μ−1K (with
the normalising factor μ given by (2.2)) has the block structure

K̂ =
(

1 + O(W−1−δ) O(W−1−δ)
O(W−1−δ) D

)

with respect to the decomposition L2(R) = Cgα ⊕ (Cgα)⊥. Set

K̂t =
(

At Bt

Ct D

)

= tK̂ + (1 − t)
(

1 0
0 D

)

, 0 ≤ t ≤ 1.

From (2.7), the largest eigenvalue of K̂0 is equal to 1, whereas the rest of the
spectrum lies in a disc of radius 1−const/W . Let us show that, as t varies from
0 to 1, the resolvent Rz[K̂t] = (K̂t − z)−1 of K̂t remains bounded on a circle
C of radius O(W−1−δ) about 1. This will imply that the spectral projection

Pt =
1

2πi

∮

C
Rz[K̂t]dz

is a continuous function of t ∈ [0, 1], whence the rank of Pt is identically equal
to 1, its value at t = 0.
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Let R > 0 be a large positive number, to be chosen shortly. We shall
verify that the operator D − z and the Schur complement

St(z) = (At − z) − Bt(D − z)−1Ct

are invertible on the circle |z − 1| = RW−1−δ for all t ∈ [0, 1] (actually, the
norm of the inverse is bounded uniformly in t). Therefore, we can apply the
Schur–Banachiewicz formula for the inverse of a block operator, according to
which the resolvent Rz[K̂t] is given by

Rz[K̂t]

=
(

S−1
t −S−1

t Bt(D − z)−1

−(D − z)−1CtS
−1
t (D − z)−1 + (D − z)−1CtS

−1
t Bt(D − z)−1

)

.

One can choose R > 0 such that for all z on the circle |z − 1| = RW−1−δ and
all t ∈ [0, 1] one has |At − z| ≥ R

2 W−1−δ. By (2.5), this choice is independent
of W . Hence the Schur complement admits the bound

|St(z)| ≥ R

2
W−1−δ − O(W−2−2δ × W ) ≥ R

4
W−1−δ.

Then we have:

|St(z)−1| ≤ 4
R

W 1+δ.

Similarly, the norms of the other three blocks of Rz[K̂t] are bounded, thus the
application of the Schur–Banachiewicz formula is justified, and the norm of the
resolvent is bounded for these z, uniformly in 0 ≤ t ≤ 1. Hence K̂0 and K̂1 have
the same number of eigenvalues in the interior of the circle |z −1| ≤ RW−1−δ,
i.e. K has a unique eigenvalue λ0 satisfying (2.9). The eigenvalue λ0 is the
largest one in absolute value due to the estimate (2.10) which we shall prove
shortly.

Next, let u0 be an eigenfunction corresponding to λ0, with normalisation
conditions (2.8). Then we can decompose u0 as

u0 = pgα + u⊥
0 , where p = 〈u0, gα〉, 〈u⊥

0 , gα〉 = 0;

the Main Proposition implies

u1 = K̂u0 =
[
(1 + O(W−1−δ))p + O(W−1−δ)

√
1 − |p|2

]
gα + u⊥

1 ,

where

‖u⊥
1 ‖ ≤ O(W−1−δ)|p| +

(

1 − 1
CW

)
√

1 − |p|2.

On the other hand,

u1 = λ̂0u0 = pλ̂0gα + λ̂0u
⊥
0 ,

where λ̂0 = μ−1λ0; comparing the norms of u⊥
1 and λ̂0u

⊥
0 , using (2.9) and

p = 〈u0, gα〉 ≥ 0, we obtain:
√

1 − |p|2 ≤ CW−δ, whence ‖u0 − gα‖ ≤ ‖u⊥
0 ‖ + ‖gα(p − 1)‖ ≤ C ′W−δ.
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Finally, let u be a unit vector lying in the invariant subspace ū⊥
0 , of K̂. Then

|〈u, gα〉| ≤ |〈u, ū0〉| + |〈u, ū0 − gα〉| ≤ CW−δ.

Therefore,

u = p′gα + u⊥, u⊥ ⊥ gα, |p′| ≤ CW−δ.

Denote q′ = ‖u⊥‖ =
√

1 − |p′|2. Then

‖K̂u‖2 ≤ {(1 + O(W−1−δ))|p′| + O(W−1−δ)|q′|}2

+
{

O(W−1−δ)|p′| +
(
1 − c0

W
+ O(W−1−δ)

)
|q′|
}2

,

where c0 =
√

|U ′′(0)|
2 �ζ2. Therefore,

‖K̂u‖2 ≤ [1 + O(W−1−δ)
] |p′|2 +

[
(1 − c0

W
)2 + O(W−1−δ)

]
|q′|2 + O(W−1−δ)

≤ (1 − c0
W

)2(|p′|2 + |q′|2) + O(W−1−δ)

≤
(
1 − c0

W
+ O(W−1−δ)

)2
.

Recalling that

〈K̂u, ū0〉 = 〈u, K̂∗ū0〉 = 〈u, λ̄0ū0〉 = 0,

we can iterate this estimate, thus obtaining

‖K̂nu‖ ≤
(
1 − c0

W
+ O(W−1−δ)

)n

for any n, as claimed. �

3. Preliminaries: Harmonic Oscillator

In this section, we collect the properties of the harmonic oscillator, defined by

Khr(x, y) = exp
{

−W 2ζ2(x − y)2 − a + ib

2
(x2 + y2)

}

(3.1)

for
a > 0, b ∈ R, |ζ| = 1, �ζ2 > 0. (3.2)

The operator Khr defined by (3.1) is compact under the conditions (3.2), hence
it has pure point spectrum.

We are especially interested in the case when

ζ2(a + ib) ∈ R+, (3.3)

since this is consistent with assumption U2) for the operator K defined in
(2.1); the properties stated here hold however in the generality of (3.2).

The eigenvalues of Khr are given by the formula:

λhr
j =

√
π

W 2ζ2 + αhr + a+ib
2

(
W 2ζ2

W 2ζ2 + αhr + a+ib
2

)j

, (3.4)
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where αhr is the solution of

α2
hr = W 2ζ2(a + ib) +

(a + ib)2

4
= α2 +

(a + ib)2

4
= α2

[
1 + O(W−2)

]
, (3.5)

with �αhr > 0, and α2 = W 2ζ2(a+ib). This definition is consistent with (2.2).
Note that a solution with �αhr > 0 exists as long as the right-hand side of
(3.5) is not real negative (this is ensured by (3.2)). In the special case when
both (3.2) and (3.3) hold we have

ζ2(a + ib) = �[ζ2(a + ib)] = a/�ζ2 > 0,

hence for large W the right-hand side of (3.5) has positive real part.
The eigenfunction corresponding to λhr

0 is exactly the function gαhr given
by (2.3) (with α replaced by αhr); if αhr is real, the L2 norm of gαhr is equal
to one.

Let us comment on the validity of (3.4) for complex parameters. For any
z ∈ C, the Fredholm determinant of the operator zKhr is equal to

det(1 − zKhr) =
∞∏

j=0

(1 − zλhr
j ). (3.6)

Also, Khr is an analytic function of the parameters ζ and a + ib, therefore, by
Vitali’s theorem, this remains true also for the left-hand side of (3.6), since
it is the limit of a sequence of analytic functions converging locally uniformly
with respect to ζ and a + ib. On the other hand, for real ζ and a + ib, the
identity (3.4) is well known (see [5, Section 5.2]); thus the right-hand side of
(3.6) is equal to

∞∏

j=0

⎛

⎝1 − z

√
π

W 2ζ2 + αhr + a+ib
2

(
W 2ζ2

W 2ζ2 + αhr + a+ib
2

)j
⎞

⎠ ,

which is also an analytic function of ζ and a + ib. By analytic continuation,
we have:

∞∏

j=0

(1 − zλhr
j ) =

∞∏

j=0

⎛

⎝1 − z

√
π

W 2ζ2 + αhr + a+ib
2

(
W 2ζ2

W 2ζ2 + αhr + a+ib
2

)j
⎞

⎠

in the full range of parameters (3.2), and this implies (3.4).
Now we turn to K∗

hrKhr. Set A = 2W 2�ζ2 + a. One may check that

(K∗
hrKhr)(x, y)

=
√

π
A exp

{

−W 4 + W 2(aζ̄2 + (a − ib)�ζ2) + a
2 (a − ib)

A
x2

−W 4 + W 2(aζ2 + (a + ib)�ζ2) + a
2 (a + ib)

A
y2 +

2W 4

A
xy

}
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=
√

π
A exp

{

− ᾱ2
hr + �[W 2ζ2(a − ib)] + 1

4 (a2 + b2)
A

x2

− α2
hr + �[W 2ζ2(a − ib)] + 1

4 (a2 + b2)
A

y2 − W 4

A
(x − y)2

}

. (3.7)

In particular, Khr is normal (K∗
hrKhr = KhrK

∗
hr) if and only if α2

hr is real
(which happens if and only if αhr > 0). More generally, two operators of the
form (3.1) commute if and only if they share the same αhr.

From (3.7), K∗
hrKhr is similar (conjugate) to the operator

Thr(x, y) = e−i
�α2

hr
A x2

(K∗
hrKhr)(x, y)e+i

�α2
hr

A y2

=
√

π
A exp

{

−W 4

A
(x − y)2 − 2a

(
1 − a

2A

) x2 + y2

2

}

of the form (3.1). This allows to compute the singular values

shr0 ≥ shr1 ≥ · · ·
of Khr :

(
shrj

)2
=

√
π2

W 4+2aA +
√

[2W 4 + aA]aA

(
W 4

W 4 + 2aA +
√

[2W 4 + aA]aA

)j

.

If αhr > 0, we have shrj = |λhr
j | for any j. If instead we require α > 0, then αhr

is real up to an error term of order O(W−2). The corresponding operator is
almost normal. More precisely, we have the following result.

Lemma 3.1. If Khr is an operator of the form (3.1) with real (positive) ζ2(a +
ib), then for any fixed j

shrj

|λhr
j | = 1 + O(W−2),

where the implicit constant may depend on j. Moreover, for any 0 < ε < 1,

‖Khrgα − μgα‖ = |μ|O(W−2+2ε) and ‖g̃ − gα‖ ≤ O(W−2),

where g̃ is the top normalised eigenfunction for K∗
hrKhr, and gα and μ are

given by (2.3) and (2.2), respectively.

Proof. By the formulæ for λhr
j and shrj given above and using ζ2(a + ib) > 0

|λhr
0 |2

(
shr0
)2 =

√
W 4 + 2W 3

√
a�ζ2 + O(W 2)

W 4 + 2W 3�ζ2
√

ζ2(a + ib) + O(W 2)
.

Using the constraints �ζ2 > 0, |ζ2| = 1 and ζ2(a + ib) > 0 we see that
ζ2(a + ib)�ζ2 = a, whence |λhr

0 |2/ (shr0
)2 = (1 + O(W−2)). The same proof

applies to the case j > 0. To prove the second part, we see that

(Khrgα)(x) = μgα(x) c(α)e−x2d(α),
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where

c(α) =
1

√
1 + a+ib

2(α+W 2ζ2)

= 1 + O(W−2), d(α) =
a+ib
2

1 + 2[α+W 2ζ2]
a+ib

= O(W−2).

Then, using the exponential decay of gα,

‖Khrgα − μgα‖ ≤ |μ||c(α) − 1| + |μc(α)|
∥
∥
∥gα[e−x2d(α) − 1]1|x|≤W ε

∥
∥
∥

+|μc(α)|
∥
∥
∥gα[e−x2d(α) − 1]1|x|>W ε

∥
∥
∥ = |μ|O(W−2+2ε).

Finally, to prove the last inequality, we remark that

g̃(x) =
(
2αT

π

)1/4
ei

�α2
hr

A x2
e−αT x2

,

where exp[−αT x2] is a top eigenfunction for Th, and αT is the real-positive
solution of

α2
T =

W 4

A
2a
(
1 − a

2A

)
+ a2

(
1 − a

2A

)2
= α2[1 + O(W−2)].

By assumption, 
α2
hr = O(1) and αT = α(1 + O(1/W 2)) = α + O(1/W ),

therefore,

g̃(x) = (1 + O(W−2))eO(W −1)x2
gα(x).

Hence

‖g̃ − gα‖2 ≤
∫

gα(x)2
∣
∣
∣1 − eO(W −1)x2

∣
∣
∣
2

dx + O(W−4)

≤ O(W−2)
∫

gα(x)2x4eO(W −1)x2
dx + O(W−4) = O(W−4),

where in the last line we applied |1 − ex| ≤ |x|ex. �

4. Proof of the Main Proposition

Similarly to the semi-classical arguments in the self-adjoint case
(see [5, (5.6.1)]), we separate the contribution of the vicinity of the saddle
point and the rest of the real line as follows. Let T (x, y) be a kernel, and
suppose χ2

1 + χ2
2 = 1 is a partition of unity. Then

T (x, y) =
2∑

j=1

χj(x)T (x, y)χj(y) +
2∑

j=1

Rj(x, y), (4.1)

where

Rj(x, y) =
1
2
(χj(x) − χj(y))2T (x, y).

In operator notation,

T =
2∑

j=1

χjTχj +
2∑

j=1

Rj .
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Another ingredient is Schur’s bound (see [5, Lemma 4.4.1] for a proof)

‖T‖ ≤
√

sup
x

∫

dy|T (x, y)|
√

sup
y

∫

dx|T (x, y)|, (4.2)

which, in the case when |T (x, y)| = |T (y, x)|, assumes the form

‖T‖ ≤ sup
x

∫

dy |T (x, y)|.

The difference from the usual setting stems from the fact that K is not self-
adjoint. This is why we work with the self-adjoint operator K∗K, and our
main effort will be invested in decent bounds on the kernel.

The Main Proposition will follow from the next three lemmata, which are
applied to estimate the four blocks A,B,C,D of (2.4). We shall compare our
operator K with its harmonic approximation K̃ introduced in (2.11), which is
approximately normal due to assumption U2) of Sect. 2.1 and Lemma 3.1.

Lemma 4.1. Let K be an operator given by (2.1), so that U satisfies the as-
sumptions U1) and U3). If α > 0 is such that

∣
∣
∣
∣α

2 − W 2ζ2
U ′′(0)

2

∣
∣
∣
∣ ≤ CW 3/2, (4.3)

then the asymptotics of the integral

I(α) =
∫∫

dxdy exp
{

−W 2ζ2(x − y)2 − 1
2
U(x) − αx2 − 1

2
U(y) − αy2

}

is given by

I(α) = (1 + O(W−3/2+ε))
√

π

W 2ζ2 + α

√
π

2α
,

for any ε > 0.

Remark 4.2. Although the bound is valid for any α > 0 satisfying (4.3), we
shall only apply it to α = W

√
ζ2U ′′(0)/2 of (2.2).

Lemma 4.3. In the setting of the Main Proposition,

‖(K − K̃)gα‖ = O(W−3/2+ε|μ|)
for any ε > 0, where μ, gα and K̃ were introduced in (2.2) (2.3) and (2.11).

Lemma 4.4. In the setting of the Main Proposition, let u ∈ L2 be a function
of unit norm. Then there exists δ > 0 so that

‖Ku‖ ≤ |μ| (1 + O(W−1−δ)
)
.

Moreover, if u ⊥ gα, then

‖Ku‖ ≤ |μ|
(

1 −
√

|U ′′(0)|
2

�ζ2

W
+ O(W−1−δ)

)

.

The same estimates hold for ‖K∗u‖.
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Proof of Main Proposition. The estimate on A follows from Lemma 4.1:

μA = 〈Kgα, gα〉 =

√
2α

π
I(α) = (1 + O(W−3/2+ε))μ. (4.4)

The estimate on B and C follows from Lemmas 3.1 and 4.3

‖μC‖ = ‖PKgα‖ = inf
w∈C

‖(K − w)gα‖

≤ ‖(K − K̃)gα‖ + ‖K̃gα − μgα‖ = O(W−3/2+ε|μ|).
In a similar way ‖μB‖ = ‖PK∗gα‖ ≤ ‖(K∗ − μ̄)gα‖ = ‖(K −μ)gα‖ since gα is
real. Therefore, the arguments for C apply. Finally, the bound on ‖D‖ follows
from the second statement of Lemma 4.4, since

‖PKP‖ ≤ sup
u⊥gα,‖u‖=1

‖Ku‖.

�

Now we turn to the proofs of the lemmata.

Proof of Lemma 4.1. Changing variables

y ← y + x√
2

, x ← y − x√
2

,

we obtain:

I(α)=
∫∫

dxdy exp
{

−(2W 2ζ2 + α)x2 − αy2 − 1
2
U(

y + x√
2

) − 1
2
U(

y − x√
2

)
}

.

The integration over the complement of the rectangle defined by the inequali-
ties |x| ≤ W−1+ε/3, |y| ≤ W−1/2+ε/3 is exponentially suppressed according to
U3), where we took into account that α is of order W . Inside the rectangle,
we expand about y/

√
2 (since x is typically smaller in absolute value):

U

(
y ± x√

2

)

= U

(
y√
2

)

± U ′
(

y√
2

)
x√
2

+ O(x2),

whence by U1)

1
2

(

U

(
y + x√

2

)

+U

(
y − x√

2

))

= U

(
y√
2

)

+ O(x2) =
U ′′(0)

4
y2 + O(x2+|y|3).

Therefore,

I(α) = (1 + O(W−3/2+ε))
√

π

2W 2ζ2 + α

√
π

α + U ′′(0)
4

.

We have:

(2W 2ζ2 + α)
(

α +
U ′′(0)

4

)

= 2W 2ζ2α + α2 + W 2ζ2
U ′′(0)

2
+ O(W ),

whereas

2α(W 2ζ2 + α) = 2W 2ζ2α + 2α2.

Under the assumption (4.3) on α, the two expressions differ by O(W 3/2). �
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Proof of Lemma 4.3. We start with the identity

‖(K − K̃)gα‖2

=
∫ ∞

−∞
dr

∫ ∞

−∞
dx

∫ ∞

−∞
dy (K∗ − K̃∗)(x, r)(K − K̃)(r, y)gα(x)gα(y).

This time the integral over the complement of the polytope

|x − r|, |r − y| ≤ W−1+ε/3, |x|, |r| ≤ W−1/2+ε/3

is exponentially suppressed, whereas inside the polytope

|(K∗ − K̃∗)(x, r)| ≤ CW−3/2+ε|K̃∗(x, r)|
and

|(K − K̃)(r, y)| ≤ CW−3/2+ε|K̃(r, y)|;
the statement follows from these inequalities. �

To prove Lemma 4.4, we need several estimates on the kernel of K∗K, which
are collected in the next lemma. We shall apply the first estimate when |x|, |y| ≤
W−1/2+δ, the second one when either �U ≥ W η or |x − y| ≥ W−1+η (for a
small η > 0 to be chosen later), and the third one in the remaining range of
parameters.

Lemma 4.5. The kernel (K∗K)(x, y) satisfies the following estimates.
1. For |x|, |y| ≤ c0 (where c0 > 0 may depend on ζ and on the width of the

strip in which U is analytic),

(K∗K)(x, y) =
[
1 + O(|x|3 + |y|3 + W−3+ε)

]
(K̃∗K̃)(x, y),

where ε > 0 is an arbitrary positive number, and K̃ was defined in (2.11).
2. For any x, y,

|(K∗K)(x, y)|≤
√

π

2W 2�ζ2
exp
{

−�U(x)+�U(y)
2

− W 2

2
�ζ2(x − y)2

}

.

3. Let γ be the parameter appearing in U4). If |x−y| ≤ W−1+η, �U(x) ≤ W η

and �U(y) ≤ W η, where η > 0 is sufficiently small, then we have

(K∗K)(x, y) = (1 + O(W−1+5ηγ))
√

π

2W 2�ζ2

× exp
{

− Ū(x) + U(y)
2

− �U(
x + y

2
) − W 2

2�ζ2
(x − y)2

}

.

We postpone the proof of Lemma 4.5 and start with

Proof of Lemma 4.4. Let δ > 0 be a small number. Construct a partition of
unity χ2

1 + χ2
2 = 1. We choose

χ1, χ2 : R → R+

such that
1. χ1 is supported on [−W−1/2+δ,W−1/2+δ] and is identically equal to one

in [− 1
2W−1/2+δ, 1

2W−1/2+δ];
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2. χ2 is supported outside [− 1
2W−1/2+δ, 1

2W−1/2+δ] and is identically equal
to one outside [−W−1/2+δ,W−1/2+δ];

3. the two functions are differentiable, and |χ′
1|, |χ′

2| ≤ CW 1/2−δ.
Also denote 11 = 1χ1>0, 12 = 1χ2>0; then χ111 = χ1 and χ212 = χ2.

According to the decomposition (4.1),

‖Ku‖2 = 〈K∗Ku, u〉 =
2∑

j=1

〈χjK
∗Kχju, u〉 +

2∑

j=1

〈Rju, u〉. (4.5)

Let s̃0 ≥ s̃1 ≥ · · · be the singular values of K̃, and let g̃ be the top eigenfunction
of K̃∗K̃. From the properties of the harmonic oscillator collected in Lemma 3.1,

s̃0 = |μ|(1 + O(W−2)),
s̃1
s̃0

= 1 −
√

|U ′′(0)|
2

�ζ2

W
+ O(W−2). (4.6)

We shall prove the following estimates:

〈χ1K
∗Kχ1u, u〉 ≤ s̃21‖χ1u‖2 + Cs̃20W

−3/2+3δ‖u‖2 (u ⊥ gα), (4.7)

〈χ1K
∗Kχ1u, u〉 ≤ s̃20(1 + CW−3/2+3δ)‖χ1u‖2, (4.8)

|〈χ2K
∗Kχ2u, u〉| ≤ s̃20(1 − 1

C
W−1+2δ)‖χ2u‖2, (4.9)

|〈Rju, u〉| ≤ CW−1−2δ s̃20‖u‖2. (4.10)

Once these bounds are established, the proof of the lemma is concluded as
follows. For u ⊥ gα, we use (4.7), (4.9), (4.10) to estimate the addends in
(4.5); then from the inequality

s̃20

(

1 − 1
CW 1−2δ

)

≤ s̃20(1 − 2
√

|U ′′(0)|
2

�ζ2

W + O(W−2)) = s̃21

and the identity

‖χ1u‖2 + ‖χ2u‖2 = ‖u‖2
we obtain:

|〈K∗Ku, u〉| ≤ (1 + O(W−1−2δ))s̃21‖u‖2.
For arbitrary u we apply (4.8) in place of (4.7), and obtain:

|〈K∗Ku, u〉| ≤ (1 + O(W−1−2δ))s̃20‖u‖2.
Inserting now (4.6), the proof is concluded.

Proof of (4.7) starts from

〈χ1K
∗Kχ1u, u〉

= 〈K̃∗K̃χ1u, χ1u〉 + 〈(11K
∗K11 − 11K̃

∗K̃11)χ1u, χ1u〉. (4.11)

From the decomposition

χ1u = 〈χ1u, g̃〉g̃ +
{
χ1u − 〈χ1u, g̃〉g̃}

we obtain

〈K̃∗K̃χ1u, χ1u〉 ≤ s̃20|〈χ1u, g̃〉|2 + s̃21‖χ1u‖2.
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If u ⊥ gα,

|〈χ1u, g̃〉| ≤ ‖χ1u‖‖g̃ − gα‖ + |〈u − χ1u, gα〉|
≤ ‖u‖‖g̃ − gα‖ + ‖u‖‖(1 − χ1)gα‖ ≤ C1W

−2‖u‖,

where in the first term of the sum we applied Lemma 3.1. Finally

‖11K
∗K11 − 11K̃

∗K̃11‖ ≤ C2W
−3/2+3δ s̃20 (4.12)

according to item 1. of Lemma 4.5 and Schur’s bound (4.2). Hence

〈χ1K
∗Kχ1u, u〉 ≤ C2

1W−4‖u‖2 + s̃21‖χ1u‖2 + C2s̃
2
0W

−3/2+3δ‖u‖2 (4.13)

≤ s̃21‖χ1u‖2 + Cs̃20W
−3/2+3δ‖u‖2. (4.14)

Proof of (4.8) also starts from (4.11). From

〈χ1K̃
∗K̃χ1u, u〉 ≤ s̃20‖χ1u‖2

and (4.12), we obtain the bound

〈χ1K
∗Kχ1u, u〉 ≤ s̃20(1 + CW−3/2+3δ)‖χ1u‖2. (4.15)

Proof of (4.9) We plug into Schur’s bound (4.2) the estimates on the kernel of
(K∗K)(x, y) obtained in Lemma 4.5, as follows. Set η = δ/(5γ). We use the
estimate given in item 2 when either |x − y| > W−1+η, or �U(x) > W η, or
�U(y) > W η. In the complementary region

|x − y| ≤ W−1+η ∧ �U(x) ≤ W η ∧ �U(y) ≤ W η

we use the estimate given in item 3. Then

‖12K
∗K12‖ ≤ π

W 2 e− W −1+2δ

C (1 + O(W−1+5ηγ)) + e−C1W η

≤ s̃20

(

1 − 1
C

W−1+2δ

)

,

where in the first term we used �U(x) ≥ |x|2
C ≥ W −1+2δ

C (from U3) and the
definition of χ2) and the relations between |μ| =

√
π

W (1+O(W−1)) and s̃0 given
in (4.6). The second term comes from the estimate in item 2 of Lemma 4.5.
Hence

|〈χ2K
∗Kχ2u, u〉| ≤ s̃20

(

1 − 1
C

W−1+2δ

)

‖u‖2. (4.16)

Proof of (4.10) is similar: Schur’s bound, item 2 of Lemma 4.5 and the bounds

|χj(x) − χj(y)| ≤ CW 1/2−δ|x − y|
are used to show that

‖Rj‖ ≤ CW−1−2δ s̃20.

�
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Proof of Lemma 4.5. First,

(K∗K)(x, y) = E(x, y)I(x, y),

where

E(x, y) = exp
{

− Ū(x) + U(y)
2

− W 2ζ̄2x2 − W 2ζ2y2

}

,

and

I(x, y) =
∫

dr exp
{−2W 2

[�ζ2r2 − (ζ̄2x + ζ2y)r
]− �U(r)

}
.

On the real line, �U(z) coincides with the analytic function

USchw(z) = (U(z) + U(z̄))/2, (4.17)

therefore, we replace �U with USchw.
To prove the first item of the lemma, let |x|, |y| < c0 for a small constant

c0, and let Ẽ and Ĩ be expressions analogous to E and I which correspond
to K̃;

Ĩ(x, y) =
√

π

2W 2�ζ2 + �U ′′(0)
2

exp

{
W 4(ζ̄2x + ζ2y)2

2W 2�ζ2 + �U ′′(0)
2

}

.

Let ξ ≥ 2|x| + 2|y| be a small number to be fixed later on in (4.18), and set

r0 =
W 2(ζ̄2x + ζ2y)

2W 2�ζ2 + �U ′′(0)
2

.

Then |r0| ≤ ξ/4. Deform the contour of integration to

(−∞,�r0 − ξ) ∪ (�r0 − ξ, r0 − ξ) ∪ (r0 − ξ, r0 + ξ)
∪ (r0 + ξ,�r0 + ξ) ∪ (�r0 + ξ,∞).

Let I = I1 + I2, where I1 is the integral over (r0 − ξ, r0 + ξ), and I2 is the
integral over the remaining part of the contour. Let Ĩ = Ĩ1 + Ĩ2 be the analo-
gous decomposition of Ĩ. (Observe that, for sufficiently small c0, the deformed
contour is within the domain of analyticity of U .) Then

|I2|, |Ĩ2| ≤ exp
{−C−1W 2ξ2

}
.

To estimate the difference between the dominant parts I1, Ĩ1, we write

I1 − Ĩ1

= exp

{
W 4(ζ̄2x + ζ2y)2

2W 2�ζ2 + �U ′′(0)
2

} r0+ξ∫

r0−ξ

dr e
−
[
2W 2�ζ2+�U′′(0)

2

]
(r−r0)

2 [
eR(r) − 1

]

where

R(r) =
U ′′
Schw(0)

2
r2 − USchw(r).

We obtain:

|I1 − Ĩ1| = O((|r0| + ξ)3)|Ĩ|,
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To conclude the proof of the first item, set

ξ = 2(|x| + |y|) + W−1+ε/3, (4.18)

and observe that

E(x, y) = (1 + O(|x|3 + |y|3))Ẽ(x, y).

To prove the second item, we insert absolute values:

|E(x, y)| ≤ exp
{

−�U(x) + �U(y)
2

− W 2�ζ2(x2 + y2)
}

,

and

|I(x, y)| ≤ exp
{

W 2

2
�ζ2(x + y)2

}

×
∫

dr exp

{

−2W 2�ζ2
(

r − x + y

2

)2

− �U(r)

}

≤
√

π

2W 2�ζ2
exp
{

W 2

2
�ζ2(x + y)2

}

.

To prove the third item, let us rewrite I(x, y) as

exp
{

W 2

2
(ζ̄2x + ζ2y)2

�ζ2

}∫

dr exp
{−2W 2�ζ2(r − r0)2 − �U(r)

}
,

where

r0 =
y + x

2
+


ζ2

�ζ2
y − x

2
i.

Then performing a contour deformation similar to the one in the proof of the
first item we have

∫

dr exp
{−2W 2�ζ2(r − r0)2 − �U(r)

}
= I1 + I2,

where

I1 = e−USchw(r0)

∫ ξ

−ξ

dre−2W 2�ζ2r2
eUSchw(r0)−USchw(r+r0) (4.19)

|I2| ≤ e−W 2(ξ2−|�r0|2)/C ≤ e−W 2ξ2/C′
, (4.20)

if we choose ξ > |
r0|/4. The imaginary part |
r0| may be as large as W−1+η,
therefore, we have to take ξ = W−1+η+ε for some ε > 0. We later set ε = 2ηγ.

Let us show that for any η1 ∈ (η, 2η) the following estimate holds for r
in a complex neighbourhood of x:

|r − x| ≤ 2ξ = 2W−1+η+ε =⇒ |U ′(r)| < 2CW η1γ . (4.21)

Indeed, by the inequalities �[U(x)] ≤ W η and U4), U ′(x) satisfies |U ′(r)| <
2CW ηγ , and the smoothness of U guarantees there exists some constant cx > 0
such that (4.21) holds inside the ball of radius cx centred at x. Let r1 ∈ C be
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a point such that |r1 − x| > cx, (4.21) holds for all |r − x| < |r1 − x| and fails
at r1. Then by U4)

�[U(r1)] > W η1 . (4.22)

Performing a Taylor expansion with first-order integral remainder we have

U(r1) − U(x)
r1 − x

=
∫ 1

0

U ′(x + t(r1 − x))dt.

Inserting absolute values,

|U(r1) − U(x)|
|r1 − x| ≤

∫ 1

0

|U ′(x + t(r1 − x)|dt ≤ 2CW η1γ

since |x+t(r1−x)| < |r1−x| for all 0 ≤ t < 1. From (4.22) and the assumptions
�[U(x)] ≤ W η � W η1 and |r1 − x| ≤ 2W−1+η+ε we get

1
4

W η1+1−η−ε ≤ |�[U(r1)] − �[U(x)]|
|r1 − x| ≤ |U(r1) − U(x)|

|r1 − x| ≤ 2CW η1γ

hence
W 1−η−ε ≤ 8CW η1(γ−1) (4.23)

as long as η1(γ − 1) < 1 − η − ε. When η, ε > 0 are sufficiently small we have
η1(γ − 1) < 1 − η − ε for all η1 ∈ (η, 2η), in contradiction with (4.23). Thus
(4.21) is established.

Applying the definition (4.17) of USchw we have U ′
Schw(r) = (U ′(r) +

U ′(r̄))/2, and from (4.21)

|r − x| ≤ 2ξ = 2W−1+η+ε ⇒ |U ′
Schw(r)| < 2CW η1γ ,

where |r̄−x| = |r−x| since x ∈ R. Now set ε = 2ηγ. Then for any η < η1 < 2η
we have ε > η1γ and

|USchw(r0) − USchw(r)| ≤ |r − r0|
∫ 1

0

|U ′
Schw(r + t(r0 − r))|dt

≤ O(W−1+η+ε+γη1) = O(W−1+5γη),

hence I1 of (4.19) satisfies

I1 = e−�U( x+y
2 )

√
π

2W 2�ζ2
[
1 + O(W−1+5γη)

]
.

This concludes the proof of the third item of Lemma 4.5. �

5. Application to a Complex Statistical Mechanics Model

In this section, we apply the results of the paper to a toy model. The model
is tailored so that the conditions U1)–U4) of the Main Proposition will be
satisfied after a rotation of the integration contour. The choice of the potential
is partly inspired by supersymmetric models appearing in the study of random
operators, but in our case the potential has only one minimum, instead of
several minima as in the original models.
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Let V (x) = a log(1 + bx2), where a > 0 and �b > 0. We are interested in
the statistical mechanics model corresponding to the action

W 2
∑

j

(φj − φj+1)2 +
∑

j

V (φj);

for simplicity of notation, we set the inverse temperature to one. Without
going into the details of the construction of infinite-volume measures (which
is impeded by several obstacles, see e.g. Remark 5.1 below) , let us define the
“mean” of a local observable F : R

n+1 → C as follows:

〈F (φ0, · · · , φn)〉

= lim
M,N→∞

∫ ∏N
j=−M dφje

−∑N
j=−M V (φj)−W 2∑N−1

j=−M (φj−φj+1)
2
F (φ0, · · · , φn)

∫ ∏N
j=−M dφje

−∑N
j=−M V (φj)−W 2

∑N−1
j=−M (φj−φj+1)2

.

(5.1)

We are interested in the long-distance correlations, e.g.

〈(F (φ0) − 〈F (φ0)〉)(G(φn) − 〈G(φn)〉)〉,
with F,G : R → C.

Define ζ ∈ C by

|ζ| = 1, | arg ζ| < π/4, ζ4V ′′(0)
(

= 2ζ4 ab
)

> 0; (5.2)

let Σ = conv (R ∪ Rζ), and set

U(x) = V (ζx). (5.3)

Our transfer operator method can be applied to study observables
F : R

n+1 → C which have an analytic extension to Σn+1 and do not grow
too fast in this sector. For simplicity, let us focus on n = 0, i.e. on observables
depending only on one variable: assume that

F1) F : Σ → C is analytic;
F2) |F (z)| ≤ C(1 + |z|)2a−1−ε for some C > 0 and ε > 0, and all z ∈ Σ.

Theorem 1. Suppose that V (x) = a log(1 + bx2) for some a > 0 and �b > 0,
and that F,G are observables which satisfy F1)–F2). Then

|〈(F (φ0) − 〈F (φ0)〉)(G(φn) − 〈G(φn)〉)〉|

≤ CF CG

(

1 −
√

|V ′′(0)|
2

�ζ2

W
+ O(W−1−δ)

)n

,

where ζ is defined in (5.2).

Proof. Let F,G be observables satisfying F1)–F2). Note that the functions
inside both integrals of (5.1) satisfy f(φ−M , . . . , φN ) ∼ e−W 2φ2

j as |φj | → ∞
while keeping the other variables fixed. Then using Cauchy’s theorem we can
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rotate the contour of integration φj → φjζ, as long as �ζ2 > 0. Repeating the
argument for each variable φj we obtain

∫ ∏N
j=−M dφje

−∑N
j=−M V (φj)−W 2∑N−1

j=−M (φj−φj+1)
2
F (φ0)G(φn)

∫ ∏N
j=−M dφje

−∑N
j=−M V (φj)−W 2

∑N−1
j=−M (φj−φj+1)2

=

∫ ∏N
j=−M dφje

−∑N
j=−M U(φj)−W 2ζ2∑N−1

j=−M (φj−φj+1)
2
F (ζφ0)G(ζφn)

∫ ∏N
j=−M dφje

−∑N
j=−M U(φj)−W 2ζ2

∑N−1
j=−M (φj−φj+1)2

.

(5.4)

Remark 5.1. The argument presented above for free boundary conditions ap-
plies equally well to periodic boundary conditions. For more general boundary
conditions the potential at the boundary is modified, therefore, additional re-
quirements on U and the observables probably have to be imposed.

Now we set up an integral operator K, the kernel of which is given by
(2.1); the Main Proposition and Corollary 2.1 are applicable, so the largest
eigenvalue of K (in absolute value) λ0 is given by (2.9). Let u0 be a cor-
responding eigenfunction satisfying the normalisation conditions (2.8). Set
B(x) = exp(−U(x)/2). Then the denominator of (5.4) is equal to

∫

KM+N (x1, x2)B(x1)B(x2)dx1dx2.

From Corollary 2.1, we have

〈u0, ū0〉 = 〈u0, gα〉 + 〈u0, ū0 − gα〉 = 1 + O(W−δ) �= 0.

Decomposing B = 〈B,ū0〉
〈u0,ū0〉u0 + B1 (this is well defined since 〈u0, ū0〉 = 1 +

O(W−δ) �= 0) and setting K̂ = λ−1
0 K, we obtain from Corollary 2.1:

lim
M,N→∞

∫

K̂M+N (x1, x2)B(x1)B(x2)dx1dx2 =
〈B, ū0〉2
〈u0, ū0〉2 .

Similarly, for F : R → C satisfying F1)–F2),
∫ 3∏

j=1

dxjB(x1)K̂M (x1, x2)F (ζx2)K̂N (x2, x3)B(x3) → 〈B, ū0〉2
〈u0, ū0〉2 〈Fζu0, ū0〉,

where Fζ(x) = F (ζx). Hence we obtain:

〈F (φ0)〉 = 〈Fζu0, ū0〉. (5.5)

Similarly,
〈F (φ0)G(φn)〉 = 〈K̂nFζu0, Ḡζ ū0〉. (5.6)

If 〈F (φ0)〉 = 0 (i.e. Fζu0 ∈ ū⊥
0 ), Corollary 2.1 yields:

‖K̂nFζu0‖ ≤
(

1 −
√

|V ′′(0)|
2

�ζ2

W
+ O(W−1−δ)

)n

‖Fζu0‖,
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thus for any F,G satisfying F1)–F2)

|〈(F (φ0) − 〈F (φ0)〉)(G(φn) − 〈G(φn)〉)〉|

≤ CF CG

(

1 −
√

|V ′′(0)|
2

�ζ2

W
+ O(W−1−δ)

)n

.

�
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