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Smoothness of Compact Horizons

Eric Larsson

Abstract. We prove that compact Cauchy horizons in a smooth spacetime
satisfying the null energy condition are smooth. As an application, we
consider the problem of determining when a cobordism admits Lorentzian
metrics with certain properties. In particular, we prove a result originally
due to Tipler without the smoothness hypothesis necessary in the original
proof.

Introduction

An intriguing question in the theory of general relativity is that of topology
change: is it possible for a spacelike slice of spacetime at one time to have a
different topology than that of a spacelike slice at some other time? One way of
making this question precise is through the concept of a Lorentzian cobordism
(see Definition 2.3); that is, a spacetime whose boundary consists of disjoint
spacelike submanifolds. The question whether topology change is possible can
then be interpreted as the question of whether physically interesting nontrivial
Lorentzian cobordisms exist. For this question to be interesting the cobordism
needs to have some compactness property. We will consider both the case when
the cobordism is compact and the case when the cobordism has the weaker
property of causal compactness (see Definition 2.4).

The existence of Lorentzian cobordisms when no geometrical conditions
are imposed is essentially a problem of differential topology. It is equivalent to
the existence of a cobordism with a vector field with a prescribed direction at
the boundary, and the problem of characterizing pairs of manifolds which are
cobordant in this sense was considered by Reinhart [29].

When geometrical conditions are imposed, it is significantly more difficult
to construct Lorentzian cobordisms which are not diffeomorphic to S × [0, 1]
for some manifold S. There are two classical results about the nonexistence
of nontrivial Lorentzian cobordisms under certain hypotheses: in 1967, it was
shown by Geroch [15] that nontrivial Lorentzian cobordisms can exist only
if they contain closed timelike curves, and in 1977, it was shown by Tipler
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[30] that nontrivial Lorentzian cobordisms satisfying certain energy conditions
cannot exist.

In proving Tipler’s theorem, one works with a compact Cauchy horizon,
and the question arises which regularity a Cauchy horizon has. It was shown
in [9] that Cauchy horizons can be far from smooth. In [2, Section IV] it was
shown that a compact “almost everywhere C2” horizon satisfying the null
energy condition is everywhere C1. In [4, Section 4] it was asked whether
compact Cauchy horizons are always smooth. This question was answered in
the negative in [5], where it was also suggested that an energy condition might
be sufficient to conclude that a compact Cauchy horizon is smooth.

The main result of this paper is Theorem 1.42, where we prove that com-
pact horizons in a spacetime satisfying the null energy condition are smooth,
thereby significantly generalizing the theorem in [2, Section IV], and providing
an answer to the question raised in [5, Section 4] of whether compact horizons
which satisfy energy conditions are smooth. We then apply this theorem to
obtain a complete proof of Tipler’s theorem. It has been known for some time
(see for instance [9, Section 1]) that the proof of Tipler’s result in [30] makes
an implicit smoothness assumption. The proof uses arguments from the proof
of the Hawking Singularity Theorem [16, p.295-298], and the same implicit
assumption can be found there as well. A similar oversight was made in the
original proof of the Hawking area theorem and has since been corrected by
Chruściel et al. [7]. Significant work was necessary to fill in the gaps in the
proof of the Hawking area theorem, and the proof in [7] is technical. Fortu-
nately, their methods may be adapted to the setting of Tipler’s theorem and
we do so in Sects. 1 and 2 to present a more careful proof of the nonexistence
of Lorentzian cobordisms which satisfy certain energy conditions.

Theorem 1.42 is also interesting in relation to the papers [17,25,26] by
Isenberg and Moncrief. In the first two, it is shown that analytic compact null
hypersurfaces with certain properties admit a null Killing vector field. Theo-
rem 1.42 allows us to drop the hypothesis that the hypersurface is analytic, and
replace it with the hypothesis that the null energy condition holds and that
the hypersurface is a Cauchy horizon. In fact, as is discussed in Remark 1.44,
it is not necessary that the hypersurface is a Cauchy horizon, provided its
generators are complete to the past.

Appendix A contains a summary of results from geometric measure the-
ory.

A Comment

After these results were published as part of the author’s Master’s thesis [20],
similar work by Minguzzi [23,24] has appeared. Following concerns raised in
[24] about the existence of a timelike vector field V satisfying ∇V V = 0 in a
neighborhood of a Cauchy horizon, a construction of a vector field having this
property on a sufficiently large set has been added to Lemma 1.6.



Vol. 16 (2015) Smoothness of Compact Horizons 2165

1. Smoothness of Compact Cauchy Horizons

The purpose of this section is to prove Theorem 1.42. We begin by stating and
proving some properties of C2 null hypersurfaces in Sect. 1.1. We then define
the concept of a “horizon” and summarize some previously known results about
horizons in Sect. 1.3. Finally, we prove the smoothness theorem (Theorem 1.42)
in Sect. 1.4.

1.1. C2 Null Hypersurfaces

1.1.1. The Null Weingarten Map. In the following section we summarize prop-
erties of C2 null hypersurfaces which we will need later. For details, see [14,19],
[13, Section II.1] or [7, Appendix A].

A null hypersurface H in a spacetime M is characterized by the fact that
each tangent space TpH contains a unique (up to scaling) null vector Kp. The
tangent space TpH then consists of those vectors of TpM which are orthogo-
nal to Kp. This means that any normal vector field K of H consists entirely
of null vectors. We will call the integral curves of these vector fields gener-
ators of H. By [14, Proposition 3.1] these generators (when given a suitable
parametrization) are geodesics. By straightforward computations it holds that

〈X,Y 〉 = 〈X ′, Y ′〉 and 〈∇XK,Y 〉 = 〈∇X′K,Y ′〉
whenever X,Y ∈ TpH and X − X ′ = λ1K and Y − Y ′ = λ2K for some
real numbers λ1, λ2. Inspired by this, we work instead with the quotient space
TpH/RK. This quotient is independent of the particular choice of null vector
field K, since all such vector fields differ only by scaling. We now define the
null Weingarten map of H with respect to K by

bK : TH/RK → TH/RK,

bK(X) = ∇XK.

This map is not independent of the particular choice of null vector field K.
However, if f is a smooth function without zeros then bfK = fbK since K is
null. Note that if H is C2, then K can be chosen C1 so that bK is continuous.
Since all our spacetimes are time-oriented we may restrict attention to future-
directed null vector fields K. This means that we can associate to each null
hypersurface a family of null Weingarten maps which differ only by positive
scaling. Since K is null the spacetime metric induces an inner product on
TH/RK. Using this inner product, we may define the null second fundamental
form of H with respect to K by

BK(X, Y ) = 〈bK(X), Y 〉.
A straightforward computation shows that BK is symmetric. We will need the
following theorem, a proof of which can be found in [19, Theorem 30].

Theorem 1.1. Let H be a smooth null hypersurface in a spacetime M . Then
the null second fundamental form of H is identically zero if and only if H is
a totally geodesic submanifold of M .
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Remark 1.2. The theorem as stated in [19, Theorem 30] applies to null subman-
ifolds in general, regardless of codimension, and so requires the submanifold
to be “irrotational”. This condition is automatically satisfied for null hyper-
surfaces.

Finally, we define the null mean curvature θK of a null hypersurface with
respect to a null vector field K as the trace of the null Weingarten map:

θK = tr bK .

Recall that if K ′ = λK is another null vector field then bK′ = λbK . Hence
θK′ = λθK . This means that the sign of θK is independent of the particular
future-directed null vector field K used to compute θK . We will sometimes
omit the vector field K from the notation.

Recall that the integral curves of a null vector field K are reparametriza-
tions of geodesics. If K is chosen to agree with γ̇ of a geodesic segment γ with
affine parameter s, and b(s) is the family of null Weingarten maps with respect
to K along γ, then

ḃ + b2 + ˜R = 0. (1)

Here, ḃ denotes the derivative of b along γ, and ˜R denotes the fiberwise endo-
morphism ˜R : TH/RK → TH/RK defined from the Riemann curvature
tensor R by letting ˜R(X) = R(X, γ̇)γ̇. Note that it is not obvious that the
derivative ḃ exists, since b is a priori only continuous. A proof of the fact that
the derivative does exist and satisfies Eq. (1) can be found in [7, Proposition
A.1].

From Eq. (1) one can derive the Raychaudhuri equation. In particular,
one may derive a certain differential inequality for the null mean curvature.
Let b be the null Weingarten map of a C2 null hypersurface with respect to a
future-directed null vector field K (scaled to give an affine parametrization of
an integral curve), and let θ denote the trace of b. Let S = b − θ

n−2 id. Then
the trace of b2 is tr b2 = θ2/(n−2)+tr(S2) so taking the trace of Eq. (1) yields

θ̇ +
θ2

n − 2
+ tr(S2) + Ric(K,K) = 0. (2)

Since b and id are self-adjoint, so is S. Hence tr(S2) ≥ 0 so

θ̇ +
θ2

n − 2
+ Ric(K,K) ≤ 0. (3)

This is the differential inequality we will use later.

1.1.2. Generator Flow on C2 Null Hypersurfaces. A null vector field on a
C2 null hypersurface gives rise to a family of local diffeomorphisms with flow
points along the vector field. The integral curves of such a vector field are
called generators, and we will refer to such a flow as a generator flow. The
generator flow for time t will be denoted βt. Given a Riemannian metric σ
on M with volume form ω on the null hypersurface, the Jacobian determinant
J(βt) with respect to σ is the real-valued function defined by (βt)∗ω = J(βt)ω.
In this section, we will show that the Jacobian determinant of a generator flow
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with respect to Riemannian metrics of a certain form is related to the null
mean curvature of the hypersurface. We choose to work with a past-directed
vector field T since this is the case in which we will apply the lemma.

Lemma 1.3. Let H be a C2 null hypersurface in a spacetime (M, g) of dimen-
sion n + 1. Let V be an arbitrary unit timelike vector field on M , and define
a Riemannian metric σ on M by

σ(X,Y ) = g(X,Y ) + 2g(X,V )g(Y, V ).

Let T denote the unique past-directed lightlike σ-unit vector field on H and
let ω denote the σ-volume form induced on H. Let θ denote the null mean
curvature of H with respect to the future-directed null vector field −T . Then
the Lie derivative of ω with respect to T is LT ω = −θω.

Proof. Choose some point p ∈ H at which to evaluate LT ω. Let e1, e2, . . . , en

be a g-orthogonal basis for TpH such that

• e1 = Tp,
• g(ei, V ) = 0 for i = 2, 3, . . . , n,
• g(ei, ei) = 1 for i = 2, 3, . . . , n.

Recall that integral curves of null vector fields on null hypersurfaces are geo-
desic segments. Let γ be a segment of the integral curve of T through p with
an affine parametrization. Extend the basis e1, . . . , en along γ by letting

• e1 = T ,
• ∇e1ei = 0 for i = 2, 3, . . . , n.

Here ∇ denotes covariant derivative with respect to g. Note that we do not yet
know that (ei)n

i=1 is a frame for H, since we first need to show that the ei are
tangent to H. This will follow from the properties below. Direct computations
show that (ei)n

i=1 have the following properties on the image of γ.

• g(e1, V ) = 1/
√

2,
• g(e1, ei) = 0,
• g(ei, ej) = δij for i, j = 2, 3, . . . , n,
• σ(e1, ei) =

√
2g(ei, V ) for i = 2, 3, . . . , n,

• σ(ei, ej) = δij + 2g(ei, V )g(ej , V ) for i, j = 2, 3, . . . , n.

Step I: det(σ(ei, ej)) = 1
Let ai = σ(ei, V ) for i = 1, 2, . . . , n. By the previous claims the matrix A with
entries σ(ei, ej) can then be written as

A =

⎛

⎜

⎜

⎜

⎝

1
√

2a2

√
2a3 · · ·√

2a2 1 + 2a2
2 2a2a3 · · ·√

2a3 2a2a3 1 + 2a2
3 · · ·

...
...

...
. . .

⎞

⎟

⎟

⎟

⎠

.
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Let

B =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 · · ·
−√

2a2 1 0 0 · · ·
−√

2a3 0 1 0 · · ·
−√

2a4 0 0 1 · · ·
...

...
...

...
. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Then det B = 1. Moreover

BA =

⎛

⎜

⎜

⎜

⎝

1
√

2a2

√
2a3 · · ·

0 1 0 · · ·
0 0 1 · · ·
...

...
...

. . .

⎞

⎟

⎟

⎟

⎠

.

Hence det(BA) = 1. This means that

det A =
det(BA)

det B
= 1,

proving the claim.

Step II: Computation of LT ω
The volume form ω induced on H by the Riemannian metric σ can be expressed
in the frame e1, e2, . . . , en as

ω =
√

det(σ(ei, ej))e1 ∧ e2 ∧ · · · ∧ en

where the ei are the covectors defined by ei(ei) = 1 and ei(ej) = 0 for i �= j.
By the previous claim the determinant is equal to 1, so

ω = e1 ∧ e2 ∧ · · · ∧ en

on all of γ. We will use Cartan’s formula to compute the Lie derivative LT ω,
so we need to extend the frame ei to a neighborhood of γ. Extend e1, . . . , en

to a frame such that e1 = T . Extend the dual frame e1, . . . , en in the natural
way by letting ei(ei) = 1 and ei(ej) = 0 for i �= j. Rescale en if necessary so
that ω = e1 ∧ e2 ∧ · · · ∧ en holds everywhere. We will now use this frame to
compute LT ω at the point p. By Cartan’s formula

LT ω = iT dω + d(iT ω).

Since ω is an n-form on an n-manifold we have dω = 0. Hence

LT ω = d(iT ω).

Since ω = e1 ∧ e2 ∧ · · · ∧ en

d(iT ω) = d(e1(T )e2 ∧ · · · ∧ en) = d(e1(e1)e2 ∧ · · · ∧ en) = d(e2 ∧ · · · ∧ en).

Hence

LT ω =
n

∑

k=2

(−1)ke2 ∧ · · · ∧ ek−1 ∧ dek ∧ ek+1 ∧ · · · ∧ en.
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We now compute dek, or rather the part of dek which does not contain any
ej for j /∈ {1, k}; all such terms are annihilated when we insert this expression
into the large wedge product above. Since dek is a two form this means that
only one of its terms, (dek)(e1, ek)e1 ∧ ek, is interesting. Now

(dek)(e1, ek) = e1(ek(ek)) − ek(ek(e1)) − ek([e1, ek]) = −ek([e1, ek])

since ek(ek) = 1 and ek(e1) = 0 close to γ. We express the Lie bracket,
evaluated at the point p, using the spacetime metric g as

(dek)(e1, ek) = −ek([e1, ek]) = −ek(∇e1ek − ∇ek
e1) = ek(∇ek

e1).

Recall that ∇ denotes covariant derivative with respect to g. We have used
that e2, . . . , en have been chosen such that ∇e1ek = 0 for all k. We now know
that

dek = (ek(∇ek
e1))e1 ∧ ek + . . .

where the dots signify terms containing some ej for j /∈ {1, k}. At the point p
it then holds that

(−1)ke2 ∧ · · · ∧ ek−1 ∧ dek ∧ ek+1 ∧ · · · ∧ en

= (−1)ke2 ∧ · · · ∧ ek−1 ∧ (ek(∇ek
e1))e1 ∧ ek ∧ ek+1 ∧ · · · ∧ en

= (−1)k(−1)k−2(ek(∇ek
e1))e1 ∧ e2 ∧ · · · ∧ ek−1 ∧ ek ∧ ek+1 ∧ · · · ∧ en

= (ek(∇ek
e1))e1 ∧ e2 ∧ · · · ∧ en

where the additional factor of (−1)k−2 is due to commuting e1 with the
e2, . . . , ek−1. Hence

LT ω =
n

∑

k=2

(ek(∇ek
e1))e1 ∧ e2 ∧ · · · ∧ en =

n
∑

k=2

(ek(∇ek
e1))ω.

Since e1 = T and e2, . . . , en are g-orthonormal and g-orthogonal to e1,
n

∑

k=2

ek(∇ek
e1) =

n
∑

k=2

g(ek,∇ek
e1) = −

n
∑

k=2

g(ek,∇ek
(−T )).

Recall from Sect. 1.1.1 that the quotient TpH/RT has an inner product
induced by g such that the image of (ei)n

i=2 under the projection TpH →
TpH/RT forms an orthonormal basis. This means that

∑n
k=2 g(ek,∇ek

(−T ))
is the trace of the null Weingarten map b−T defined in Sect. 1.1.1. This trace
is the null mean curvature θ of H with respect to −T . We can then conclude
that

LT ω = −θω

at p. Since p was arbitrary, this completes the proof. �

The proof of the following lemma essentially consists of integrating the Lie
derivative LT ω to relate the null mean curvature θ to the Jacobian determinant
of the generator flow.
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Lemma 1.4. Let H be a C2 null hypersurface in a spacetime (M, g). Let σ be
a Riemannian metric on M of the form

σ(X,Y ) = g(X,Y ) + 2g(X,V )g(Y, V )

for some g-unit timelike vector field V on M . Let T be the unique past-directed
σ-unit null vector field on H, and let θ be the null mean curvature of H with
respect to −T . Fix t > 0 and let βt : H → H denote the flow along T for
time t (whenever defined). Suppose that p is such that βs(p) is defined for all
s ∈ [0, t]. Let J(βt) denote the Jacobian determinant of βt with respect to σ.
Then

J(βt)(p) = exp
(

−
∫ t

0

θ(βs(p)) ds

)

.

Proof. Let ω denote the volume form of σ. The Jacobian determinant J(βt)(p)
is characterized by

β∗
t (ωβt(p)) = J(βt)(p)ωp.

For simpler notation, let α : [0, t] → R denote the function α(s) = J(βs)(p).
Note that α(0) = 1 since β0 is the identity. By [21, Proposition 12.36] it holds
that

d
dτ

∣

∣

∣

∣

τ=s

β∗
τ (ωβτ (p)) = β∗

s (LT ωβs(p)).

Since β∗
τ (ωβτ (p)) = α(τ)ωp it holds that

d
dτ

∣

∣

∣

∣

τ=s

β∗
τ (ωβτ (p)) = α′(s)ωp.

Since LT ωβs(p) = −θ(βs(p))ωβs(p) by Lemma 1.3, it holds that

β∗
s (LT ωβs(p)) = −θ(βs(p))β∗

s (ωβs(p)) = −θ(βs(p))α(s)ωp.

Hence

α′(s) = −θ(βs(p))α(s).

Solving this differential equation subject to the initial condition α(0) = 1 we
see that

α(t) = exp
(

−
∫ t

0

θ(βs(p)) ds

)

.

Since α(t) = J(βt)(p) this completes the proof. �

1.1.3. Geodesically Spanned Null Hypersurfaces.

Proposition 1.5. Let (M, g) be a spacetime of dimension n + 1 and let N ⊂ M
be a spacelike C2 submanifold of codimension 2. Let n denote a C1 normal null
vector field along N . Consider the normal exponential map exp: R × N → M
defined by

exp(t, p) = expp(tnp)
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where expp is the exponential map at the point p. Suppose that O ⊂ R × N is
an open subset such that H := exp(O) is an embedded C1 hypersurface in M
and the tangent map exp∗ is injective on O. Then H is a null hypersurface.

Proof. Choose a point q = exp(t, p) ∈ H and let γ denote the null geodesic
s 
→ exp(s, p). Our goal is to show that every vector W ∈ TqH is orthogonal
to γ̇(t), thereby proving that TqH is a null hyperplane.

Since exp∗ : T (R× N) → TH is injective at (t, p), it is also surjective for
dimensional reasons. This means that W has some preimage in T(t,p) (R × N).
Denote this preimage by (ζ, Z), where we make use of the canonical isomor-
phism T(t,p) (R × N) ∼= TtR × TpN . The pushforward is linear so

exp∗(ζ, Z) = exp∗(ζ, 0) + exp∗(0, Z).

Note that exp∗(ζ, 0) is tangent to the null curve γ, so g(exp∗(ζ, 0), γ̇(t)) = 0.
Hence

g(W, γ̇(t)) = g(exp∗(ζ, 0) + exp∗(0, Z), γ̇(t)) = g(exp∗(0, Z), γ̇(t)).

Let α : (−1, 1) → N be a curve with α(0) = p and α̇(0) = Z. Consider the
two-parameter map

x(s, u) = exp(st, α(u))

defined for s ∈ [0, 1] and u ∈ (−1, 1). Let V be a vector field along γ defined
by

V (s) = xu(s, 0).

Each curve s 
→ x(s, u) is a geodesic, so the map x is a variation through
geodesics. Hence V is a Jacobi vector field. The curve u 
→ x(0, u) is contained
in N so V (0) is tangent to N . By assumption on n, the vector γ̇(0) is orthogonal
to N , so

g(V (0), γ̇(0)) = 0.

Let T denote the vector field xs along the map x. Partial derivatives of two-
parameter maps commute by [28, Proposition 44, Chapter 4] so

V ′(0) = xus(0, 0) = xsu(0, 0) = ∇ZT.

Hence

g(V ′(0), T ) = g(∇ZT, T ) =
1
2
Zg(T, T ) = 0

since T is tangent to null curves. Since xs(0, 0) = γ̇(0) we have shown that

g(V ′(0), γ̇(0)) = 0.

By [28, Lemma 7, Chapter 8], the fact that V (0) and V ′(0) are both orthogonal
to the geodesic γ, together with the fact that V is a Jacobi field along γ, implies
that V (s) is orthogonal to γ for all s. In particular,

g(V (1), γ̇(t)) = 0.

Computing V (1) we see that

V (1) = xu(1, 0) = exp∗(0, α̇(0)) = exp∗(0, Z).
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Hence

g(W, γ̇(t)) = 0

for all W ∈ TqH. Since q = exp(t, p) was arbitrary, this shows that each
tangent plane of H is a null hyperplane, so that H is a null hypersurface. �

1.2. Complete Generators

The following is a straightforward generalization of Lemma 8.5.5 in [16], and
the proof follows that of [16] but contains significantly more details.

Lemma 1.6. Let S be an achronal hypersurface in a spacetime (M, g) of dimen-
sion n+1. Let γ be a null geodesic segment contained in H+(S). Suppose that
γ has no past endpoint and is totally past imprisoned in some compact set K.
Suppose moreover that each point p ∈ im γ has some spacetime neighborhood
Up such that Up ∩ im γ is contained in a C1,1 hypersurface Np. Then γ is
complete in the past direction.

Proof. Let γ have an affine parametrization. Suppose to get a contradiction
that γ is incomplete to the past, i.e. that the domain of γ has some infimum v0.
We may without loss of generality (by translation of the parameter of γ and
restriction of γ to a smaller domain to the future) assume that γ has domain
(v0, 0] and that γ(t) ∈ K for all t ∈ (v0, 0]. Then the set im γ is compact,
so we may assume without loss of generality that K = im γ. Let W be a
neighborhood of K ∩ H+(S) with compact closure.

The idea is now to show that if γ is past incomplete, then a small per-
turbation of it yields a past inextendible timelike curve with contradictory
properties. To help with this, we will introduce a timelike vector field V . For
the construction of V , we will need an auxiliary distance function compatible
with the manifold topology, for instance one given by a Riemannian metric
η. Fix such a distance function and call it dη. Since M is time-orientable, it
admits a future-directed timelike vector field. Fix such a vector field and call
it Z. For each p ∈ im γ, we will define a vector field V p in a neighborhood of
p with the following properties.
• V p is timelike and future-directed.
• V p = Z on im γ ∩ dom(V p).
• ∇V pV p = 0.
To do this, consider a small neighborhood of p whose intersection with γ is
contained in a C1,1 hypersurface N . Consider the restriction of the exponential
map to the restriction to N of the subbundle of TM spanned by Z. In other
words, consider the map expZ : N × R → M defined by

expZ(q, t) = expq(tZ).

This map is submersive at (p, 0), and hence for dimensional reasons also immer-
sive at (p, 0). By the inverse function theorem, it is then a C1,1 diffeomorphism
on some open neighborhood (p, 0). Let Up be the image of this neighborhood
under expZ . Let ρ(p) > 0 be a real number such that all points r ∈ M with
dη(r, p) < 4ρ(p) belong to Up. (Note that we will not need any continuity of



Vol. 16 (2015) Smoothness of Compact Horizons 2173

ρ.) Let Wp be the set of points r ∈ M with dη(r, p) < ρ(p). Define V p on
Wp to be the tangent vectors of the curves s 
→ expZ(q, s). Since expZ is a
diffeomorphism onto Wp, this is well defined.

We will now show that if r ∈ Wp ∩ Wq for some p, q ∈ im γ is such
that the integral curves of both V p and V q through r both intersect γ, then
V p

r = V q
r . Suppose that r ∈ Wp ∩ Wq, that the integral curve of V p through r

intersects im γ in rp, and that the integral curve of V q through r intersects im γ
in rq. Suppose without loss of generality that ρ(p) ≥ ρ(q). Then dη(p, rq) ≤
dη(p, r) + dη(r, q) + dη(q, rq) < ρ(p) + 2ρ(q) ≤ 3ρ(p). Hence rq ∈ Up. Since
V p

rq
= V q

rq
= Zrq

and expZ is a diffeomorphism onto Up, this means that
rq = rp and, by following the geodesic from rq = rp with initial velocity
V p

rq
= V q

rq
= Zrq

, that V p
r = V q

r .
Choose a countable subset C of im γ such that the sets {Up}p∈F cover

im γ. Combine the vector field V p for p ∈ C using a partition of unity corre-
sponding to this cover to obtain a vector field V . This vector field is Lipschitz,
timelike and future-directed since the V p are. Moreover, ∇V V = 0 on each
integral curve of V passing through im γ, since this holds for the V p and they
agree on such curves. By a further partition of unity, we may extend V to
a future-directed timelike Lipschitz vector field on all of M . Note, however,
that V has larger regularity than Lipschitz on a 2-dimensional surface close to
im γ. More precisely, there is a subset Ω = {(t, u) ∈ R

2 | |u| < ψ(t)} for some
positive function ψ such that the map Ω → TM defined by

(t, u) 
→ Vexpγ(t)(uZγ(t))

is smooth. However, V is not necessarily smooth when viewed as a vector field
on the spacetime.

Define a metric g′ by

g′(X,Y ) = g(X,Y ) + 2g(X,V )g(Y, V ).

This metric is positive definite. To see this, let X be nonzero and compute
g′(X,X) in a basis (V, e1, e2, . . . , en) orthonormal for g:

g′(X,X) = g(X,X) + 2(g(X,V ))2

=
(−(X0)2 + (X1)2 + (X2)2 + · · · + (Xn)2

)

+ 2(X0)2 > 0.

Let α0(t) = γ(v(t)) be a reparametrization of γ such that g(α̇0, V ) =
−1/

√
2. Note that v is a smooth function, since V is smooth when viewed as

a vector field along γ. This means that α0 is a smooth curve. The definition
of v implies that v is strictly increasing. For convenience, suppose also that
v(0) = 0. Note that α0 is parameterized by arc length in the Riemannian
metric g′:

∫ b

a

√

g′(α̇0(t), α̇0(t)) dt =
∫ b

a

√

g(α̇0(t), α̇0(t)) + 2(g(α0(t), V ))2 dt

=
∫ b

a

√

0 + 2
1
2

dt = b − a.

Since γ has no past endpoint, α0 does not have one either.
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We will later construct a variation α of α0, and the computations will be
done along the two-parameter map α.

Step I: The domain of α0 is not bounded from below
Suppose for contradiction that the domain of α0 is bounded below. Let a > −∞
be the infimum of the domain of α0. Recall that a Riemannian metric induces
a distance function defined as the infimum of the lengths of curves from one
point to another. Then for any sequence an → a it holds that α0(an) is a
Cauchy sequence with respect to the distance function induced by g′ (for α0

is a curve of length |an − am| < |amin(m,n) − a| → 0 connecting α0(an) to
α0(am)). The sequence α0(an) is also contained in the compact set K, and
so has a convergent subsequence. These two statements together imply that
α0(an) is convergent for any sequence an → a so the limit limt→a+ α0(t) exists
contradicting the fact that α0 has no past endpoint. Hence, the domain of α0

is not bounded from below.

Step II: Relations between α0 and γ
Since α0 is a reparametrization of a geodesic, ∇α̇0 α̇0 is parallel to α̇0. In other
words, there is a function f : (−∞, 0) → R such that

∇α̇0(t)α̇0(t) = f(t)α̇0(t), ∀t ∈ (−∞, 0).

Note that f is a smooth function. It also holds that

v′(t)γ̇(v(t)) = α̇0(t), ∀t ∈ (−∞, 0).

Now

f(t)α̇0(t) = ∇α̇0 α̇0 = ∇α̇0(v
′γ̇) = α0(v′)γ̇ + v′∇γ̇ γ̇ =

v′′(t)
v′(t)

α̇0(t)

so

f =
v′′

v′ .

Note also that f is bounded. This can be seen by the following compu-
tation.

f = −
√

2g(fα̇0, V )=−
√

2g(∇α̇0 α̇0, V ) = −
√

2 (∇α̇0g(α̇0, V ) − g(α̇0,∇α̇0V ))

= −
√

2
(

α̇0(−1/
√

2) − g(α̇0,∇α̇0V )
)

=
√

2g(α̇0,∇α̇0V ).

This shows that f can be defined in terms of g, α̇ and V . The coordinate
representations of these objects in coordinate patches are all bounded since α̇
is a unit vector field in g′. Since H+(S) ∩ K is compact it can be covered by
finitely many coordinate patches, and hence f is bounded.

Step III: v′ is bounded
Since γ is incomplete to the past, v is bounded below. In other words, the
integral

v(t) =
∫ t

0

v′(τ)dτ
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is bounded. This implies that lim inft→−∞ v′(t) = 0, since v is strictly increas-
ing. We will now show that boundedness of v on (−∞, 0] together with bound-
edness of f = v′′

v′ implies that v′ is bounded. Suppose not. Since v′ is continu-
ous, it can only be unbounded on (−∞, 0] if lim supt→−∞ v′(t) = ∞. Since we
also know that lim inft→−∞ v′(t) = 0 and that v′ is continuous there are, for
arbitrarily large C > 0, sequences tn, sn → −∞ such that

tn+1 < sn < tn for all n,

v′(tn) = 2C,

v′(sn) = C

and

C ≤ v′(t) ≤ 2C if t ∈ (sn, tn).

By the mean value theorem of calculus, there is for each n some τn ∈ [sn, tn]
such that

v′′(τn) =
v′(tn) − v′(sn)

tn − sn
=

C

tn − sn
.

However
∞
∑

n=0

C(tn − sn) ≤
∣

∣

∣

∣

∫ −∞

0

v′(τ)dτ

∣

∣

∣

∣

< ∞

so (tn − sn) → 0 as n → ∞. Hence

lim
n→∞ f(τn)v′(τn) = lim

n→∞ v′′(τn) = ∞.

Since v′(τn) ∈ [C, 2C] for all n, this implies that f(τn) → ∞, contradicting the
fact that f is bounded. Hence v′ must be bounded.

Step IV: Construction of a variation α of α0

We will now construct a variation α of α0. The idea is to push α0 to the past
and make it timelike, and then derive a contradiction from the resulting curve.
Let x : (−∞, 0) → R denote a smooth positive function which will be fixed
later. Let

α : (−δ, δ) × (−∞, 0) → H+(S)

(u, t) 
→ α(u, t)

be a smooth map such that

α(0, ·) = α0 and
∂α

∂u
(u, t) = −x(t)Vα(u,t). (4)

Recall that Vα(u,t) is smooth as a function of u and t, even though V is not a
smooth vector field on the spacetime. To see that such a variation exists, note
that the conditions can be viewed as a family of ordinary differential equa-
tions in u, parameterized by t. As a consequence of the existence theorem and
theorem about smooth dependence on initial values for ordinary differential
equations there is, for each t, a smooth solution with existence time δt > 0. To
claim that the necessary variation exists, we need to show that the existence
times δt can be uniformly bounded from below by some δ > 0 independent of
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t. However, we know that a solution to the differential equation exists as long
as it stays in the compact set W. Since H+(S) ∩ K is compact and W open,
the g′ distance between H+(S)∩K and M\W is positive. Since V is bounded,
and x will be bounded when we choose it, there is a positive uniform lower
bound for the time after which a solution may leave W. This means that there
is a uniform lower bound for the existence times of the solutions of the family
of ordinary differential equations defining the variation. Hence we may choose
a suitable δ > 0 uniformly, and a variation with the desired properties exists.

Let αu denote the curve α(u, ·). Note that each curve αu is smooth. We
now wish to choose the positive function x in such a way that some curve αε

is timelike. In other words, we want there to be some ε > 0 such that the
function

y(u, t) = g(α̇u(t), α̇u(t))

is negative for u = ε and all t ∈ (−∞, 0). To show that this is the case, we will
compute ∂y

∂u

∣

∣

∣

u=0
and a bound for ∂2y

∂u2 , and from this obtain an upper bound
for y. Choosing a suitable function x will make this upper bound negative for
small values of u.

Step V: Computation of ∂y
∂u

Let U denote the pushforward through α of the coordinate vector field ∂
∂u on

(−δ, δ) × (−∞, 0). We will not always write out the dependence on t and u.
The first partial derivative of y can be computed as

∂y

∂u
(u, t) =

∂

∂u
g (α̇u(t), α̇u(t)) = Ug(α̇u, α̇u) = 2g(∇U α̇u, α̇u)

= 2g(∇α̇u
U, α̇u) = 2 (∇α̇u

g(U, α̇u) − g(U,∇α̇u
α̇u))

where ∇U α̇u = ∇α̇u
U since U and α̇u are pushforwards of coordinate vector

fields. Evaluating this at u = 0 we see that

∂y

∂u
(0, t) = 2 (∇α̇0g(−xV, α̇0) − g(−xV,∇α̇0 α̇0))

= 2 (−∇α̇0(xg(V, α̇0)) + xg(V,∇v′γ̇(v′γ̇)))

= 2
(

1√
2
α̇0(x) + xv′g(V,∇γ̇(v′γ̇))

)

= 2
(

1√
2
α̇0(x) + x(v′)2g(V,∇γ̇(γ̇)) +

x

v′ α̇0(v′)g(V, α̇0)
)

=
√

2x′(t) −
√

2
x(t)v′′(t)

v′(t)

=
√

2v′(t)
d
dt

(

x(t)
v′(t)

)

,

where we have used that α̇0 = v′γ̇, g(V, α̇0) = −1/
√

2 and ∇γ̇ γ̇ = 0.
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Step VI: An upper bound for ∂2y
∂u2

We now compute an upper bound for the second partial derivative of y with
respect to u. For convenient notation, we use the vector fields

T = α∗
(

∂

∂t

)

,

U = α∗
(

∂

∂u

)

.

Note that

Tα(u,t) = α̇u(t)

and

Uα(u,t) = −x(t)Vα(u,t).

Now

1
2

∂2

∂u2
y(u, t) =

1
2

∂2

∂u2
g (α̇u(t), α̇u(t)) =

1
2

∂2

∂u2
g (T, T ) =

∂

∂u
g(∇UT, T )

= g(∇UT,∇UT )+g(∇U∇UT, T )=g(∇T U,∇T U)+g(∇U∇T U, T )
= g(∇T U,∇T U) + g(∇T ∇UU, T ) + g(R(U, T )U, T )

where we have used that ∇UT = ∇T U since U and T are coordinate vector
fields and

∇U∇T = ∇T ∇U + R(U, T ).

We now compute each term separately.
Evaluating the first term at α(0, t) and using that T (x) = α0(x) = x′ we

get

g(∇T U,∇T U) = g(∇T (xV ),∇T (xV )) = g(T (x)V + x∇T V, T (x)V + x∇T V )

= (x′(t))2 g(V, V ) + 2x(t)x′(t)g(V,∇T V ) + x2(t)g(∇T V,∇T V )

= − (x′(t))2 + (x(t))2g(∇T V,∇T V ).

We have used that g(V,∇T V ) = 0. That this is true is seen by noting that

g(V,∇T V ) = Tg(V, V ) − g(∇T V, V )=T (−2−1/2) − g(V,∇T V ) = −g(V,∇T V )

so that g(V,∇T V ) = −g(V,∇T V ). For the second term, note that

∇UU = ∇U (−xV ) = xU(x)V + x2∇V V = x(t)
∂x

∂u
V + 0 = 0

(since ∇V V = 0 on the image of α by choice of V , and x is independent of u)
so that

g(∇T ∇UU, T ) = g(∇T 0, T ) = 0.

The third term is simply

g(R(U, T )U, T ) = g(R(−xV, T )(−xV ), T ) = x2(t)g(R(V, T )V, T ).
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Hence
1
2

∂2

∂u2
g (α̇u(t), α̇u(t)) = − (x′(t))2 + (x(t))2 (g(∇T V,∇T V ) + g(R(V, T )V, T ))

≤ x2 (g(∇T V,∇T V ) + g(R(V, T )V, T )) .

We wish to bound this by C2x2g′(T, T ) for some constant C on the neighbor-
hood W of H+(S), which we chose to have compact closure. (Recall that g′ is
the Riemannian metric constructed from the vector field V in the beginning of
the proof.) To see that this is possible, view g(∇T V,∇T V )+g(R(V, T )V, T ) as
a quadratic form in T . Its components in coordinates depend on g, V and R,
all of which are bounded in coordinate neighborhoods, and H+(S)∩K can be
covered by finitely many such neighborhoods. Since the quadratic form g′ is
positive definite, there is some C such that g(∇T V,∇T V ) + g(R(V, T )V, T ) ≤
Cg′(T, T ). Hence

∂2

∂u2
g (α̇u(t), α̇u(t)) ≤ C2x2g′(T, T )

for some constant C. We want a bound in terms of g (α̇u(t), α̇u(t)) instead, so
we compute

g′(T, T ) = g(T, T ) + 2 (g(V, T ))2 .

Since
∂

∂u
g(V, T ) = Ug(V, T ) = g(−x∇V V, T ) + g(V,∇UT ) = 0 + g(V,∇T U)

= −g(V, T (x)V − x∇T V ) = T (x) + xg(V,∇T V ) = x′(t)

(where as earlier g(V,∇T V ) = 0) we know that

g(V, T ) = ux′(t) + g(V, T )|u=0 = ux′(t) − 1√
2
.

When we choose x, we will make sure that dx
dt is bounded, and then

2 (g(V, T ))2 is bounded by some constant d for all small u. Hence, we can
convert our bound in terms of g′(T, T ) to a bound in terms of g(T, T ):

∂2

∂u2
g (α̇u(t), α̇u(t)) ≤ C2x2g′(T, T ) ≤ C2x2(g(T, T ) + d).

In the notation of the function y, we now know that

∂2y

∂u2
(u, t) ≤ (y(u, t) + d)C2(x(t))2

for all sufficiently small u > 0.

Step VII: For all sufficiently small ε > 0, the curve αε is timelike
From our previous computations we know that

∂y

∂u
(0, t) =

v′(t)√
2

d
dt

(

x(t)
v′(t)

)

,

∂2y

∂u2
(u, t) ≤ (y(u, t) + d)C2(x(t))2.
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Moreover, y(0, t) = 0 since α0 is a lightlike curve. For each fixed t, this is a
differential inequality in the variable u. Let z be the solution of the differential
equation resulting from replacing the inequality with equality:

∂2z

∂u2
(u, t) = C2x2(0, t)(z(u, t) + d),

∂z

∂u
(0, t) =

∂y

∂u
(0, t),

z(0, t) = y(0, t) = 0.

Integrating the inequality ∂2y
∂u2 (u, t) ≤ ∂2z

∂u2 (u, t) we see that

∂y

∂u
(u, t) − ∂y

∂u
(0, t) ≤ ∂z

∂u
(u, t) − ∂z

∂u
(0, t)

so that
∂y

∂u
(u, t) ≤ ∂z

∂u
(u, t).

Integrating once again and using the fact that z(0, t) = y(0, t) = 0 we have

y(u, t) ≤ z(u, t).

Solving the differential equation for z we see that

z(u, t) = d cos h(Cx(t)u) + a(t) sin h(Cx(t)u) − d

where

a(t) =
v′(t)√
2Cx(t)

d
dt

(

x(t)
v′(t)

)

.

Since d is nonnegative, an upper bound for z is
z(u, t) = d cos h(Cx(t)u) + a(t) sin h(Cx(t)u) − d

= (d tan h(Cx(t)u) + a(t)) sin h(Cx(t)u) − d

≤ (d tan h(Cx(t)u) + a(t)) sin h(Cx(t)u).

Hence

y(u, t) ≤ (d tan h(Cx(t)u) + a(t)) sin h(Cx(t)u).

Recall that the idea was to choose the function x in such a way that there
exists some ε > 0 such that y(ε, t) < 0 for all t. We claim that an example of
such a function x is

x(t) =
v′(t)

v(t) − 2v0
.

Recall that

v0 = lim
t→−∞ v(t)

and that v is increasing so that

v0 ≤ v(t) ≤ 0 ∀t ∈ (−∞, 0].

We begin by making good on the promises we made about the function x: It
should be positive, bounded, and have bounded derivative. The denominator in
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the definition of x is bounded from below by −v0 and from above by −2v0, and
−v0 is positive, so boundedness and positivity of x follow from boundedness
and positivity of v′. Computing the derivative of x we see that

x′(t) =
v′′(t)

v(t) − 2v0
− (v′(t))2

(v(t) − 2v0)2
=

v′(t)f(t)
v(t) − 2v0

− x2(t).

Since x, v′ and f = v′′/v′ are bounded, so is x′. Having chosen x, we can now
fix the number δ > 0 defining the domain of α such that the image of α is
contained in W.

Recall that

y(u, t) ≤ (d tan h(Cx(t)u) + a(t)) sin h(Cx(t)u)

where

a(t) =
v′(t)√
2Cx(t)

d
dt

(

x(t)
v′(t)

)

.

With our present choice of x,

a(t) = − x(t)√
2Cv′(t)

.

The objective is to ensure that y(u, t) < 0 for some positive u and for all t.
Since sin h(Cxu) ≥ 0 for positive u, a sufficient condition is that

d tan h(Cx(t)u) − x(t)√
2Cv′(t)

< 0

for some u > 0 and all t. A series expansion tells us that

tan h(Cx(t)u) = Cx(t)u + O((ux(t))3)

for small ux(t), so that

d tan h(Cx(t)u) + a(t) =
(

dCu − 1√
2Cv′(t)

)

x(t) + O(u3x3(t)).

Since v′ is bounded, there is some positive lower bound for 1/v′. Hence it
holds for all sufficiently small u such that dCu − 1/(

√
2Cv′(t)) is negative for

all t. Since x is bounded, it further holds for all sufficiently small u that the
O(u3x3(t)) term does not affect the sign: with such a choice of u, it holds that
d tan h(Cxu) + a is negative for all t, and hence

y(ε, t) ≤ (d tan h(Cx(t)ε) + a(t)) sin h(Cx(t)ε) < 0

for all values of t and all sufficiently small ε > 0. Since

y(ε, t) = g(α̇ε(t), α̇ε(t))

this shows that the curve αε is timelike.
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Step VIII: For all sufficiently small ε > 0, the curve αε has infinite g′-length
For each (negative) integer k, let Lk(u) be the g′-length of the restriction of αu

to [k, k+1]. By the formula for the first variation of arc length ([28, Proposition
2, Chapter 10])

L′
k(0) = −

∫ k+1

k

g′(∇α̇0 α̇0, V ) dt + g′(α̇0, V )|k+1
k

= −
∫ k+1

k

f(t)g′(α̇0, V ) dt + g′(α̇0, V )|k+1
k

= −
∫ k+1

k

f(t)√
2

dt.

We here used that g′(α0, V ) = 1/
√

2 by definition of g′ and α0. Since f is
bounded, we know that L′

k(0) is bounded uniformly in k. This means that
for all sufficiently small ε > 0 it holds that Lk(ε) > 1/2 for all k. (Recall that
Lk(0) = 1 since α0 is parameterized by arc length.) This means that the length
of αε is

∑

k<0

Lk(ε) ≥
∑

k<0

1/2 = ∞.

Step IX: For all sufficiently small ε > 0, the curve αε belongs to the interior
of D+(S0)
Since the curve αε for ε > 0 is a variation to the past of α0, it belongs to the
open set I−(H+(S0)). We will first show that I−(H+(S0))∩I+(S0) ⊆ D+(S0),
and then show that αε belongs to I−(H+(S0))∩I+(S0) for all sufficiently small
ε > 0. We will then have shown that αε belongs to an open set contained in
D+(S0), and hence it must belong to the interior of D+(S0).

Let p ∈ I−(H+(S0)) ∩ I+(S0). We will first show that p ∈ D+(S0),
and then that p ∈ D+(S0). That p ∈ I−(H+(S0)) means that there is some
future-directed timelike curve λ from p to H+(S0). This curve cannot pass
S0, since p lies to the future of S0 and S0 is achronal. Suppose now that κ
is a future-directed past inextendible timelike curve with future endpoint p.
By concatenating κ and λ and smoothing (in a neighborhood of p which is
disjoint from S0, which exists since p ∈ I+(S0)) we obtain a past-inextendible
timelike curve with future endpoint in H+(S0). Since H+(S0) ⊆ D+(S0), this
combined curve must intersect S0. Since the curve λ does not intersect S0, the
curve κ must do so. This proves that every past-inextendible timelike curve κ
through p must intersect S0, so that p ∈ D+(S0). By the same argument, all
points in the interior of λ belong to D+(S0). Let q be some point in the interior
of λ. Since λ is timelike, q ∈ I+(p). Since I+(p) is open, it is a neighborhood
of q. Since q ∈ D+(S0) it is a limit point of D+(S0). This means that the
neighborhood I+(p) of q must contain some point r ∈ D+(S0) ∩ I+(p). Let
̂λ be a future-directed timelike curve from p to r. Now let κ be a future-
directed past inextendible causal curve with future endpoint p. Concatenating
κ with ̂λ and smoothing (again in a neighborhood of p which is disjoint from
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S0) we obtain a past-inextendible causal curve with future endpoint r. Since
r ∈ D+(S0), this curve must intersect S0. Since r ∈ I+(p) ⊆ I+(S0) and S0

is achronal, the curve ̂λ cannot intersect S0. This means that κ must intersect
S0. This proves that every past-inextendible causal curve κ through p must
intersect S0, so that p ∈ D+(S0).

Since α0 is a curve in H+(S0) and αε is a variation to the past for ε > 0 we
know that αε belongs to I−(H+(S0)). Since g′(V, V ) = 1 and x is bounded by
|2v0|, Eq. (4) implies that the distance from a point on αε to α0 cannot exceed
|2v0ε|. Since H+(S0) ∩ K is compact and disjoint from the closed set S0, the
g′-distance from H+(S0) to S0 is positive. Choosing ε > 0 so small that |2v0ε|
is smaller than this distance, we know that αε does not intersect S0. To see that
αε(t) ∈ I+(S0) for some t, note that no curve αu with 0 ≤ u ≤ ε can intersect
S0 so that the timelike curve λ : [−ε, 0] → M defined by λ(u) = α−u(t) does
not intersect S0. Extend λ to some past inextendible timelike curve. Then
λ is a past inextendible timelike curve with future endpoint λ(0) = α0(t) ∈
H+(S0), so λ must intersect S0. Since λ passes through αε(t), we know that
αε(t) ∈ I+(S0). Since t was arbitrary, we have now shown that the image of
αε belongs to I−(H+(S0)) ∩ I+(S0) for all sufficiently small ε > 0. As noted
previously, this together with the fact that I−(H+(S0)) ∩ I+(S0) ⊆ D+(S0)
shows that the image of αε belongs to the interior of D+(S0).

Step X: Contradiction ensues
We have now shown that if we choose ε > 0 small enough, then αε is a timelike
curve of infinite g′-length, contained in the interior of D+(S0). Since it has
infinite g′-length and belongs to the compact set W, it must have a limit point.
Since it is timelike, the existence of this limit point implies that the strong
causality condition cannot hold in any open neighborhood of αε. However, the
interior of D+(S0) is an open neighborhood of αε satisfying the strong causality
condition (by [6, Proposition 2.9.9]), so we have arrived at a contradiction.
Hence γ cannot be incomplete in the past direction. �
1.3. Structure of Horizons

We begin by defining the abstract concept of a “horizon” (following [7]) and
state some previously known results about the regularity of horizons. We then
prove that the Cauchy horizons we will work with are horizons in this sense.

1.3.1. Abstract Horizons.

Definition 1.7. We say that an embedded topological hypersurface in a space-
time is past null geodesically ruled if every point on the hypersurface belongs
to a past inextendible null geodesic contained in the hypersurface. These geo-
desics are called generators.

Remark 1.8. Note that if a past null geodesically ruled hypersurface is a C2

null hypersurface, then these generators are the same as those defined in Sect.
1.1.1.

Definition 1.9. A horizon in a spacetime is an embedded, achronal, past null
geodesically ruled, closed (as a set) topological hypersurface.
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Remark 1.10. One may just as well define a horizon to be future null geodes-
ically ruled. Indeed, in [7] the distinction is made between a “past horizon”
and a “future horizon”. However, since we will work only with future Cauchy
horizons it is convenient to restrict our attention to past null geodesically ruled
horizons.

Remark 1.11. If an open subset of a horizon is past null geodesically ruled,
then its generators are the restrictions of the generators of the horizon.

Note that we have assumed no smoothness in the definition. Note also
that the generators through a point of a horizon need not be unique. In fact,
we have the following theorem (see Theorem 3.5 in [2] and Proposition 3.4 in
[9]).

Theorem 1.12. A horizon is differentiable precisely at those points which belong
to a single generator.

We also note that horizons are null hypersurfaces whenever they are
differentiable, so that the generators of a C2 horizon are precisely the integral
curves of the null vector fields:

Proposition 1.13. If a horizon H is differentiable at a point p, then TpH is a
null hyperplane.

Proof. Since p belongs to a lightlike geodesic segment contained in H, we know
that TpH contains null vectors. If TpH were to contain a timelike vector, then
there would be a timelike curve in H with this tangent vector. This would
contradict achronality of H, and hence TpH must be a null hyperplane. �

Finally, we note that generators can only intersect in common endpoints.

Proposition 1.14. Let H be a horizon, and suppose that p is an interior point
of a generator Γ. Then there is no other generator containing p.

Proof. Suppose that some other generator Γ′ contained p. Let q be a point
to the past of p along Γ′, and let r be a point to the future of p along Γ. By
following Γ′ from q to p and then Γ from p to r we have connected q and r by
a causal curve which not a null geodesic. By [6, Proposition 2.6.9] this curve
cannot be achronal. Since the image of the curve belongs to H, this contradicts
achronality of H. �

1.3.2. Cauchy Horizons. We now connect the statements in Sect. 1.3.1 about
abstract horizons to the particular case of a Cauchy horizon in a spacetime.
We begin by quoting [14, Proposition 2.7]. A similar statement can be found
in [6, Proposition 2.10.6].

Proposition 1.15. Let S be an achronal subset of a spacetime M . Then the set
H+(S)\edge(S), if nonempty, is an achronal C0 hypersurface of M ruled by
null geodesics, each of which either is past inextendible in M or has a past
endpoint on edge(S).
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Figure 1. Part of the future Cauchy horizon of a spacelike
rectangle in (2+1)-dimensional Minkowski space, with some of
the generators shown. A more complicated example in which
no open subset of the horizon is differentiable is given in [9]

Corollary 1.16. Let M be a spacetime. Suppose that S ⊆ M is an achronal set
with edge(S) = ∅. Then H+(S) is a horizon in the sense of Definition 1.9.

Proof. The proposition tells us that H+(S) is a topological hypersurface which
is achronal and past null geodesically ruled. To see that H+(S) is closed, note
that it by definition is the difference of a closed set and an open set. This
completes the proof. �

We conclude with a lemma allowing us to apply Corollary 1.16 to closed
spacelike hypersurfaces. The lemma follows from [18, Lemma 8.3.3].

Lemma 1.17. Let M be a spacetime and let S be a spacelike hypersurface which
is closed as a set. Then edge(S) = ∅.
1.3.3. Properties of Nonsmooth Horizons. In general, Cauchy horizons are not
C2 hypersurfaces: Fig. 1 shows an example of a non-C2 Cauchy horizon. This
particular example is “almost C2” in the sense that it has a dense open subset
which is C2, so we would expect that many results about C2 hypersurfaces
are applicable to this example. However, it was shown in [9] that Cauchy
horizons are not necessarily almost C2. This means that the proofs of theorems
like Tipler’s theorem need to deal with horizons of lower regularity. For this
reason, and in particular to prove Theorem 1.42 about smoothness of compact
Cauchy horizons, we need some results about general horizons. The definitions
and results in this section can be found in [7].

Definition 1.18. Let M be a spacetime, and let (a, b)×Σ ∼= O ⊆ M be an open
subset such that each slice {t} × Σ is spacelike and each curve (a, b) × {p} is
timelike. Let N ⊆ M be a hypersurface. A function f : Σ → (a, b) is said to be
a graphing function of N if N ∩ O = {(f(x), x) | x ∈ Σ}.

Theorem 2.2 of [7] says that any locally achronal hypersurface, in par-
ticular any horizon, is semi-convex (see Definition A.2). This implies (see [7,
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Proposition 2.1]) that every point on the horizon has a globally hyperbolic
spacetime neighborhood (−a, a)×Σ in which the horizon has a graphing func-
tion f for which there is a subset ΣAl ⊆ Σ such that

• Σ\ΣAl has measure zero,
• f is differentiable at all points of ΣAl,
• f is twice-Alexandrov-differentiable at all points x ∈ ΣAl. In other words,

there is a quadratic form D2f(x) such that for all y ∈ Σ

f(y) − f(x) − df(x)(y − x) =
1
2
D2f(x)(x − y, x − y) + o(|x − y|2).

Moreover, it is shown in [7] that this notion is coordinate invariant: if p =
(f(x), x) with x ∈ ΣAl for one globally hyperbolic neighborhood of p, then
p = (f̃(x̃), x̃) with x̃ ∈ Σ̃Al for any other neighborhood (−ã, ã) × Σ̃ of p with
corresponding graphing function f̃ satisfying the above conditions. Hence the
following definition makes sense.

Definition 1.19. Let H be a horizon in a spacetime. Denote by HAl the set
of all points p ∈ H which are images under a graphing function of one of the
corresponding sets ΣAl. We will call HAl the set of Alexandrov points of the
horizon.

Remark 1.20. By the definition of semi-convexity a semi-convex function is
the sum of a C2 function and a convex function, and hence locally Lipschitz.
This means that horizons are Lipschitz hypersurfaces.

Following [7] we will now define the null mean curvature θAl and the
null second fundamental form BAl of HAl. More precisely, we will define θAl

and BAl on the intersection of HAl with a globally hyperbolic coordinate
neighborhood O. This definition is not coordinate invariant. However, θAl and
BAl are defined up to pointwise scaling by a positive function, so the sign of
θAl is globally well defined.

Definition 1.21. Let H be a horizon in a spacetime (M, g). Choose a globally
hyperbolic coordinate neighborhood O = (−a, a) × Σ of some point in H,
and let f : Σ → (−a, a) be the graphing function of H in this neighborhood.
Let the function t : (−a, a) × Σ → (−a, a) be the projection. For each point
p ∈ O ∩ HAl, with x such that p = (f(x), x), define k(p) = −dt + df(x). This
makes sense since f is differentiable at all such points. Let K be the vector
field dual to k with respect to g. Let e0 ∈ TpO be the vector which is g-dual
to dt. Choose a basis e1, . . . , en for TpH such that

• en = Kp,
• g(ei, ei) = 1 if 1 ≤ i ≤ n − 1,
• g(ei, ej) = 0 if i �= j,
• g(ei, e0) = 0 if 1 ≤ i ≤ n − 1.
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We now define θAl and BAl using the coordinate formulae

θAl =
n−1
∑

l=1

ei
le

j
l

(

D2
ijf − Γμ

ijkμ

)

,

BAl(Xaea, Y beb) = XaY bei
aej

b

(

D2
ijf − Γμ

ijkμ

)

.

In the definitions above, we have constructed an “artificial” covariant deriv-
ative D2

ijf − Γμ
ijkμ using the Alexandrov second derivative D2f of f . We

emphasize again that this definition of θAl is not independent of the coordi-
nate system. However, the definitions using different coordinate systems differ
only by a positive multiplicative constant. In particular, the sign of θAl is
invariantly defined (see [7, Proposition 2.5]).

Remark 1.22. If H is C2, then θAl and BAl agree with the null mean curvature
θK and null second fundamental form BK defined in Sect. 1.1.1.

Remark 1.23. By [7, Theorem 5.1] the (1, 1)-tensor bAl associated to BAl

satisfies Eq. (1) from Sect. 1.1.1.

We will later derive a formula involving θAl for the area of a horizon, and
knowing the sign of θAl will yield inequalities between different areas. In our
case, the generators of the horizon will be past complete, so we will have use
of the following result. It is a generalization of [7, Proposition 4.17], and the
proof of that proposition is sufficient for proving the generalization as well,
since the proof considers one point at a time.

Proposition 1.24. Let M be a spacetime, and let H be a horizon in M . Let
A ⊂ HAl be a set of Alexandrov points of H such that each point in A belongs
to a generator which is complete to the past. Suppose that the null energy
condition holds. Then

θAl ≤ 0 on A.

Remark 1.25. The result in [7] is expressed with the opposite time orienta-
tion compared to our setting. Consequently, we obtain the inequality θAl ≤ 0
instead of θAl ≥ 0.

1.4. A Smoothness Theorem

In [4, Section 4] the question was posed whether a compact Cauchy horizon
is necessarily smooth. A negative answer was given by the same authors in [5,
Section 4], where it was also mentioned that compactness together with some
energy condition might be sufficient to guarantee smoothness. In this section,
we show using methods from [7] that this is indeed the case. When our proofs
parallel those in [7], we will adhere to the notation in [7].

1.4.1. Outline of the Proof. The theorem which will be proved in this section
is Theorem 1.42, stating that compact Cauchy horizons in a spacetime which
satisfies the null energy condition are smooth. We first give an outline of the
proof. Horizons are Lipschitz null hypersurfaces, and so differentiable almost
everywhere. At the points of differentiability there is a unique (up to scaling)



Vol. 16 (2015) Smoothness of Compact Horizons 2187

null tangent vector, giving rise to an almost everywhere defined vector field on
the horizon. By restricting to a suitably chosen subset of the horizon, we can
define a flow along this vector field. One may then construct a C1,1 manifold
containing, locally, this chosen subset, and extend the flow to a Lipschitz flow
on the C1,1 manifold. This is sufficient regularity to express how the area
of a set changes under the flow, and this change of area is the central idea
of the proof. To measure area, we introduce a Riemannian metric σ on the
spacetime. With a suitably chosen such metric, the change in area is related to
the Alexandrov null mean curvature θAl of the Cauchy horizon. The argument
for this relation between area change and θAl proceeds via a C2 approximation
of a part of the local C1,1 approximation of the original horizon. Once the
relation between θAl and area change has been established, knowledge of the
sign of θAl gives an inequality for area change under the flow. A sufficient
condition under which the sign of θAl may be determined is that all null
geodesics in the horizon are complete in the past direction, together with an
energy condition. Lemma 1.6 tells us that the generators are complete. By
these arguments, we determine that the flow increases area. However, the flow
maps a subset of the horizon into itself, thereby decreasing area. Hence the
only possibility is that the flow conserves area. We show in Proposition 1.40
that this implies that the horizon is smooth.

1.4.2. Flow Sets and Generator Flow. We wish to generalize the notion of the
generator flow on C2 null hypersurfaces discussed in Sect. 1.1.2 to possibly
nonsmooth horizons. In other words, we want a flow along generators of a
horizon H. However, since some points belong to several generators it is in
general not possible to do this on all of H. Instead, we construct a smaller
subset on which to define the flow.

Definition 1.26. Let H be a horizon in a spacetime M . Define the total flow set
of H to be the set A0(H) of points p ∈ H such that the following conditions
are satisfied:
• There is a unique generator Γ of H passing through p.
• The point p belongs to the interior of Γ.
• Each interior point of Γ is an Alexandrov point.
Let σ be a Riemannian metric on M . For δ > 0 define the δ-flow set of H with
respect to σ to be the set

Aδ(H, σ) = {p ∈ A0(H) | The generator through p exists
for a σ-distance greater than δ

to the past and to the future}.

Remark 1.27. Note that the total flow set is the union of all δ-flow sets:

A0(H) =
⋃

δ>0

Aδ(H, σ).

Remark 1.28. When the context allows it, we will sometimes drop H and σ
from the notation and write A0 or Aδ.
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For the next proposition, we will need the following result, a proof of
which can be found in [7, Theorem 5.6].

Lemma 1.29. Let H be a horizon in a spacetime M of dimension n+1. Suppose
that S is a C2 hypersurface intersecting H properly transversally (in the sense
that if q ∈ S ∩ H and the tangent space TqH exists then TqS is transverse to
TqH). Define

S0 = {q ∈ S ∩ H | q is an interior point of a generator of H},

S1 = {q ∈ S0 | all interior points of the generator

through q are Alexandrov points of H}.

Then S1 has full (n − 1)-dimensional Hausdorff measure in S0.

Proposition 1.30. Let H be a horizon in a spacetime (M, g) of dimension n+1,
and let σ be a Riemannian metric on M . Let hn be the n-dimensional Hausdorff
measure induced by the distance function induced by σ. Then the total flow set
A0 of H has full hn-measure in the sense that

hn(H\A0) = 0.

Proof. To show that H\A0 has measure zero, it is sufficient to show that each
point p ∈ H has an open neighborhood U ⊆ M such that hn (U ∩ (H\A0)) =
0, for H can be covered by countably many such neighborhoods since it is
second-countable. The idea of the proof is to construct a spacetime of one
dimension greater than M and apply Lemma 1.29 in this higher-dimensional
spacetime.

To this end, choose a globally hyperbolic neighborhood U ⊆ M of p ∈ H

diffeomorphic to (−a, a)×Σ, where Σ ⊆ R
n and each slice {t}×Σ is spacelike.

We may choose the zero slice to be such that p ∈ {0} × Σ. Let ̂M = M × I
denote the product manifold which is equipped with the metric ĝ = g + ds2,
where s refers to the coordinate in the open interval I. Let ̂H = H × I. Let
π : ̂M → M denote the projection. We now verify that ̂H is a horizon in ̂M .
Since H is an embedded topological hypersurface, so is ̂H. By definition of the
product topology, ̂H = π−1(H) is closed. If there were some timelike curve
γ between two points of ̂H, then π ◦ γ would be a timelike curve between
two points of H contradicting achronality of H, so ̂H must also be achronal.
To see that π ◦ γ is indeed timelike, note that by definition of ĝ it holds that
g(π∗V ) ≤ ĝ(V ) for all vectors V . Finally ̂H is past null geodesically ruled since
if Γ is a past inextendible null M -geodesic contained in H, then Γ × {s} is a
past inextendible null ̂M -geodesic contained in ̂H for each s ∈ I.

We now wish to construct, after possibly decreasing a or shrinking I, a
diffeomorphism ρ : I → (−a, a) such that the hypersurface

S := {(t, q, s) ∈ (−a, a) × Σ × I | t = ρ(s)}
is spacelike. A possible choice of basis for the tangent space T(t,q,s)S ⊆
TqR × Σ × R of S at some point (t, q, s) consists of a basis for the tangent
space of Σ together with the vector (ρ′(s), 0, 1). The basis of TqΣ consists of
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spacelike vectors since Σ is spacelike, and if ρ′(s) is sufficiently close to zero
then (ρ′(s), 0, 1) is also spacelike (since (0, 0, 1) is spacelike by definition of ĝ,
and the set of spacelike vectors at a point is open). This means that for each
(t, q) ∈ (−a, a) × Σ, there is some c(t, q) > 0 such that if ζ < c(t, q) then
for any s ∈ I the vector (0, ζ, 1) ∈ T(t,q,s) is spacelike. Since g is smooth, c
can be chosen smooth. Hence c takes some minimum on every compact subset
of (−a, a) × Σ. This minimum is positive since c is positive on (−a, a) × Σ,
after possibly shrinking Σ and a. We may then find some real number ζ such
that 0 < ζ < c(t, q) for all (t, q) ∈ (−a, a) × Σ. Letting ρ(s) = ζ(s − s0)
where s0 is the midpoint of I, and subsequently shrinking I or a to make ρ
bijective, we have found a diffeomorphism ρ making S spacelike. Since ρ is a
diffeomorphism, the restriction of the projection π : ̂M → M to S is also a
diffeomorphism.

Now S is a smooth hypersurface in ̂M , which intersects ̂H properly
transversally in the sense that if q ∈ S ∩ ̂H and the tangent space Tq

̂H exists
then TqS is transverse to Tq

̂H. Let

̂S0 = {q ∈ S ∩ ̂H | q is an interior point of a generator of ̂H},

S0 = {q ∈ U ∩ H | q is an interior point of a generator of H}.

Note that π(̂S0) = S0 since if p is an interior point of a generator Γ then π(p)
is an interior point of the generator π(Γ) and vice versa. Note further that it
holds that π(S ∩ ̂H) = U ∩ H. Moreover, the projection π restricted to S is
bijective and hence π((S ∩ ̂H)\̂S0) = (U ∩ H)\S0.

Since π restricted to S is a diffeomorphism, both π|S and its inverse
(π|S)−1 are locally Lipschitz so that hn((S ∩ ̂H)\̂S0) = 0 if and only if hn((U ∩
H)\S0) = 0. The latter set (U ∩ H)\S0 is the set of endpoints of generators
of H contained in U . It is shown in [2, Theorem 3.5] and [8, Theorem 1]
that this set has zero hn-measure. This means that we can conclude that
hn

(

(S ∩ ̂H)\̂S0

)

= 0. In other words, ̂S0 has full measure in S ∩ ̂H.
Let

̂S1 = {q ∈ ̂S0 | all interior points of the generator

through q are Alexandrov points of ̂H}.

By Lemma 1.29 the set ̂S1 has full hn measure in ̂S0. Hence, it also has full
hn-measure in S ∩ ̂H. Since π is bi-Lipschitz, π(̂S1) has full hn-measure in
U ∩ H.

The projection π : ̂M → M maps generators to generators, and Alexan-
drov points of ̂H to Alexandrov points of H, so each point of ̂S1 belongs to
A0. We have then shown that A0 ∩ U contains a subset π(̂S1) which has full
measure in H ∩ U . Hence A0 itself has full measure in H ∩ U . As noted in
the beginning of the proof, H may be covered by countably many such sets
U , so we have shown that A0 has full hn-measure in H. This completes the
proof. �
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Definition 1.31. Let H be a horizon in a spacetime (M, g), and let A0 be its
total flow set. Let σ be a Riemannian metric on M . Since H is differentiable
at all points in A0, there is a unique σ-unit past-directed null vector tangent
to H at each point in A0. This defines a vector field T on A0, which is tangent
to the generators of H. Recall that A0 contains full generators, and hence full
integral curves of T . We will call the flow of T the generator flow of H with
respect to σ, and denote it by (t, p) 
→ βt(p).

Note that βt is not in general defined on all of A0 for any t > 0. However,
it will be defined on all of A0 for all t > 0 in the case considered in our main
theorem, so we will mainly be concerned with this case. Note also that the
choice of A0 was made so that A0 flows into itself, in the sense that if p ∈ A0

and t ≥ 0 are such that βt(p) is defined, then βt(p) ∈ A0.

1.4.3. Generator Flow is Area-Preserving. The purpose of this section is to
prove that the generator flow on a horizon with respect to a certain family
of Riemannian metrics preserves the associated Hausdorff measure if the null
mean curvature is nonpositive. Our first goal is to construct a C1,1 approxi-
mation of the horizon to be able to express the volume change. We do this in
Lemmas 1.33 and 1.34. We then construct a C2 approximation of the horizon
to compute the volume change in Propositions 1.36 and 1.39. The complicated
constructions necessary are contained in Lemma 1.38.

We begin by stating an extension result, which is proved in [7, Proposition
6.6].

Lemma 1.32. Let B ⊆ R
n be an arbitrary subset and f : B → R be an arbitrary

function. Suppose that there is some constant C > 0, and some function B →
R

n, p 
→ ap, (not necessarily continuous) such that the following two conditions
hold:

1. f has global upper and lower support paraboloids of opening C. Explicitly,
for all x, p ∈ B,

|f(x) − f(p) − 〈x − p, ap〉| ≤ C||x − p||2.
2. The upper and lower support paraboloids of f are disjoint. Explicitly, for

all p, q ∈ B and all x ∈ R
n,

f(p) + 〈x − p, ap〉 − C||x − p||2 ≤ f(q) + 〈x − q, aq〉 + C||x − q||2.
Then there is a function F : Rn → R of class C1,1

loc such that f is the restriction
of F to B.

Using this lemma, we may prove the following.

Lemma 1.33. Let H be a horizon in an (n + 1)-dimensional spacetime M . Let
σ be any Riemannian metric on M , let δ > 0 and let Aδ be the δ-flow set of
H with respect to σ. Let p ∈ Aδ. Then there is some open globally hyperbolic
neighborhood V ⊆ M of p and a C1,1 hypersurface N ⊆ V in M such that
Aδ ∩ V ⊆ N .
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Proof. For each point q ∈ Aδ, let q+ denote the point a σ-distance δ to the
future along the unique generator through q. Similarly, let q− denote the point
along the generator a distance δ to the past. By one of the defining properties
of Aδ, we have q+, q− ∈ H.

By the same reasoning as used in the proof of Lemma 6.9 in [7], one may
obtain a globally hyperbolic neighborhood V ⊆ W of p and a constant C > 0
with the following properties:

• V is diffeomorphic to (−a, a) × Bn(r) with the slices {t} × Bn(r) spacelike
and the curves (−a, a) × {x} timelike and future-directed for all t ∈ (−a, a)
and all x ∈ Bn(r).

• Let f denote the graphing function of the horizon over Bn(r), i.e. the func-
tion such that V ∩ H = {(f(x), x) | q ∈ Bn(r)}. For each q = (f(xq), xq) ∈
V ∩ Aδ, the graph of the function

f−
q (x) = f(xq) + df(xq)(x − xq) − C||x − xq||2,

with the exception of the point q = (f(xq), xq) itself lies in the timelike past
I−(q+, V ) of q+.

• For each q = (f(xq), xq) ∈ V ∩ Aδ, the graph of the function

f+
q (x) = f(xq) + df(xq)(x − xq) + C||x − xq||2,

with the exception of the point q = (f(xq), xq) itself lies in the timelike
future I+(q−, V ) of q−.

Note that if this holds for some value of C, it holds for all larger values of C
as well.

We will now show that these conditions imply the first hypothesis of
Lemma 1.32. Suppose that the condition is violated. Then either f(x) > f+

q (x)
or f(x) < f−

q (x) for some q = (f(xq), xq) ∈ Aδ and x ∈ Bn(r). The argument
is the same for both cases, so suppose without loss of generality that the first is
the case. Since f(xq) = f+

q (xq) we must have x �= xq. Then (f+
q (x), x) belongs

to the timelike future of q−, by the choice of C. However, since f(x) > f+
q (x),

the point (f(x), x) lies to the timelike future of (f+
q (x), x). This means that we

can connect q− to (f+
q (x), x) to (f(x), x) by a timelike curve. Hence (f(x), x)

belongs to the timelike future of q−. Since both points belong to the horizon,
this violates achronality of the horizon. This proves the first hypothesis of
Lemma 1.32.

For the second hypothesis, note that the first continues to hold if we
increase C. By making sure that C is sufficiently large compared to the Lip-
schitz constant of f and the values of f , one may conclude as in the proof of
Lemma 6.9 in [7] that the second hypothesis is satisfied as well.

Let B denote the projection of Aδ ∩ V on Bn(r). We can then apply the
extension theorem described in Lemma 1.32 to obtain a C1,1 extension R

n → R

of f |B : B → (−a, a). Let F : Rn → R denote the restriction to Bn(r) of this
extension. By definition F agrees with f on B. In particular, the graph of F
contains p = (f(xp), xp), so F (xp) ∈ (−a, a). Since F is continuous, there is
some neighborhood Bn(ε) ⊆ Bn(r) of xp such that F (Bn(ε)) ⊆ (−a, a). Hence
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by shrinking the neighborhood V to (−a, a)×Bn(ε) and letting N be the graph
of F there, we have obtained a C1,1 hypersurface containing Aδ ∩ V . �
Lemma 1.34. Let H be a horizon in an (n + 1)-dimensional spacetime (M, g)
equipped with a Riemannian metric σ, let δ > 0, let Aδ be the δ-flow set of
H with respect to σ, let Ãδ be the full-density subset (in the sense of Defini-
tion A.9) of Aδ, let V be a globally hyperbolic open neighborhood of p and let
N ⊆ V be a C1,1 hypersurface containing Aδ ∩ V , which can be represented by
a graphing function in V .

Fix t ≥ 0. Let βt : Aδ ∩ V → A0 be the restriction of the generator flow
(with respect to σ) to Aδ ∩ V , and suppose that this flow is defined on all of
Aδ ∩ V . Then there is a neighborhood U ⊆ V of p such that the restriction of
βt to Ãδ ∩ U is the restriction of a locally Lipschitz function ̂βt : N ∩ U → M .

Proof. In the trivial case t = 0 we can let ̂βt be the identity on N . Hence, we
can assume for the remainder of the proof that t > 0.

Let (a, b)×Σ be a decomposition in space and time of the globally hyper-
bolic neighborhood V of p, and let f denote the graphing function of N with
respect to this decomposition.

We wish to construct a Lipschitz vector field normal to N in a neigh-
borhood of p = (f(x), x). Choose a frame (ei)n

i=1 close to p consisting of the
pushforward of a frame of Σ close to x under the map y 
→ (f(y), y). This
frame is Lipschitz since f is C1,1. By shrinking V we may assume that the
frame covers all of N . The condition that a vector field n along N is normal
to N with respect to the spacetime metric g and consists of unit vectors with
respect to the Riemannian metric σ can be expressed by saying that n satisfies
the n + 1 equations

σ(n,n) − 1 = 0,

g(e1,n) = 0,

g(e2,n) = 0,

...

g(en,n) = 0.

Choose a trivialization N × R
n+1 of TM |N . Define F : N × R

n+1 → R
n+1 by

the above equations. Explicitly

F (n) = (σ(n,n) − 1, g(e1,n), . . . , g(en,n)).

Let n be a zero of F . The tangent map of F at n with respect to the R
n+1

component is

k 
→ (2σ(n,k), g(e1,k), . . . , g(en,k)).

We wish to show that this tangent map has full rank. For dimensional reasons,
this is equivalent to its kernel being trivial. If k belongs to the kernel, then
g(ei,k) = 0 for all 1 ≤ i ≤ n. Hence k is a normal vector to N , and hence
parallel to n. If k belongs to the kernel of the tangent map then it also holds
that σ(n,k) = 0. When k is parallel to n, this can only happen when k = 0.
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This shows that the tangent map of the R
n+1 component of F has full rank

at zeros of F . Clearly there is a vector at p which is a zero of F ; simply take a
normal vector and rescale it. This means that we (after choosing a local triv-
ialization of TM |N around p) can apply Clarke’s Implicit Function Theorem
(Corollary, p. 256 in [10]) to conclude that there is a Lipschitz function n sat-
isfying F (q,n(q)) = 0 in a neighborhood of p. By shrinking V if necessary, we
have then found a Lipschitz normal (with respect to g) vector field to N which
is of unit length (with respect to σ). By shrinking V further and replacing n
with −n if necessary, we may assume that n is everywhere past-directed.

By considering graphing functions of N and H and applying the result
about tangent spaces at full-density points described in Proposition A.12 we
see that the tangent spaces TqN and TqH agree at all q ∈ Ãδ. Consider now a
point q ∈ Ãδ. By Proposition 1.13 the tangent space TqH is a null hyperplane.
Since q ∈ Ãδ we have TqN = TqH, so TqN is also a null hyperplane. The
normal vector nq to the null hyperplane TqN is then null, and any two null
vectors in a null hyperplane are parallel, so the vector nq for a point q ∈ Ãδ is
parallel to any tangent vector of the null geodesic generator through q.

Once again, consider some point q ∈ Ãδ ⊆ N . Since βt(q) is a point along
the geodesic (with respect to the spacetime metric g) with initial velocity
parallel to nq (which is nonzero and past-directed) it holds that there is some
function r : Ãδ → (0,∞) such that

βt(q) = expg(r(q)nq).

For each q ∈ N there is a unique positive real number r̂(q) such that
the σ-distance between q and expg(r̂(q)nq) along the curve τ → expg(τnq) is
precisely t. By definition r and r̂ coincide on Ãδ.

We now want to use Clarke’s implicit function theorem (Corollary, p. 256
in [10]) again, this time to conclude that r̂ is locally Lipschitz. By definition,
the choice ξ = r̂ solves the equation

∀q ∈ N

∫ 1

0

∣

∣

∣

∣

∣

∣

∣

∣

∂

∂τ
expg(τξ(q)nq)

∣

∣

∣

∣

∣

∣

∣

∣

σ

dτ = 1,

and this solution is of course unique if we require that ξ(q) > 0 everywhere.
In other words ξ = r̂ is the unique positive function satisfying F (q, ξ(q)) = 0
where F : N × R → R is defined by

F (q, t) =
(∫ 1

0

∣

∣

∣

∣

∣

∣

∣

∣

∂

∂τ
expg(τtnq)

∣

∣

∣

∣

∣

∣

∣

∣

σ

dτ

)

− 1.

Since n is locally Lipschitz, so is F . Note that F has a partial derivative with
respect to t and that ∂F

∂t �= 0 everywhere since n is nowhere zero. Clarke’s
implicit function theorem now tells us that there is a solution ξ of F (q, ξ(q)) =
0 with ξ(p) = r(p) which is Lipschitz in a neighborhood of p. Since r(p) is
positive, so is ξ in a neighborhood of p. Since we already know that the only
positive solution of this equation is r̂, this shows that r̂ is Lipschitz in some
neighborhood U of p.
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Since r̂ is Lipschitz on U , the function ̂βt : N ∩ U → M defined by

̂βt(q) = expg(r̂(q)nq)

is also Lipschitz. The restriction of this function to Ãδ ∩ U agrees with βt,
completing the proof. �

For future reference, we note the following corollary.

Corollary 1.35. Let Ãδ be the full-density subset of a δ-flow set Aδ, and let
U be any set such that the generator flow with respect to some Riemannian
metric σ is defined on all of U ∩ Aδ. Let hn be the n-dimensional Hausdorff
measure associated to σ. Then βt(Ãδ ∩ U) has full hn-measure in βt(Aδ ∩ U).

Proof. When U is contained in a sufficiently small open set, Lemma 1.34 tells
us that βt is the restriction of a Lipschitz function. Hence βt(Aδ∩U)\βt(Ãδ∩U)
has hn-measure zero, since Aδ\Ãδ has hn-measure zero. If U is not sufficiently
small, it may be covered by countably many such small open sets since it is
second-countable, giving the same conclusion. �

Proposition 1.36. Let H be a horizon in an (n + 1)-dimensional spacetime
(M, g) equipped with a Riemannian metric σ of the form

σ(X,Y ) = g(X,Y ) + 2g(X,V )g(Y, V )

for some timelike g-unit vector field V . Let hn be the n-dimensional Hausdorff
measure associated to σ, let δ > 0, let Aδ be the δ-flow set, let Ãδ be the full-
density subset of Aδ, let t > 0, let βt be the restriction to Aδ of the generator
flow with respect to σ. Suppose that βt is defined on all of Aδ and that θAl ≤ 0
on all of HAl.

Then every p ∈ Aδ has a neighborhood Z which is open in Aδ such that
there is a measurable function Ψ with Ψ ≥ 1 almost everywhere such that

∫

Ãδ

ϕΨdhn =
∫

βt(Ãδ)

ϕ(β−1
t (y))dhn(y)

for every ϕ : Aδ → R which is hn-integrable and supported in Z∩Ãδ. Moreover,
if Ψ = 1 almost everywhere on Z, then θAl = 0 almost everywhere on Z.

Remark 1.37. A sufficient condition for having θAl ≤ 0 is that the generators
of H are complete in the past direction, together with the null energy condition
(see Proposition 1.24).

Proof. Choose some point p ∈ Aδ. By Lemma 1.33, there is a globally hyper-
bolic open spacetime neighborhood U of p and a C1,1 hypersurface N ⊆ U
such that Aδ ∩ U ⊆ N . Lemma 1.34 tells us that after possibly shrinking
U , the generator flow βt : Aδ → A0 is the restriction of a Lipschitz function
̂βt : N ∩ U → M .
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Let Z = Aδ ∩ U . Let ϕ : Aδ → R be hn-integrable and supported in
Z ∩ Ãδ. Since ̂βt is Lipschitz on N , Theorem 3.1 of [11] tells us that

∫

N

ϕJ( ̂βt)dhn =
∫

N

⎛

⎜

⎝

∑

x∈̂βt
−1

(y)

ϕ(x)

⎞

⎟

⎠
dhn(y).

Here, J( ̂βt) is the Jacobian determinant of ̂βt with respect to σ at points
where ̂βt is differentiable. Since ̂βt is Lipschitz, J( ̂βt) is thus almost everywhere
defined on N , which is sufficient for the integral to make sense.

Note that ϕ is zero outside of Z ∩ Ãδ, so
∑

x∈̂βt
−1

(y)

ϕ(x) =
∑

x∈̂βt
−1

(y)∩Z∩Ãδ

ϕ(x).

Note that ̂βt

−1
(y) ∩ Z ∩ Ãδ is the inverse image of y under the restriction of

̂βt to Z ∩ Ãδ. This restriction agrees with the restriction of βt to the same set.
Since βt is injective on Aδ, its restriction to Z ∩ Ãδ is injective as well. This
means that

̂βt

−1
(y) ∩ Z ∩ Ãδ =

{

{β−1
t (y)} if y ∈ βt(Z ∩ Ãδ),

∅ otherwise.

Using this together with the fact that ϕ is zero outside of Z we see that

∑

x∈̂βt
−1

(y)

ϕ(x) =

{

ϕ(β−1
t (y)) if y ∈ βt(Z ∩ Ãδ),

0 otherwise,

=

{

ϕ(β−1
t (y)) if y ∈ βt(Ãδ),

0 otherwise.

Hence
∫

Ãδ

ϕJ( ̂βt)dhn =
∫

βt(Ãδ)

ϕ(β−1
t (y))dhn(y).

To complete the proof of the theorem, we need to show that J( ̂βt) ≥ 1
almost everywhere on Ãδ ∩U , and that J( ̂βt) = 1 almost everywhere on Ãδ ∩U
only if θAl = 0 almost everywhere on Aδ∩U , possibly after shrinking U . We can
then choose Ψ to be J( ̂βt). Since the argument for proving these statements
is quite long, we prove them separately as Lemma 1.38. �

Lemma 1.38. Fix t. Let p, U , Aδ, Ãδ, N and ̂βt be as in Proposition 1.36. After
possibly shrinking U to a smaller neighborhood of p, it holds that J( ̂βt) ≥ 1
almost everywhere (with respect to hn) on Aδ ∩ U . Moreover, if C ⊂ U is a
closed set in the subspace topology on U and J( ̂βt) = 1 almost everywhere on
Aδ ∩ C then θAl = 0 almost everywhere on Aδ ∩ C.
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Proof. Step I Construction of the set ̂B
After possibly shrinking U to a smaller neighborhood of p and decomposing it
as U = (a, b) × Σ (with the curves (a, b) × {q} timelike and the slices {τ} × Σ
spacelike) where Σ is an open subset of Rn, we may view H as the graph of
a semi-convex function f , as noted in Sect. 1.3.1. Similarly, N is the graph of
a C1,1 function g. Let Ln denote Lebesgue measure on Σ. By [12, Theorem
3.1.15], for each positive integer k there is a C2 function gk : Σ → R such that

Ln ({x ∈ Σ | gk(x) �= g(x)}) < 1/k.

Let pr Ãδ be the projection of Ãδ on Σ. Let B be the full-density subset
of pr Ãδ. By Proposition A.7 the set B has full Ln-measure in pr Ãδ. Letting

Bk = B ∩ {x ∈ Σ | gk(x) = g(x)}
we then have

Ln(B\Bk) < 1/k.

Once again, we discard low-density points: let B̃k be the full-density subset of
Bk. Then B̃k has full measure in Bk by Proposition A.7 so

Ln(B\B̃k) < 1/k.

Let ΣRad denote the points of Σ where g is twice differentiable in the
sense that it has second-order expansions of the form

g(x) = g(x0) + dg(x0)(x − x0) +
1
2
D2g(x0)(x − x0, x − x0) + o(|x − x0|2),

dg(x) = dg(x0) + D2g(x0)(x − x0, ·) + o(|x − x0|).
(5)

Rademacher’s theorem tells us that since g is C1,1, the set ΣRad has full mea-
sure in Σ. Defining

̂Bk := B̃k ∩ ΣRad,

̂B :=
⋃

k∈N

̂Bk = ΣRad ∩
⋃

k∈N

B̃k

we then know that ̂B has full Ln-measure in pr Ãδ. Since g is Lipschitz, the
graph of g over ̂B has full hn-measure in Ãδ ∩ U by Proposition A.3. It is now
sufficient to show that J( ̂βt)(p0) ≥ 1 whenever p0 = (g(x0), x0) is such that
x0 ∈ ̂B.

Choose some x0 ∈ ̂B. Since ̂B ⊆ pr Ãδ, the functions f and g agree at
x0, and x0 is an Alexandrov point of f . Hence we have the expansion

f(x) = f(x0) + df(x0)(x − x0) +
1
2
D2f(x0)(x − x0, x − x0) + o(|x − x0|2).

Since x0 ∈ ̂B, we know that g is twice differentiable at x0 so that we have the
expansions of Eq. (5). Moreover, x0 ∈ Bi for some i ∈ N so gi(x0) = g(x0). Fix
this value of i for the remainder of the proof. Moreover, by definition of ̂B, the
point x0 is a full-density point of prAδ, and g and f agree on prAδ. Similarly,
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x0 is a full-density point of Bi, and g and gi agree on Bi. This means that we
can use Proposition A.12 to conclude that

df(x0) = dg(x0) = dgi(x0) (6)

and

D2gi(x0) = D2g(x0) = D2f(x0).

�

Step II: Construction of the C2 null hypersurface Hi

Let Ni denote the graph of gi over Σ. Let ̂Ni denote a C2 spacelike hypersurface
in Ni containing p0. Thus ̂Ni has codimension 2 in the spacetime M . Let ni

denote the past-directed σ-unit normal null vector field of ̂Ni such that ni(p0)
is the σ-unit tangent of the (unique since p0 ∈ Aδ) generator of H passing
through p0. Note that ni is C1. Let Gi be the union of the geodesics starting
from ̂Ni with initial velocities given by ni. Let γ : [0, t] → Gi denote the curve
s 
→ βs(p0). We wish to choose a subset of Gi which is a C2 hypersurface
containing γ. Define exp: Ω → M by exp(τ, q) = expq(τni(q)), where Ω ⊆ R×
̂Ni is the largest subset on which exp may be defined. Proposition A.3 of [7] says
that if exp∗ is injective at (τ, q) then there is an open neighborhood O of (τ, q)
such that exp(O) is a C2 submanifold of M . This, together with the fact that
exp is injective when restricted to [0, t]×{p0}, shows that some neighborhood of
γ in Gi is a C2 hypersurface in M . Hence we need to show that exp∗ is injective
at (s, p0) for each s ∈ [0, t]. Note that ̂Ni is a C2 spacelike submanifold of M of
codimension 2, and that ̂Ni is second-order tangent to H at p0 in the sense of
[7, Section 4.2] since D2gi(x0) = D2f(x0). By [7, Lemma 4.15] there can then
be no focal point of ̂Ni along γ. By [28, Proposition 30, Chapter 10] this means
that exp∗ is injective at (s, p0) for all s ∈ [0, t]. As pointed out previously, [7,
Proposition A.3] then tells us that some open neighborhood of γ in Gi is a
C2 submanifold. Since exp∗ is injective at each point on γ, it is injective in a
neighborhood of each such point. Since γ([0, t]) is compact, finitely many such
neighborhoods suffice to cover γ. Hence there is a neighborhood of γ where Gi

is C2 and exp∗ is injective. Denote this neighborhood by Hi.
By an application of Proposition 1.5 we see that Hi is a null hypersurface.

Step III: Definition of a map ̂βt

i
: Hi → M

By definition of Hi, the vector field ni (where defined) is tangent to Hi. Since
Hi is a null hypersurface, it has a unique σ-unit normal null vector field, which
must then be an extension of ni. Call this extension ni as well.

Note that Hi contains both ̂Ni and the generator passing through p0,
these being submanifolds of Ni transverse to each other. Hence the first and
second derivatives of the graphing functions of Hi and Ni must agree at p0.

Define the map ̂βt

i
: Hi → M by

̂βt

i
(q) = expg(r(q)ni)
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where r(q) is the unique nonnegative real number such that the σ-distance
from q to expg(r(q)ni) along the g-geodesic expg(τni) is precisely t. Then by
definition

̂βt

i
(p0) = ̂βt(p0).

Note that ̂βt and ̂βt

i
are defined by the formula expg(r(q)k) where k is the

normal vector field of N and Hi, respectively. The derivative of expg(r(q)k) is
determined by the first derivatives of r and k. These in turn are determined by
the second derivatives of the graphing functions of N and Hi. Since dg(p0) =

dgi(p0) and D2g(p0) = D2gi(p0) this means that the tangent maps of ̂βt

i
and

̂βt agree at p0. Hence

J( ̂βt

i
)(p0) = J( ̂βt)(p0).

We have now reduced the problem to showing that J( ̂βt

i
)(p0) ≥ 1.

Step IV: Computation of J( ̂βt

i
)(p0)

Let bHi
be the one-parameter family of Weingarten maps (defined in Sect.

1.1.1) along the generator of Hi through p0 with its affine parametrization,
and let ḃHi

denote the covariant derivative of b along this generator. Equation
(1) in Sect. 1.1.1 tells us that bHi

satisfies the equation

ḃ + b2 + ˜R = 0. (7)

Recall from Remark 1.23 that H has a null Weingarten map bAl, defined
in terms of Alexandrov derivatives, on all points to the past of p0 on the
generator of H through p0, and that this map also satisfies Eq. (7). Since the
null Weingarten map of a null hypersurface can be expressed in the first two
derivatives of a graphing function, and H shares these derivatives with Ni

which in turn shares them with Hi, it holds that bHi
(p0) = bAl(p0). By the

uniqueness of solutions to the ordinary differential equation (7), these two
maps must agree on all of the past of p0 along the generator through p0. Let
θHi

denote the null mean curvature of Hi, as defined in Sect. 1.1.1. Then we
have

θHi
= tr bHi

= tr bAl = θAl.

Lemma 1.4 implies that

J( ̂βt

i
)(p0) = exp

(

−
∫ t

0

θHi
( ̂βs

i
(p0)) ds

)

.

Since J( ̂βt

i
)(p0) = J( ̂βt)(p0) and θAl = θHi

along the curve s 
→ ̂βs

i
(p0) =

̂βs(p0), we then know that

J( ̂βt)(p0) = exp
(

−
∫ t

0

θAl( ̂βs(p0)) ds

)

.

Recall that g( ̂B) has full hn-measure in N ∩ U and that p0 was an arbitrary
point of g( ̂B). Since we have assumed that θAl ≤ 0, we can conclude that
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J( ̂βt) ≥ 1 almost everywhere on the neighborhood U of p. This completes the
proof of the first part of the lemma.

To prove the last part of the lemma, some measure theoretical technical-
ities remain.

Step V: J( ̂βt) = 1 almost everywhere on Ãδ ∩ C only if θAl = 0 almost

everywhere on Ãδ ∩ C

Recall that C is an arbitrary closed subset of U . Suppose that J( ̂βt) = 1
almost everywhere on Ãδ ∩ C with respect to hn. Then in particular it holds
that J( ̂βt) = 1 almost everywhere on Ãδ ∩C ∩g( ̂B). (Recall that g( ̂B) has full
measure in N ∩ U .) We have seen that on this set

J( ̂βt)(q) = exp
(

−
∫ t

0

θAl(̂βτ (q)) dτ

)

.

Recall that we have assumed that θAl ≤ 0. This means that if J( ̂βt) = 1 almost
everywhere, then it holds for hn-almost every q ∈ Ãδ ∩ C ∩ g( ̂B) that

∫ t

0

θAl(̂βτ (q)) dτ = 0.

In other words
∫

C∩N

∫ t

0

θAl(̂βτ (q)) dτ dhn(q) = 0.

Note that the Hausdorff measure hn differs only by a C1 function from the
Lebesgue measure in coordinates on C ∩ N . Hence Fubini’s theorem [12, The-
orem 2.6.2] applied in coordinates implies that

∫ t

0

∫

C∩N

θAl(̂βτ (q)) dhn(q) dτ = 0.

In other words, it holds for almost every τ ∈ [0, t] that
∫

C∩N

θAl(̂βτ (q)) dhn(q) = 0.

This means that
∫

C∩N

θAl(̂βτ (q))J(̂βτ )(q) dhn(q) = 0

for almost every τ ∈ [0, 1], where J(̂βτ ) denotes the determinant of the
Jacobian of ̂βτ . Using Theorem 3.1 of [11] we see that

∫

C∩N

θAl(̂βτ (q))J(̂βτ )(q) dhn(q) =
∫

̂βτ (C∩N)

θAl(q) dhn(q)

so that
∫

C∩N∩̂βτ (C∩N)

θAl(q) dhn(q) = 0
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for almost every τ ∈ [0, t]. In particular, there is a decreasing sequence τk → 0
such that

∫

C∩N∩ ̂βτk
(C∩N)

θAl(q) dhn(q) = 0 .

Hence θAl = 0 almost everywhere on each of the sets C ∩ N ∩ ̂βτk
(C ∩ N).

Since these form a countable increasing sequence with union C ∩ N , it holds
that θAl = 0 almost everywhere on C ∩N with respect to hn, which completes
the proof. �

Proposition 1.39. Let H be a horizon in an (n + 1)-dimensional spacetime M
equipped with a Riemannian metric σ of the form

σ(X,Y ) = g(X,Y ) + 2g(X,V )g(Y, V )

for some timelike g-unit vector field V . Let δ > 0 and let Aδ be the δ-flow set
of H. Let hn denote the n-dimensional Hausdorff measure induced by σ. Let
̂H be a past null geodesically ruled open subset of H. Suppose that θAl ≤ 0 on
all of HAl ∩ ̂H. Let t > 0 be such that the generator flow βt is defined on all
of ̂H ∩ Aδ.

Then

hn( ̂H ∩ Aδ) = hn(βt( ̂H ∩ Aδ)).

Moreover, θAl = 0 almost everywhere on ̂H ∩ Aδ.

Proof. Note that the generators of ̂H are the intersections of the generators of
H with ̂H since ̂H is an open subset of the horizon H. For each p, let Zp and
Ψp be the neighborhoods and functions given by Proposition 1.36. Since Aδ is
second-countable, a countable number of neighborhoods Z1, Z2, . . . suffice to
cover Aδ. For each i ≥ 1, let

Yi = Zi\
⋃

1≤j<i

Zj .

Then
• each Yi is measurable,
• Yi ⊆ Zi for each i,
• the Yi are pairwise disjoint,
• ⋃

i≥1 Yi =
⋃

i≥1 Zi ⊇ Aδ.

For each i ≥ 1, let ϕi be the indicator function of Yi ∩ ̂H ∩ Ãδ. Then Proposi-
tion 1.36 says that

∫

Ãδ

ϕiΨidhn =
∫

βt(Ãδ)

ϕi(β−1
t (y))dhn(y)

for each i ≥ 1. Since each ϕi is zero outside of ̂H, this means that
∫

̂H∩Ãδ

ϕiΨidhn =
∫

βt(̂H∩Ãδ)

ϕi(β−1
t (y))dhn(y)
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Taking a sum over i, we see that
∫

̂H∩Ãδ

∑

i≥1

ϕiΨidhn =
∫

βt(̂H∩Ãδ)

∑

i≥0

ϕi(β−1
t (y))dhn(y).

Since precisely one of the functions ϕi is nonzero at any point p ∈ ̂H∩ Ãδ, and
takes the value 1 there, we have

∑

i≥1 ϕiΨi ≥ 1 almost everywhere on ̂H∩ Ãδ.

Moreover, we have
∑

i≥0 ϕi(β−1
t (y)) = 1 almost everywhere on βt( ̂H ∩ Ãδ).

Hence

hn( ̂H ∩ Ãδ) ≤
∫

̂H∩Ãδ

∑

i≥1

ϕiΨidhn = hn(βt( ̂H ∩ Ãδ)).

Since Ãδ has full measure in Aδ and βt(Ãδ) has full measure in βt(Aδ) by
Corollary 1.35, this means that

hn( ̂H ∩ Aδ) ≤ hn(βt( ̂H ∩ Aδ)).

However, βt( ̂H ∩ Aδ) ⊆ ̂H ∩ Aδ since the generators of ̂H agree with the
generators of H, so we also know that

hn( ̂H ∩ Aδ) ≥ hn(βt( ̂H ∩ Aδ))

by additivity of the measure. Hence equality must hold, and the proof of the
first statement is complete.

Equality can hold only if
∑

i≥1 ϕiΨi = 1 almost everywhere on ̂H ∩ Aδ.
This means that each function Ψi must be equal to 1 almost everywhere on
Yi ∩ ̂H ∩ Aδ. By Proposition 1.36 this implies that θAl = 0 almost everywhere
on Yi ∩ ̂H ∩ Aδ. Since these sets cover ̂H ∩ Aδ, we have shown that θAl = 0
almost everywhere on ̂H∩ Aδ with respect to the measure hn. This completes
the proof. �

1.4.4. Smoothness from Area-Preserving Generator Flow.

Proposition 1.40. Let H be a horizon in a spacetime of dimension n+1 equipped
with a Riemannian metric σ and the corresponding Hausdorff measure hn. Let
Ω be a past null geodesically ruled open subset of H. Let Aδ denote the δ-flow
set of H with respect to σ. Suppose that

hn(Ω ∩ Aδ) = hn(βt(Ω ∩ Aδ))

for all t > 0 and all δ > 0, and that hn(Ω) < ∞.
Then the following two statements hold.

1. The union of the images of generators which are inextendible and completely
contained in Ω is a dense subset of Ω.

2. No generator of H has any endpoint on Ω.

Proof. Let Aδ denote the δ-flow set of H with respect to σ. Recall that the
total flow set of H is the set

A0 =
⋃

δ>0

Aδ.
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Note that if δ < δ′ then Aδ ⊇ Aδ′ . Hence

A0 =
⋃

δ>0

Aδ =
⋃

k∈Z+

A1/k.

Since the family Ω ∩ A1/k is increasing,

hn(βt(Ω ∩ A0)) = lim
k→∞

hn(βt(Ω ∩ A1/k)) = lim
k→∞

hn(Ω ∩ A1/k) = hn(Ω ∩ A0).

The limits are finite, since by hypothesis hn(Ω ∩ A1/k) is uniformly bounded
with respect to k by hn(Ω).

Introduce the sets C and D defined by

C =
⋂

t∈Z+

βt(Ω ∩ A0),

D = {p ∈ Ω | there is a unique generator through p,

and this generator has no future endpoint}.

We first show that if p ∈ C then the generator Γp through p is an inextendible
geodesic contained in Ω. By choice of Ω, the part of the generator to the past
of p belongs to Ω and is inextendible in the past direction. Parameterize Γp

by an affine parameter such that Γp(0) = p. Suppose that the maximal future
extension of the generator were to leave Ω at some point q = Γp(s). Since
Γp is smooth and the interval [0, s] is compact, the curve segment Γp([0, s])
has finite length in the Riemannian metric σ. This means that p /∈ βt(Ω ∩ A0)
whenever t is greater than this length, contradicting the assumption that p ∈ C.
This shows that the set C satisfies the conditions for the first statement in the
conclusion, so that it is sufficient to show that C is dense to complete the proof
of that statement.

Note that the fact that generators through points of C are inextendible
means that they can have no endpoints. Hence C ⊆ D. Since (βt(Ω ∩ A0))∞

t=1

is a countable decreasing family of sets of equal measure it holds that hn(C) =
hn(Ω∩A0). Since A0 ⊆ H, and hn(H\A0) = 0 by Proposition 1.30, this means
that hn(Ω) = hn(Ω ∩ A0) so that

hn(C) = hn(Ω).

In particular, C is dense in Ω. Since C ⊆ D, it follows that D is also dense in
Ω.

We will now show that D is closed in Ω. Suppose that a sequence (pk)k∈N

in D converges to p ∈ Ω. Let Xk denote the (unique, by definition of D) future-
directed σ-unit tangent of a generator at pk. The σ-unit tangent bundle over
the compact countable set {p} ∪ {p1, p2, . . .} is compact, so by passing to a
subsequence we may assume that the Xk converges to some unit vector X at p.
By [7, Lemma 6.4] the space of past-directed σ-unit generator tangents is closed
in the unit tangent bundle, so we know that X is tangent to a generator. Let
γ denote the inextendible geodesic with initial velocity X, and let γk denote
the inextendible geodesic with initial velocity Xk. By definition of D, each
geodesic γk avoids the open set I+(H). By continuous dependence on initial
conditions for ordinary differential equations, γ must also avoid the open set
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I+(H). Suppose to get a contradiction that γ leaves H at some point p. Choose
coordinates around p of the form (−a, a)×Σ, such that each curve (−a, a)×{q}
is timelike and each slice {t} × Σ is spacelike. Let Σ′ denote the projection of
im γ ∩ ((−a, a) × Σ) on Σ. Recall that H is an achronal hypersurface, so by
possibly shrinking Σ we may represent H ∩ ((−a, a) × Σ′) as the graph of a
function fH : Σ′ → (−a, a). Let fγ : Σ′ → (−a, a) be the function the graph of
which is the image of γ (on both sides of the point p). Recall that γ is a null
curve, so if fH(x) > fγ(x) at some point x ∈ Σ′ then there is a timelike curve
from (fH(x), x) to p, contradicting achronality of H. If fH(x) < fγ(x) at some
point x ∈ Σ′ then γ intersects I+(H) which we saw earlier is impossible. Hence
γ cannot leave H to the future, and so there is a generator through p without
future endpoint. Moreover, p is then an interior point of a generator so this
generator is unique. Hence p ∈ D and we have shown that D is closed in Ω.

We have now shown that D is a closed dense subset of Ω. Hence D = Ω.
Since no point in D lies on a generator with a future endpoint, no point in
D can be a future endpoint of a generator. This shows that no generator of
H can have a future endpoint on Ω. Recall that no generator has any past
endpoint either, since H is a horizon. This completes the proof. �

The condition of H containing no endpoints is very strong, as the next
theorem (see [7, Theorem 6.18]) illustrates.

Theorem 1.41. Suppose that Ω is an open subset of a horizon H in a spacetime
M , such that Ω contains no endpoints of generators of H. Suppose moreover
that θAl = 0 almost everywhere with respect to the n-dimensional Hausdorff
measure hn induced by a Riemannian metric σ on M . Then Ω is a smooth
submanifold of M . Moreover, if the metric on M is analytic then Ω is an
analytic submanifold of M .

We are now in a position to prove our main theorem. It was shown in [5,
Section 4] that not all compact horizons are smooth. Our theorem shows that
the additional hypothesis of the null energy condition is sufficient to guarantee
smoothness. Note that an analogous result holds for past Cauchy horizons, as
can be seen by reversing the time orientation.

Theorem 1.42. Let M be a spacetime of dimension n + 1 satisfying the null
energy condition. Let S ⊂ M be an achronal set with edge(S) = ∅. Let ̂H be
an open subset of H+(S) with compact closure. Suppose that ̂H is past null
geodesically ruled. Then ̂H is a smooth totally geodesic null hypersurface. If
moreover the metric is analytic then ̂H is an analytic hypersurface.

Proof. First note that Corollary 1.16 tells us that H+(S) is a horizon in the
sense of Definition 1.9. Further note that ̂H is a Lipschitz hypersurface, since
it is an open subset of the Lipschitz hypersurface H+(S). It is also assumed
to be past null geodesically ruled, so the generators of ̂H are the intersection
of the generators of H+(S) with ̂H. Note that Alexandrov points of H+(S)
are Alexandrov points of ̂H. Each generator of ̂H is a part of a null geodesic
contained in H+(S). By definition, each generator of ̂H is completely contained
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in, and hence totally past imprisoned in, the compact set ̂H. This means that
the generator flow βt is defined for all t on all of the part of the total flow set of
H+(S) which lies in ̂H. Moreover, we can show using Lemma 1.6 that almost
every point of ̂H belongs to a generator which is complete in the past direction.
To apply that lemma to a generator, we must show that the intersection of the
generator with a sufficiently small spacetime neighborhood of any of its points
is contained in a C1,1 hypersurface. However, the flow set A0 of the horizon
contains full generators, and each point such point belongs to some Aδ for
some sufficiently small δ > 0. (To define Aδ we use a Riemannian metric,
but it does not matter precisely which metric is chosen.) By Lemma 1.33,
the intersection of Aδ with some spacetime neighborhood of any point of Aδ.
belongs to a C1,1 hypersurface. This means that Lemma 1.6 is applicable to
all generators contained in A0, so that all points on A0 belong to a generator
which is complete in the past direction. Since the null energy condition holds,
this means that Proposition 1.24 is applicable, telling us that θAl ≤ 0 on A0,
which has full measure in H. Hence θAl ≤ 0 almost everywhere on H. Let
V be an arbitrary unit timelike vector field on M , introduce the Riemannian
metric σ on M defined by

σ(X,Y ) = g(X,Y ) + 2g(X,V )g(Y, V ), (8)

and let hn be the corresponding n-dimensional Hausdorff measure. By Propo-
sition A.4, the set ̂H and all its measurable subsets have finite hn-measure
since ̂H is compact. For each δ > 0, let Aδ denote the δ-flow set of H+(S). By
Proposition 1.39 we know that

hn( ̂H ∩ Aδ) = hn(βt( ̂H ∩ Aδ))

and

θAl = 0 almost everywhere on ̂H ∩ Aδ

for all t > 0 and all δ > 0. Proposition 1.40 then tells us that no generator of
H+(S) has any endpoint on ̂H. Moreover, since the total flow set A0 =

⋃

δ>0 Aδ

has full hn-measure by Proposition 1.30 we see that θAl = 0 almost everywhere
on ̂H. Theorem 1.41 then says that ̂H is a smooth submanifold of M , and that
it is analytic if the metric is analytic. Since ̂H is an open subset of H+(S) and
the tangent space of H+(S) is a null hyperplane whenever it exists, ̂H is a null
hypersurface.

Let K be a tangent vector field of the generators of ̂H. Since ̂H is smooth,
its null mean curvature θ with respect to K is a smooth function and its sign
agrees with that of the Alexandrov null mean curvature θAl. We saw previously
that θAl = 0 almost everywhere, so by continuity θ = 0 everywhere. Let b
denote the null Weingarten map with respect to K, and let S = b− θ

n−2 . Since
S is self-adjoint, tr(S2) ≥ 0. Since θ = 0 and Ric(K,K) ≥ 0 everywhere, Eq. (2)
tells us that tr(S2) = 0. Since S is self-adjoint this implies that S = 0. Hence
b = 0 everywhere, so that ̂H has everywhere zero null second fundamental
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form. Theorem 1.1 then implies that ̂H is totally geodesic, completing the
proof. �

The following corollary is immediate.

Corollary 1.43. Let M be a spacetime satisfying the null energy condition. Let
S ⊂ M be an achronal set with edge(S) = ∅. Suppose that H+(S) is compact.
Then H+(S) is a smooth totally geodesic null hypersurface. If moreover the
metric is analytic then H+(S) is an analytic hypersurface.

Proof. Let ̂H = H+(S) and apply Theorem 1.42. �

Remark 1.44. The methods used here are sufficient to prove a slightly stronger
statement. The hypothesis that the horizon is a Cauchy horizon, rather than
an arbitrary horizon in the sense of Definition 1.9, is used only to prove that
its generators are complete in the past direction. If one were to know for some
other reason that the generators are complete in the past direction, then the
result can be applied to general horizons.

Moreover, the hypothesis that the horizon is compact is used only to
prove that the generators are complete in the past direction and to ensure
that the horizon has finite measure in the n-dimensional Hausdorff measure
associated to the Riemanniann metric defined in (8) using an arbitrary unit
timelike vector field V . This means that if it is known that the generators are
complete in the past direction and that there is a vector field V which gives
the horizon finite n-dimensional Hausdorff measure, then both the compactness
hypothesis and the hypothesis that the horizon is a Cauchy horizon may be
dropped.

2. Lorentzian Cobordisms Satisfying Energy Conditions
are Trivial

2.1. Lorentzian Pseudocobordisms

In this section, we will define the concept of a Lorentzian pseudocobordism,
and the various related notions we will use.

Definition 2.1. Let S and S′ be smooth compact manifolds of dimension n. A
cobordism between S and S′ is a compact (n + 1)-dimensional manifold-with-
boundary M , the boundary of which is the disjoint union S � S′. If there is a
cobordism between S and S′, we say that they are cobordant.

We note in passing that two compact manifolds without boundary are
cobordant if and only if their Stiefel–Whitney numbers agree (see [22, Corollary
4.11]). In particular (see [22, p. 203]) any pair of compact three-dimensional
manifolds without boundary is cobordant.

We will need several different notions of Lorentzian cobordisms. Since
the word “cobordism” generally refers to a compact space, we will define the
notion of a “Lorentzian pseudocobordism”:
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Definition 2.2. Let S1 and S2 be manifolds of dimension n without boundary.
A Lorentzian pseudocobordism between S1 and S2 is a Lorentzian (n + 1)-
manifold M , the boundary of which is the disjoint union S1 � S2, such that
S1 and S2 are spacelike, and M admits a (nowhere zero) timelike vector field
which is inward-directed on S1 and outward-directed on S2.

The classical notion of a Lorentzian cobordism is the following.

Definition 2.3. A Lorentzian pseudocobordism M between S1 and S2 is a com-
pact Lorentzian cobordism (or simply Lorentzian cobordism) if M is compact.

It turns out, as was noted by Borde (see [3]), that many of the theorems
about Lorentzian cobordisms continue to hold when the property of compact-
ness is replaced by the property of “causal compactness”. We will call the
resulting object a “causally compact Lorentzian cobordism”.

Definition 2.4. A spacetime M is causally compact if I(p) is compact for each
p ∈ M .

Causal compactness captures the concept of “compact in time”, while
allowing the spacetime to be noncompact in the spatial directions.

Definition 2.5. A Lorentzian pseudocobordism M between S1 and S2 is called
a causally compact Lorentzian pseudocobordism if M is causally compact.

Of course, we immediately see that every (compact) Lorentzian cobor-
dism is also a causally compact Lorentzian pseudocobordism.

Definition 2.6. A Lorentzian pseudocobordism M between S1 and S2 is topo-
logically trivial if it is diffeomorphic to S1 × [0, 1].

2.2. Tipler’s Theorem

A theorem due to Geroch [15, Theorem 2] states that a topologically non-
trivial Lorentzian cobordism cannot satisfy the chronology condition. A result
from 1977 by Tipler [30, Theorems 3 and 4] further implies that a nontrivial
Lorentzian cobordism cannot satisfy certain energy conditions. Unfortunately
Tipler’s original proof, the methods of which are also used in [16, p.295–298]
for proving Hawking’s singularity theorem, is flawed in that it is implicitly
assumed that a certain Cauchy horizon is C2. In this section, we will apply
Theorem 1.42 to prove Tipler’s theorem (Theorem 2.9) without needing this
assumption.

Note that Geroch’s theorem is not quite true as stated and that a detail
is missing in the proof. See [20, Section 1.2] for a correct statement and a
complete proof. For completeness, we quote a statement of Geroch’s theorem
from [20, Theorem 1.2.1].

Theorem 2.7. Let n ≥ 1, let S1, S2 be n-manifolds without boundary (not nec-
essarily compact, nor necessarily a priori connected). Let (M, g) be a connected
causally compact Lorentzian pseudocobordism between S1 and S2 which satisfies
the chronology condition. Then there is a diffeomorphism ϕ : S1 × [0, 1] → M
such that the submanifold ϕ({x} × [0, 1]) is timelike for every x ∈ S1; in par-
ticular M is topologically trivial, and S1 and S2 are diffeomorphic.



Vol. 16 (2015) Smoothness of Compact Horizons 2207

The following is the theorem about cobordisms which is proved (but not
stated in this form) by Tipler [30, Theorems 3 and 4]. Tipler did not mention
the need for the condition that H+(S1) is C2. However, his proof works when
this hypothesis is added.

Theorem 2.8. Let n ≥ 2, let S1, S2 be compact n-dimensional manifolds and
let (M, g) be a compact connected Lorentzian cobordism between S1 and S2

which satisfies the either the strict null energy condition (i.e. that Ric(X,X)
> 0 for all lightlike vectors X) or the null energy condition together with
the lightlike generic condition. Suppose moreover that H+(S1) is C2. Then
there exists a diffeomorphism ϕ : S1 × [0, 1] → M such that the submanifold
ϕ({x}× [0, 1]) is g-timelike for every x ∈ S1; in particular, S1 is diffeomorphic
to S2.

2.3. Tipler’s Theorem Without Smoothness Hypothesis

We will prove the generalization of Tipler’s theorem, suggested in [3], to
causally compact Lorentzian pseudocobordisms.

Theorem 2.9. Let n ≥ 2. Let S1, S2 be n-dimensional manifolds and let (M, g)
be a causally compact Lorentzian pseudocobordism between S1 and S2 which
satisfies the null energy condition (i.e. that Ric(X,X) ≥ 0 for all lightlike
vectors X) and the lightlike generic condition (i.e. that each lightlike geodesic
γ contains at least one point at which γ̇eγ̇f γ̇[aRb]ef [cγ̇d] �= 0).

Then M is globally hyperbolic. In particular, M ∼= S1 × [0, 1] so that S1

and S2 are diffeomorphic.

Proof. Extend M to a manifold without boundary M̂ by glueing copies of
S1 × [0, ε) and S2 × [0, ε) to the respective boundaries. Consider the future
Cauchy horizon H+(S1) of S1 in M̂ . If it is empty, then S1 would be a Cauchy
surface for M which would mean that M is globally hyperbolic. Hence it is
sufficient to show that H+(S1) is empty. Suppose for contradiction that this
is not the case.

Step I: H+(S1) is a horizon

The set S1 is a smooth hypersurface in M̂ , closed as a set. Note that it is also
achronal since a timelike curve intersecting S1 more than once would have to
do so with the wrong time orientation. Hence we can use Lemma 1.17 and
Corollary 1.16 to conclude that H+(S1) is a horizon in the sense of Defini-
tion 1.9.

Choose a point p ∈ I+(H+(S1),M). To see that such a point exists,
note that I+(q,M) is nonempty if q /∈ S2, and that H+(S1)\S2 is nonempty
since H+(S1) is past null geodesically ruled and hence cannot be completely
contained in a spacelike hypersurface. With this choice, H+(S1) ∩ I−(p,M) is
nonempty.

Step II: Every generator of H+(S1) which intersects I−(p,M) stays in
I−(p,M) when followed to the past
Let γ be a generator of H+(S1). We will show that if γ(t) ∈ I−(p,M) for some
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t then γ((−∞, t]) ⊆ I−(p,M). This will mean that γ is totally past impris-
oned in the set I−(p,M) which is compact since M is causally compact. To this
end, let γ : (a, t] → M̂ be the maximal past geodesic extension of a generator
of H+(S1), with γ(t) ∈ I−(p). By [28, Proposition 53, Chapter 14], H+(S1)
and S1 are disjoint, so γ does not intersect S1. Moreover, when followed to
the past γ cannot intersect S2 since it would need to do so with the wrong
time orientation. Hence γ stays in M . Let s < t. Then there is a causal curve
in M from γ(s) to p formed by concatenating γ with a timelike curve from
γ(t) to p. Such a curve exists since we assumed that γ(t) ∈ I−(p,M). Since
this curve is not everywhere lightlike, there is a timelike curve from γ(s) to p.
Hence γ(s) ∈ I−(p), proving the claim.

Step III: H := H+(S1) ∩ I−(p,M) is past null geodesically ruled
Let H denote the set H+(S1)∩I−(p,M). To find a past complete null geodesic
segment through a point q ∈ H, consider the intersection of H and the gener-
ator of H+(S1) through q. This curve is a geodesic segment, and is connected
and past complete by the previous claim. Hence H is past null geodesically
ruled.

Step IV: The existence of H is contradictory
Since I−(p,M) is open, the set H is an open subset of H+(S1). Since M is
causally compact, the set I−(p,M) is compact. Hence H is contained in a
compact set and so has compact closure. Theorem 1.42 tells us that H is a
totally geodesic smooth null hypersurface. The inequality (3) from Sect. 1.1.1
then reads

Ric(K,K) ≤ 0

for all null tangent vectors K to H. Combining this with the null energy
condition, we can conclude that

Ric(K,K) = 0.

We will now derive a contradiction from this.
If the spacetime were to satisfy the strict null energy condition, then

the contradiction is immediate. When we assume that the lightlike generic
condition holds, a further argument is needed. By Proposition 1.40 there is a
dense, and in particular nonempty, subset of H consisting of points on maximal
null geodesics which are contained in H. Choose one such maximal geodesic
γ. Let b denote the null Weingarten map with respect to a null vector field K
which agrees with the tangent vector field of γ with an affine parametrization.
Since H is totally geodesic, b = 0 along γ. Equation (1) then implies that
R(X,K)K is parallel to the null vector K for every vector X, where R denotes
the curvature tensor of the spacetime. By [1, Proposition 2.2] this is equivalent
to KeKfK[aRb]ef [cKd] = 0. However, the lightlike generic condition says that
this tensor is nonzero at some point along each maximal lightlike geodesic. We
have now obtained a contradiction, so the assumption that the Cauchy horizon
H+(S1) is nonempty must be false. Hence M is globally hyperbolic. �
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The above theorem is in one sense the strongest result one may hope
for: the null energy condition is the weakest of the commonly used energy
conditions, and in the setting of cobordisms it implies global hyperbolicity,
which is the strongest of the commonly used causality conditions.
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Appendix A. Geometric Measure Theory

General references for geometric measure theory are [12,27].

A.1. Regularity of Functions

Definition A.1. A function f : Rn → R
m is C1,1 if it is C1 and its differential

df is Lipschitz. A submanifold of a smooth manifold is C1,1 if it is locally the
graph of a C1,1 function in coordinates.

Definition A.2. A function f : Rn → R is semi-convex if it is the sum of a
convex function and a C2 function. A submanifold of a smooth manifold is
semi-convex if it is locally the graph of a semi-convex function in coordinates.

A.2. Measure Zero

Let Σ be some smooth manifold of dimension m, and let M be a smooth
manifold of dimension at least m. Let ψ : Σ → M be a topological embedding.
We will consider two notions of “measure zero”:
• Since Σ is a smooth manifold (and in particular second-countable), any two

Riemannian metrics on Σ give rise to the same family of sets having measure
zero in the associated volume measure on Σ.

• Let σ be an arbitrary Riemannian metric on M . This metric induces a dis-
tance function, which in turn induces Hausdorff measures of any dimension.
Let hm denote the m-dimensional Hausdorff measure induced by σ. Then
we say that A ⊆ ψ(Σ) has measure zero if hm(A) = 0.

These two notions are related in the following way.

Proposition A.3. Let Σ be some smooth manifold of dimension m, and let M be
a smooth manifold of dimension n with n ≥ m. Let ψ : Σ → M be a topological
embedding. Suppose that ψ is locally Lipschitz. Then hm(ψ(A)) = 0 if A has
measure zero viewed as a subset of Σ.

Proof. After representing ψ coordinates by ψ : U → V with open sets U ⊆ Σ
and V ⊆ M identified with subsets of Rm and R

n it holds that

hm(ψ(A ∩ U)) ≤ Lμ(A ∩ U)

where L is the Lipschitz constant of ψ over U , and μ denotes the m-dimensional
Hausdorff measure on U . (This can be proved by bounding the volume change
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of images of unit balls using the Lipschitz constant, or it can be seen as a
special case of the much more powerful [12, Theorem 2.10.25].) Since U is
a subset of R

m, this Hausdorff measure agrees up to pointwise scaling by a
smooth function with the Lebesgue measure in coordinates. In particular, if
A∩U has measure zero in Σ, then hm(ψ(A∩U)) = 0. By second countability,
countably many charts suffice to cover ψ(Σ), and so hm(ψ(A ∩ U)) = 0 if A
has measure zero. �

In general, we will mostly be interested in the notions of “measure zero”
and “finite measure”, so it will not matter precisely which Riemannian metric
is used to induce a measure.

Proposition A.4. Let M be a smooth manifold of dimension at least n and let N
be a Lipschitz submanifold of M with dimension n. Let K be a compact subset
of N . Let σ be a Riemannian metric on M , and let hn be the corresponding n-
dimensional Hausdorff measure. Then all measurable subsets of K have finite
hn-measure.

Proof. It is sufficient to show that K has finite measure, since subsets of
K have smaller measure than K. Take a finite subcover of the cover K ⊆
⋃

p∈N Bσ(p, 1). Each N ∩Bσ(p, 1) has finite hn-measure since N is a Lipschitz
hypersurface. Hence we can conclude that K has finite measure. �

A.3. Density Functions

A reference for density functions is [27, Chapter 2]. We will use the same idea,
but with somewhat different notation.

Definition A.5. Let Ln denote Lebesgue measure on R
n. For each measurable

subset A ⊆ R
n define the density function of A (with respect to Ln) to be the

function

Θ(A, ·) : A → [0, 1],

Θ(A, q) = lim
r→0

Ln(A ∩ Bn(q, r))
Ln(Bn(q, r)

.

Here Bn(q, r) denotes the ball of radius r centered at q.

Definition A.6. Let A be a measurable subset of Rn. We will call the set

Ã = {a ∈ A | Θ(A, a) = 1}
the full-density subset of A.

Proposition A.7. Let Ã be the full-density subset of some set A ⊆ R
n. Then Ã

has full Lebesgue measure in A.

Proof. By [27, Corollary 2.9] the density function Θ(A, ·) is equal to the char-
acteristic function of A almost everywhere, yielding the conclusion. �

We now generalize the notion of full-density subsets to hypersurfaces in
Riemannian manifolds.
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Lemma A.8. Let (M,σ) be a Riemannian manifold of dimension n+1 and let
N be a Lipschitz hypersurface. Let U be an open subset of N and let ϕ : U → R

n

and ψ : U → R
n be charts. Let A be a subset of U and let Ãϕ and Ãψ denote

the full-density subsets of ϕ(A) and ψ(A), respectively. Then

Ãψ = ψ(ϕ−1(Ãϕ)).

Proof. Abbreviate ψ ◦ ϕ−1 by f . Since f is bi-Lipschitz, it holds for any mea-
surable subset X of im ϕ that

1
Ln

f−1

Ln(X) ≤ Ln(f(X)) ≤ Ln
fL

n(X)

where Lf−1 and Lf denote the Lipschitz constants of f−1 and f . In particular,

Ln(Bn(q, r)\ϕ(A))
Ln(Bn(q, r))

≤ Ln
f−1

Ln
f

Ln(f(Bn(q, r))\ψ(A))
Ln(f(Bn(q, r)))

.

By letting R(r) be a positive real number such that

f(Bn(q, r)) ⊆ Bn(f(q), R(r))

and ρ(r) a positive real number such that

f(Bn(q, r)) ⊇ Bn(f(q), ρ(r))

we see that

Ln(Bn(q, r)\ϕ(A))
Ln(Bn(q, r))

≤ Ln
f−1

Ln
f

Ln(Bn(f(q), R(r))\ψ(A))
Ln(Bn(f(q), ρ(r)))

.

Since f and f−1 are Lipschitz, we may choose R and ρ to be bounded from
above and below by linear functions of positive derivative, so there are positive
constants D and D′ such that

DLn(Bn(f(q), ρ(r))) ≤ Ln(Bn(f(q), R(r))) ≤ D′Ln(Bn(f(q), ρ(r))).

This together with the previous inequality means that there is a positive real
number C independent of r such that

Ln(Bn(q, r)\ϕ(A))
Ln(Bn(q, r))

≤ C
Ln(Bn(f(q), R(r))\ψ(A))

Ln(Bn(f(q), R(r)))
.

In particular, if Θ(ψ(A), f(q)) = 1 so that

lim
r→0

Ln(Bn(f(q), R(r))\ψ(A))
Ln(Bn(f(q), R(r)))

= 0

then

lim
r→0

Ln(Bn(q, r)\ϕ(A))
Ln(Bn(q, r))

= 0

so that Θ(φ(A), q) = 1. Hence

Θ(ψ(A), f(q)) = 1 =⇒ Θ(φ(A), q) = 1.
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Repeating this argument for the inverse of f we see that

Θ(φ(A), q) = 1 =⇒ Θ(ψ(A), f(q)) = 1.

This proves that Ãψ = f(Ãϕ), completing the proof. �

Definition A.9. Consider a Riemannian manifold (M,σ) of dimension n + 1
and let N be a Lipschitz hypersurface. In light of the previous proposition,
we may define the full-density subset of a set A ⊆ N to be the set Ã such
that if ϕ : U → R

n is a chart on N then ϕ(Ã ∩ U) is the full-density subset of
ϕ(A ∩ U).

Definition A.10. If q belongs to the full-density subset of a set A, we say that
q is a full-density point of A.

Proposition A.11. Let (M,σ) be a Riemannian manifold of dimension n + 1
and let N be a Lipschitz hypersurface. Let hn be the n-dimensional Hausdorff
measure constructed from σ. Let A ⊆ N be any subset and let Ã be its full-
density subset. Then hn(A\Ã) = 0.

Proof. Since N is second-countable, it is sufficient to prove this locally. This
can be done by the use of charts and Proposition A.7. �

Proposition A.12. Let Ω be an open subset of R
n and let f, g : Ω → R be

Lipschitz functions. Let A ⊂ Ω be a measurable subset of Ω and suppose that
f and g agree on A. Let q be a full-density point of A and suppose that f and
g are both differentiable at q. Then df(q) = dg(q).

If, moreover, q is a point where f and g have second-order expansions of
the form

f(q + ξ) = f(q) + df(q)(ξ) +
1
2
D2f(q)(ξ, ξ) + o(|ξ|2),

g(q + ξ) = g(q) + dg(q)(ξ) +
1
2
D2g(q)(ξ, ξ) + o(|ξ|2),

then D2f(q) = D2g(q).

Proof. Let h = f − g and note that h is differentiable at q and zero on A.
Suppose that dh(q)(V ) �= 0 for some vector V at q. By continuity dh(q)(W )
for all W in some open neighborhood U of V in TqR

n. Then for all sufficiently
small ε > 0 and all W ∈ U it holds that h(q + εU) �= 0. This means that
h is nonzero on some small open cone in the direction of V , which in turn
means that Θ(A, q) cannot be equal to 1, contradicting the fact that q is a
full-density point of A. This shows that dh(q) = 0, proving the first part of
the proposition.

Suppose now that q is a point where f and g have second-order expansions
in the sense that

f(q + ξ) = f(q) + df(q)(ξ) +
1
2
D2f(q)(ξ, ξ) + o(|ξ|2),

g(q + ξ) = g(q) + dg(q)(ξ) +
1
2
D2g(q)(ξ, ξ) + o(|ξ|2).



Vol. 16 (2015) Smoothness of Compact Horizons 2213

Then, since f(q) = g(q) and df(q) = dg(q),

f(q + ξ) − g(q + ξ) =
1
2

(

D2f(q) − D2g(q)
)

(ξ, ξ) + o(|ξ|2).

If
(

D2f(q) − D2g(q)
)

(ξ, ξ) = 0 for every vector ξ then D2f(q) − D2g(q) = 0
and we are done (since D2f(q) − D2g(q) is symmetric), so suppose that there
is some ξ with

(

D2f(q) − D2g(q)
)

(ξ, ξ) �= 0. By continuity, this then holds
for all ν in a neighborhood of ξ, and this means that f − g is nonzero on
a small open cone from q. This means that Θ(A, q) cannot be equal to 1
contradicting the fact that q is a full-density point of A, showing that indeed
D2f(q) = D2g(q). �
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