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Open Quantum Random Walks: Reducibility,
Period, Ergodic Properties

Raffaella Carbone and Yan Pautrat

Abstract. We study the analogues of irreducibility, period, and commu-
nicating classes for open quantum random walks, as defined in (J Stat
Phys 147(4):832–852, 2012). We recover results similar to the standard
ones for Markov chains, in terms of ergodic behaviour, decomposition into
irreducible subsystems, and characterization of invariant states.

1. Introduction

Open quantum random walks were recently defined by Attal et al. [3]. These
processes have a simple definition, implementing a Markovian dynamics influ-
enced by internal degrees of freedom, and can be useful to model a variety
of phenomena: quantum algorithms (see [23]), transfer in biological systems
(see [17]) and possibly quantum exclusion processes. In addition, a continuous-
time version can be defined (see [19]). Therefore, open quantum random walks
seem to be good quantum analogues of Markov chains.

The usefulness of (classical) Markov chains, however, comes not only
from the vast number of situations they can model, but also from the many
properties implied by their simple definition. A textbook description of Markov
chains, for instance, can start with the notion of irreducibility, which is easily
characterized through the connectedness of the associated graph, and implies
mean-ergodic convergence in law if an invariant probability exists (which is
the case when the state space is finite). The next notion, the aperiodicity of
an irreducible chain, is not as easy to characterize, but has simple sufficient
conditions (e.g. the existence of loops) and implies convergence in law, at least
when the state space is finite. Last, the notion of connected subsets of the
initial graph allows one to decompose a Markov chain into irreducible ones
and to characterize its invariant states as convex combinations of invariant
states for restricted chains.

On the other hand, the only general properties of open quantum ran-
dom walks proven so far are the central limit theorem for the position process
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(see [2]) and the general Kümmerer–Maassen theorem for quantum trajec-
tories (see [16]). In the present paper, we discuss an analogue of the above
textbook description of Markov chains, for open quantum random walks. The
non-commutative nature of the objects under study, and specifically the fact
that the transition probabilities are replaced by operators acting on a Hilbert
space, are the cause of higher mathematical complexity. Some intuitive aspects
of classical Markov chains, however, remain true, and we can recover a vision of
irreducibility, period, and accessibility, in terms of paths. This is of interest for
the study of more general quantum Markov processes, as it gives indications
on the relevant extensions of classical concepts, and on techniques of proofs
for associated results. We view this as an additional justification for the study
of open quantum random walks.

Our theory will be constructed starting from pre-existing tools:

• a notion of irreducibility for general positive maps on non-commutative
algebras, together with an associated Perron–Frobenius theorem, that was
developed by various authors in the late seventies and early eighties [1,7,8,
14];

• a notion of period, together with associated results on the peripheral spec-
trum, which were defined in the same setting by Groh [14] and extended by
Fagnola and Pellicer [9];

• some old and new inspiring ergodic results [12,16] and a decomposition
of the support of invariant states proposed more recently by Baumgart-
ner and Narnhofer [4] for quantum discrete time processes acting on finite-
dimensional spaces.

We briefly describe the structure of the article and the main contents. Section 2
recalls the definitions, notations and basic results regarding open quantum ran-
dom walks from [3]. We also introduce the classical processes associated with an
OQRW. Sections 3 and 4 discuss, respectively, irreducibility and aperiodicity
for OQRWs. Both follow the same structure: they start by recalling standard
definitions and properties of irreducibility or aperiodicity for positive maps on
operator algebras, then study the application to the special case of OQRWs.
Some immediate consequences on the ergodic behaviour of the evolution are
underlined. Section 5 applies the results of the previous two sections to obtain,
for irreducible, or irreducible aperiodic, open quantum random walks, conver-
gence properties of the processes described in Sect. 2. Section 6 expands on
reducible open quantum random walks, characterizing in different ways their
irreducible components. The resulting decomposition can be seen as related to
a “quantum communication relation” among vectors of the underlying Hilbert
space. Section 7 states the general form of invariant states for reducible open
quantum random walks. Its central point is an extension of some results from
[4]. Section 8 mentions a natural extension of open quantum random walks.
For this extension, we discuss without proof a characterization of irreducibil-
ity, periodicity, communication classes, and their consequences: as we will see,
all previous results will remain with paths on a graph replaced by paths on
a multigraph. We conclude with Sect. 9, which is dedicated to examples and
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applications. We start a study of translation-invariant open quantum random
walks on Z

d continued in [5], and extending that of [2]. We study examples
which illustrate our most practical convergence results, namely Corollaries 5.2,
5.4, and 5.6, as well as our decomposition result, Theorem 7.13.

2. Open Quantum Random Walks

In this section, we recall basic results and notations about open quantum
random walks. For a more detailed exposition of OQRWs and related notions,
we refer the reader to [3].

We consider a Hilbert space H of the form H =
⊕

i∈V hi where V is a
countable set of vertices, and each hi is a separable Hilbert space (making H
separable). This is a generalization with respect to standard OQRWs where the
space H is h⊗C

V , or equivalently hi = h for all i ∈ V . This generalization will
be useful when we consider decompositions of OQRWs, especially in Sect. 6.
We view H as describing the degrees of freedom of a particle constrained to
move on V : the “V -component” describes the spatial degrees of freedom (the
position of the particle) while hi describes the internal degrees of freedom of
the particle, when it is located at site i ∈ V .

For clarity, whenever a vector x ∈ H belongs to the subspace hi, we will
denote it by x ⊗ |i〉, and drop the (implicit) assumption that x ∈ hi. This
will allow us to use the same notation as in the literature on open quantum
random walks. Similarly, when an operator A on H satisfies h⊥

j ⊂ Ker A and
Ran A ⊂ hi, we denote it by A = Li,j ⊗ |i〉〈j| where Li,j is viewed as an
operator from hj to hi. Therefore, for i, j, k in V , we have the relation

(
Li,j ⊗ |i〉〈j|) (x ⊗ |k〉) =

{
0 if j �= k,(
Li,j x

)⊗ |i〉 if j = k.

All these notations are consistent with the special case of H = h⊗C
V , and in

particular with the notation used in [3].
We consider a map on the space I1(H) of trace-class operators on H,

M : ρ �→
∑

i,j∈V

Ai,j ρA∗
i,j (2.1)

where, for any i, j in V , the operator Ai,j is of the form Li,j ⊗ |i〉〈j| and the
operators Li,j satisfy

∀j ∈ V
∑

i∈V

L∗
i,jLi,j = Id, (2.2)

where the series is meant in the strong convergence sense. The Li,j are thought
of as encoding both the probability of a transition from site j to site i, and
the effect of that transition on the internal degrees of freedom. Equation (2.2),
therefore, encodes the “stochasticity” of the transitions Li,j .

Let us recall a few definitions: an operator X on H is called positive,
denoted X ≥ 0, if for φ ∈ H, one has 〈φ,X φ〉 ≥ 0. It is called strictly
positive, denoted X > 0, if for φ ∈ H\{0}, one has 〈φ,X φ〉 > 0. A map
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Φ : I1(H) → I1(H) is said to be positive if it maps positive operators to
positive operators; it is n-positive if its extension Φ ⊗ Id to I1(H) ⊗ B(Cn) is
a positive map; it is completely positive if it is n-positive for all n in N.

With these definitions (2.1) defines a trace-preserving (TP) and com-
pletely positive (CP) map I1(H) → I1(H). In particular, such a map trans-
forms states (defined here as positive elements of I1(H) with trace one) into
states. A completely positive, trace-preserving map will be called a CP-TP
map. We shall call a map M as defined by (2.1) an open quantum random
walk, or OQRW. Note that (2.2) implies that ‖M‖ = 1 as an operator on
I1(H) (see Remark 2.2 below).

Remark 2.1. In our interpretation of Li,j above, it would be more precise to say
that the transition from site j to site i is encoded by the completely positive
map ρj �→ Li,j ρj L∗

i,j . A natural extension would be to replace this with a
more general completely positive map ρj �→ Φi,j(ρj). This will be discussed in
Sect. 8.

Remark 2.2. Let us recall that the topological dual I1(H)∗ can be identified
with B(H) through the duality

(ρ,X) �→ Tr(ρX).

Trace preservation of a map Φ is equivalent to Φ∗(Id) = Id. The adjoint Φ∗ is
then a positive, unital (i.e. Φ∗(Id) = Id) map on B(H), and by the Russo–Dye
theorem [21] one has ‖Φ∗‖ = ‖Φ∗(Id)‖ so that ‖Φ‖ = ‖Φ∗‖ = 1.

Definition 2.3. We say that an open quantum random walk M is finite if V is
finite and every hi is finite dimensional.

Remark 2.4. If an open quantum random walk is finite, then M∗(Id) = Id
implies that 1 is an eigenvalue of M. Since M preserves the trace and the
positivity, this implies that there exists an invariant state.

Remark 2.5. As noted in [3], classical Markov chains can be written as open
quantum random walks. More precisely, if the transition matrix is P = (Pi,j)
then, taking Li,j =

√
Pj,i Ui,j with any Ui,j satisfying Ui,jU

∗
i,j = Idhi

, will map
any state

∑
i∈V piIdhi

⊗ |i〉〈i|, to a state of the form
∑

i∈V qiIdhi
⊗ |i〉〈i|, and

the induced dynamics (pi)i∈V �→ (qi)i∈V will be described by the transition
matrix P . However, if dim hi > 1, we will run into possible non-uniqueness
problems, e.g. for the invariant states of M (see Sect. 6). We feel this is an
artificial degeneracy, not related to the properties of the Markov chain, but
rather to the choice of the realization as an OQRW. We, therefore, define
a minimal OQRW realization of a classical Markov chain to be the OQRW
with hi = C for all i in V , and Li,j =

√
Pj,i .

A crucial remark is that, for any initial state ρ on H, which can be
expanded as

ρ =
∑

i,j∈V

ρ(i, j) ⊗ |i〉〈j|
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and, for any n ≥ 1, the evolved state Mn(ρ) is of the form

Mn(ρ) =
∑

i∈V

Mn(ρ, i) ⊗ |i〉〈i|, (2.3)

where, e.g. for n = 1,

M1(ρ, i) =
∑

j∈V

Li,j ρ(j, j)L∗
i,j . (2.4)

Each Mn(ρ, i) is a positive, trace-class operator on hi and∑
i∈V TrMn(ρ, i) = 1. Therefore, the range of M is included in the set ID

of block-diagonal trace-class operators,

ID =

{

ρ =
∑

i∈V

ρ(i) ⊗ |i〉〈i|,
∑

i∈V

Tr(|ρ(i)|) < +∞
}

,

and I∗
D can be identified with

BD =

{

X =
∑

i∈V

X(i) ⊗ |i〉〈i|, sup ‖X(i)‖B(hi) < ∞
}

.

This feature will have a great importance in the characterization of many
properties of OQRWs, e.g.:
1. the invariant states of an OQRW M belong to ID,
2. the reducibility of M can be established considering only block-diagonal

projections (see Sect. 3),
3. the cyclic projections defining the period have block-diagonal form (see

Sect. 4),
4. the only meaningful enclosures—the vector spaces which will play the role

of communicating classes—are generated by vectors of the form x⊗|i〉 (see
Sect. 6).

In addition, we remark from (2.4) that Mn(ρ) depends only on the diagonal
elements ρ(i, i). Therefore, from now on, we will only consider states of the
form ρ =

∑
i∈V ρ(i) ⊗ |i〉〈i|. Equation (2.4) remains valid, replacing ρ(i, i)

with ρ(i).
We now describe the (classical) processes of interest, associated with M:

here we remain at a heuristic level and speak loosely of the laws of random
variables, without specifying the probability space (this will be done in Sect. 5).
We start from a state ρ which we assume to be of the form ρ =

∑
i∈V ρ(i) ⊗

|i〉〈i|. We evolve ρ for a time n, obtaining the state Mn(ρ) as in (2.3). We then
make a measurement of the position observable, i.e. of the degree of freedom in
C

V . According to standard rules of quantum measurement, we obtain the result
i ∈ V with probability TrMn(ρ, i). Therefore, the result of this measurement
is a random variable Xn, with law P(Xn = i) = TrMn(ρ, i) for i ∈ V . In
addition, if the position Xn = i ∈ V is observed, then the state is transformed
to Mn(ρ,i)

TrMn(ρ,i) . We call this process
(
Xn, Mn(ρ,Xn)

TrMn(ρ,Xn)

)

n
the process “without

measurement” to emphasize the fact that virtually only one measurement is
done, at time n.
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Now, assume that we make a measurement at every time n ∈ N, apply-
ing the evolution by M between two measurements. Again assume that we
start from a state ρ of the form

∑
i∈V ρ(i) ⊗ |i〉〈i|. Suppose that at time n,

the position was measured at Qn = j and the state (after the measurement)
is ρn ⊗ |j〉〈j|. Then after the evolution, the state becomes

M(ρn ⊗ |j〉〈j|) =
∑

i∈V

Li,j ρn L∗
i,j ⊗ |i〉〈i|

so that a measurement at time n + 1 gives a position Qn+1 = i with prob-
ability TrLi,j ρn L∗

i,j , and then the state becomes ρn+1 ⊗ |i〉〈i| with ρn+1 =
Li,j ρn L∗

i,j

Tr Li,j ρn L∗
i,j

. The sequence of random variables (Qn, ρn) is therefore a Markov
process with transitions defined, for i, j ∈ V , by

P

(

(Qn+1, ρn+1) =

(

i,
Li,j ρn L∗

i,j

Tr(Li,jρL∗
i,j)

)
∣
∣
∣(Qn, ρn) = (j, ρn)

)

= Tr(Li,j ρn L∗
i,j),

and initial law P
(
(Q0, ρ0) = (i, ρ(i)

Trρ(i) )
)

= Tr ρ(i). Note that the sequence of
positions Q0 = i0, . . . , Qn = in is observed with probability

Tr Lin,in−1 . . . Li1,i0 ρ(i0)L∗
i1,i0 . . . L∗

in,in−1
(2.5)

and completely determines the state ρn:

ρn =
Lin,in−1 . . . Li1,i0 ρ(i0)L∗

i1,i0
. . . L∗

in,in−1

Tr Lin,in−1 . . . Li1,i0 ρ(i0)L∗
i1,i0

. . . L∗
in,in−1

. (2.6)

Equation (2.5) implies for any n the relation

E(ρn ⊗ |Xn〉〈Xn|) = Mn(ρ). (2.7)

As emphasized in [3], it also implies that for every n the laws of Xn and Qn

are the same, i.e.

P(Xn = i) = P(Qn = i) ∀i ∈ V.

For this reason, from now on we will drop the notation Qn and the only
“position” process we consider will be (Xn)n. On the other hand, (Mn(ρ,Xn))n

and (ρn)n correspond to physically different quantities and we keep separate
notations for them. The processes (Xn)n, (Mn(ρ,Xn))n and (ρn)n are among
our main interests when it comes to open quantum random walks: Sect. 5 is
devoted to the study of their ergodic properties.

3. Irreducibility for OQRWs

In this and in the following sections, Φ is assumed to be a positive map on
the ideal I1(H) of trace operators on some given Hilbert space H. We recall
that such a map is automatically bounded as a linear map on I1(H) (see, e.g.
Lemma 2.2 in [22]), so that it is also weakly continuous. In most practical
cases, we will additionally assume that ‖Φ‖ = 1; as we noted in Remark 2.2,
this will be the case, in particular, if Φ is trace preserving.
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We describe here the definition of irreducibility introduced by Davies
(see [6]). We give an equivalent property, considered by some authors (see [22])
under the name ergodicity, in Proposition 3.4.

Definition 3.1. We say that the positive map Φ is irreducible if the only orthog-
onal projections P reducing Φ, i.e. such that Φ

(
PI1(H)P

) ⊂ PI1(H)P , are
P = 0 and Id.

Remark 3.2. The condition Φ
(
PI1(H)P

) ⊂ PI1(H)P is equivalent to the
condition Φ(P ) ≤ αP for some α > 0 whenever P ∈ I1(H), i.e. whenever
P is finite dimensional. In the infinite-dimensional case one can prove that P
reduces Φ if and only if for any finite-dimensional projection Q with Q ≤ P ,
one has Φ(Q) ≤ αP for some α > 0.

There is a possible confusion here due to the fact that some authors [9,14]
work in the Heisenberg representation, i.e. in our notation consider Φ∗, while
others [8,22], like us, work in the Schrödinger representation. For completeness
we give the next proposition, which connects the two representations:

Proposition 3.3. Let Φ be a positive, trace-preserving map on I1(H). Then an
orthogonal projection P reduces Φ if and only if P ≤ Φ∗(P ), i.e. (Id − P )
reduces Φ∗.

Proof. Assume first that P reduces Φ, i.e. Φ(PI1(H)P ) ⊂ PI1(H)P . Then,
for any trace-class operator σ, using the trace-preserving property and the
reduction assumption for Φ, we have

Tr(σP ) = Tr(PσP ) = Tr
(
Φ(PσP )

)
= Tr

(
P Φ(PσP )

)
= Tr(σPΦ∗(P )P )

so that P = PΦ∗(P )P and PΦ∗(P⊥)P = P (Id − Φ∗(P ))P = 0, where
P⊥ = Id − P . Since Φ∗(P⊥) is positive, we also deduce PΦ∗(P⊥)P⊥ =
P⊥Φ∗(P⊥)P = 0 and Φ∗(P⊥) = P⊥Φ∗(P⊥)P⊥. Then

Φ∗(P ) = Id − Φ∗(P⊥) = P + P⊥Φ∗(P )P⊥ ≥ P.

Conversely, if P ≤ Φ∗(P ), then, for any trace class ρ ≥ 0,

Tr(PρP ) ≤ Tr(PρP Φ∗(P )) = Tr(P Φ(PρP )P ) ≤ Tr(Φ(PρP )) = Tr(PρP ).

We, therefore, have the equality Tr(P Φ(PρP )P ) = Tr(Φ(PρP )) which implies
the inclusion Φ(PρP ) ∈ PI1(H)P for ρ ≥ 0, hence for any ρ ∈ I1(H). �

Proposition 3.4. A positive map Φ on I1(H) is irreducible if and only if

for any ρ ≥ 0 in I1(H)\{0} there exists t > 0 such that etΦ(ρ) > 0. (3.1)

Proof. If Φ is not irreducible, then by definition there exists a non-trivial
projection P and a non-negative trace-class operator ρ such that Φ(PρP ) is of
the form PσP for some σ in I1(H). Then, with α = ‖σ‖, we have Φ(PρP ) ≤
αP and consequently, for any t, etΦ(PρP ) ≤ etαP , so that etΦ(PρP ) is not
strictly positive for all t. Therefore, condition (3.1) implies irreducibility.
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For the converse implication, assume Φ, hence Φ∗, is irreducible, consider
X ≥ 0, X �= 0 in B(H); for a fixed t > 0 let

ep(X) =
p∑

k=0

tk

k!
Φ∗k(X).

Define P to be the support projection of etΦ∗
(X) and Pp = 1l[1/p,+∞[(ep(X)).

Obviously, Pp ≤ P and Pp ≤ p ep(X) for all p, and Pp → P in the sense of
strong convergence as p → ∞, thanks to the properties of bounded measurable
functional calculus (see, e.g. Theorem VII.2 in [20]). We have:

1
p

Φ∗(Pp) ≤ Φ∗(ep(X)) =
p+1∑

k=1

k

t

tk

k!
Φ∗k(X)

≤ p + 1
t

ep+1(X) ≤ p + 1
t

etΦ∗
(X)

so that supp Φ∗(Pp) ⊂ suppP and, by the weak-∗ continuity of Φ∗, one has
supp Φ∗(P ) ⊂ suppP , i.e. P reduces Φ∗. Since etΦ∗

(X) ≥ X, the projector P
cannot be zero, so by irreducibility P is Id and etΦ∗

(X) > 0.
Take now X of the form |φ〉〈φ| and consider ρ ≥ 0, ρ �= 0 in I1(H);

then 0 < Tr(etΦ∗
(X) ρ) = Tr(XetΦ(ρ)) = 〈φ, etΦ(ρ)φ〉. So etΦ(ρ) > 0 for

all t > 0. �
Remark 3.5. Condition (3.1) is called “ergodicity” by Schrader [22]. In finite
dimension, it is equivalent to the condition that (Id + Φ)dim H−1 maps any
positive, non-zero ρ ∈ I1(H) to a strictly positive operator (see the remark
following Lemma 3.1 in [22]). This latter condition is the definition of ergod-
icity in [8], where the equivalence of irreducibility and ergodicity is proven in
the finite-dimensional case. Note also that, in (3.1), “for all t > 0” can be
equivalently replaced with “for some t > 0”. This follows from the observation
that the support projection of etΦ(ρ) does not depend on t > 0.

When speaking about reducibility/irreducibility of quantum maps, one
enters a jungle of different approaches and terminologies, which, in many cases,
are essentially equivalent. Concerning this, we recall that a reducing projec-
tion P is called by some authors a subharmonic projection for Φ∗, following
the line common to the classical literature on Markov chains.

Also, more recently (in [4], as far as we know), the notion of enclosure
has been introduced in the context of CP-TP maps. To define it, we recall the
notion of support of a state ρ: it is the range of the projection Id − P0(ρ),
where

P0(ρ) = sup{P orthogonal projection s.t. ρ(P ) = 0}.

Definition 3.6. A closed vector space V is called an enclosure (for M) if for
any state ρ supp ρ ⊂ V implies suppM(ρ) ⊂ V.

It is immediate that a space V is an enclosure if and only if the projection
P on V reduces M. So, an equivalent way to define irreducibility is asking that
there exist no non-trivial enclosures. The notion of enclosure will be crucial
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in the discussion of decompositions of reducible open quantum random walks
(see Sect. 6).

Next, we characterize irreducibility in terms of unravellings. We consider
a completely positive trace-preserving map Φ and fix an unravelling (Aκ)κ∈K

of Φ, provided by Kraus’ representation theorem (see [15] or [18], where this
is called the operator-sum representation):

Φ(ρ) =
∑

κ∈K

AκρA∗
κ. (3.2)

We will characterize irreducibility in terms of an unravelling (Aκ)κ∈K .
We denote by C[A] the set of polynomials in Aκ, i.e. the algebra (not the
*-algebra) generated by the operators Aκ, κ ∈ K. The following result is a
straightforward consequence of a result of Schrader ([22, Lemma 3.4]—note
that that lemma considers the equivalent property that for every φ ∈ H\{0},
the set C[A∗]φ, associated with the operators A∗

k,is dense in H):

Lemma 3.7. A completely positive map Φ of the form (3.2) is irreducible if and
only if one of the following equivalent conditions holds for any φ ∈ H\{0}:
• the set C[A]φ is dense in H,
• for any ψ in H\{0}, there exist κ1 . . . κ� in K such that

〈ψ,Aκ1 · · · Aκ�
φ〉 �= 0,

We will now characterize irreducibility for open quantum random walks,
i.e. for CP-TP maps such that each Ai,j is of the form Li,j ⊗ |i〉〈j|. Let us
introduce some notation: for i, j in V we call a path from i to j any finite
sequence i0, . . . , i� in V with � ≥ 1, such that i0 = i and i� = j. Such a path is
said to be of length �. We denote by P(i, j) (resp. P�(i, j)) the set of paths from
i to j of arbitrary length (resp. of length �). A path from i to i will be called a
loop; by convention we consider the sequence {i} as a loop (with length one),
i.e. an element of P(i, i). For π = (i0, . . . , i�) in P(i, j) we denote by Lπ the
operator from hi to hj :

Lπ = Li�,i�−1 . . . Li1,i0 = Lj,i�−1 . . . Li1,i.

We can now prove:

Proposition 3.8. The CP-TP map M is irreducible if and only if, for every i
and j in V , one of the following equivalent conditions holds:

• for any x in hi\{0}, the set {Lπx |π ∈ P(i, j)} is total in hj,
• for any x in hi\{0} and y in hj\{0} there exists a path π in P(i, j) such

that 〈y, Lπx〉 �= 0.

Proof. This is an immediate application of Lemma 3.7, and the observation
that, if Aj,i = Lj,i ⊗ |j〉〈i|, then

Aj�,i�
. . . Aj1,i1 =

{
Lj�,i�

. . . Li2,i1 ⊗ |j�〉〈i1| if i� = j�−1, . . . , i2 = j1,
0 otherwise.

�
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Remark 3.9. Considering the irreducibility property (3.1), it would be natural,
in analogy with the theory of Markov chains, to define a CP-TP map to be
N -regular when there exists N ∈ N such that ΦN (ρ) > 0 for any ρ ≥ 0 in
I1(H)\{0}. We can then prove that M is N -regular if and only if for every i
and j in V , for any x in hi\{0}, the set {Lπx |π ∈ PN (i, j)} is total in hj .
Therefore, a necessary condition for N -regularity is cardPN (i, j) ≥ dim hj

and in particular M can be 1-regular (in which case it is also called positivity
improving, see, e.g. [22]) only if dim hj = 1 for all j in V .

We can therefore give the following definition for an irreducible OQRW,
which emphasizes our interpretation in terms of paths.

Definition 3.10. Let M be an open quantum random walk. We say that two
sites i, j in V are connected by M, which we denote by i

M→ j, if one of
the equivalent conditions of Proposition 3.8 holds. As we have shown, M is
irreducible if and only if, for any two i and j in V , one has i

M→ j and j
M→ i.

Remark 3.11. A minimal OQRW realization of a classical Markov chain is
irreducible if and only if the Markov chain is irreducible in the classical sense.

Until now, we have basically found necessary and sufficient conditions
for irreducibility of an open quantum random walk. In Sect. 6, we will discuss
decompositions of reducible open quantum random walks into irreducible ones.

The following proposition essentially comes from [22]:

Proposition 3.12. Assume a 2-positive map Φ on I1(H) has an eigenvalue λ
of modulus ‖Φ‖, with eigenvector ρ. Then:

• ‖Φ‖ is also an eigenvalue, with eigenvector |ρ|,
• if Φ is irreducible, then λ is a simple eigenvalue.

In particular, if Φ is irreducible and has an eigenvalue of modulus ‖Φ‖, then
‖Φ‖ is a simple eigenvalue, with an eigenvector that is strictly positive.

Remark 3.13. The proof of the above result relies on the 2-positivity and
irreducibility of Φ only. Therefore by Proposition 3.3, the same statement holds
when the map Φ on I1(H) is replaced with the map Φ∗ on B(H) (alternatively,
see [14, Theorem 3.1]).

Proof. Theorems 4.1 and 4.2 from [22] give us the first two statements. The
third one follows from the fact that exp ‖Φ‖ × |ρ| = (exp Φ)(|ρ|) > 0 by irre-
ducibility. �

The following theorem is a direct application of Proposition 3.12:

Theorem 3.14. An irreducible open quantum random walk M has an invariant
state if and only if 1 is an eigenvalue of M. If this is the case, then M has
only one invariant state, which in addition is faithful.

By a simple application, we can obtain the following ergodic convergence
result, which can be seen as a discrete time version of the Frigerio–Verri ergodic
theorem ([12], Theorem 1.1):
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Theorem 3.15. Assume that an open quantum random walk M is irreducible
and has an invariant state ρinv. For any state ρ, one has 1

n

∑n−1
k=0 M

k(ρ) → ρinv

weakly.

Proof. Let ρ be trace class, and define En = 1
n

∑n−1
k=0 M

k. One has
Tr[En(ρ)X] = Tr[ρE∗

n(X)]. By the Banach–Alaoglu theorem, E∗
n(X) has

weak-∗ convergent subsequences. Denote by Y the weak-∗ limit of a subse-
quence E∗

nk
(X); one has M∗ ◦ E∗

nk
(X) → M∗(Y ), so that

Tr[ρ (Id − M∗)(Y )] = lim
k

Tr[ρ (Id − M∗)E∗
nk

(X)]

= lim
k

Tr

⎡

⎣ρ
1
nk

nk−1∑

j=0

(M∗j − M∗(j+1))(X)

⎤

⎦

= lim
k

Tr
[

ρ
1
nk

(Id − M∗nk)(X)
]

= 0

so that M∗(Y ) = Y . Since M∗ is a 2-positive irreducible unital operator,
Y = λXId (recall Remark 3.13) and we have limk Tr [Enk

(ρ)X] → λX for any
trace class ρ. Writing this for ρ equal to the eigenvector ρinv leads to λX =
Tr(ρinvX), showing that λ is independent of the subsequence (nk)k. When ρ
is a state we obtain the desired convergence. This concludes the proof. �

4. Period and Aperiodicity for OQRWs

As in the previous section, we start with a review of the notion of period for a
positive trace-preserving map Φ. Here, we follow Fagnola and Pellicer [9] and
Groh [14]. We define d− to be subtraction modulo d.

Definition 4.1. Let Φ be a positive, trace-preserving, irreducible map and let
(P0, . . . , Pd−1) be a resolution of identity, i.e. a family of orthogonal projections
such that

∑d−1
k=0 Pk = Id. One says that (P0, . . . , Pd−1) is Φ-cyclic if Φ∗(Pk) =

Pk d−1 for k = 0, . . . , d − 1. The supremum of all d for which there exists a
Φ-cyclic resolution of identity (P0, . . . , Pd−1) is called the period of Φ. If Φ has
period 1 then we call it aperiodic.

Remark 4.2. We recall that a characterization of a cyclic resolution of the iden-
tity was already given, even if in an embryonic stage (and in the
Schrödinger picture), in [8, Theorem 3.4].

The following result is a combination of Theorems 3.7 and 4.3 of Fagnola
and Pellicer in [9] (the latter was also partially proven by Groh in [14]). Note
that these results are proven in finite dimension, but they immediately extend
to infinite dimension. Before we state it, let us recall that the point spectrum
of an operator is its set of eigenvalues. The point spectrum of Φ∗ will be
denoted Sppp Φ∗.

Proposition 4.3. If Φ is an irreducible, 2-positive map on I1(H) then the
set SpppΦ∗ ∩T, is a subgroup of the circle group T. If in addition Φ has finite
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period d, then a primitive root of unity ei2π/d belongs to SpppΦ∗ if and only
if Φ is d-periodic.

The following result is an immediate consequence of Proposition 4.3.

Proposition 4.4. If a 2-positive TP map Φ on I1(H) is irreducible and aperiodic
with invariant state ρinv, and H is finite dimensional then

• Sppp Φ ∩ T = {1}
• for any ρ ∈ I1(H) one has Φn(ρ) → ρinv as n → ∞.

Remark 4.5. For a Φ∗-invariant weight (not necessarily a state) ρ and a cyclic
resolution of identity (P0, . . . , Pd−1), the above definition implies that ρ(Pk) =
ρ(P0) for all k.

Now, we consider once again the special case of an OQRW M.

Proposition 4.6. A resolution of the identity (P0, . . . , Pd−1) is cyclic for an
irreducible open quantum random walk M if and only if Pk =

∑
j∈V Pk,j ⊗

|j〉〈j| for every k, with projectors Pk,j satisfying the relation

Pk,iLi,j = Li,jPk d−1,j . (4.1)

Proof. Assume that there exists an M-cyclic resolution of identity
(P0, . . . , Pd−1). Since M∗(Pk) = Pk d−1, every Pk is block diagonal, i.e.
Pk =

∑
j Pk,j ⊗ |j〉〈j|. By Theorem 5.4 from [9] (which is stated in the

finite-dimensional case but can be immediately extended to infinite dimen-
sion), a resolution of the identity is M-cyclic if and only, for any i, j in
V : Pk Li,j ⊗ |i〉〈j| = Li,j ⊗ |i〉〈j|Pk d−1. Relation (4.1) follows by inspection.
The converse is obvious. �

Remark 4.7. For classical, irreducible, d-periodic Markov chains with stochas-
tic matrix K, the cyclic components are uniquely determined and coincide with
the irreducible communication classes C0, . . . , Cd−1 of the (aperiodic) Markov
chain with transition matrix Kd. In the quantum context, the role of the par-
tition C0, . . . , Cd−1, or, better yet, of the corresponding indicator functions
1lC0 , . . . , 1lCd−1 , is played by the cyclic projections P0, . . . , Pd−1. Indeed, notice
that in the classical case K1lCk

= 1lCk−1 and, for the minimal OQRW real-
ization of this Markov chain, the cyclic projections P0, . . . , Pd−1 are uniquely
determined as Pk =

∑
j∈Ck

|j〉〈j|. However, an important difference should
be underlined, with respect to the classical case: in general, the resolution of
the identity which verifies the definition of the period is not uniquely deter-
mined, since the decomposition of Φd into minimal irreducible components is
not unique in general, as we will see in Sect. 7. An example of this fact can be
easily constructed, as we now describe.

Example 4.8. Take an OQRW M with two sites and h1 = h2 = C
2, and

introduce the matrix R =
(

0 −1
1 0

)

. Then we consider

L11 = L21 =
i√
2

R, L12 = L22 = − i√
2

R.
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This M is an irreducible OQRW (by a direct application of Proposition 3.8)
with period 2, and the cyclic projections P0, P1 can be chosen in different ways:

P
(x)
0 = |x〉〈x| ⊗ |1〉〈1| + |x〉〈x| ⊗ |2〉〈2|,

P
(x)
1 = |Rx〉〈Rx| ⊗ |1〉〈1| + |Rx〉〈Rx| ⊗ |2〉〈2|

is a cyclic decomposition of the OQRW for any norm-one vector x in C
2. As

mentioned above, this is due to the fact that the map M2 does not have a
unique decomposition in irreducible components: M2 is the OQRW with all
transition operators L equal to Id/

√
2. The decomposition of M2 into irre-

ducible components, however, is unique up to unitary equivalence. See [4] for
related results (in the finite case).

We now discuss some results which will give us simple sufficient criteria
for aperiodicity of an open quantum random walk.

Lemma 4.9. Let M be a d-periodic open quantum random walk. Let i, j ∈ V
and x ∈ Ran Pk,i, y ∈ RanPk′,j for some k, k′ ∈ {0, . . . , d − 1}. For any
path π ∈ P(i, j) of length � one has 〈y, Lπx〉 = 0 unless k′ − k = � mod d.

Proof. Relation (4.1) implies that Lπx belongs to the range of Pkd+�,j . �

Theorem 4.10. Consider an irreducible open quantum random walk. For i in V ,
x in hi, define

D(i, x) = GCD{� ≥ 1,∃π ∈ P�(i, i) s.t. 〈x,Lπx〉 �= 0} (4.2)

(GCD denotes the greatest common divisor). Then, for every x in the range
of Pk,i, the period d is a divisor of D(i, x). In particular, if there exists i in V
such that, for all x ∈ hi, D(i, x) = 1, then the open quantum random walk is
aperiodic.

Proof. Irreducibility implies that the defining set of �’s is nonempty, so
that D(i, x) is well defined. The result follows from Lemma 4.9. �

Corollary 4.11. Consider an irreducible open quantum random walk M. If
there exists i in V such that

∀x ∈ hi, 〈x,Li,i x〉 �= 0 (4.3)

then the open quantum random walk is aperiodic.

Remark 4.12. The definition of the quantity D(i, x) in Theorem 4.10 has an
interpretation in terms of paths, and is reminiscent of the definition of the
period for a state i of a classical Markov chain with transition matrix K, i.e.
D(i) = GCD {� ≥ 1 |K�

ii > 0}. In addition, D(i) coincides with (4.2) when
applied to an OQRW which is a minimal OQRW realization of the Markov
chain. In the quantum context, however, D(i, x) does not always coincide with
the period, and, in particular, is not invariant with the argument (i, x) even if
the OQRW is irreducible (see Example 9.7). Even worse, the relation d |D(i, x)
may not hold if x does not belong to the range of some Pi,k. Since the Pk are
a priori unknown, the practical study of the period of an OQRW is difficult
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when simple sufficient conditions (such as the condition for aperiodicity given
in Theorem 4.10) do not hold.

In such cases, the following result can be helpful:

Proposition 4.13. Consider an irreducible, finite, d-periodic open quantum ran-
dom walk M. If for some i in V , and some � prime with d, there exists a loop
π ∈ P�(i, i) of length �, such that Lπ is invertible, then d is a divisor of dim hi.

Proof. By Bézout’s lemma, for any k in 0, . . . , d − 1 there exists an integer
a such that a� = k mod d. Then La

πP0,iL
−a
π = Pk,i, so that dim Pk,i does not

depend on k. Therefore, dim hi = d dim P0,i and the conclusion follows. �

Remark 4.14. As a consequence of Corollary 4.11, starting from a finite irre-
ducible periodic open quantum random walk M we can perturb it into an ape-
riodic one, M(ε), in different ways. If there exists i0 in V such that Li0,i0 = 0
then one possible way is to define, for some ε ∈]0, 1[,

L
(ε)
i,j = Li,j if j �= i0 and L

(ε)
i,i0

=
{√

ε Id if i = i0,√
1 − ε Li,i0 if i �= i0.

This is the analogue of “adding a loop” for classical Markov chains. Another
way is to “add a loop” at every site, a method we will use in Example 9.5.

For clarity, we restate Proposition 4.4 specifically for OQRWs:

Theorem 4.15. Consider an irreducible, aperiodic and finite open quantum
random walk M. For any state ρ, the sequence (Mn(ρ))n converges to the
invariant state ρinv (which is unique, and faithful).

5. Ergodic Properties of Irreducible OQRWs

We will now discuss the consequences of the previous theoretical results in
terms of ergodic properties of irreducible open quantum random walks. We
recall briefly the definitions of the (classical) random processes introduced in
Sect. 2. Fixing an open quantum random walk M on V defined by operators
(Li,j)i,j∈V we define the set Ω = V N, equipped with the σ-field generated by
cylinder sets. An element of Ω is denoted by ω = (ωn)n∈N. We define, for
any state ρ on

⊕
i∈V hi of the form ρ =

∑
i∈V ρ(i) ⊗ |i〉〈i|, a probability P

(n)
ρ

on V n+1 by

P
(n)
ρ (ω0 = i0, . . . , ωn = in) = Tr(Lin,in−1 . . . Li1,i0ρ(i0)L∗

i1,i0 . . . L∗
in,in−1

).

One easily shows, using the stochasticity property (2.2), that the family (P(n)
ρ )n

is consistent, and can therefore be extended uniquely to a probability Pρ on
Ω. We denote by (Xn)n∈N the coordinate maps. Then Mn(ρ,Xn) is defined
by (2.3), and we let

ρn =
LXn,Xn−1 . . . LX1,X0ρ(X0)L∗

X1,X0
. . . L∗

Xn,Xn−1

Tr
(
LXn,Xn−1 . . . LX1,X0ρ(X0)L∗

X1,X0
. . . L∗

Xn,Xn−1

) .
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These processes mimic the behaviour of the measurement outcomes and of the
associated resulting states, described in Sect. 2. In particular, all the state-
ments in Sect. 2 describing laws remain true with Pρ replacing P. We will,
from now on, usually drop the ρ in Pρ in the proofs.

A first result regarding the ergodic behaviour of these quantities is the
following, which is a consequence of the ergodic theorem due to Kümmerer and
Maassen [16]. For completeness, we give a self-contained proof in the present
framework.

Theorem 5.1 (Kümmerer–Maassen) If the open quantum random walk M is
finite then, for any initial state ρ, there exists a random variable
ρinv =

∑
i∈V ρinv(i) ⊗ |i〉〈i| with values in the set of invariant states

on H =
⊕

i∈V hi such that Pρ-almost-surely,

1
n

n∑

k=0

ρk ⊗ |Xk〉〈Xk| −→
n→∞

∑

i∈V

ρinv(i) ⊗ |i〉〈i|.

Proof. Let ηn be the state ρn ⊗ |Xn〉〈Xn|. Denote by Fn the σ-algebra gener-
ated by ηk for k ≤ n, and let

mn =
n∑

k=0

ηk −
n−1∑

k=0

M(ηk).

We have, from (2.7), that E(mn+1−mn|Fn) = 0 so that (mn)n is a martingale,
and since ‖mn+1−mn‖ = ‖ηn+1−M(ηn)‖ is uniformly bounded, we can apply
the law of large numbers for martingales with uniformly bounded increments.
Therefore, 1

n

∑n
k=0 ηk − 1

n

∑n−1
i=0 M(ηk) → 0 where convergence is meant in the

almost-sure sense. In turn, this implies for any N ∈ N
∗,

1
n

n∑

k=0

ηk − 1
n

n−1∑

k=0

MN (ηk) → 0

so that

1
n

n∑

k=0

ηk − 1
n

n−1∑

k=0

Id + M + · · · + MN−1

N
(ηk) → 0.

For any state η, Id+M+···+MN−1

N (η) converges when N goes to infinity to an
invariant state. This can be seen viewing M as a contraction on the Hilbert–
Schmidt space I2(H), i.e. B(H) equipped with the scalar product Tr(A∗B).
This invariant state must be of the form Pη, where P is a linear operator
on I1(H). The operator P can be approximated uniformly by I+M+···+MN−1

N ,
therefore, 1

n

∑n
k=0 ηk − 1

n

∑n−1
k=0 Pηk → 0. On the other hand PM = P implies

that E(Pηn+1|Fn) = Pηn, i.e. (Pηn)n is a bounded martingale, so 1
n

∑n
k=0 Pηk

converges almost-surely to some invariant state. This concludes the proof. �

A direct consequence of Theorem 5.1 (of which we shall preserve the
notations) and of our previous observations on the form of ρinv is the following:



114 R. Carbone and Y. Pautrat Ann. Henri Poincaré

Corollary 5.2. If the open quantum random walk M is finite and irreducible
with invariant (and faithful) state ρinv =

∑
i∈V ρinv(i)⊗|i〉〈i|, then for a given

initial state ρ, all i in V , define Nn(i) = card {k ≤ n |Xk = i}. We have for
any initial state ρ

Nn(i)
n

−→
n→∞ Tr ρinv(i) Pρ-almost-surely,

1
n

n−1∑

k=0

P(Xk = i) −→
n→∞ Tr ρinv(i),

1
Nn(i)

n−1∑

k=0

ρk 1lXk=i −→
n→∞

ρinv(i)
Tr ρinv(i)

Pρ-almost-surely.

Proof. This is simply obtained by examination from Theorem 5.1. �

Remark 5.3. Theorem 3.14 tells us that the state ρinv is unique and faithful,
and in particular Tr ρinv(i) > 0 for any i in V . This implies that, for any
irreducible open quantum random walk with an invariant state ρinv, one has

for all i ∈ V, P(Xn = i infinitely often) = 1,
for all i ∈ V, x ∈ hi, P(〈x, ρn(i)x〉 1lXn=i > 0 infinitely often) = 1.

The first statement has an immediate interpretation in terms of “spatial recur-
rence” (every site i in V is visited infinitely often), the second one is stronger
and can be seen as “spatial and internal recurrence”.

The second ergodic result of this section is a consequence of Theorem 3.15.

Corollary 5.4. If the open quantum random walk M is irreducible with invari-
ant (and faithful) state ρinv =

∑
i∈V ρinv(i) ⊗ |i〉〈i|, then for any initial state

ρ, for all i in V ,

1
n

n−1∑

k=0

P(Xk = i) −→
n→∞ Trρinv(i),

1
n

n−1∑

k=0

Mk(ρ, i) −→
n→∞ ρinv(i) in the weak-∗ sense.

Remark 5.5. The assumption that there exists an invariant state is necessary
in Corollary 5.4 (contrary to Corollaries 5.2 and 5.6, where it is always true
and only stated to establish notations), because we do not assume finiteness of
M. The first statement of Corollary 5.4 is a refinement of the second statement
of Corollary 5.2.

Our third corollary is a consequence of Theorem 4.15. It is an improve-
ment of the previous result in the case where we have aperiodicity.

Corollary 5.6. If the open quantum random walk M is finite, irreducible and
aperiodic with invariant (and faithful) state ρinv =

∑
i∈V ρinv(i) ⊗ |i〉〈i|, then
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for any initial state ρ, for all i in V ,

P(Xn = i) −→
n→∞ Trρinv(i),

Mn(ρ, i) −→
n→∞ ρinv(i).

Remark 5.7. • Corollary 5.4 seems rather useless, from an operational
point of view: there is no joint realization of the different Mk(ρ, i) for
different k; or, in other terms, measuring Xk disrupts the existence of
Mk′

(ρ, i) for k′ > k. Corollary 5.6, on the other hand, is operational,
and tells us that, if the system is left to evolve for a large time, then
a single measurement will give the position i with approximate prob-
ability Trρinv(i), and the state after that unique measurement will be
approximately ρinv(i)

Trρinv(i) . These limiting quantities are the same as those
that appear for limits with measurements. These results display evident
similarities with the behaviour of classical Markov chains.

• Example 9.5 suggests that aperiodicity is a necessary assumption for
Corollary 5.6, as one could expect from analogous results for classical
Markov chains.

6. Reducible OQRWs and Communication Classes

In this section, we study the failure of irreducibility for an open quantum
random walk. Considering reducible OQRWs, the first natural problem one
has to face is how to characterize reducibility and how to determine reducing,
possibly minimal, components.

A reasonable way to proceed, mimicking what happens for classical
Markov chains, is to define a communication relation between vectors of the
Hilbert space H: this relation should be an equivalence relation constructed
in such a way that the induced equivalence classes are the irreducible compo-
nents of the map M. We will see that it is possible to do this in a way which
is consistent with the classical case.

However, it is important to immediately underline that the quantum
case displays peculiar features: the decomposition of the Hilbert space H as
the direct sum of irreducible components is not unique in general. This is not
at all surprising if one thinks about the structure of invariant states for a
CP-TP map (see [4], from which we take much of our inspiration): essentially,
the quantum peculiarity is related to the fact that there can exist invariant
states which are not simple convex combinations of the invariant states on
each irreducible component.

We recall (see Definition 3.6) that, following Baumgartner and Narnhofer
[4], we call a closed vector space V an enclosure for M if supp ρ ⊂ V, with ρ
a positive trace-class operator, implies suppM(ρ) ⊂ V. The next proposition
will be extremely useful.

From now on, we fix an OQRW M with the same notation as in Sect. 2.
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Proposition 6.1. 1. A closed subspace V of H is an enclosure if and only if
Lπ ⊗ |j〉〈i| V ⊂ V for any i, j in V and π ∈ P(i, j). In particular, if a
vector x =

∑
i∈V xi ⊗ |i〉 is in an enclosure V then Lπxi ⊗ |j〉 ∈ V.

2. A projection P reduces M if and only if

P (Lπ ⊗ |j〉〈i|)P = (Lπ ⊗ |j〉〈i|)P for all i, j in V and π ∈ P(i, j).

3. If V is an enclosure, then (Lπ ⊗ |j〉〈i|)(V) ⊂ hj ∩ V for any i, j in V
and π ∈ P(i, j), and

⊕
j∈V Vect{(Lπ ⊗ |j〉〈i|)(V), i ∈ V, π ∈ P(i, j)} is

also an enclosure.
4. The support of an invariant state is an enclosure.

Proof. 1. Suppose that V is an enclosure. Remark that, for any positive
integer � and any x =

∑
i∈V xi ⊗ |i〉 in H, one has

M�(|x〉〈x|) =
∑

i,j∈ V

∑

π∈P�(i,j)

|Lπxi〉〈Lπxi| ⊗ |j〉〈j|; (6.1)

so, if x is in V, then every Lπxi⊗|j〉 is in V. Conversely, let us now suppose
that V is stable under the action of the operators Lπ ⊗ |j〉〈i|. Starting
from ρ with supp ρ in V, then considering its spectral decomposition
and (6.1) above shows that suppM�(ρ) ⊂ V.

2. Just recall that a subspace of H is the support of a reducing projection if
and only if it is an enclosure. This point is then an immediate consequence
of the previous one.

3. This point also follows immediately from 1.
4. Consider an invariant state ρ0 and a state ρ with support contained in

supp ρ0. Then there exists a weak approximation of ρ by an increas-
ing sequence of finite-dimensional operators ρn with supp ρn ⊂ supp ρ0.
Furthermore, for every n, there exists a λn such that ρn ≤ λnρ0, so
that M(ρn) ≤ λnρ0 and suppM(ρn) ⊂ supp ρ0. The sequence M(ρn) is
increasing and weakly convergent to M(ρ) so that suppM(ρ) ⊂ supp ρ0,
which proves that supp ρ0 is an enclosure. �

In general, it is not true that all the reducing projections are diagonal, i.e.
of the form

∑
i∈V Pi ⊗ |i〉〈i|, but by the previous Proposition, point 3, if M is

reducible, then it admits at least one block-diagonal reducing projection. So the
reducibility of an OQRW can be established considering only block-diagonal
projections. Moreover, notice that the support projection of an invariant state
is block diagonal, i.e. of the form P =

∑
i∈V Pi ⊗ |i〉〈i|.

We can characterize the block-diagonal projections reducing M using the
unravelling of M.

Proposition 6.2. An orthogonal block-diagonal projection P =
∑

j Pj ⊗ |j〉〈j|
reduces M if and only if Ran Li,jPj ⊂ Ran Pi, (i.e. Li,jPj = PiLi,jPj) for
all i and j in V . Equivalently, a closed subspace of the form V = ⊕i∈V Vi,
with Vi ⊂ hi, is an enclosure if and only if Li,jVj ⊂ Vi for all i and j.

Proof. It is clear that it is sufficient to prove only the first statement. So,
take a reducing projection P =

∑
j∈V Pj ⊗ |j〉〈j|. By point 2 in the previous
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proposition, it is necessary that the range of P is invariant under the action
of all operators of the form Li,j ⊗ |i〉〈j| and so the relation Li,jPj = PiLi,jPj

for all i and j in V immediately follows. The reverse implication is also easy
to obtain using again the characterization in point 2 of previous proposition
and the fact that any operator Lπ ⊗ |i〉〈j|, for a path π = (i0, i1, ....i�) ∈
P(i, j) (with i = i0, j = i�) of length �, is the composition of the operators
Lik+1,ik

⊗ |ik+1〉〈ik|, with k = 0, . . . , � − 1. �

Corollary 6.3. When P =
∑

j∈V Pj ⊗ |j〉〈j| is a reducing projection, each Pj

is a projection on a subspace preserved by Ljj.

Remark 6.4. Suppose that, for all sites i and j, there exists “a path of invertible
operators which connects them”, i.e. a path π ∈ P(i, j) such that Lπ is invert-
ible. In this case, the previous proposition proves that, if P =

∑
j∈V Pj ⊗|j〉〈j|

is a reducing projection, then rankPi = rankPj for any i, j in V . In particular,
if a state ρ =

∑
i∈V ρi ⊗ |i〉〈i| is invariant, then ρi �= 0 for all i ∈ V (i.e. an

invariant state is supported by all sites), and if ρi is faithful on hi for some
index i, then ρj is faithful on hj for any j ∈ V .

The next notion, of enclosure generated by a single vector in H, will be
crucial in our analysis of decompositions of reducible OQRWs:

Definition 6.5. For φ in H, we denote by Enc(φ) the closed vector space

Enc(φ) = Vect
⋃

i,j∈V

{(Lπ ⊗ |j〉〈i|)φ |π ∈ P(i, j)}.

Consistently with Proposition 6.1, we will consider specifically enclosures of
vectors x ⊗ |i〉, which take the form

Enc(x ⊗ |i〉) = Vect
⋃

j∈V

{Lπ x ⊗ |j〉 |π ∈ P(i, j)}.

We will be mostly interested in enclosures that are minimal but non-
trivial (i.e. not equal to {0}). From now on, the term minimal enclosure will
refer to minimal, non-trivial enclosures. The following lemma contains relevant
properties of enclosures.

Lemma 6.6. • The space Enc(x ⊗ |i〉) is the smallest enclosure containing
x ⊗ |i〉.

• Any minimal enclosure is of the form Enc(x ⊗ |i〉).
• If two minimal enclosures Enc(x ⊗ |i〉) and Enc(y ⊗ |j〉) are distinct then

they are in direct sum.

Proof. All statements follow from Proposition 6.1. �

Remark 6.7. In the same way that the specific form of M(ρ) led us to consider
only states ρ of the form ρ =

∑
i∈V ρ(i) ⊗ |i〉〈i|, Proposition 6.1 shows that

vectors of the form x⊗|i〉 are of particular interest. In particular, any minimal
enclosure will be generated by a vector x ⊗ |i〉. It is not true, however, that
any Enc(x ⊗ |i〉) is a minimal enclosure, as the following example shows.
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Example 6.8. Take V = {1, 2, 3} with

L1,2 = L2,3 = L3,1 =
1√
5

(
1 0
0 2

)

L2,1 = L3,2 = L1,3 =
1√
5

(
2 0
0 1

)

.

One can see that for k = 1, 2, Enc(ek ⊗ |1〉), are minimal enclosures, equal
to C ek ⊗ C

V , but the space Enc((e1 + e2) ⊗ |1〉) is equal to C
2 ⊗ C

V .

Remark 6.9. Let us return to the notion of irreducibility, as introduced in
Definition 3.10: an open quantum random walk M is irreducible if for any i, j

in V , one has i
M→ j, which by Proposition 3.8 is defined by the equivalent

conditions

∀x ∈ hi, y ∈ hj , ∃π ∈ P(i, j) such that 〈y, Lπx〉 �= 0, (6.2)

∀x ∈ hi, y ∈ hj , y ∈ Vect {Lπ x |π ∈ P(i, j)}. (6.3)

From the above discussion, it is clear that both conditions can be characterized
using enclosures:

∃π ∈ P(i, j) such that 〈y, Lπx〉 �= 0 ⇔ y �∈ Enc(x ⊗ |i〉)⊥

y ∈ Vect {Lπ x |π ∈ P(i, j)} ⇔ y ∈ Enc(x ⊗ |i〉).
As we will see below, in Proposition 7.3, the orthogonal of an enclosure can be
related to another enclosure. This will allow us to strengthen the connection
between the two notions above.

The above discussion gives immediately:

Lemma 6.10. An open quantum random walk M is irreducible if and only if H
is a minimal enclosure, or equivalently, if H = Enc(x ⊗ |i〉) for any x ⊗ |i〉
in H.

To emphasize the picturesque aspect of our definition of irreducibility, we
define the following notion of accessibility among vectors, denoted by M→. We
remark that the notation, M→, is the same we used in Definition 3.10, but this
should not generate confusion, the difference being clear in the arguments we
use: in the previous case, the connection M→ is between sites i, j in V , whereas
here it is between vectors φ, ψ of the Hilbert space H.

Definition 6.11. For φ, ψ in H, we denote φ
M→ ψ if ψ ∈ Enc(φ), and φ

M↔ ψ

if φ
M→ ψ and ψ

M→ φ.

Again, we will be specifically interested in the relation M→ between vectors
of the form x ⊗ |i〉, y ⊗ |j〉 and we have immediately

x ⊗ |i〉 M→ y ⊗ |j〉 ⇔ y ∈ {Lπ x |π ∈ P(i, j)}.

The following Proposition can easily be proven:

Proposition 6.12. The relation M→ on H is transitive, and M↔ is an equivalence
relation. Any minimal enclosure deprived of 0 is an equivalence class of M↔.
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Remark 6.13. Every equivalence class of a vector x ⊗ |i〉 by M↔ is a subset
of H contained in Enc(x ⊗ |i〉), but it may fail to be an enclosure and even
a subspace. A minimal OQRW realization of a classical Markov chain with a
proper transient class easily gives an example of an equivalence class that is
not an enclosure. For an example where an equivalence class is not a subspace,
consider Example 6.14 below.

Example 6.14. Consider V = {1, 2}, h1 = h2 = C
2 with canonical basis

denoted by (e1, e2), and introduce the OQRW M with transitions

L1,1 = L2,2 =
1√
2

(
0 1
1 0

)

L1,1 = L2,2 =
1√
2

Id.

Then, the only minimal enclosures are

E+ = Enc
(
(e1 + e2) ⊗ |1〉) = C (e1 + e2) ⊗ C

V

E− = Enc
(
(e1 − e2) ⊗ |1〉) = C (e1 − e2) ⊗ C

V

and for any x �∈ C(e1 + e2) ∪ C(e1 − e2) one has

Enc(x ⊗ |1〉) = Enc(x ⊗ |2〉) = H.

Therefore, for such an x, the equivalence class of x ⊗ |1〉 is H \(E+ ∪ E−).

7. Decompositions of OQRWs and Invariant States

In this section, we wish to focus on the behaviour of an OQRW M on the so-
called fast recurrent subspace, i.e. the support of the M-invariant states. We
decompose the corresponding restriction of M into a “direct sum” of irreducible
OQRWs Mk, and study how the different irreducible components interact.
We follow the lines traced in [4] for quantum evolutions on finite-dimensional
Hilbert spaces; we will state and prove generalizations to infinite dimension.
As we will see in Proposition 7.3, the form of invariant states is dictated by
the uniqueness or non-uniqueness of the decompositions into minimal enclo-
sures, and Lemma 7.7 shows that non-uniqueness is related to the existence
of mutually non-orthogonal minimal enclosures. We will need to consider the
closed vector space generated by non-orthogonal subspaces E and F with
E ∩ F = {0}; we denote by E + F this closed vector space, while we use the
symbol “⊕” when the subspaces E and F are necessarily orthogonal.

To further study the invariant states of an OQRW, we recall some nota-
tion. Inspired by [12], we denote:

R = sup{supp ρ | ρ an invariant state}.

This space is often called the fast recurrent space, see [13,24] (it is the coun-
terpart of the fast recurrent, or positive recurrent, sets for Markov chains). We
let D = R⊥, which is characterized as

D = {φ ∈ H | 〈φ, ρ φ〉 = 0 for any invariant state ρ}. (7.1)
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Remark 7.1. The above definition of R is unfortunately not explicit, and makes
a (small) part of Theorem 7.13 describing invariant states tautological. In the
finite-dimensional case, R can be described without reference to the set of
invariant states, as R = D⊥, where D is defined by

D = {φ ∈ H | 〈φ,Mn(ρ)φ〉 −→
n→∞ 0 for any state ρ}. (7.2)

In the infinite-dimensional case, however, it is not clear that (7.1) and (7.2)
coincide. This is similar to the classical difficulty arising with infinite recurrent
points in classical Markov chains with infinite state space. We will return to
this problem in a future paper.

The following Lemma is an immediate consequence of Proposition 6.1.

Lemma 7.2. The subspace R is an enclosure.

From the block-diagonal structure of Mn(ρ) for ρ any state, we clearly
have

R =
⊕

i∈V

Ri with Ri ⊂ hi, D =
⊕

i∈V

Di with Di ⊂ hi.

Since our main interest is to investigate the invariant states of an open
quantum random walk M on H, we will be interested in decomposing R, not D,
into irreducible subsystems.

We will use the following results, which were stated in [4] in the finite-
dimensional case. We extend them here to infinite dimension. We say that
a vector space V has a unique decomposition into a direct sum of minimal
enclosures if V =

∑
i∈I Ei =

∑
j∈J E′

j with all Ei and E′
j enclosures, implies

that card I = cardJ and there exists a permutation σ from I onto J such that
E′

i = Eσ(i) for all i.

Proposition 7.3. Assume that V and W are two subspaces of H such that
V ∩ W = {0} and denote by PV and PW the respective orthogonal projections.
For a state ρ with support in V + W, we introduce the decomposition ρ =
ρV + ρW + ρC + ρ′

C with

ρV = PV ρPV , ρW = PW ρPW ρC = PV ρPW , ρ′
C = PW ρPV .

Decompose M(ρ) in a similar way. Then the following facts hold.
1. If V is an enclosure, then PW M(ρC + ρ′

C)PW = 0.
2. If V is an enclosure, then so is V⊥ ∩ R.
3. If V and W are enclosures, then

M(ρ)V =M(ρV) M(ρ)W =M(ρW) M(ρ)C =M(ρC) M(ρ)′
C =M(ρ′

C).

4. A subspace of R is a minimal enclosure if and only if it is the support of
an extremal invariant state. In particular, if V ⊂ R is an enclosure, then
it contains a (non-trivial) minimal enclosure.

5. If ρ is M-invariant and V and W are two minimal enclosures contained
in R, such that the decomposition of V +W into a sum of minimal enclo-
sures is unique, then ρC = 0 and ρ′

C = 0.
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Proof. We essentially borrow the main ideas of the proofs from [4], adding
some variations when required by the infinite-dimensional setting.
1. To prove the first point, we define κ±ε = 1

ε ρV ± (ρC + ρ′
C) + ε ρW , for

ε > 0. We have κ±ε ≥ 0 (as can be checked from 〈u, κ±ε u〉 = 〈u±ε, ρ u±ε〉
where u±ε = 1√

ε
PVu +

√
ε PWu), so that M(κ±ε) ≥ 0, and, because V is

an enclosure, the support of M(ρV) is contained in V, so that

PW M(κ±ε)PW = ±PW M(ρC + ρ′
C)PW + εPW M(ρW)PW .

This is non-negative for any ε, and by necessity PW M(ρC + ρ′
C)PW = 0.

2. Consider W = V⊥ and η any invariant state; then

ηV + ηW + ηC + η′
C = M(ηV) + M(ηW) + M(ηC) + M(η′

C).

Projecting by PW this yields ηW = PWM(ηW)PW . Since

Tr ηW = TrM(ηW) = Tr PWM(ηW)PW + TrPVM(ηW)PV ,

this implies that PV M(ηW)PV is positive with zero trace. Therefore
PV M(ηW)PV = 0 which implies PV M(ηW) = M(ηW)PV = 0 and so
ηW = M(ηW). As the support of a invariant state, supp ηW = supp η ∩ V⊥

is an enclosure. Taking the supremum over all possible invariant states η,
this tells us that R ∩ V⊥ is also an enclosure.

3. If both V and W are enclosures, then by point 1, and the fact that
suppM(ρV) ⊂ V and suppM(ρW) ⊂ W, we have

M(ρC) + M(ρ′
C) = M(ρ)C + M(ρ)′

C . (7.3)

Now, remark that if, e.g. φ ∈ V and ψ ∈ W, then for any i and j in V we
have

(
Li,j ⊗ |i〉〈j|)φ ∈ V and

(
Li,j ⊗ |i〉〈j|)ψ ∈ W.

Therefore, (7.3) actually implies M(ρC) = M(ρ)C and M(ρ′
C) = M(ρ)′

C .
4. If V is a minimal enclosure contained in R, then there exists an M-invariant

state ρ such that ρV = PVρPV �= 0. By point 3, we have ρV = M(ρ)V =
M(ρV), and so ρV is (up to normalization) an invariant state of M|I1(V).
Since V is irreducible, by Theorem 3.14, M|I1(V) has a unique invariant
state, which has support equal to V. Therefore, ρV is a state with support
V. This ρV must be extremal since ρV = t ρ1+(1−t) ρ2 with ρ1, ρ2 invariant
states and t ∈]0, 1[ would imply that ρ1, ρ2 are invariant states with support
in V but then by uniqueness, ρV = ρ1 = ρ2.

Conversely, if V = supp ρ with ρ an extremal invariant state,
then V must be a minimal enclosure. Indeed, the restriction of ρ
to V is by definition a faithful state, and by Lemma 1 in [11] it is the
only invariant of M|I1(V). If we suppose V is not minimal, then there exist
an enclosure W �= V with W ⊂ V and therefore, as in the preceding point,
an invariant state ρW of M with support in W. Therefore, ρW �= ρ is an
invariant state also for M|I1(V), leading to a contradiction.

To prove the last statement in point 4, observe that by definition there
exists an invariant ρ such that V ∩ supp ρ �= {0}. By point 3, V contains
the support of the invariant state ρV . By the Krein–Milman theorem, ρV
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is a convex combination of extremal invariant states, so there exists an
invariant state η such that supp η ⊂ supp ρV , and the minimal enclosure
supp η is contained in V.

5. If V and W are minimal enclosures contained in R, then, as in the proof
of point 4, they are the supports of extremal invariant states ρV and ρW .
Because the decomposition of V + W into minimal enclosures is unique, ρV
and ρW are the unique extremal invariant states of M|I1(V+W). Since the
set of invariant states is convex, then by the Krein–Milman theorem, ρ is a
convex combination of ρV and ρW , so ρC and ρ′

C must be zero. �

We can now return to the study of enclosures generated by vectors of
the form x ⊗ |i〉. Remark that “non-connectedness of i and j through M→”
(Definition 3.10), when stated in terms of enclosures, is related to the existence
of x ∈ hi, y ∈ hj , such that one of the following holds:
(a1) y ⊗ |j〉 �∈ Enc(x ⊗ |i〉)⊥ and x ⊗ |i〉 ∈ Enc(y ⊗ |j〉)⊥,
(a2) y ⊗ |j〉 ∈ Enc(x ⊗ |i〉)⊥ and x ⊗ |i〉 ∈ Enc(y ⊗ |j〉)⊥.

Our first task will be to show that, when restricting to the subspace R,
the situation (a1) cannot appear:

Lemma 7.4. If x⊗|i〉 and y⊗|j〉 are in R, then one of the following situations
holds:
1. x ⊗ |i〉 �∈ Enc(y ⊗ |j〉)⊥ and y ⊗ |j〉 �∈ Enc(x ⊗ |i〉)⊥

2. Enc(x ⊗ |i〉) ⊥ Enc(y ⊗ |j〉).
Proof. It is sufficient to notice that, if y ⊗ |j〉 ∈ Enc(x ⊗ |i〉)⊥ ∩ R, then the
minimal enclosures containing x ⊗ |i〉 and y ⊗ |j〉 are orthogonal. Indeed, by
point 2 in Proposition 7.3, the subspace Enc(x⊗|i〉)⊥ ∩R is an enclosure, and
it contains y ⊗ |j〉 by assumption. �

Remark 7.5. Beware that, in situation 1 of Lemma 7.4, one may still have
Enc(x⊗|i〉) and Enc(y⊗|j〉) non-orthogonal but in direct sum, as the following
example shows.

Example 7.6. We consider an OQRW M with two sites, i.e. V = {1, 2},
and h1 = h2 = C

2, and, for a fixed p ∈]0, 1[,

L11 = L22 =
√

p Id, L12 = L21 =
√

1 − p B with B =
(

0 1
1 0

)

.

We denote the canonical basis of h by e1, e2. Then

Enc(e1 ⊗ |1〉) = Vect{e1 ⊗ |1〉, e2 ⊗ |2〉}
Enc((e1 + e2) ⊗ |1〉) = Vect{(e1 + e2) ⊗ |1〉, (e1 + e2) ⊗ |2〉}

are non-orthogonal but have trivial intersection.

As we noticed at the beginning of this section, the form of invariant
states for an OQRW M will depend on the uniqueness, or non-uniqueness, of
its decompositions into minimal enclosures. This will be proven in the next
results.
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Lemma 7.7. Let V = E1 + E2, where E1 and E2 are minimal enclosures con-
tained in R. The decomposition of V in a direct sum of minimal enclosures is
unique if and only if any minimal enclosure W such that W �⊥ E1 and W �⊥ E2

satisfies W ∩ V = {0}. If the latter statement holds, then the two enclosures
are orthogonal.

Proof. Assume the decomposition of V as a direct sum of minimal enclosures
is unique. Then E1 ⊥ E2, otherwise by Proposition 7.3, V ∩ E⊥

1 would be an
enclosure that does not contain E2, leading to a different decomposition of V.
Now consider a minimal enclosure W with W �⊥ E1 and W �⊥ E2. This implies
W �= E1 so by Lemma 6.6, W ∩ E1 = {0}. If W ∩ V �= {0} then it is an
enclosure in W so by minimality, W ⊂ V. Then W + E1 is a direct sum of
minimal enclosures contained in V, so, by point 2 in Proposition 7.3, one can
complete this as a decomposition of V into a direct sum of minimal enclosures.
This is a contradiction, leading to W ∩ V = {0}.

Now assume that any enclosure W such that W �⊥ E1 and W �⊥ E2

satisfies W ∩ V = {0}. Taking first W = E2, which obviously has a non-trivial
intersection with V, we obtain that E1 ⊥ E2. Now, consider some minimal
enclosure E3 contained in V. Then by assumption one has, e.g. E3 ⊥ E1 and
E3 �⊥ E2. But then one has E3 ⊂ E⊥

1 ∩ V, which, as proved above, is E2. This
proves the uniqueness of the decomposition. �

The following remark shows that Lemma 7.7 is consistent with the unique-
ness of the irreducible decomposition for classical Markov chains:

Remark 7.8. Consider a minimal OQRW realization M of a classical Markov
chain. By Proposition 6.1 and Lemma 6.6, any minimal enclosure is of the
form C ⊗ C

Vi for Vi ⊂ V . Therefore, for such an OQRW M, any distinct
minimal enclosures V and W are always orthogonal.

Once again, the following result is proven in [4] in finite dimension. We
extend the proof to infinite dimension.

Corollary 7.9. Let E1 and E2 be two minimal enclosures contained in R.
Assume that the decomposition of V = E1 + E2 in a direct sum of minimal
enclosures is not unique. Then dim E1 = dim E2.

If, in addition, E1 ⊥ E2, then there exists a partial isometry Q from E1

to E2 satisfying
Q∗ Q = Id|E1 QQ∗ = Id|E2 (7.4)

and for any ρ in I1(H), for R = Q + Q∗, and Pi = PEi
, i = 1, 2:

RM(ρ)Pi + Pi M(ρ)R = M
(
R ρPi + Pi ρR

)
. (7.5)

Proof. Assume that there exists a minimal enclosure W that is distinct from E1

and non-orthogonal to it. Then by point 2 of Proposition 7.3, E1 ∩ W⊥ is an
enclosure contained in E1. By minimality of E1 and non-orthogonality between
those two enclosures, E1 ∩ W⊥ = {0}. Therefore, dimE1 ≤ dim W, and by
symmetry one has the equality dim E1 = dimW.
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If E1 �⊥ E2, this yields dim E1 = dim E2. If E1 ⊥ E2 , the non-uniqueness
of the decomposition implies the existence of minimal enclosures Ẽ1 and Ẽ2

such that

E1 + E2 = Ẽ1 + Ẽ2

and one can assume that, e.g. Ẽ1 is distinct from both E1 and E2. Necessarily,
Ẽ1 is also non-orthogonal to both E1 and E2, for, e.g. Ẽ1 ⊥ E1 would imply
Ẽ1 ⊂ E2 and contradict the minimality of E2. Therefore, taking W = Ẽ1 we
recover the equality dimE1 = dim E2.

Assume now that E1 ⊥ E2. By the above discussion there exists a minimal
enclosure W distinct from E1 and non-orthogonal to it. Denote by P1, P2, PW
the orthogonal projections on E1, E2, W, respectively. Define the map N
on B(H) by

N : X �→ PR M∗(X)PR.

One sees immediately that if E = E1, E2 or W, then PE is (up to multiplica-
tion) the unique invariant of N|B(E). Consider the decomposition

of PW =
(

A B∗

B C

)

in the splitting V = E1 + E2, where necessarily B �=
0. A simple consequence of Proposition 7.3 is that in the same decomposi-

tion, N(PW) =
(
N(A) N(B)∗

N(B) N(C)

)

. Therefore, A is proportional to P1 and C

to P2. Writing relations P = P ∗ = P 2 satisfied by PW , one sees that B must
be proportional to an operator Q satisfying the relations (7.4). In addition,
fixing that same operator Q, for θ ∈ [0, π], the operator that has the form

Pθ =
(

cos2 θ sin θ cos θ Q∗

sin θ cos θ Q sin2 θ

)

is an orthogonal projection preserved by the map N. So its range is an enclosure
and, by point 3 of Proposition 7.3, Pθ will satisfy the relation

M(Pθ ρPθ) = Pθ M(ρ)Pθ.

Differentiating this relation with respect to the θ variable, we have

M

(
dPθ

dθ
ρPθ + Pθ ρ

dPθ

dθ

)

=
dPθ

dθ
M(ρ)Pθ + Pθ M(ρ)

dPθ

dθ

Computing the derivatives at θ = 0 and θ = π/2, we obtain relation (7.5). �

Corollary 7.10. Assume that V = E1 + E2 where E1 and E2 are mutually
orthogonal minimal enclosures, contained in R, but that the decomposition into
a direct sum of minimal enclosures is non-unique. Denote by ρinv

i the unique
invariant state with support in Ei, i = 1, 2, and by Q the partial isometry
defined in Corollary 7.9. Then ρinv

2 = Qρinv
1 Q∗.

If ρ is an invariant state with support in V, write ρ =
(

ρ1,1 ρ1,2

ρ2,1 ρ2,2

)

.

Then:
• ρ1,1 is proportional to ρinv

1 ,
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• ρ2,2 is proportional to ρinv
2 ,

• ρ1,2 is proportional to ρinv
1 Q∗ = Q∗ρinv

2 ,
• ρ2,1 is proportional to ρinv

2 Q = Qρinv
1 .

Proof. The first identity is obtained by applying relation (7.5) to ρ = ρinv
1 with

P1, then applying it again to the resulting relation, this time with P2.
That each ρi,j is an invariant is an immediate consequence of Proposi-

tion 7.3. The relation satisfied by ρ1,2 and ρ2,1 is then obtained by applying
relation (7.5) to, e.g. ρ1,2, with P1 or P2. �

We are now in a position to state the relevant decomposition associated
with an open quantum random walk M.

Proposition 7.11. Let M be an OQRW on H =
⊕

i∈V hi. There exists an
orthogonal decomposition of H in the form

H = D ⊕
⊕

α∈A

Enc(xα ⊗ |iα〉) ⊕
⊕

β∈B

⊕

γ∈Cβ

Enc(xβ,γ ⊗ |iβ,γ〉) (7.6)

such that the sets A, B, Cβ are at most countable, A and B can be empty (but
not simultaneously, unless R = {0}), any Cβ has cardinality at least two, and:

• every Enc(xα⊗|iα〉) or Enc(xβ,γ ⊗|iβ,γ〉) in this decomposition is a minimal

enclosure, and therefore an equivalence class for M↔,
• for α in A, the only minimal enclosure not orthogonal to Enc(xα ⊗ |iα〉) is

Enc(xα ⊗ |iα〉) itself,
• for β in B and γ ∈ Cβ, any minimal enclosure that is not orthogonal

to Enc(xβ,γ ⊗ |iβ,γ〉) is contained in
⊕

γ∈Cβ
Enc(xβ,γ ⊗ |iβ,γ〉).

Proof. We start with the decomposition H = D ⊕ R, and proceed to decom-
pose R. Consider the set of all minimal enclosures Enc(x ⊗ |i〉) with the
property that the only minimal enclosure non-orthogonal to Enc(x ⊗ |i〉) is
Enc(x ⊗ |i〉) itself. By separability this set is at most countable. We can label
these enclosures Enc(xα ⊗ |iα〉), α ∈ A. Let O =

⊕
α∈A Enc(xα ⊗ |iα〉).

Then O is an enclosure, and if R ∩ O⊥ �= {0} then, by point 2 of Propo-
sition 7.3, it is also an enclosure and we proceed to decompose it. Consider
families of minimal enclosures labelled by a set C, {Enc(xγ ⊗ |iγ〉), γ ∈ C}
with the property that any minimal enclosure that is not orthogonal to the
space

⊕
γ∈C Enc(xγ ⊗ |iγ〉) is contained in

⊕
γ∈C Enc(xγ ⊗ |iγ〉); by the

assumption that R ∩ O⊥ �= {0} this set is not empty. Pick a maximal such
family, and index it as {Enc(x1,γ ⊗ |i1,γ〉), γ ∈ C1}. By point 2 of Proposition
7.3 and Lemma 6.6, one can assume that the different enclosures in this family
are mutually orthogonal. If

R ∩ O⊥ ∩ (
⊕

γ∈C1

Enc(x1,γ ⊗ |i1,γ〉))⊥ �= {0}

we can iterate this process. �
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Remark 7.12. By Remark 7.8 and Lemma 7.7, any minimal OQRW realiza-
tion M of a classical Markov chain is simply of the form H = D ⊕ ⊕

α∈A

Enc(xα ⊗ |iα〉).
We will use this decomposition to characterize the form of invariant

states. Before we state our next result, let us give some notation. We fix a
decomposition (7.6) as considered in Proposition 7.11. We define for every
α ∈ A and (β, γ) ∈ B × Cβ the following orthogonal projections (for V a
subspace of H, the orthogonal projection on V is denoted PV):

P0 = PD Pα = PEnc(xα⊗|iα〉) Pβ,γ = PEnc(xβ,γ⊗|iβ,γ〉)

and for a state ρ, and indices i, j taking the values 0, α ∈ A or (β, γ) ∈ B×Cβ

ρi = Pi ρPi ρi,j = Pi ρPj . (7.7)

When V is a subspace of H such that I1(V) is stable by M, we will talk
about the restriction M|V of M to V (instead of the restriction M|I1(V) of M
to I1(V)). In addition, for i taking the values α ∈ A or (β, γ) ∈ B × Cβ , we
denote by ρinv

i the unique invariant state of M|Enc(xα⊗|iα〉) or M|Enc(xβ,γ⊗|iβ,γ〉).

Theorem 7.13. Let ρ be a M-invariant state. With the notation (7.7) we have

1. ρ0 = 0,
2. every ρα is proportional to ρinv

α , which has support Enc(xα ⊗ |iα〉),
3. every ρ(β,γ) is proportional to ρinv

(β,γ), which has support Enc(xβ,γ ⊗|iβ,γ〉),
4. for γ �= γ′ in Cβ, the off-diagonal term ρ((β,γ),(β,γ′)), which we sim-

ply denote by ρ(β,γ,γ′), may be non-zero, and is M-invariant. In addi-
tion, there exists a partial isometry Q(β,γ,γ′) from Enc(xβ,γ ⊗ |iβ,γ〉) to
Enc(xβ,γ′ ⊗ |iβ,γ′〉) such that:

• ρinv
(β,γ′) = Q(β,γ,γ′) ρinv

(β,γ) Q∗
(β,γ,γ′),

• ρ(β,γ,γ′) is proportional to Q∗
(β,γ,γ′) ρinv

(β,γ′) = ρinv
(β,γ) Q∗

(β,γ,γ′),
5. all other ρi,j (i,j taking the values 0, α ∈ A or (β, γ) ∈ B ×Cβ) are zero.

Proof. This follows from a repeated application of Propositions 7.3 and 7.11,
and Corollary 7.10. �

Remark 7.14. Our main comment here is that there may exist “coherences”
between minimal blocks, i.e. non-zero off-diagonal blocks ρi,j , for i, j corre-
sponding to distinct minimal irreducible blocks. Invariant states are not, con-
trarily to the classical case, just convex combinations of states invariant for
the reduced (irreducible) dynamics. We will observe this in Example 9.8. Note
however, that, according to Remark 7.12, this cannot happen for minimal
OQRW realizations of classical Markov chains.

Remark 7.15. One might have hoped that a relevant decomposition of M
would separate sites, i.e that one could decompose R into a sum of minimal
enclosures

⊕
Enc(xk ⊗ |ik〉) with Enc(xk ⊗ |ik〉) ⊂ ⊕

i∈Ik
hi for disjoint Ik.

This is not true, as Example 7.16 shows.
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Example 7.16. Consider again Example 6.8. We have a unique decomposition
of H = h ⊗ C

V as a sum of minimal enclosures,

h ⊗ C
V = Enc(e1 ⊗ |1〉) ⊕ Enc(e2 ⊗ |1〉)

even though the two minimal enclosures

Enc(ek ⊗ |1〉) = C ek ⊗ C
V , k = 1, 2,

connect all three sites. Note also that, in accordance with Lemma 7.7, the two
unique enclosures are mutually orthogonal.

Remark 7.17. Applying Theorem 7.13 and the Frigerio–Verri ergodic theorem
(see [12]) one can obtain results about the ergodic behaviour of (Mn(ρ))n, that
extend Proposition 3.15 to the reducible case. This will be done in a forthcom-
ing article. However, in certain cases, the results given in the present article
can be enough to describe convergence in reducible OQRWs: see Example 9.4.

8. Extensions of Open Quantum Random Walks

In this section, we define an extension of open quantum random walks, already
mentioned in Remark 2.1. We consider again a countable set of vertices V and
a separable Hilbert space H =

⊕
i∈V hi. An extended open quantum random

walk will be a map M̃ : I1(H) → I1(H) such that if ρ =
∑

i,j∈V ρ(i, j) ⊗ |i〉〈j|
then

M̃(ρ) =
∑

i∈V

⎛

⎝
∑

j∈V

Φi,j

(
ρ(j, j)

)
⎞

⎠⊗ |i〉〈i| (8.1)

where each Φi,j is a completely positive map from I1(hj) to I1(hi) such that,
for any j in V , ∑

i∈V

Φ∗
i,j(Idhi

) = Idhj
. (8.2)

Again this M̃ maps I1(H) to the set ID of block-diagonal trace-class operators
(see Sect. 2). In addition, the Kraus representation associates to each Φi,j a
countable set E(j, i) and, for every e ∈ E(j, i), a map Le from hj to hi such
that Φi,j can be written as

Φi,j(ρ) =
∑

e∈E(j,i)

Le ρL∗
e for any ρ ∈ I1(hj).

We view the operators Le as associated with the edges of a directed multi-
graph (V,E) where E = ∪i,j∈V E(j, i). Then if we denote by E(j) = ∪i∈V

E(j, i) the set of outgoing edges at j, the stochasticity condition (8.2) becomes
similar to (2.2):

∀j ∈ V
∑

e∈E(j)

L∗
eLe = Id.

This reminds us that the present framework encompasses open quantum ran-
dom walks as defined in the rest of this article. What’s more, it should be
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noted that the power Mn of an OQRW M is not in general an OQRW, but
is always an extended OQRW. All the results of the previous sections can be
extended to this more general class of evolutions.

As in Sect. 2, starting from a state ρ =
∑

i∈V ρ(i) ⊗ |i〉〈i| we can define

processes “without measurement”
(
X̃n, M̃n(ρ,X̃n)

Tr M̃n(ρ,X̃n)

)

n∈N

: denote

M̃n(ρ) =
∑

i∈V

M̃n(ρ, i) ⊗ |i〉〈i|.

Then the process “without measurement” is determined by the variable X̃n,
with law

P(X̃n = i) = Tr M̃n(ρ, i)

and the process “with measurement” (X̃n, ρ̃n)n∈N by

(X̃0, ρ̃0) =
(
j, ρ(j)

)
with probability Tr ρ(j)

P

(

(X̃n+1, ρ̃n+1) =
(

i,
Φi,j(ρ̃n)

Tr Φi,j(ρ̃n)

) ∣
∣
∣(X̃n, ρ̃n)=(j, ρ̃n)

)

= Tr Φi,j(ρ̃n) ∀i ∈ V.

We claim that our vision of open quantum random walks in terms of paths π

in P(i, j) on a directed graph extends to this framework, with paths π̃ in P̃(i, j)
on a directed multigraph.

In particular, we recover all results from Sects. 3 through 7, replacing P
with P̃ in our assumptions, and Xn,Mn(ρ, i), ρn with X̃n, M̃n(ρ, i), ρ̃n. More
precisely, Proposition 3.8 and Definition 3.10 on irreducibility, as well as Lem-
ma 4.9 and Theorem 4.10 on the period, extend to M̃ by simply replacing
every P with P̃. Proposition 4.6 holds if (4.6) is replaced with

Pk,iLe = LePk d−1,j ∀ e ∈ E(j, i).

And similarly Corollary 4.11 holds if relation (4.3) becomes

∀x ∈ hi, ∃ e ∈ E(i, i) such that 〈x,Lex〉 �= 0.

Then, the whole of Sect. 5 holds if the processes Xn,Mn(ρ, i), ρn are replaced
with X̃n, M̃n(ρ, i), ρ̃n. Similarly, Sects. 6 and 7 remain the same, replacing P
with P̃ in the definition of enclosures.

9. Examples and Applications

Example 9.1. We start with an application to space-homogeneous open quan-
tum random walks on a graph associated with a set of generators of a group.
This applies in particular when this graph is the lattice Z

d, a case which we
study in [5].

To be more precise, we assume that V is a set of vertices in an additive
(abelian) group G, that hi = h does not depend on i, and that there is a
finite set S ⊂ G such that Li,j = Lj−i depends only on j − i, and is zero
unless j − i ∈ S.
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We associate with this OQRW the map

L : I(h) → I(h)
η �→ ∑

s∈S Ls η L∗
s .

(9.1)

If M is irreducible, then clearly L is also irreducible, and by Proposition 3.12,
it has at most one invariant state which we then denote by ηinv. Note that, if
h is finite dimensional, then this ηinv exists.

Remark 9.2. From Lemma 3.7, one easily sees that L is irreducible if and only
if the operators Ls, s ∈ S, have no non-trivial common invariant subspace.
This criterion is stated, in particular, in [10].

Proposition 9.3. Assume M as above is irreducible.
• If V is infinite, then M has no invariant state.
• If V is finite, then L has an invariant state ηinv and the unique invariant

state of M is
∑

i∈V

ηinv

card V
⊗ |i〉〈i|.

Proof. Assume there exists an invariant state ρinv for M. Since M is invariant
by translation, any translation of that state is also an invariant state, so by
Theorem 3.14, the state ρinv is translation invariant. It must therefore be of
the form

∑
v∈V ρ ⊗ |v〉〈v|. If V is infinite, this has trace either infinite or null

and in either case this is a contradiction. If V is finite then it is easy to see
that ρ must be an invariant of L. �

The Perron–Frobenius theorem for CP maps, Proposition 3.12, allows
us to obtain a large deviation principle and a central limit theorem for the
position process (Xn)n∈N associated with an open quantum random walk M
and an initial state ρ (see Sect. 2), therefore, extending the results of [2]. In
addition, we can also make more precise the convergence of the sequence of
states (ρn)n∈N (still using the notations of Sect. 2). This will be done in a
separate paper [5] studying in detail OQRWs on Z

d.

Example 9.4. We consider the example given in section 12.1 of [3]. In our
notation this example is given by V = {1, 2}, h = C

2 (with canonical basis
(e1, e2)) and transitions given by

L1,1 =
(

a 0
0 b

)

L1,2 =
(

0
√

p
0 0

)

L2,2 =
(

1 0
0

√
q

)

L2,1 =
(

c 0
0 d

)

where we assume q = 1 − p ∈ (0, 1), |a|2 + |b|2 = |c|2 + |d|2 = 1,
0 < |a|2, |c|2 < 1. Note that we do not need the additional assumptions a �= b,
c �= d, ab �= √

q , a2 �= q, b2 �= q made in [3]. First, observe that the only
minimal enclosure is

Enc(e1 ⊗ |2〉) = Vect(e1 ⊗ |2〉).
Indeed,
• Enc(e1 ⊗ |1〉) obviously contains Enc(L2,1e1 ⊗ |2〉) = Enc(e1 ⊗ |2〉);
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• Enc(x ⊗ |2〉) contains Enc(L1,2x ⊗ |1〉) and if x = x1e1 + x2e2 with x2 �= 0,
this contains Enc(e1 ⊗ |1〉).

• Enc(x ⊗ |1〉) contains Enc(L2,1x ⊗ |2〉) = Enc
(
(cx1e1 + dx2e2) ⊗ |2〉), and,

if x2 is non-null, then we fall in the previous case and conclude.

Therefore, the decomposition (7.6) is given by

h ⊗ C
V = D ⊕

{(
a
0

)

⊗ |2〉, a ∈ C

}

.

By the equivalent definition of D given in Remark 7.1, any eigenvector of
M associated with an eigenvalue of modulus one must be zero on D. So the
OQRW M has a unique eigenvalue of maximum modulus, which is the simple
eigenvalue 1 associated with the eigenvector

ρinv =
(

1 0
0 0

)

⊗ |2〉〈2|

and this implies that, for any initial state ρ, one has Mn(ρ) → ρinv as n → ∞.

Example 9.5. We consider a family of examples which extends the main exam-
ple given in [3]. This family is indexed by N ∈ N

∗ ∪ {∞}; every h is C2 and V
is either VN = {0, . . . , N − 1} or V∞ = Z, and the operators Li,j are defined
by

LiN+1,i = L+ =
1√
3

(
1 1
0 1

)

, LiN−1,i = L− =
1√
3

(
1 0

−1 1

)

,

where here N+, N− denote addition or substraction modulo N in the case where
N < ∞, and standard addition or substraction if N = ∞. We denote by M(N)

the above open quantum random walk.
To illustrate the method of “adding loops” described in Remark 4.14, for

ε ∈]0, 1[ we define the open quantum random walk M(N,ε) with sites VN and
transition operators

L
(ε)

iN+1,i
= L

(ε)
+ =

√
1 − ε L+ L

(ε)

iN−1,i
= L

(ε)
− =

√
1 − ε L− L

(ε)
i,i =

√
ε Id.

Note that we consider a perturbation that “adds a loop” at every site, because
it simplifies both the computation of the invariant state and the simulation.

Proposition 9.6. Consider the open quantum random walks M(N) and M(N,ε)

as above. We have:

• for every N in N
∗ ∪ {∞}, the OQRWs M(N) and M(N,ε) are irreducible,

• for N in 2N∗ ∪ {∞} the OQRW M(N) has period 2,
• for N in 2N+1 the OQRW M(N) is aperiodic,
• for N in N

∗ ∪ {∞}, the OQRW M(N,ε) is aperiodic,
• for N in N

∗, the OQRWs M(N) and M(N,ε) have as unique invariant state

ρinv =
∑

i∈VN

1
2N

Id ⊗ |i〉〈i|.
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Proof. We first show that, for any N , the chain M(N) is irreducible. This
implies that M(N,ε) is irreducible as well. For this, fix i and j in N, and let
Δ = i− j. For p large enough, consider π ∈ P(i, j) of the form (i, i− 1, . . . , i−
Δ − p, i − Δ − p + 1, . . . , j) (i.e. one first moves down p + Δ times, then up

p times). Then by inspection one sees that if two vectors xi =
(

ai

bi

)

and

xj =
(

aj

bj

)

satisfy 〈xj , Lπ xi〉 = 0 for arbitrarily large p, necessarily one has

ai = bi = 0 or aj = bj = 0. Therefore, for any xi �= 0 the set Lπxi is total in
hj , and M(N) is irreducible by Proposition 3.8.

For any N , the chain M(N,ε) is aperiodic by Remark 4.14. Let us now
consider the period of M(N). For any non-null vector x in C

2, we always
have either 〈x,L+L−x〉 �= 0 or 〈x,L−L+x〉 �= 0. Relation (4.2) implies that
D(i, x) ∈ {1, 2} for all i ∈ V and all x, so, by Theorem 4.10, the period can
be only 1 or 2.

If N is odd, then for p ∈ N
∗, consider the path π ∈ P(1, 1) starting from

1 and going “up”, doing p loops on VN before stopping at 1, so that Lπ = LpN
+ .

For x �= 0 we show by inspection that 〈x,Lπ x〉 is zero for at most one p, so
D(1, x), defined in (4.2), divides pn for any large enough p ∈ N

∗. Consequently
D(1, x) = 1 and, by Theorem 4.10, the period is 1.

On the other hand, if N is even or infinite, then the projections

Peven =
∑

i even

Id ⊗ |i〉〈i| and Podd =
∑

i odd

Id ⊗ |i〉〈i|

are M-cyclic, so that the period is 2.
Last, with M(N) (respectively, M(N,ε)) we associate a map L(N) (respec-

tively, L(N,ε)) on I1(C2), as in (9.1). We can check that in all cases, the state
1
2 Id on C

2 is the only invariant of that map. We conclude by
Proposition 9.3. �

We now describe the results of numerical simulations. We always start

from the initial state ρ =
(

1 0
0 0

)

⊗ |1〉〈1|, but the phenomena are insensitive

to the particular choice of ρ. Figure 1 shows for the three chains M(3), M(4),
M(4,0.05) (rows 1, 2, 3, respectively):

• the probability P(Xn = 1) for n = 0, . . . , 30,
• the (1, 1) coefficient of Mn(ρ, 1) for n = 0, . . . , 30 (note that, by our choice

of M and ρ, this coefficient is real).

We observe that both quantities converge as n increases, for the aperiodic
OQRW M(3) and M(4,ε), as expected by Corollary 5.6, but not for the periodic
OQRW M(4). Clearly the averages of both quantities converge in all cases, in
agreement with Corollary 5.4.

Example 9.7. We use V∞ = Z, h = C
2 as in the previous example and change

the transition matrices,
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L+ = p

(
0 1
1 0

)

, L− = q

(
1 0
0 eiα

)

with α ∈ [0, 2π), p, q ∈ C\{0}, |p|2 + |q|2 = 1.
This OQRW is irreducible when α �= 0, π. To prove this consider the

non-zero vector v =
(

a
b

)

in hi, for all n > 0 one sees by inspection that

span{Ln
+v, Ln+1

+ L−v, Ln
+L−L+v} coincides with hi+n. We can proceed simi-

larly for n ≤ 0.
The period is 4: from the properties of this OQRW and Theorem 4.10, it

cannot be greater than 4 and we can choose the resolution of the identity

Pk =
∑

i∈Z

|e0〉〈e0| ⊗ |4 i + k〉〈4 i + k| +
∑

i∈Z

|e1〉〈e1| ⊗ |4 i + k + 2〉〈4 i + k + 2|,

for k = 0, . . . , 3. Finally, notice that the quantity D(i, x) introduced in The-
orem 4.10 is not the same for all vectors: D(i, e0) = D(i, e1) = 4 but, if we

call x =
(

1
eiα/2

)

, then x is an eigenvector for L−L+ and so the set of lengths

� introduced in the definition of D(i, x) contains 2. Since it is clear that all
those lengths are even, then D(i, x) = 2.

Example 9.8. We consider an OQRW M as introduced in Example 7.6. Then M
does not have a unique decomposition in irreducible components. Indeed, it is
easy to see that the M-invariant states are all the states of the form

ρ = ρ1 ⊗ |1〉〈1| + Bρ1B ⊗ |2〉〈2|
for any 2 × 2 matrix ρ1 such that 2ρ1 is a state in M2(C). So R = H for
this M, and the minimal enclosures are exactly all the enclosures generated

by vectors of the form x ⊗ |1〉, for x =
(

a
b

)

in C
2,

Enc(x ⊗ |1〉) = Vect
{(

a
b

)

⊗ |1〉,
(

b
a

)

⊗ |2〉
}

.

Therefore, the decomposition of R = H into a sum of minimal enclosures is
non-unique. To illustrate Theorem 7.13, consider an invariant state ρ; from
the above discussion, it is of the form

ρ =
1
2

(
t s
s 1 − t

)

⊗ |1〉〈1| +
1
2

(
1 − t s

s t

)

⊗ |2〉〈2|

with t ∈ [0, 1], |s|2 ≤ t(1 − t). Writing this ρ in the decomposition

H = Enc
((

1
0

)

⊗ |1〉
)

⊕ Enc
((

0
1

)

⊗ |1〉
)

,

which is a possible choice of decomposition (7.6), we obtain

ρ =
1
2

⎛

⎜
⎜
⎝

t 0 s 0
0 t 0 s
s 0 1−t 0
0 s 0 1−t

⎞

⎟
⎟
⎠.
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In agreement with Theorem 7.13, this ρ is of the form t ρinv
1 + (1 − t) ρinv

2 +
s η1,2 + s η2,1, where ρinv

1 and ρinv
2 are invariant states with support equal

to Enc(
(

1
0

)

⊗ |1〉), Enc(
(

0
1

)

⊗ |1〉) respectively. In addition, the off-diagonal

blocks η1,2 and η2,1 are also M-invariant, and with Q the partial isometry of
the form

Q =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

⎞

⎟
⎟
⎠

we see that ρinv
2 = Qρinv

1 Q∗ and η1,2 is proportional to Q∗ρinv
2 = ρinv

1 Q∗.
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(eds.) Fundamental notions of quantum theory, Lecture notes
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Université Paris-Sud
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