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The Altshuler–Shklovskii Formulas for
Random Band Matrices II: The General Case

László Erdős and Antti Knowles

Abstract. The Altshuler–Shklovskii formulas (Altshuler and Shklovskii,
BZh Eksp Teor Fiz 91:200, 1986) predict, for any disordered quantum
system in the diffusive regime, a universal power law behaviour for the
correlation functions of the mesoscopic eigenvalue density. In this paper
and its companion (Erdős and Knowles, The Altshuler–Shklovskii formu-
las for random band matrices I: the unimodular case, 2013), we prove
these formulas for random band matrices. In (Erdős and Knowles, The
Altshuler–Shklovskii formulas for random band matrices I: the unimod-
ular case, 2013) we introduced a diagrammatic approach and presented
robust estimates on general diagrams under certain simplifying assump-
tions. In this paper, we remove these assumptions by giving a general
estimate of the subleading diagrams. We also give a precise analysis of
the leading diagrams which give rise to the Altschuler–Shklovskii power
laws. Moreover, we introduce a family of general random band matrices
which interpolates between real symmetric (β = 1) and complex Hermit-
ian (β = 2) models, and track the transition for the mesoscopic density–
density correlation. Finally, we address the higher-order correlation func-
tions by proving that they behave asymptotically according to a Gaussian
process whose covariance is given by the Altshuler–Shklovskii formulas.

1. Introduction

A fundamental observation from physics is that the spectral statistics of dis-
ordered quantum systems exhibit universal patterns. In the delocalized regime
and on the microscopic energy scale of individual eigenvalues, the correla-
tion functions exhibit the celebrated Wigner–Dyson–Mehta statistics, which
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710 L. Erdős and A. Knowles Ann. Henri Poincaré

depend only on the basic symmetry class of the model. Above a certain critical
energy scale ηc, called the Thouless energy, the correlations of the spectral
density exhibit a different type of statistics, first predicted by Altshuler and
Shklovskii in [1]. This behaviour is only present in systems possessing a nontriv-
ial spatial structure that gives rise to quantum diffusion. The first Altshuler–
Shklovskii formula states that the variance of the number of eigenvalues Nη(E)
in a spectral window of size η � ηc about an energy E behaves according to

Var Nη(E) ∼ (η/ηc)d/2 (d = 1, 2, 3). (1.1)

The second Altshuler–Shklovskii formula states that the correlation function
in the regime E2 − E1 � η � ηc behaves according to

〈Nη(E1) ;Nη(E2)〉 ∼ (E2 − E1)−2+d/2 (d = 1, 2, 3). (1.2)

In this work and in its companion paper [3], we prove the Altshuler–Shklovskii
formulas for a specific type of disordered quantum systems: random band
matrices with independent entries. Random band matrices interpolate between
the mean-field Wigner matrices and random Schrödinger operators [8,12].
They have a sufficiently rich spatial structure to be diffusive (for a proof see
[4,5]), and are more amenable to rigorous analysis than random Schrödinger
operators. The detailed physical background of the problem and related math-
ematical works are presented in Section 1 of the companion paper [3], and will
not be repeated here. Here we only explain how this paper is related to its
companion [3].

The main tool in both papers is a diagrammatic expansion technique.
The correlation functions are expressed as a sum of many terms, which can be
conveniently represented using graphs. The resulting expansion is highly oscil-
latory: the sum of the absolute values diverges rapidly, although the sum itself
remains bounded. To handle the oscillations, we apply two different resumma-
tion procedures before the resummed diagrams can be estimated individually
in absolute value. The first resummation is performed using an expansion in
Chebyshev polynomials, and is motivated by the work [7]. In the jargon of
diagrammatic perturbation theory, this resummation step corresponds to the
self-energy (or tadpole) renormalization. A similar resummation was used in
[4,5] to analyse the quantum diffusion of the unitary propagator. The quantity
studied in the current paper—the local density–density correlation—is con-
siderably more difficult to analyse because it arises from higher-order terms
than the quantum diffusion. Hence, not only does the leading term have to be
analysed more precisely, but the error estimates also require a more careful
analysis. Most importantly, even for the error terms we need a second resum-
mation, which bundles specific families of diagrams (so-called ladder graphs)
that are strongly oscillatory. Hence, apart from a few basic algebraic tools on
nonbacktracking powers, the argument of the current paper is entirely different
from the one in [4,5].

In [3] we introduced the necessary diagrammatic representation; for the
convenience of the reader, we give a short summary of it in Sect. 4.1. With
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the diagrams at hand, the proof can be divided into two parts: (i) estimat-
ing all subleading diagrams, and (ii) analysing the asymptotics of the leading
diagrams.

Most diagrams give rise to error terms, in the sense that they do not
contribute in leading order. Estimating them, using the two resummation pro-
cedures sketched above, constitutes part (i)—the first, and most challenging,
part of the proof. This estimate is presented in [3] under some simplifying
assumptions in order to highlight the main ideas. The argument of [3] also
singles out eight distinguished diagrams (after all of the resummations have
been performed) that contribute in leading order. In Sect. 4, we give the com-
plete estimates in part (i) by removing the simplifying assumptions made in
[3]. In addition, the asymptotic analysis of the leading diagrams (called part
(ii) above) takes up most of Sect. 3 of this paper. To ease readability, we strive
to keep this paper self-contained; in particular, when needed we review the
setup and key notations introduced in [3]. We refer back to [3] only for a few
explicit results, whose content we explain here.

Our main theorems on the Altshuler–Shklovskii formulas are stated in
Sect. 2.2. In Sects. 2.3 and 2.4 we give two generalizations of our results,
which are proved in Sect. 5.

In our first generalization, given in Sect. 2.3, we prove that the finite-
dimensional marginals of mesoscopic eigenvalue densities agree asymptotically
with those of a Gaussian process whose covariance is given by the Altshuler–
Shklovskii formulas. Thus, high-order correlation functions factorize into two-
point correlation functions. This may be interpreted as a central limit theorem
for the mesoscopic eigenvalue densities.

In our second generalization, given in Sect. 2.4, we consider a family of
general random band matrices whose entries Hxy have arbitrary translation-
invariant variances, i.e. E|Hxy|2 = W−df((x−y)/W ) for some profile function
f . We find that density–density correlation depends on the matrix entries
only through f . Moreover, for d = 1, 2 the leading and subleading terms of the
density–density correlation are universal, for d = 3, 4 only the leading terms are
universal, and for d � 5 the density–density correlation is not universal. The
leading terms depend only on the second moments of f , while the subleading
terms depend in addition on the fourth moments of f . In addition, the general
model from Sect. 2.4 interpolates between real symmetric (β = 1) and complex
Hermitian (β = 2) models, and hence allows us to track the transition for the
mesoscopic density–density correlation.

The basic algebraic identity used in the first resummation (see (3.2)
below) is much simpler if the matrix entries are constant in absolute value
(unimodular case); the proof in [3] and in Sect. 4 are presented in this case.
The general band matrix model from Sect. 2.4 generates additional terms in
the basic identity (compare (3.2) with (5.6)); they have an ultimately negligi-
ble contribution, but nevertheless give rise to structurally new diagrams. Their
treatment substantially complicates the analysis. In the proof of the quantum
diffusion, these complications were carefully treated in [4], where we extended
the analysis of [5] from the unimodular case to the general case. In Sect. 5.3
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we sketch how to extend the current analysis of the correlation functions from
unimodular case to the general one.

Moreover, in Sect. 2.5 we explain how our analysis can also be applied to
a special one-dimensional band matrix model which exhibits critical behaviour,
in the sense that is supposed to lie at the metal–insulator transition point. We
compute the so-called compressibility of the mesoscopic eigenvalue statistics
for this critical model, and find that it coincides with the prediction from the
physics literature.

Finally, in Sect. 6 we explain how to extend our results to include the
mean-field regime η � ηc in addition to the diffusive regime η � ηc.

Conventions. We use C to denote a generic large positive constant, which
may depend on some fixed parameters and whose value may change from one
expression to the next. Similarly, we use c to denote a generic small positive
constant. We use a � b to mean ca � b � Ca. Also, for any finite set A we use
|A| to denote the cardinality of A.

2. Setup and Results

2.1. Definitions and Assumptions

Fix d ∈ N, the physical dimension of the configuration space. For L ∈ N we
define the discrete torus of size L

T ≡ T
d
L

..= ([−L/2, L/2) ∩ Z)d
,

and abbreviate

N ..= |TL| = Ld. (2.1)

Let 1 � W � L denote the band width, and define the deterministic matrix
S = (Sxy) through

Sxy
..=

1(1 � |x− y| � W )
M − 1

, M ..=
∑

x∈T

1(1 � |x| � W ), (2.2)

where |·| denotes the periodic Euclidean norm on T, i.e. |x| ..= minν∈Zd |x +
Lν|Zd . Note that

M � W d. (2.3)

The fundamental parameters of our model are the linear dimension of the
torus, L, and the band width, W . The quantities N and M are introduced
for notational convenience, since most of our estimates depend naturally on
N and M rather than L and W . We regard L as the independent parameter,
and W ≡ WL as a function of L.

Next, let A = A∗ = (Axy) be a Hermitian random matrix whose upper-
triangular1 entries (Axy

.. x � y) are independent random variables with zero
expectation. We consider two cases.

1 We introduce an arbitrary and immaterial total ordering � on the torus T.
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• The real symmetric case (β = 1), where Axy satisfies P(Axy = 1) = P(Axy =
−1) = 1/2.

• The complex Hermitian case (β = 2), where Axy is uniformly distributed
on the unit circle S

1 ⊂ C.
Here the index β = 1, 2 is the customary symmetry index of random matrix
theory.

We define the random band matrix H = (Hxy) through

Hxy
..=

√
Sxy Axy. (2.4)

Note that H is Hermitian and |Hxy|2 = Sxy, i.e. |Hxy| is deterministic. More-
over, we have for all x

∑

y

Sxy =
M

M − 1
. (2.5)

With this normalization, as N,W → ∞ the bulk of the spectrum of H/2 lies
in [−1, 1] and the eigenvalue density is given by the Wigner semicircle law with
density

ν(E) ..=
2
π

√
1 − E2 for E ∈ [−1, 1]. (2.6)

Let φ be a smooth, integrable, real-valued function on R satisfying∫
φ(E) dE �= 0. We call such functions φ test functions. We also require that

our test functions φ satisfy one of the two following conditions.
(C1) φ is the Cauchy kernel

φ(E) = Im
2

E − i
=

2
E2 + 1

. (2.7)

(C2) For every q > 0 there exists a constant Cq such that

|φ(E)| � Cq

1 + |E|q . (2.8)

A typical example of a test function φ satisfying (C2) is the Gauss-
ian φ(E) =

√
2π e−E2/2. We introduce the rescaled test function φη(E) ..=

η−1φ(η−1E). We shall be interested in correlations of observables depending
on E ∈ (−1, 1) of the form

Y η
φ (E) ..=

1
N

∑

i

φη(λi − E) =
1
N

Trφη(H/2 − E), (2.9)

where λ1, . . . , λN denote the eigenvalues of H/2. (The factor 1/2 is a mere
convenience, chosen because as noted above the asymptotic spectrum of H/2
is the interval [−1, 1].) The quantity Y η

φ (E) is the smoothed local density of
states around the energy E on the scale η. We always choose

η = M−ρ

for some fixed ρ ∈ (0, 1/3), and we frequently drop the index η from our
notation. The strongest results are for large ρ, so that one should think of
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ρ ≈ 1/3. The restriction ρ < 1/3 is technical; see Remark 2.6 below for more
details.

We are interested in the correlation function of the local densities of
states, Y η

φ1
(E1) and Y η

φ2
(E2), around two energies E1 � E2. We shall inves-

tigate two regimes: η � E2 − E1 and E1 = E2. In the former regime, we
prove that the correlation decay in the energy difference E2 − E1 is universal
(in particular, independent of η, φ1, and φ2), and we compute the correlation
function explicitly. In the latter regime, we prove that the variance has a uni-
versal dependence on η, and depends on φ1 and φ2 via their inner product in
a homogeneous Sobolev space.

The case (C2) for the test functions is the more interesting one, since
it corresponds to local densities on a definite scale. The heavy tail of the
Cauchy kernel (C1) introduces unwanted correlations from the overlap of the
test functions. Nevertheless, we give our results for the specific case (C1) as
well since it corresponds to the imaginary part of the resolvent, a quantity often
considered in the physics literature. Moreover, the case (C1) is pedagogically
useful, since in that case the computation of the main term is considerably
simpler.

Definition 2.1. Throughout the following, we use the quantities E1, E2 ∈
(−1, 1) and

E ..=
E1 + E2

2
, ω ..= E2 − E1

interchangeably. Without loss of generality we always assume that ω � 0.

For the following, we choose and fix a positive constant κ. We always
assume that

E1, E2 ∈ [−1 + κ, 1 − κ], ω � c∗ (2.10)

for some small enough positive constant c∗ depending on κ. These restrictions
are required since the nature of the correlations changes near the spectral edges
±1. Throughout the following, we regard the constants κ and c∗ as fixed and
do not track the dependence of our estimates on them.

2.2. Unimodular Band Matrices

Our first theorem gives the leading behaviour of the density–density correla-
tion function in terms of a function Θη

φ1,φ2
(E1, E2), which is explicit but has a

complicated form. In the two subsequent theorems we determine the asymptot-
ics of this function in two physically relevant regimes, where its form simplifies
substantially. We remark that Theorems 2.2–2.4 are the same as Theorems
2.2–2.4 in [3]. We use the abbreviations

〈X〉 ..= EX, 〈X ;Y 〉 ..= E(XY ) − EX EY. (2.11)

Theorem 2.2 (Density–density correlations). Fix ρ ∈ (0, 1/3) and d ∈ N, and
set η ..= M−ρ. Suppose that the test functions φ1 and φ2 satisfy either both
(C1) or both (C2). Suppose moreover that
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W 1+d/6 � L � WC (2.12)

for some constant C.
Then there exist a constant c0 > 0 and a function Θη

φ1,φ2
(E1, E2)—which

is given explicitly in (4.60) and (3.23) below, and whose asymptotic behaviour
is derived in Theorems 2.3 and 2.4 below—such that, for any E1, E2 satisfying
(2.10) for small enough c∗ > 0, the local density–density correlation satisfies

〈Y η
φ1

(E1) ;Y η
φ2

(E2)〉
〈Y η

φ1
(E1)〉〈Y η

φ2
(E2)〉 =

1
(LW )d

(
Θη

φ1,φ2
(E1, E2) +O

(
M−c0R2(ω + η)

))
,

(2.13)

where we defined

R2(s) ..= 1 + 1(d = 1)s−1/2 + 1(d = 2)|log s|. (2.14)

Moreover, if φ1 and φ2 are analytic in a strip containing the real axis
(e.g. as in the case (C1)), we may replace the upper bound L � WC in (2.12)
L � exp(W c) for some small constant c > 0.

We shall prove that the error term in (2.13) is smaller than the main
term Θ for all d � 1. The main term Θ has a simple, and universal, explicit
form only for d � 4. The two following theorems give the leading behaviour
of the function Θ for d � 4 in the two regimes ω = 0 and ω � η. In fact, one
may also compute the subleading corrections to Θ. These corrections turn out
to be universal for d � 2 but not for d � 3; see Theorem 2.4 and the remarks
following it.

In order to describe the leading behaviour of the variance, i.e. the case
ω = 0, we introduce the Fourier transform

φ(E) =
∫

R

dt e−iEt φ̂(t), φ̂(t) =
1
2π

∫

R

dE eiEt φ(E).

For d � 4 we define the quadratic form Vd through

Vd(φ1, φ2) ..=
∫

R

dt |t|1−d/2 φ̂1(t) φ̂2(t) (d � 3)

V4(φ1, φ2) ..= 2φ̂1(0) φ̂2(0).

(2.15)

Note that Vd(φ1, φ2) is real since both φ1 and φ2 are.

Theorem 2.3 (The leading term Θ for ω = 0). Suppose that the assumptions in
the first paragraph of Theorem 2.2 hold, and let Θη

φ1,φ2
(E1, E2) be the function

from Theorem 2.2. Suppose in addition that ω = 0. Then there exists a constant
c1 > 0 such that the following holds for E = E1 = E2 satisfying (2.10).
(i) For d = 1, 2, 3 we have

Θη
φ1,φ2

(E,E) =
(d+ 2)d/2

2βπ2+dν(E)4

(
η

ν(E)

)d/2−2 (
Vd(φ1, φ2) +O(M−c1)

)
.

(2.16)
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(ii) For d = 4 we have

Θη
φ1,φ2

(E,E) =
36

βπ6ν(E)4
(V4(φ1, φ2)|log η| +O(1)) . (2.17)

In order to describe the behaviour of Θ in the regime ω � η, for d = 1, 2, 3
we introduce the constants

Kd
..= 2Re

∫

Rd

dx
(i + |x|2)2 ; (2.18)

explicitly,

K1 = − π√
2
, K2 = 0, K3 =

√
2π2.

Theorem 2.4 (The leading term Θ in the regime ω � η). Suppose that the
assumptions in the first paragraph of Theorem 2.2 hold, and let Θη

φ1,φ2
(E1, E2)

be the function from Theorem 2.2. Suppose in addition that

η � M−τω (2.19)

for some arbitrary but fixed τ > 0. Then there exists a constant c1 > 0 such
that the following holds for E1, E2 satisfying (2.10) for small enough c∗ > 0.

(i) For d = 1, 2, 3 we have

Θη
φ1,φ2

(E1, E2)

=
(d+ 2)d/2

2βπ2+3d/2ν(E)4

(
ω

ν(E)

)d/2−2 (
Kd +O

(√
ω +M−c1

))
. (2.20)

(ii) For d = 2 (2.20) does not identify the leading term since K2 = 0. The
leading nonzero correction to the vanishing leading term is

Θη
φ1,φ2

(E1, E2) =
8

βπ5ν(E)4

(
πν(E)

η

ω2 + 4η2
− |logω|

3
+O(1)

)
(2.21)

in the case (C1) and

Θη
φ1,φ2

(E1, E2) =
8

βπ5ν(E)4

(
−|logω|

3
+O(1)

)
(2.22)

in the case (C2).
(iii) For d = 4 we have

Θη
φ1,φ2

(E1, E2) =
36

βπ6ν(E)4
(|logω| +O(1)) . (2.23)

Note that the leading non-zero terms in the expressions (2.16), (2.17),
(2.20)–(2.23) are much larger than the additive error term in (2.13). Hence,
Theorems 2.2 and 2.3 give a proof of the first Altshuler–Shklovskii formula
(1.1). Similarly, Theorems 2.2 and 2.4 give a proof of the second Altshuler–
Shklovskii formula, (1.2).

The additional term in (2.21) as compared to (2.22) originates from the
heavy Cauchy tail in the test functions φ1, φ2 at large distances. In Theorem
2.4 (ii) we give the leading correction, of order |logω|, to the vanishing main
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term for d = 2. For d = 1 the leading correction (to the nonzero main term of
order ω−3/2) is of order ω−1/2; we omit the details.

Remark 2.5. As explained in the introduction, a phase transition in the meso-
scopic statistics occurs at a specific energy scale, the Thouless energy ηc. For
random band matrices the Thouless energy is given by

ηc = W 2/L2 (2.24)

(see [3]). The Altshuler–Shklovskii formulas are expected to hold in the entire
diffusive regime η � ηc. In the complementary mean-field regime, η � ηc, the
mesoscopic statistics are no longer given by the Altshuler–Shklovskii formulas.
We emphasize that this phase transition in the mesoscopic statistics does not
coincide with the celebrated metal–insulator transition between the Poisson
and the Wigner–Dyson–Mehta (WDM) behaviour for the microscopic eigen-
value statistics. It may be tempting to extrapolate the formulas obtained for
the microscopic statistics to mesoscopic scales, but this yields a wrong answer
in some regimes. The relation between the microscopic and mesoscopic statis-
tics is in fact more intricate. We sketch it in the two following paragraphs.

In the diffusive regime the mesoscopic linear statistics are governed by
the Altshuler–Shklovskii formulas irrespective of the microscopic statistics.
For instance, if d = 1 the microscopic eigenvalue statistics are expected to be
Poisson for L � W 2 and WDM for L � W 2. The condition η � ηc may
be satisfied in both regimes, and Theorems 2.2–2.4 show that, in the diffusive
regime, the mesoscopic linear statistics are the same for L � W 2 and L � W 2.

In the mean-field regime, η � ηc, on the other hand, we expect the
mesoscopic statistics to be governed by the microscopic statistics. Let d = 1
for definiteness. Then for η � ηc and L � W 2 the behaviour of Nη is governed
WDM statistics, and the formulas (1.1) and (1.2) hold with d = 0 (see [3,
Section 2.3] for more details and a proof). On the other hand, for η � ηc and
L � W 2 the behaviour of Nη is governed by Poisson statistics, so that (1.1)
is replaced with

Var Nη(E) = 〈Nη(E)〉 ∼ Lη,

and the right-hand side of (1.2) is replaced with 0. Summarizing, in the mean-
field regime we expect the extrapolation of the microscopic statistics to meso-
scopic scales to be valid.

We expect this behaviour to be representative of general d-dimensional
disordered Hamiltonians, and in particular to hold also for the Anderson
model.

Remark 2.6. Our results hold under the two assumptions

L � W 1+d/6 (2.25)

and

η � W−d/3. (2.26)
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(The upper bound on L in (2.12) is purely technical and may be relaxed, as
explained in the last sentence of Theorem 2.2.) As mentioned in Remark 2.5,
we expect our results to hold under the sole assumption

η � ηc (2.27)

Recalling (2.24), this condition is equivalent to L � Wη−1/2. We therefore
find that (2.25) and (2.26) imply (2.27).

In fact, the assumption (2.25) is not essential; it is just a simple way to
guarantee that we are in the diffusive regime, L � Wη−1/2, for all η satisfying
(2.26). Our results and our proofs (including those in companion paper [3])
remain valid verbatim if we replace the assumptions (2.25) and (2.26) with the
weaker assumptions (2.26) and (2.27).

Finally, we comment on the two essential assumptions, (2.26) and (2.27).
The assumption (2.26) is technical but important for our proof; it guarantees
that only a few terms in our diagrammatic expansion contribute in leading
order. It is used crucially in the proof of Proposition 4.5; see [3, Section 4.4]
for more a detailed explanation. Relaxing this assumption will be the subject
of future work.

The assumption (2.27) is physically important as it characterizes the
diffusive regime. This condition is used when we evaluate the leading order
diagrams, which give rise to the Altshuler–Shklovskii formulas. We stress, how-
ever, that the essence of our method remains valid even if (2.27) is not satisfied
(i.e. we leave the diffusive regime), under the sole assumption (2.26). In that
case our expansion technique can still be used to identify the leading behav-
iour of the density–density correlation, but the asymptotic behaviour of the
leading terms is different. See Sect. 6 below for more details.

2.3. Higher-Order Correlations

The following result extends Theorem 2.2 to arbitrary correlation functions
of the mesoscopic densities. It may be interpreted as a Wick theorem, stating
that the joint law of the densities is asymptotically Gaussian with covariance
matrix (Θη

φi,φj
(Ei, Ej))i,j .

Theorem 2.7 (The joint law is asymptotically Gaussian). Fix ρ ∈ (0, 1/3),
d ∈ N, and k ∈ N. Set η ..= M−ρ. Let φ1, . . . , φk be test functions satisfying
either all (C1) or all (C2). Fix κ > 0, let E1, . . . , Ek ∈ [−1 + κ, 1 − κ], and
suppose that (2.12) holds. Abbreviate

Xi
..=

Y η
φi

(Ei) − EY η
φi

(Ei)
EY η

φi
(Ei)

.

Then for small enough c∗ in (2.10) the k-point correlation function satisfies

E

k∏

i=1

Xi =
∑

p∈M(k)

∏

{i,j}∈p

E(XiXj) +O

((
W

L

)d/2 (
R4(ω0 + η)

(LW )d

)k/2
)
,

(2.28)
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where M(k) denotes the set of pairings of {1, . . . , k} and we abbreviated

R4(s) ..= 1 + 1(d � 3)sd/2−2 + 1(d = 4) |log s| (2.29)

as well as ω0
..= mini�=j |Ei −Ej |. (Note that if k is odd then the leading term

of (2.28) is zero by convention.)

We remark that the error bound in (2.28) is not optimal and may be
easily improved. We chose this form to obtain a simple expression that covers
all cases of interest. Since the error term carries an extra power of (W/L)d/2

as compared to the main term (see Theorems 2.3 and 2.4), it is easy to see
that in all regimes studied in Theorems 2.3 and 2.4 the error term in (2.28)
is subleading provided L � WK for some large enough K. We also note that
some of the energies Ei in the theorem may coincide, in which case ω0 = 0.

A concrete corollary of Theorems 2.7 and 2.3 is the following result. It
says that at a fixed energy the rescaled finite-dimensional marginals of the
process (Y η

φ (E))φ converge to those of a Gaussian process with covariance
Vd(·, ·).
Corollary 2.8 (Convergence to a Gaussian process at a fixed energy). Suppose
that the assumptions of Theorem 2.7 hold, and that in addition E1 = · · · =
Ek = E for some fixed k. Let d � 3. For i = 1, . . . , k define the random
variable

X̃i
..= (LW )d/2

(
(d+ 2)d/2

2βπ2+dν(E)4

(
η

ν(E)

)d/2−2
)−1/2 (

Y η
φi

(E) − EY η
φi

(E)
EY η

φi
(E)

)
.

Then, as W → ∞, the random vector (X̃1, . . . , X̃k) converges in distribution
to a mean-zero Gaussian vector with covariance matrix (Vd(φi, φj))k

i,j=1. A
similar result holds for d = 4, whose details we omit.

2.4. General Band Matrices

The results of Sects. 2.2 and 2.3 were stated for the unimodular band matrices
defined in Sect. 2.1. In this section, we extend these results to a general class
of band matrices. Roughly, we generalize the unimodular band matrices of
Sect. 2.1 in two ways: the variances Sxy may be given by an arbitrary profile
on the scale W (instead of the uniform profile of (2.2)), and the law of Axy

may be an arbitrary symmetric law with sufficient decay.

Definition of model. As in Sect. 2.1, we assume that the upper-triangular
entries of H = H∗ are independent random variables with mean zero. We
set

Sxy
..= E|Hxy|2, Txy

..= EH2
xy. (2.30)

We assume that the law of Hxy is symmetric, i.e. that Hxy and −Hxy have
the same law. Moreover, we assume that (for nonzero Sxy) the entries Axy

..=
(Sxy)−1/2Hxy have uniform subexponential decay, in the sense that

P(|Axy| > ξ) � Ce−ξc

(2.31)

for some constants c, C > 0 and for any ξ > 0.
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The remaining assumptions are on the deterministic profile matrices S
and T ; roughly, we assume that S and T are translation invariant (in the
sense of (2.37) below) and live on the scale W , but allow them to be otherwise
arbitrary (up to the trivial constraint |Txy| � Sxy). We shall describe such a
general profile using three fixed functions f, g, h .. R

d → R. We require that
the profile S be given in terms of f according to

Sxy =
1

M − 1
f

(
[x− y]L
W

)
, M ..=

∑

x∈T

f
( x

W

)
, (2.32)

where [x]L denotes the canonical representative of x ∈ Z
d in the torus T. Sim-

ilarly, we require that the profile T be given in terms of f , g, and h according
to

Txy =
1

M − 1
f(z) [1 − ϕh(z)] eiλg(z), z ..=

[x− y]L
W

. (2.33)

Here ϕ, λ ∈ [0, 1] are parameters that may depend on L. Note that (2.32) and
(2.33) are the most general matrices S and T that are translation invariant,
are given by a fixed profile on the scale W , and satisfy the trivial constraint
|Txy| � Sxy.

We say that a function f .. R
d → R is piecewise C1 if there exists a finite

collection of disjoint open sets U1, . . . , Un with piecewise C1 boundaries, whose
closures cover R

d, such that f is C1 on each Ui. We also say that a function f is
piecewise C1 with bounded derivatives if it is piecewise C1 and ∇f is bounded
on each Ui. We always make the following assumptions on the functions f , g,
and h.
(Af) We assume that f .. R

d → R is an even, bounded, nonnegative, piecewise
C1 function, such that f and |∇f | are integrable. We also assume that

∫

Rd

dx f(x) |x|4+c < ∞ (2.34)

for some c > 0.
Moreover, we introduce the covariance matrix of f ,

(D0)ij
..=

1
2

∫

Rd

xixjf(x) dx, (2.35)

and assume that

c � D0 � C (2.36)

in the sense of quadratic forms, for some positive constants c and C.
(Ag) We assume that g .. R

d → R is an odd, bounded, piecewise C1 function
with bounded derivatives. We also assume that g is not equal to a linear
function on the support of f .

(Ah) We assume that h .. R
d → R is an even, piecewise C1 function with

bounded derivatives, satisfying 0 � h � 1. We also assume that h is not
identically zero on the support of f .
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Definition 2.9 (General band matrix). We call the matrix H a general band
matrix if it satisfies (2.30)–(2.33) for f , g, and h satisfying (Af), (Ag), and
(Ah), respectively.

Note that under these assumptions we have (2.3). Throughout the fol-
lowing we regard f , g, and h as fixed, and do not track the dependence of the
errors on them. The smoothness assumptions on f , g, and h are technical and
made for convenience. All other assumptions are natural: that f and h are even
and g is odd is clearly necessary since H is Hermitian. The condition (2.36)
guarantees that the system exhibits a non-degenerate diffusion. The condition
(2.34) is necessary only for d = 2; in other dimensions, the finiteness of (2+c)th
moment would be sufficient. (For d = 2 the leading contribution arises from a
fourth order Taylor expansion; hence the higher order moment assumption.)
All of these assumptions on the decay of f are made for convenience. Indeed,
our method may easily also handle heavy-tailed f , in which case the behaviour
of Θ is different. (See Sect. 2.5 below for more details.)

Finally, the assumption that g is not a linear function on the support of
f essentially amounts to excluding a trivial gauge transformation. Indeed, if g
were linear on the support of f , then (neglecting unimportant boundary issues
on T) the effect of the phase in (2.33) simply amounts to a conjugation of H
with a unitary matrix. Hence, the final sentences of (Ag) and (Ah) are not
restrictive; they simply fix an ambiguity in the definition of the general band
matrices. Note that for ϕ = 0 (respectively, λ = 0) the choice of h (respectively,
g) is immaterial.

Note that by definition S and T are translation invariant, S is real sym-
metric, and T is Hermitian:

Sxy = Sx−y 0 = Syx = Sxy, Txy = Tx−y 0 = Tyx. (2.37)

Definition 2.9 encompasses several important examples:
(a) The complex Hermitian case (β = 2), where T = 0.
(b) The real symmetric case (β = 1), where T = S.
(c) The rotated real symmetric case, where h = 0.

In addition, by varying the parameters ϕ and λ we may interpolate between
these, and other, models; in particular, we may investigate the transition from
β = 1 to β = 2 in the behaviour of the mesoscopic density statistics.

Results for general band matrices. In the general band matrix model of Defi-
nition 2.9, for technical reasons outlined in Sect. 5.3 below, we cannot control
the errors in (2.13) for arbitrary ρ < 1/3. Instead, we require the condition
ρ < c for some positive universal constant c > 0.

Theorem 2.10. If H is the general band matrix model from Definition 2.9, The-
orems 2.2 and 2.7 are valid provided one replaces the assumption ρ ∈ (0, 1/3)
with ρ ∈ (0, c) for some universal constant c > 0. (One can take c = 1/7.)

The rest of this subsection is devoted to the asymptotics of the leading
term Θ, which has a more complicated behaviour than in Sect. 2.2 since it
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depends on the parameters f , g, h, ϕ, and λ. This dependence on the functions
f , g, and h is encoded by the two fixed coefficients

Δ0
..= inf

q∈Rd

1
2

∫
(x · q − g(x))2 f(x) dx

=
1
2

∫

Rd

g(x)2f(x) dx−
∣∣∣∣∣∣
1
2

∫

Rd

D
−1/2
0 xg(x)f(x) dx

∣∣∣∣∣∣

2

(2.38)

and

Υ0
..=

∫

Rd

h(x)f(x) dx. (2.39)

By assumption on g and h, we have Δ0 > 0 and Υ0 > 0. The dependence of
Θ on all of the quantities f , g, h, ϕ, and λ takes place via the single quantity

σ ..= Δ0λ
2 + Υ0ϕ, (2.40)

which may depend on L through λ and ϕ.
For d � 3 we generalize the definition of the quadratic form Vd from

(2.15) by defining

Vd(φ1, φ2; a) ..=
∫

R

dt |t|1−d/2 e−a|t| φ̂1(t) φ̂2(t) (2.41)

for a � 0. Note that Vd(φ1, φ2; 0) = Vd(φ1, φ2) and lima→∞ Vd(φ1, φ2; a) = 0.
The following result generalizes Theorem 2.3 to the general band matrix model.

Theorem 2.11 (The leading term Θ for ω = 0). Suppose that H satisfies Defi-
nition 2.9. Suppose in addition that ω = 0. Then there exists a constant c1 > 0
such that the following holds for E = E1 = E2 satisfying (2.10).
(i) For d = 1, 2, 3 we have

Θη
φ1,φ2

(E,E) =
1

22+d/2π2+dν(E)4
√

detD0

(
η

ν(E)

)d/2−2

×
(
Vd(φ1, φ2) + Vd

(
φ1, φ2;

2σ
πν(E)η

)
+O(M−c1)

)
.

(2.42)

(ii) For d = 4 we have

Θη
φ1,φ2

(E,E) =
1

16π6ν(E)4
√

detD0

× (V4(φ1, φ2) (|log η| + min{|log η|, |log σ|}) +O(1)) .
(2.43)

In particular, for σ � η we recover the results of Theorem 2.3 for β = 1,
and for σ � η the results of Theorem 2.3 for β = 2. Here we used that in the
case (2.2) we have the explicit expression
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D0 =
1

2(d+ 2)
. (2.44)

In order to describe the behaviour of Θ in the regime ω � η, for d = 1, 2, 3
we introduce the constants

Bd
..=

∫

Rd

dx
1

(1 + |x|2)2 , (2.45)

so that Kd = 2Bd Re id/2−2; explicitly,

B1 =
π

2
, B2 = π, B3 = π2.

In addition, for d = 2 we also introduce the quantity

Q0
..=

1
32

∫

R2

∣∣∣D−1/2
0 x

∣∣∣
4

f(x) dx, (2.46)

which depends on the fourth moments f .
The following result generalizes Theorem 2.4 to the general band matrix

model of Definition 2.9.

Theorem 2.12 (The leading term Θ in the regime ω � η). Suppose that H
satisfies Definition 2.9, and that (2.19) holds for some τ > 0. Then there
exists a constant c1 > 0 such that the following holds for E1, E2 satisfying
(2.10) for some small enough c∗ > 0.

(i) For d = 1, 2, 3 we have

Θη
φ1,φ2

(E1, E2) =
1

22+d/2π2+3d/2ν(E)4
√

detD0

(
ω

ν(E)

)d/2−2

×
(
Kd + 2Bd Re

(
i +

πν(E)σ
2ω

)d/2−2

+O
(√
ω +M−c1

)
)
, (2.47)

where the fractional power is taken to be holomorphic in the right half-
plane.

(ii) For d = 2 and small σ, (2.47) does not identify the leading term since
K2 = 0. The leading nonzero correction to the vanishing leading term is

Θη
φ1,φ2

(E1, E2) =
1

2π5ν(E)4
√

detD0

×
(
πν(E)[4η + πν(E)σ]

4ω2 + (4η + πν(E)σ)2
+

πην(E)
ω2 + 4η2

+ (Q0 − 1)

× (|logω| + min{|logω|, |log σ|} +O(1))
)

(2.48)
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in the case (C1) and

Θη
φ1,φ2

(E1, E2) =
1

2π5ν(E)4
√

detD0

×
(

π2ν(E)2σ
4ω2 + (πν(E)σ)2

+ (Q0 − 1)

× (|logω| + min{|logω|, |log σ|}) +O(1)
)

(2.49)

in the case (C2). (Note that (2.49) is obtained from (2.48) by replacing
η with 0.)

(iii) For d = 4 we have

Θη
φ1,φ2

(E1, E2) =
1

8π6ν(E)4
√

detD0

× (|logω| + min{|logω|, |log σ|} +O(1)) . (2.50)

Similarly to the case ω = 0, we note that in the case ω � η and d = 1, 3, 4
we have a transition from the case β = 1 to the case β = 2 depending on
whether σ � ω or σ � ω. For d = 4 this follows easily from (2.50), and for
d = 1, 3 from (2.47) combined with Kd = 2Bd Re id/2−2. Here we used that in
the case (2.2) we have the explicit expression

Q0 =
2
3
. (2.51)

Owing to K2 = 0, the case d = 2 is special; the correlation is determined
by higher-order corrections to the algebraic cancellation in the integral (2.18)
for d = 2. Similarly to the results in (ii) of Theorem 2.4, the first nonvanishing
terms have a different structure. For definiteness, we focus on the case (C2),
i.e. (2.49). The transition from β = 1 (for σ � ω2|logω|) to β = 2 (for
σ � |logω|−1) passes through a region of much stronger correlations, since in
the regime ω2|logω| � σ � |logω|−1 the first term in (2.49) dominates over
the logarithmic terms.

Interestingly, since all of the results in Theorems 2.11 and 2.12 depend on
the parameters ϕ and λ only through their combination σ, we find that, for the
purposes of mesoscopic statistics, decreasing the magnitude of EA2

xy is equiv-
alent to rotating EA2

xy in the complex plane. In particular, either procedure
may be used to probe the transition from β = 1 to β = 2.

2.5. A Remark on Heavy-Tailed Band Profiles

The moment assumption (2.34) on f is not fundamental for our method. We
imposed it to simplify the presentation of our results, since the behaviour of
Θ for heavy-tailed f is different. To illustrate this difference, we consider the
case d = 1 and f(x) = 1

π
1

x2+1 . Then (2.13) holds, whereby the leading term Θ
is given for ω = 0 by

Θη
φ1,φ2

(E,E) =
1

βπ4ν(E)3
1
η

(
V2(φ1, φ2) +O(M−c1)

)
, (2.52)
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and for ω � η in the case (C2) by

Θη
φ1,φ2

(E1, E2) =
1

2βπ5ν(E)4
(−|logω| +O(1)) . (2.53)

We omit the proofs, which are identical to those of Theorems 2.11 and 2.12, up
to the explicit calculation of the leading term. Similar results hold for higher
dimensions and for different heavy-tailed profiles f .

We remark that the one-dimensional band matrix model with a variance
profile decaying as f(x) ∼ x−2 is conjectured in the physics literature [9,10]
to be critical in the sense that it describes a disordered quantum system at
the Anderson (metal–insulator) transition. The other conjectured critical band
matrix model is obtained by setting d = 2 and choosing f with rapid decay
(i.e. with light tail); this model was extensively studied in Sects. 2.2–2.4.

Comparing (2.52) and (2.16) for d = 2, as well as (2.53) and (2.22), we
note that both the one- and two-dimensional critical band matrix models have
the same mesoscopic density fluctuations. Defining N (I) as the (smoothed)
number of eigenvalues in the mesoscopic interval I, we find in both cases that

Var(N (I)) ≈ CdW
−d

E(N (I)) (2.54)

for some constants C1 and C2, assuming |I| � W−d/3. (See (2.13), (2.16),
(2.52), and (4.59).) In particular, the variance of N (I) is proportional to the
length of I. This suggests weak correlations of N (I1) and N (I2) for disjoint
I1 and I2, which was indeed established in (2.53) and (2.22) for the one- and
two-dimensional critical band matrices, respectively.

The behaviour (2.54) had been previously established in the physics liter-
ature; see e.g. [2]. Moreover, it was conjectured in [2] that the proportionality
in (2.54) is equivalent to the multifractality of the eigenvectors of H, and the
proportionality constant CdW

−d (called the compressibility) is directly related
to the multifractal exponent. See [9] for a review.

3. Path Expansion and Computation of the Leading Term

We now begin the proof of Theorems 2.2–2.4. For simplicity, we assume
throughout the proof that β = 2; the case β = 1 is similar and the minor
modifications are sketched in Sect. 5.2 below.

In this section we review the renormalized path expansion from [3] that
underlies our proof, and compute the leading term. We first observe that, since
the left-hand side of (2.13) is invariant under the scaling φ �→ λφ for λ �= 0,
we assume without loss of generality that

∫
dE φi(E) = 2π for i = 1, 2. We

shall make this assumption throughout the proof without further mention.

3.1. Expansion in Nonbacktracking Powers

We expand φη(H/2−E) in nonbacktracking powersH(n) ofH, defined through

H(n)
x0xn

..=
∑

x1,...,xn−1

Hx0x1 · · ·Hxn−1xn

n−2∏

i=0

1(xi �= xi+2). (3.1)
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From [5, Section 5], we find that

H(n) = Un(H/2) − 1
M − 1

Un−2(H/2), (3.2)

where Un is the nth Chebyshev polynomial of the second kind, defined through

Un(cos θ) =
sin(n+ 1)θ

sin θ
. (3.3)

Note that (3.2) requires the deterministic condition |Axy| = 1 on the entries
of H. As stated in Sect. 2.4, this condition is not necessary for our proof, but
does simplify it considerably. How to relax it is explained in Sect. 5.3.

From [5, Lemmas 5.3 and 7.9], we recall the expansion in nonbacktracking
powers of H.

Lemma 3.1. For t � 0 we have

e−itH/2 =
∑

n�0

an(t)H(n), (3.4)

where

an(t) ..=
∑

k�0

αn+2k(t)
(M − 1)k

, αk(t) ..= 2(−i)k k + 1
t

Jk+1(t) (3.5)

and Jν denotes the νth Bessel function of the first kind.
Moreover, we have

∑

n�0

|an(t)|2 = 1 +O(M−1), |an(t)| � C
tn

n!
. (3.6)

Throughout the following we denote by arcsin the analytic branch of
arcsin extended to the real axis by continuity from the upper half-plane. The
following coefficients will play a key role in the expansion. For n ∈ N and
E ∈ R define

γn(E) ..=

∞∫

0

dt eiEt an(t).

In [3, Lemma 3.2] we proved that

γn(E) =
2(−i)nei(n+1) arcsin E

1 − (M − 1)−1e2i arcsin E
. (3.7)

Define

F η
φ1,φ2

(E1, E2) ≡ F η(E1, E2) ..= 〈Trφη
1(H/2 − E1) ; Trφη

2(H/2 − E2)〉 , (3.8)

where we used the notation (2.11). Note that the left-hand side of (2.13) may
be written as

〈Y η
φ1

(E1) ;Y η
φ2

(E2)〉
〈Y η

φ1
(E1)〉〈Y η

φ2
(E2)〉 =

1
N2

F η(E1, E2)
EY η

φ1
(E1) EY η

φ2
(E2)

. (3.9)



Vol. 16 (2015) Altshuler–Shklovskii Formulas 727

The expectations in the denominator are easy to compute using the local
semicircle law for band matrices; see Lemma 4.17 below. Our main goal is to
compute F η(E1, E2).

Throughout the following we use the abbreviation

ψ(E) ..= φ(−E), (3.10)

and define ψη, ψi, and ψη
i similarly in terms of φη, φi, and φη

i . We also use the
notation

(ϕ ∗ χ)(E) ..=
1
2π

∫
dE′ ϕ(E − E′)χ(E′) (3.11)

to denote convolution. The normalizing factor (2π)−1 is chosen so that ϕ̂ ∗ χ =
ϕ̂ χ̂. Observe that

(ψη ∗ γn)(E) =

∞∫

0

dt eiEt φ̂(ηt) an(t). (3.12)

We note that in the case where φ(E) = 2
E2+1 , we have φ̂(t) = e−|t|. Hence

(3.12) implies in the case (C1)

(ψη ∗ γn)(E) =

∞∫

0

dt ei(E+iη)t an(t) = γn(E + iη). (3.13)

We now return to the case of a general real φ. Since φ is real, we have φ̂(t) =
φ̂(−t). We may therefore use Lemma 3.1 and Fourier transformation to get

φη(H/2 − E) = 2Re
∞∑

n=0

H(n)

∞∫

0

dt φ̂(ηt) eitEan(t)

=
∞∑

n=0

H(n) 2Re(ψη ∗ γn)(E), (3.14)

where Re denotes the Hermitian part of a matrix, i.e. ReA ..= (A + A∗)/2,
and in the last step we used (3.12) and the fact that H(n) is Hermitian. We
conclude that

F η(E1, E2) =
∑

n1,n2�0

2 Re ((ψη
1 ∗ γn1)(E1))

×2 Re ((ψη
2 ∗ γn2)(E2))

〈
TrH(n1) ; TrH(n2)

〉
. (3.15)

Because the combinatorial estimates of Sect. 4 deteriorate rapidly for
n � η−1, it is essential to cut off the terms n > Mμ in the expansion (3.15),
where ρ < μ < 1/3. Thus, we choose a cutoff exponent μ satisfying ρ < μ <
1/3. All of the estimates in this paper depend on ρ, μ, and φ; we do not track
this dependence. The following result gives the truncated version of (3.15),
whereby the truncation is done in ni and in the support of φ̂i.
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Proposition 3.2 (Path expansion with truncation). Choose μ < 1/3 and δ > 0
satisfying 2δ < μ− ρ < 3δ. Define

γ̃n(E, φ) ..=

Mρ+δ∫

0

dt eiEt φ̂(ηt) an(t) (3.16)

and

F̃ η(E1, E2) ..=
∑

n1+n2�Mμ

2 Re (γ̃n1(E1, φ1))

×2 Re (γ̃n2(E2, φ2))
〈
TrH(n1) ; TrH(n2)

〉
. (3.17)

Let q > 0 be arbitrary. Then for any n ∈ N and recalling (3.10) we have the
estimates

|(ψη
i ∗ γn)(Ei) − γ̃n(Ei, φi)| � CqM

−q (i = 1, 2) (3.18)

and ∣∣∣F η(E1, E2) − F̃ η(E1, E2)
∣∣∣ � CqN

2M−q. (3.19)

Moreover, for all q > 0 we have

|γ̃n(Ei, φi)| + |(ψη
i ∗ γn)(Ei)| � min

{
C,Cq(ηn)−q

}
. (3.20)

If φ1 and φ2 are analytic in a strip containing the real axis, the factors
CqM

−q on the right-hand sides of (3.18) and (3.19) may be replaced with
exp(−M c) for some c > 0, and the factor Cq(ηn)−q on the right-hand side of
(3.20) by exp(−(ηn)c).

The proof of Proposition 3.2 is given in Appendix A.

3.2. The Behaviour of F̃ η(E1, E2)

Our main goal is to compute F̃ η(E1, E2) from (3.17). In order to clarify the
argument, it is actually helpful to generalize the assumptions on the matrix
of variances S. (This more general setup is also used in the generalization of
Sect. 2.4.) We suppose that Sxy is given by (2.32) for some f satisfying the
assumption (Af) from Sect. 2.4. We introduce the covariance matrices of Sx0

and f , defined through

Dij
..=

1
2

∑

x∈T

xixj

W 2
Sx0, (D0)ij

..=
1
2

∫

Rd

xixjf(x) dx. (3.21)

(Recall also (2.35).) It is easy to see that D = D0 +O(W−1). Note, that since
(2.36) holds for D0, it also holds for D for large enough W . In addition, for
d = 2 we also introduce the quantities

Q ..=
1
32

∑

x∈T

Sx0

∣∣∣D−1/2 x

W

∣∣∣
4

, Q0
..=

1
32

∫

R2

∣∣∣D−1/2
0 x

∣∣∣
4

f(x) dx. (3.22)

(Recall also (2.46).) As above, it is easy to see that Q = Q0 +O(W−1).
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The main result of this section is summarized in the following Proposi-
tion 3.3, which establishes the leading asymptotics of F̃ η(E1, E2), defined in
(3.17), for small ω = E2−E1. The basic strategy is an expansion of the expecta-
tion on the right-hand side of (3.17) in terms of graphs, as explained in Sect. 4.1
below. As it turns out, the leading contribution arises from eight skeleton
graphs, called the dumbbell skeletons in Sect. 4.4 below, whose combined con-
tribution is denoted by Vmain ≡ (Vmain)η

φ1,φ2
(E1, E2). It is given explicitly by

Vmain =
∞∑

b1,b2=0

∑

(b3,b4)∈A
1 (b1 + b2 + b3 + b4 � Mμ/2)

×2 Re (γ̃2b1+b3+b4(E1, φ1)) 2Re (γ̃2b2+b3+b4(E2, φ2)) Ib1+b2 TrSb3+b4 ,

(3.23)

where we defined

A ..= ({1, 2, . . .} × {0, 1, . . .}) \ {(2, 0), (1, 1)} . (3.24)

and

I ≡ IM
..=

M

M − 1
. (3.25)

(The choice of the symbol I suggests that for most purposes I should be
thought of as 1.)

Proposition 3.3. Suppose that the assumptions of the first paragraph of The-
orem 2.2 hold. Suppose moreover that S is given by (2.32) with a function f
satisfying (Af) and (2.36). Then there is a constant c0 > 0 such that, for any
E1, E2 satisfying (2.10) for small enough c∗ > 0, we have

F̃ η(E1, E2) = Vmain +
N

M
O
(
M−c0R2(ω + η)

)
, (3.26)

where the leading contribution Vmain from (3.23) satisfies the following esti-
mates.

(i) Suppose that (2.19) holds. Then for d = 1, 2, 3 we have

Vmain =
(2/π)d/2

ν(E)2
√

detD

(
L

2πW

)d (
ω

ν(E)

)d/2−2

×
(
Kd +O

(
ω1/2 +M−τ/2

))
(3.27)

where Kd was defined in (2.18). Moreover, for d = 4 we have

Vmain =
8

ν(E)2
√

detD

(
L

2πW

)d

(|logω| +O(1)) . (3.28)

(ii) Suppose that (2.19) holds and that d = 2. If φ1 and φ2 satisfy (C1) then

Vmain =
8

πν(E)2
√

detD

(
L

2πW

)2

×
(
πην(E)
ω2 + 4η2

+ (Q− 1)|logω| +O(1)
)
, (3.29)
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and if φ1 and φ2 satisfy (C2) then

Vmain =
8

πν(E)2
√

detD

(
L

2πW

)2

((Q− 1)|logω| +O(1)) . (3.30)

(iii) Suppose that ω = 0. Then the exponent μ from Proposition 3.2 may be
chosen so that there exists an exponent c1 > 0 such that for d = 1, 2, 3
we have

Vmain =
2d/2

ν(E)2
√

detD

(
L

2πW

)d (
η

ν(E)

)d/2−2

× (
Vd(φ1, φ2) +O(M−c1)

)
(3.31)

and for d = 4 we have

Vmain =
4

ν(E)2
√

detD

(
L

2πW

)4

(V4(φ1, φ2)|log η| +O(1)) . (3.32)

The proof consists of two independent parts.

(a) The asymptotic analysis of the right-hand side of (3.23), which yields
(3.27)–(3.32).

(b) The estimate of the error terms, which yields (3.26).

Of these two, (b) represents the main work and is done in Sect. 4. The rest of
this section is devoted to (a).

We note that Proposition 3.3 is stated as Proposition 4.1 in [3]. The
asymptotics of the leading term, stated in (3.27)–(3.32), are established in the
current paper. The key result (3.26) was proved in [3, Section 4], but only
under several simplifying assumptions, called (S1)–(S3) there. Section 4 of the
current paper gives the general proof of (3.26) by showing that the errors
arising from the simplifications (S1)–(S3) in [3] are negligible.

3.3. Computation of the Leading Term in the Case (C1)

We now perform part (a) of the proof of Proposition 3.3, i.e. we compute Vmain.
As it turns out, the computation of the contribution of the dumbbell skeletons
in the case where φ1 and φ2 satisfy (C1) is different, and somewhat simpler,
than in the case where they satisfy (C2). Hence, in this subsection we focus
on the case (C1), and devote the next one to the case (C2).

Proposition 3.4 (Dumbbell skeletons in the case (C1)). Suppose that φ1 and
φ2 satisfy (C1), that (2.12) holds, and that (2.10) holds for some small enough
c∗ > 0.

(i) Suppose that (2.19) holds. Then Vmain satisfies (3.27) for d = 1, 2, 3 and
(3.28) for d = 4.

(ii) Suppose that (2.19) holds. Then Vmain satisfies (3.29) for d = 2.
(iii) Suppose that ω = 0. Then Vmain satisfies (3.31) for d = 1, 2, 3 and (3.32)

for d = 4.
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The rest of this subsection is devoted to the proof of Proposition 3.4. We
begin by introducing some notation that we shall use throughout this and the
following subsection. For s > 0 and k ∈ N define

Rk(s) ..= 1 + 1(d � k − 1)s(d−k)/2 + 1(d = k) |log s| , (3.33)

which generalizes R2(s) defined in (2.14) and R4(s) defined in (2.29). The
parameter Rk(s) will be used in estimates of the form

∫

Rd

dx1(|x| � ε)
|x|l

(ζ + |x|2)k/2
� CεRk−l(|ζ|), (3.34)

where ζ satisfies Re ζ � 0 and |ζ| � 3, and 0 � l � k are nonnegative integers.
The computation of the main term will rely on the following asymptotic

results on the resolvent of the matrix S. Its proof is given in Appendix B.

Proposition 3.5. Let S be as in (2.32) and α ∈ C satisfy |α| � 1 and |1 −α| �
4/M + (W/L)2.

(i) There exists a constant C > 0, depending only on d and the profile func-
tion f , such that

∥∥∥∥
1

1 − αS

∥∥∥∥
�∞→�∞

� C logN
2 − |1 + α| . (3.35)

Under the same assumptions we have, for each k = 1, 2, . . . ,

sup
x,y

∣∣∣∣∣

(
S

(1 − αS)k

)

xy

∣∣∣∣∣ � C

M
R2k(|1 − α|), (3.36)

where the constant C depends only on d, f , and k.
(ii) Suppose that α in addition satisfies Reα � 0 and |α| � 1/2. Abbreviate

u ..= |1 − α| and let ζ ∈ S
1 be defined through 1 − α = uζ. Then for

d = 1, 2, 3 we have

Tr
S

(1 − αS)2
=

ud/2−2

√
detD

(
L

2πW

)d (
Bd ζ

d/2−2 +O

(
exp

(
−cL

√
u

W

)

+
1
Mu

+ u+ 1(d = 2)u|log u| + 1(d = 3)u1/2

))
,

(3.37)

where Bd was defined in (2.45). Here the power ζd/2−2 of ζ is taken to
be analytic in the right half-plane; note that by assumption on α we have
Re ζ > 0. Moreover, under the same assumptions we have for d = 4

Tr
S

(1 − αS)2
=

π2

√
detD

(
L

2πW

)d

(|log u| +O(1)) . (3.38)
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(iii) For d = 2, under the assumptions of (ii), we have the more precise two-
term asymptotics

Tr
S

(1 − αS)2
=

1√
detD

(
L

2πW

)2

×
(
π

uζ
+ π(Q− 1)|log u| +O

(
1 +

1
Mu2

+
1
u

exp
(

−cL
√
u

W

)))
,

(3.39)

where Q was defined in (3.22).

In order to apply Proposition 3.5 to the proof of Proposition 3.4, we
introduce the abbreviations

Ai
..= arcsinEi, Aη

i
..= arcsin(Ei + iη), (3.40)

which we shall tacitly use throughout the following.

Proof of Proposition 3.4. We begin by rewriting (3.23) as

Vmain =
∞∑

b1,b2=0

∑

(b3,b4)∈A
2 Re (γ2b1+b3+b4 ∗ ψη

1 ) (E1)

× 2 Re (γ2b2+b3+b4 ∗ ψη
2 ) (E2) Ib1+b2 TrSb3+b4 +Oq(NM−q), (3.41)

which follows easily using (3.20) to get rid of the condition on the summation
variables b1, . . . , b4, as well as (3.18) to replace γ̃n(Ei, φi) with (γn ∗ ψη

i )(Ei).
Now we make use of the special form (2.7) of φ1 and φ2 from Assumption

(C1): using (3.13) we find

Vmain =
∞∑

b1,b2=0

∑

(b3,b4)∈A
2Re γ2b1+b3+b4(E1 + iη)

× 2Re γ2b2+b3+b4(E2 + iη) Ib1+b2 TrSb3+b4 +Oq(NM−q).

We may now plug in the expression (3.7) and sum over b1 and b2. Abbreviating

T (z) ..=
2

1 − (M − 1)−1e2i arcsin(z)
, (3.42)

and recalling the definition (3.40), we get

Vmain =
∑

(b3,b4)∈A
2Re

(
T (E1 + iη)

eiAη
1

1 + e2iAη
1 I (−ieiAη

1 )b3+b4

)

× 2Re

(
T (E2+iη)

eiAη
2

1+e2iAη
2 I (−ieiAη

2 )b3+b4

)
TrSb3+b4 +Oq(NM−q).

(3.43)

We now prove part (i) of Proposition 3.4. Thus, we assume that (2.19)
holds. Writing out

(2Rex1)(2Rex2) = 2Re(x1x2 + x1x2) (3.44)
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yields

Vmain = 2Re(V ′
main + V ′′

main) +Oq(NM−q) (3.45)

in self-explanatory notation. We focus on V ′
main; the analysis of V ′′

main is similar.
In the summation over b3 and b4 in the definition of V ′

main, we replace the set
A with ({1, 2, . . .} × {0, 1, . . .}) and subtract the terms (b3, b4) = (2, 0), (1, 1).
This gives V ′

main = V ′
main,0 − V ′

main,1, where

V ′
main,0

..=
∞∑

b3=0

∞∑

b4=1

T (E1)
eiAη

1

1 + e2iAη
1 I (−ieiAη

1 )b3+b4

×T (E2)
e−iAη

2

1 + e−2iAη
2 I (ie−iAη

2 )b3+b4 TrSb3+b4

= T (E1)T (E2)
eiAη

1

1 + e2iAη
1 I

e−iAη
2

1 + e−2iAη
2 I Tr

ei(Aη
1−Aη

2 )S
(
1−ei(Aη

1−Aη
2 )S

)2 (3.46)

and

V ′
main,1

..= 2T (E1 + iη)T (E2 + iη)
eiAη

1

1 + e2iAη
1 I

e−iAη
2

1 + e−2iAη
2 I e2i(Aη

1−Aη
2 ) TrS2.

(Note that the two exceptional terms (b3, b4) = (2, 0), (1, 1) actually give the
same contribution; this gives rise to the prefactor 2, since the summands on the
right-hand side of (3.43) depend on b3 and b4 only through their sum b3 + b4.)
We first focus on the easier term, Re V ′

main,1, which we shall simply estimate
in absolute value. An elementary estimate yields

eiAη
i

1 + e2iAη
i I =

eiAi

1 + e2iAi
+O(η) = O(1),

eiAi

1 + e2iAi
=

1
2
√

1 − E2
i

=
1
πνi

,

(3.47)

where we abbreviated νi
..= ν(Ei). Using T (Ei + iη) = 2 + O(M−1) and

TrS2 � CN/M by (B.4), we find

∣∣V ′
main,1

∣∣ � CN

M
. (3.48)

Next, we compute Re V ′
main,0. Writing α ..= ei(Aη

1−Aη
2 ) and ν ≡ ν(E), and

using (3.47), we find

V ′
main,0 =

4
π2ν1ν2

Tr
αS

(1 − αS)2
(1 +O(η)) =

4
π2ν2

Tr
αS

(1 − αS)2
(1 +O(ω)) ,

(3.49)

where we used that M−1 � η � ω. In order to estimate the trace, we invoke
(3.36). Expanding α the variable Ei + iη − E yields

α = ei(Aη
1−Aη

2 ) = 1 +
2i
πν

(ω + 2iη) +O(ω2). (3.50)
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We write 1 − α in polar form: 1 − α = uζ with u ..= |1 − α| and ζ ∈ S
1. This

yields

u =
2ω
πν

(1 +O(η/ω + ω)) , ζ = −i +O(η/ω + ω).

We may plug this into the formula (3.37) for the case d � 3. By assumption
on η and ω, we have u � ω and α = 1 + O(ω). Thus we get from (3.37) for
d � 3 that

V ′
main,0 =

(2/π)d/2

ν2
√

detD

(
L

2πW

)d (ω
ν

)d/2−2

×
(
Bd(−i)d/2−2 +O

(
η

ω
+ ω1/2 + exp

(
−cLω1/2

W

)))
, (3.51)

where we used that η � M−1. Similarly, if d = 4 we get from (3.38) that

V ′
main,0 =

4
ν2

√
detD

(
L

2πW

)d

(|log u| +O(1)) (1 +O(ω))

=
4

ν2
√

detD

(
L

2πW

)d

|logω|
[
1 +O

(
1

|logω|
)]

. (3.52)

This concludes the analysis of V ′
main.

By a similar analysis, we find V ′′
main = V ′′

main,0 − V ′′
main,1, where

∣∣V ′′
main,1

∣∣ � CN

M
(3.53)

and

|V ′′
main,0| � C

∣∣∣∣∣Tr
ei(Aη

1+Aη
2 )S

(
1 + ei(Aη

1+Aη
2 )S

)2

∣∣∣∣∣ . (3.54)

We shall estimate the trace using (3.36). To that end, we use the elementary
estimate ∣∣∣1 + ei(Aη

1+Aη
2 )
∣∣∣ � c, (3.55)

which follows from (2.10). We conclude that

|V ′′
main,0| � CN

M
. (3.56)

In particular, for d � 3 we have the weaker bound

|V ′′
main,0| � C

∣∣∣∣∣
1

ν2
√

detD

(
L

2πW

)d (ω
ν

)d/2−2

ω1/2

∣∣∣∣∣ . (3.57)

Similarly, for d = 4 we have the weaker bound

|V ′′
main,0| � C

∣∣∣∣∣
1

ν2
√

detD

(
L

2πW

)d

log
(ω
ν

) 1
logω

∣∣∣∣∣ (3.58)

In order to conclude the proof of part (i), we observe that

Kd = 2Bd Re(−i)d/2−2 (3.59)
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for d = 1, 2, 3. Plugging (3.48), (3.51), (3.52), (3.53), (3.57), and (3.58) into

Vmain = 2Re
(V ′

main,0 − V ′
main,1 + V ′′

main,0 − V ′′
main,1

)
+Oq(NM−q) (3.60)

from (3.45) completes the proof of part (i) of Proposition 3.4.
The proof of part (ii) is similar. We find, exactly as in the proof of part

(i), that

Vmain = 2Re V ′
main,0 +O

(
N

M

)

= 2Re
4

π2ν2
Tr

S

(1 − αS)2
(1 +O(ω)) +O

(
N

M

)

with α = ei(Aη
1−Aη

2 ). Plugging (3.50) into (3.39) yields

V ′
main,0 =

4
π2ν2

1√
detD

(
L

2πW

)2 (
π

uζ
+ π(Q− 1)|log u| +O(1)

)
.

Using (3.50) on uζ = 1 − α we therefore easily get (3.29). This concludes the
proof of (3.29) and hence of part (ii).

What remains is the proof of part (iii) of Proposition 3.4. Thus, set ω = 0
so that E1 = E2 = E. The details are similar to the above proof of part (i).
The estimates (3.48), (3.53), and (3.56) may be taken over verbatim. The only
difference is the computation of the main contribution, V ′

main,0. From (3.49)
we get

V ′
main,0 =

4
π2ν2

Tr
αS

(1 − αS)2
(1 +O(η)) , α ..= |ei arcsin(E+iη)|2.

A simple expansion yields α = 1 − 4η
πν + O(η2). Hence (3.37) yields, for d =

1, 2, 3,

V ′
main,0

=
(2/π)d/2

ν2
√

detD

(
L

2πW

)d (2η
ν

)d/2−2 [
Bd +O

(
exp

(
−cLη1/2

W

)
+ η1/2

)]
.

Here we used the inequality 1
Mη � η1/2 to absorb the error term 1

Mη into the
last error term. Similarly, for d = 4 we get from (3.38)

V ′
main,0 =

4
ν2

√
detD

(
L

2πW

)4

|log η|
[
1 +O

(
1

|log η|
)]

.

Now (3.31) and (3.32) in the case (C1) follow from (3.60) and a simple com-
putation of Vd(φ1, φ2) from (2.15) for φ1 = φ2 given by (2.7). �

We conclude this subsection with a remark about the assumption on ω in
the case (i) of Proposition 3.4. The result of Proposition 3.4 is only meaningful
in the regime ω → 0, which is not imposed by our assumptions (2.10) and (2.19)
on E, ω, and η. If ω is of order one, the contribution of the dumbbell skeletons
no longer has a simple universal form as in Proposition 3.4. However, our
results remain valid even if ω � 1. In that case, we need to replace Proposition
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3.4 with the following result, which follows from a tedious and unenlightening
calculation.

Proposition 3.6. Suppose that φ1 and φ2 satisfy (C1), and that (2.10) holds
for some small enough c∗ > 0. Then

Vmain =
4

π2ν1ν2

[
Dη(E1, E2) +O

(
R4(ω)

N

M

(
1
M

+ η

))]
(3.61)

with νi = ν(Ei) and where

Dη(E1, E2) ..= 2Re Tr
ei(Aη

1−Aη
2 )S

(
1 − ei(Aη

1−Aη
2 )S

)2

− 2 Re Tr
ei(Aη

1+Aη
2 )S

(
1 + ei(Aη

1+Aη
2 )S

)2 − 8(1 − 2E2
1)(1 − 2E2

2)TrS2.

(3.62)

In the regime ω � 1, the first summand in Dη(E1, E2) dominates; its
leading asymptotics may be explicitly computed, which leads to the formulas
in Proposition 3.4. If ω � 1, all three terms typically are of the same order,
and cannot be brought into a simpler form. In this case, barring a coincidental
cancellation in Dη(E1, E2), these terms are all of order M/N . Hence, the error
term in (3.61) is of subleading order. In the regime ω � 1, we may compute
the traces in (3.62) using a Riemann sum approximation provided that f is
piecewise C∞ or that, for some k ∈ N, all derivatives of order k of f̂ are
integrable. The result is

Dη(E1, E2)

=
(

L

2πW

)d

2Re
∫

⎡

⎢⎣
ei(A1−A2)f̂∗(q)(

1 − ei(A1−A2)f̂∗(q)
)2 − ei(A1+A2)f̂∗(q)(

1 + ei(A1+A2)f̂∗(q)
)2

⎤

⎥⎦dq

− 8
(
L

W

)d

(1 − 2E2
1)(1 − 2E2

2)
∫
f∗(x)2 dx+ oω((L/W )d), (3.63)

where f∗(x) ..= f(x)/
∫
f(y) dy is the probability density associated with f .

This formula immediately shows that the critical dimension for the universality
of the correlation decay is d = 4. Noting that f̂∗(q) ∼ 1 − (q,Dq) +O(q4) and
A2 −A1 ∼ ω, the first integral is approximately

∫
dq

ω2(q ·Dq)2 ≈ 1
ω2

∫
dq
q4
.

For d � 4 the main contribution comes from the very small q regime and the
details of f̂∗ are irrelevant: only the covariance matrix D matters (which is
essentially a constant in the case of (2.2)). For d > 4, however, the integral is
not concentrated on the infrared regime q ≈ 0 and the specific form of f̂∗, in
particular its decay properties, is essential and influences the asymptotics of
Vmain.
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3.4. Computation of the Leading Term in the Case (C2)

We now prove the analogue of Proposition 3.4 for the case that φ1 and φ2

satisfy (C2) instead of (C1). The calculation reveals that in the regime (2.19)
the explicit form of φi is not important, and only its integral

∫
φi = 2π mat-

ters. On the other hand, in the regime ω = 0 the answer depends on φi via
the quadratic form Vd defined in (2.15). Throughout this section we use the
notation of Sect. 3.3, and in particular (3.33) and (3.40).

Proposition 3.7 (Dumbbell skeletons in the case (C2)). Suppose that φ1 and
φ2 satisfy (C2), that (2.12) holds, and that (2.10) holds for some small enough
c∗ > 0.

(i) Suppose that (2.19) holds. Then Vmain satisfies (3.27) for d = 1, 2, 3 and
(3.28) for d = 4.

(ii) Suppose that (2.19) holds. Then Vmain satisfies (3.30) for d = 2.
(iii) Suppose that ω = 0. Then the exponent μ in Proposition 3.2 may be

chosen so that Vmain satisfies (3.31) for d � 3 and (3.32) for d = 4.

Proof of Proposition 3.7 (i). Similarly to (3.41), we get

Vmain =
[Mμ]−1∑

b1,b2=0

∑

(b3,b4)∈Aμ

2 Re (γ2b1+b3+b4 ∗ ψη
1 ) (E1)

× 2 Re (γ2b2+b3+b4 ∗ ψη
2 ) (E2) Ib1+b2 TrSb3+b4 +Oq(NM−q), (3.64)

where we defined

Aμ
..= ({1, 2, . . . , [Mμ]} × {0, 1, . . . , [Mμ] − 1})\{(2, 0), (1, 1)} .

The only difference between (3.41) and (3.64) is that in (3.64) we use the index
set Aμ instead of A, thus dropping any terms with a summation index larger
than [Mμ] (or [Mμ] − 1).

Next, we split the integration domain of each convolution using a smooth,
nonnegative, symmetric function χ satisfying χ(E) = 1 for |E| � 1 and χ(E) =
0 for |E| � 2. We split ψi = ψ�

i + ψ>
i , where

ψ�
i (E) ..= ψi(E)χ(M−θ/2E), ψ>

i (E) ..= ψi(E)
(
1 − χ(M−θ/2E)

)
, (3.65)

for some positive constant θ > 0. Here we take θ ..= τ , where τ is the constant
from (2.19).

This yields the splitting ψη
i = ψ�,η

i + ψ>,η
i of the rescaled test function

ψη(E) = η−1ψ(η−1E). This splitting is done on the scale ηMθ/2, and we have

suppψ�,η
i ⊂ [−2ηMθ/2, 2ηMθ/2]. (3.66)

Moreover, recalling (2.8) and using the trivial bound |γn(E)| � C we find
∣∣∣(ψ�,η

i ∗ γn)(Ei)
∣∣∣ � C,

∣∣(ψ>,η
i ∗ γn)(Ei)

∣∣ � CqM
−q (3.67)
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for any q > 0. Plugging the splitting ψη
i = ψ�,η

i + ψ>,η
i into (3.64) and using

(3.67) yields

Vmain =
[Mμ]−1∑

b1,b2=0

∑

(b3,b4)∈Aμ

2Re
(
γ2b1+b3+b4 ∗ ψ�,η

1

)
(E1)

× 2Re
(
γ2b2+b3+b4 ∗ ψ�,η

2

)
(E2) Ib1+b2 TrSb3+b4 +Oq(NM−q).

(3.68)

We use the same splitting (3.44) as in (3.45), and focus only on the term V ′
main.

As after (3.45), we split V ′
main = V ′

main,0 − V ′
main,1 and focus only on leading

term V ′
main,0. Using the same method as the one leading to (3.48), one can

easily show that

V ′
main,1 = O

(
N

M

)
. (3.69)

Thus, we have to compute

V ′
main,0 =

[Mμ]−1∑

b1,b2=0

[Mμ]∑

b3=1

[Mμ]−1∑

b4=0

(
γ2b1+b3+b4 ∗ ψ�,η

1

)

× (E1)
(
γ2b2+b3+b4 ∗ ψ�,η

2

)
(E2) Ib1+b2 TrSb3+b4

=

[
T (E1)T (E2)

eiA1

1 + e2iA1I
e−iA2

1 + e−2iA2I Tr

(
ei(A1−A2)S

(
1 − ei(A1−A2)S

)2

×
(
1 − (−e2iA1I)[M

μ]
)(

1 − (−e−2iA2I)[M
μ]
)

×
(
1 − (ei(A1−A2)S)[M

μ]
)2

)]
∗ ψ�,η

1 (E1) ∗ ψ�,η
2 (E2).

Next, we get rid of all terms with an exponent [Mμ]. The basic idea is that
any such term oscillates in its energy variable on a much smaller scale than
the scale η of the convolution with ψ�,η

i . More precisely, we multiply out the
three parentheses on the second line, and prove that any of the seven terms
that is not 1 yields a negligible contribution. All of these terms are treated in
the same way. For definiteness, we focus on the term (−e2iA1I)[M

μ]. Thus, we
have to estimate
[
T (E1)T (E2)

eiA1

1 + e2iA1I
e−iA2

1 + e−2iA2I (−e2iA1I)[M
μ] Tr

ei(A1−A2)S
(
1 − ei(A1−A2)S

)2

]

∗ψ�,η
1 (E1) ∗ ψ�,η

2 (E2). (3.70)

In order to estimate this, we observe that, since θ = τ , we get from (3.66) and
(2.19) that

suppψ�,η
i ⊂ [−2M−θ/2ω, 2M−θ/2ω]. (3.71)
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We denote the argument of ψ�,η
i in the convolution integral by vi, and the

corresponding argument in the bracket in (3.70) by Ev
i := Ei − vi. By (3.71),

on the domain of integration we have |vi| � 2M−θ/2ω. Therefore, we may
estimate the first two denominators of (3.70), for the integration variable vi

in the support of ψ�,η
i , as

∣∣∣1 + I−1e−2i arcsin Ev
i

∣∣∣ � 1
2

∣∣∣1 + e−2i arcsin Ev
i )
∣∣∣ =

√
1 − (Ev

i )2 � c (3.72)

for small enough c∗ in (2.10). Hence we may write (3.70) in the form
∫

dv1 ψ
�,η
1 (v1)

(
−e2i arcsin Ev

1

)[Mμ]

Trh(v1),

where h is a smooth matrix-valued function on R with derivatives satisfying

‖h(k)(v)‖ � Ckη
−k−1

for all k ∈ N. Since the phase factor φ(v1) ..= 2 arcsin(E1 − v1) is regular
and |φ′| � 1 on the support of ψ�,η

1 , a standard stationary phase argu-
ment using a k-fold integration by parts implies that (3.70) is bounded by
NCkη

−k−1M−kμ � CNM−1, where the second bound follows by choosing k
large enough.

We conclude that

V ′
main,0 =

[
T (E1)T (E2)

eiA1

1 + e2iA1I
e−iA2

1 + e−2iA2I Tr
ei(A1−A2)S

(
1 − ei(A1−A2)S

)2

]

∗ψ�,η
1 (E1) ∗ ψ�,η

2 (E2) +O

(
N

M

)
(3.73)

for all dimensions d. We have the elementary estimate T (Ev
i ) = 2 + O(M−1)

and, using (3.72),

ei arcsin Ev
i

1 + I−1e2i arcsin Ev
i

=
1

2
√

1 − E2

(
1 +O

(
1
M

+ ω

))
=

1
πν

(
1 +O

(
1
M

+ ω

))
, ν ≡ ν(E).

In order to compute the trace in (3.73), we proceed exactly as in the proof of
Proposition 3.4; here we have α ..= ei(arcsin Ev

1 −arcsin Ev
2 )) = 1 − uζ, where (on

the domain of integration)

u =
2ω
πν

(
1 +O(M−θ/2 + ω)

)
, ζ = −i +O(M−θ/2 + ω).

Notice that after replacing Ei − vi with E, at the cost of a negligible error,
and thus removing the v-dependence in the first factor of the convolutions,
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the precise form of ψi becomes irrelevant and only
∫
ψi(E) dE = 2π matters.

Hence we get, for d � 3,

V ′
main,0 =

(2/π)d/2

ν2
√

detD

(
L

2πW

)d (ω
ν

)d/2−2

×
(
Bd(−i)d/2−2 +O

(
exp

(
−cL

√
u

W

)
+ ω1/2 +M−θ/2

))
, (3.74)

and, for d = 4,

V ′
main,0 =

4
ν2

√
detD

(
L

2πW

)d

|logω|
(

1 +O

(
1

|logω| +M−θ/2 + ω

))
.

(3.75)

For V ′′
main we perform a similar estimate, using (3.55) with η = 0 and the fact

that V ′′
main contains Tr αS

(1−αS)2 with |1−α| � c (see (3.54)–(3.55)), which may
be estimated by (3.36). This gives

|V ′′
main| � CN

M
. (3.76)

The estimates (3.69) and (3.74)–(3.76) conclude the analysis of Vmain, and
hence the proof of Proposition 3.7 (i). �

Proof of Proposition 3.4 (ii). The argument is similar to the proof of part (i),
and we only focus on what is different. We start from (3.73) for d = 2, which
we write as

V ′
main,0 =

[
4 +O(ω)
π2ν2

Tr
S

(
1 − ei(A1−A2)S

)2

]
∗ ψ�,η

1 (E1) ∗ ψ�,η
2 (E2)

+O

(
N

M

)
. (3.77)

Invoking (3.39) with u = ω(1 +O(M−τ )) yields

V ′
main,0 =

4
π2ν2

√
detD

(
L

2πW

)2

×
[(

π

1−ei(A1−A2)

)
∗ ψ�,η

1 (E1) ∗ ψ�,η
2 (E2)+π(Q−1)|logω|+O(1)

]

+O
(
N

M

)
.

We compute the convolution integral using (3.50):
(

π

1 − ei(A1−A2)

)
∗ ψ�,η

1 (E1) ∗ ψ�,η
2 (E2)

= i
π2ν

2
(1 +O(ω))

∫
dv1
2π

dv2
2π

1
ω + v1 − v2

ψ�,η
1 (v1)ψ

�,η
2 (v2)

= i
π2ν

2

(
1
ω

+
η

ω2

∫
dv1
2π

dv2
2π

(v1 − v2)ψ�(v1)ψ�(v2) +O(1)
)
.
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Here we used that, by (3.71), we always have |ω+v1−v2| � ω/2 on the support
of the function ψ�,η

1 (v1)ψ
�,η
2 (v2). Taking the real part of this expression yields

simply O(1). Hence we conclude that

Vmain = 2Re V ′
main,0 +O

(
N

M

)

=
4

π2ν2
√

detD

(
L

2πW

)2

(2π(Q− 1)|logω| +O(1)) .

This concludes the proof of part (ii) of Proposition 3.7. �

In order to prove part (iii) of Proposition 3.7, we shall need the following
local decay bound.

Lemma 3.8. For all b ∈ N we have

(I−1Sb)yz � C

Mbd/2
+
C

N

for some constant C depending only on f .

Proof. This follows from a standard local central limit theorem; see for instance
the proof in [11]. �

In particular, for 1 � b � (L/W )2 we have

(Sb)yz � C

Mbd/2
. (3.78)

Proof of Proposition 3.7 (iii). We assume that the exponent μ from Proposi-
tion 3.2 has been chosen so that

11μ < 12ρ, 5μ < 1 + 2ρ. (3.79)

(Recall that the most critical case is when both ρ and μ are just slightly below
1/3.) We use the truncated functions ψ�,η

i from (3.65), where θ is an exponent
that satisfies

6μ− 6ρ < θ < 2ρ− μ. (3.80)

We start from (3.68) with E1 = E2 = E, from which we get

Vmain =
[Mμ]−1∑

b1,b2=0

[Mμ]∑

b3=1

[Mμ]−1∑

b4=0

2Re
(
γ2b1+b3+b4 ∗ ψ�,η

1

)
(E)

× 2Re
(
γ2b2+b3+b4 ∗ ψ�,η

2

)
(E) Ib1+b2 TrSb3+b4 +O

(
N

M

)
; (3.81)

here we estimated the contribution of the two terms (b3, b4) = (2, 0), (1, 1)
excluded from Aμ by CN/M . For the following we need the bound

[Mμ]∑

b3=1

[Mμ]∑

b4=0

TrSb3+b4 � CN

[Mμ]∑

b3=1

[Mμ]∑

b4=0

1
M(b3 + b4)d/2

� CN

M
R4(M−μ), (3.82)
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where in the first step we used (3.78). Inserting the splitting 1 = I−2(b1+b2) +
(1 − I−2(b1+b2)) into the right-hand side of (3.81) and using (3.67) as well as
(3.82) to estimate the second resulting term yields

Vmain =
∞∑

b1,b2=0

[Mμ]∑

b3=1

[Mμ]−1∑

b4=0

2Re
(
γ2b1+b3+b4 ∗ ψ�,η

1

)
(E)

× 2Re
(
γ2b2+b3+b4 ∗ ψ�,η

2

)
(E) I−(b1+b2) TrSb3+b4

+O

(
N

M
M3μ−1R4(M−μ)

)
. (3.83)

Here we also used (3.67) to extend the b1, b2-summation to ∞.
Next, we split

Vmain = 2Re (V ′
main + V ′′

main) +O

(
N

M
M3μ−1R4(M−μ)

)
(3.84)

using (3.44) as in (3.45). The error term V ′′
main may be estimated exactly as in

the proof of Proposition 3.7 (i), using the fact that φ�,η
i has compact support;

see (3.76). The result is

|V ′′
main| � CN

M
. (3.85)

What remains is the computation of

V ′
main =

∞∑

b1,b2=0

[Mμ]∑

b3=1

[Mμ]−1∑

b4=0

(
γ2b1+b3+b4 ∗ ψ�,η

1

)
(E)

×
(
γ2b2+b3+b4 ∗ ψ�,η

2

)
(E) I−(b1+b2) TrSb3+b4 .

We begin by enforcing exponential convergence with a sufficient rate in the
summation over b3 and b4. To that end, let ξ be a constant satisfying

6μ− 6ρ < 3ξ < min {2ρ− μ− θ, μ/2} (3.86)

(see (3.79) and (3.80)), and set

J ..= 1 −M−μ−ξ

We introduce the splitting 1 = Jb3+b4 + (1 − Jb3+b4) into the summation in
V ′

main. In line with the abuse of notation (ϕ ∗ χ)(E) ≡ ϕ(E) ∗ χ(E), in the
following we use the notation

Ei = E − vi, Ai = arcsinEi, (3.87)

and abbreviate

ϕ(E1, E2) ∗ ψ�,η
1 (E) ∗ ψ�,η

2 (E)

≡
∫

dv1dv2 ϕ(E − v1, E − v2)ψ
�,η
1 (v1)ψ

�,η
2 (v2). (3.88)
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Now the error term, resulting from the term 1 − Jb3+b4 in the above splitting,
is

[Mμ]∑

b3=1

[Mμ]−1∑

b4=0

(
T (E1)T (E2)

eiA1

1 + I−1e2iA1

e−iA2

1 + I−1e−2iA2
(ei(A1−A2))b3+b4

)

∗ψ�,η
1 (E) ∗ ψ�,η

2 (E)(1 − Jb3+b4)TrSb3+b4 � CM−ξ

[Mμ]∑

b3,b4=0

TrSb3+b4

� CN

M
M−ξR4(M−μ) ;

here we obtained the first expression by using (3.7) and summing up the geo-
metric series in the indices b1, b2; the first inequality follows from the estimate

eiA1

1 + I−1e2iA1
=

1
2
√

1 − E2
+O

(
1
M

+ ηMθ/2

)

=
1

πν(E)
+O

(
1
M

+ ηMθ/2

)
, (3.89)

valid on the support of the convolution integral (see (3.71)), and from
|1 − Jb3+b4 | � CM−ξ; the second inequality follows from (3.82). We there-
fore conclude that

V ′
main =

∞∑

b3=1

∞∑

b4=0

(
T (E1)T (E2)

eiA1

1 + I−1e2iA1

e−iA2

1 + I−1e−2iA2
(ei(A1−A2))b3+b4

)

∗ψ�,η
1 (E) ∗ ψ�,η

2 (E)Tr(JS)b3+b4 +O

(
N

M
M−ξR4(M−μ)

)
, (3.90)

where we used (3.7) as well as the definitions (3.42) and (3.87) followed by an
explicit summation over b1 and b2. In order to simplify the right-hand side of
(3.90), we use (3.89) and T (E−vi) = 2+O(M−1) to replace eiAi/(1+I−1e2iAi)
and T (Ei) with 1/(2

√
1 − E2) and 2, respectively. The contribution of the error

terms in both replacements can be estimated by using the following general
estimate for any fixed k ∈ N (here we use it for k = 2):

Tr
S

(1 − JS)k
=

∞∑

d1=1

∞∑

d2,...,dk=0

Tr(JS)d1+···+dk � CkN

M
R2k(M−μ−ξ), (3.91)

which plays a role similar to that of (3.82) in providing a robust a priori bound
which does not make use of oscillations. The estimate in (3.91) follows from
(3.36) together with (3.86). We find

V ′
main =

4
π2ν2

∞∑

b3=1

∞∑

b4=0

(
(ei(A1−A2))b3+b4

)
∗ ψ�,η

1 (E) ∗ ψ�,η
2 (E) Tr(JS)b3+b4

+O

(
N

M
R4(M−μ−ξ)

(
1
M

+ ηMθ/2

)
+
N

M
R4(M−μ)M−ξ

)
. (3.92)
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Next, we sum up the geometric series on the right-hand side of (3.92). We use
the estimate, valid on the support of the convolution integral,

Tr
ei(A1−A2)JS

(
1 − ei(A1−A2)JS

)2

= Tr
S

(
e−i(A1−A2) − JS

)2 +O

(
N

M
R4(M−μ−ξ)M−μ−ξ

)

= Tr
S

(
1 + i(1 − E2)−1/2(v1 − v2) − JS

)2

+O

(
N

M
R4(M−μ−ξ)M−μ−ξ +

N

M
R6(M−μ−ξ)Mθη2

)
;

here the last step follows from (3.50) and a short argument using a resolvent
expansion together with (3.91) and the bound

Mθη2 � M−μ−ξM−3ξ, (3.93)

as follows from (3.86). We omit further details. Plugging this into the right-
hand side of (3.92) and recalling (3.86) as well as the definition (3.33) of Rk,
we get

V ′
main =

4
π2ν2

1
(2π)2

∫
dv1 dv2 ψ

η
1 (v1)ψ

η
2 (v2)

×Tr
S

(
1 + i(1 − E2)−1/2(v1 − v2) − JS

)2 +O

(
N

M
R4(M−μ)M−ξ

)
.

(3.94)

Recalling (3.86) and η = Mρ, we find that the error term may be estimated
by N

MR4(M−μ)M−ξ � R4(η)M−c1 for some constant c1 > 0. Going back to
(3.84) and recalling (3.85) as well as the second inequality of (3.79), we find

Vmain =
8

π2ν2
Re

1
2π

∫
dv (φη

1 ∗ ψη
2 )(v) Tr

S
(
1 + i(1 − E2)−1/2v − JS

)2

+O

(
N

M
(1 +R4(η)M−c1)

)

for some constant c1 > 0 (recall from (3.10) that φη
1(E) = ψη

1 (−E)). Using
Proposition 3.9 below, with e ..= ψ1 ∗φ2, b = (1−E2)−1/2, and the observation
that

2Re

∞∫

0

dt t1−d/2 ê(t) =
∫

R

dt |t|1−d/2 φ̂1(t) φ̂2(t) = Vd(φ1, φ2),

2 ê(0) = 2 φ̂1(0) φ̂2(0) = V4(φ1, φ2),
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we find for d � 3 that

Vmain =
4

π2ν2
√

detD

(
L

2
√
πW

)d ( 2η
πν

)d/2−2

×Vd(φ1, φ2) +O

(
N

M
(1 +R4(η)M−c1)

)

and for d = 4 that

Vmain =
4|log η|

π2ν2
√

detD

(
L

2
√
πW

)4

V4(φ1, φ2) +O

(
N

M

)
.

This concludes the proof of Proposition 3.7 (iii). �

The proof of the following result is given in Appendix B.

Proposition 3.9. Suppose that (2.12) holds. Let b > 0 be fixed and J ..= 1 −
M−c2η for some c2 > 0. Fix a smooth real function e ∈ L1(R) satisfying the
condition (C2) (see (2.8)), and recall the notation eη(v) = η−1e(η−1v). Then
for d � 3 we have

1
2π

∫
dv eη(v)Tr

S

(1 + ibv − J S)2

=
(bη)d/2−2

√
detD

(
L

2
√
πW

)d
∞∫

0

dt t1−d/2 ê(t) +O

(
N

M
R4(η)M−c0

)
(3.95)

for some constant c0 > 0, and for d = 4 we have

1
2π

∫
dv eη(v)Tr

S

(1 + ibv − J S)2
=

|log η|√
detD

(
L

2
√
πW

)4

ê(0) +O

(
N

M

)
.

(3.96)

4. Extraction of the Leading Term and Estimate of the Error
Terms

In this section we give the core of the proof: the estimate of the error in (3.26),
hence completing the proof of Proposition 3.3. Once Proposition 3.3 is proved,
Theorems 2.2–2.4 will follow easily (see Sect. 4.8 below). We recall that, as in
Sect. 3, we set β = 2 throughout this section. How to modify the arguments
for β = 1 is sketched in Sect. 5.2 below.

The basic strategy is to compute the expectation in (3.17) by plugging
(3.1) into it and classifying all possible label configurations (xi) according to
the partition induced by coincidences among the labels. After an appropriate
resummation, we shall be able to identify the leading terms which give rise
to Vmain and the error terms, which are to be estimated. In [3], this strategy
was carried out under various simplifying assumptions, denoted by (S1)–(S3)
there. Roughly, these simplifications stated that among all possible partitions
only the pairings matter, that coincidences of labels that are not imposed by
the pairings may be neglected, and that the nonbacktracking condition from
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(3.1) may be neglected beyond some fundamental restrictions it imposes on
the class of admissible partitions.

In the following, we deal with all scenarios that were ignored under
these simplifications. In particular, we deal with blocks of partitions that are
larger than two. This requires to introduce more involved structures, which
are accompanied by heavier notation. In addition, unlike the pairings from [3],
partitions with larger blocks do not have an intuitive graphical representation
in terms of bridges joining edges. Our analysis builds on that developed in [3];
for the convenience of the reader, we summarize some concepts from Sections
4.1 and 4.2 of [3] in the beginnings of Sects. 4.1 and 4.3, respectively.

Although the contributions of all exceptional scenarios are ultimately
negligible, they cannot be estimated brutally by absolute value. The reason
is the strongly oscillatory character of the expressions we have to estimate.
Even if two summation labels coincide, and hence result in a gain in the form
of a small prefactor, we cannot afford to estimate all remaining summations
by the sum of absolute values of summands. Instead, we have to introduce a
more involved, local, bookkeeping of various index coincidences, in which some
parts of the summation are estimated by taking the absolute value inside while
others are estimated by exploiting oscillations among the summands. Thus, the
contribution of any ladder that is not affected by the simplifications of [3] still
has to be summed up explicitly (i.e. exploiting oscillations).

4.1. Graphs and Partitions of Edges

We have to compute F̃ η(E1, E2) defined in (3.17). In order to express the
nonbacktracking powers of H in terms of the entries of H, it is convenient
to index the two multiple summations arising from (3.1) (when plugged into
(3.17)) using a graph. This graphical language was introduced in [3, Section
4.1], and we summarize it here for the convenience of the reader. We introduce
a directed graph C(n1, n2) ..= C1(n1) � C2(n2) defined as the disjoint union of
a directed chain C1(n1) with n1 edges and a directed chain C2(n2) with n2

edges. Throughout the following, to simplify notation we shall often omit the
arguments n1 and n2 from the graphs C, C1, and C2. For an edge e ∈ E(C),
we denote by a(e) and b(e) the initial and final vertices of e. Similarly, we
denote by a(Ci) and b(Ci) the initial and final vertices of the chain Ci. We call
vertices of degree two black and vertices of degree one white. See Fig. 1 for an
illustration of C and for the convention of the orientation.

We assign a label xi ∈ T to each vertex i ∈ V (C), and write x =
(xi)i∈V (C). For an edge e ∈ E(C) we define the associated pairs of ordered
and unordered labels

xe
..= (xa(e), xb(e)), [xe] ..= {xa(e), xb(e)}.

Using the graph C = C(n1, n2) we may now write the covariance
〈
TrH(n1) ; TrH(n2)

〉
=E

[(
TrH(n1)

) (
TrH(n2)

)]

− E

(
TrH(n1)

)
E

(
TrH(n2)

)
=

∑

x∈TV (C)

I(x)A(x), (4.1)
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Figure 1. The graph C = C1 � C2. Here we chose n1 = 6
and n2 = 5. We indicate the orientation of the chains C1 and
C2 using arrows. In subsequent pictures, we systematically
drop the arrows to avoid clutter, but we consistently use this
orientation when drawing graphs

where we introduced

A(x) ..= E

⎛

⎝
∏

e∈E(C)

Hxe

⎞

⎠− E

⎛

⎝
∏

e∈E(C1)

Hxe

⎞

⎠E

⎛

⎝
∏

e∈E(C2)

Hxe

⎞

⎠ , (4.2)

and the indicator function

I(x) ..= I0(x)
∏

i,j∈V (C)..
dist(i,j)=2

1(xi �= xj),

I0(x) ..= 1(xa(C1) = xb(C1))1(xa(C2) = xb(C2)).

(4.3)

The indicator function I0(x) implements the fact that the final and initial
vertices of each chain have the same label, while I(x) in addition implements
the nonbacktracking condition. When drawing C as in Fig. 1, we draw vertices
of C with degree two using black dots, and vertices of C with degree one using
white dots. The use of two different colours also reminds us that each black
vertex i gives rise to a nonbacktracking condition in I(x), constraining the
labels of the two neighbours of i to be distinct.

In order to compute the expectation in (4.2), we decompose the label
configurations x according to partitions of E(C). The following definition was
given, in a reduced form, in [3, Definition 4.2].

Definition 4.1. (i) We denote by P(U) for the set of partitions of a set U
and by M(U) ⊂ P(U) the set of pairings (or matchings) of U . (In the
applications below the set U will be either E(C) or V (C).) We call blocks
of a pairing bridges.

(ii) We introduce the usual partial order � on P(E(C)), where Π � Γ means
that Π is a refinement of Γ.

(iii) For a label configuration x ∈ T
V (C) we define the partition P (x) ∈

P(E(C)) as the partition of E(C) generated by the equivalence relation
e ∼ e′ if and only if [xe] = [xe′ ]. Similarly, Po(x) ∈ P(E(C)) is the par-
tition of E(C) generated by the equivalence relation e ∼ e′ if and only if
xe = xe′ . (Here the subscript “o” stands for “ordered”).
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Here ends the summary of the material from [3, Section 4.1]. Next, we
introduce the new concept of a halving partition. For a partition Ξ ∈ P(E(C))
and a subset γ ⊂ E(C) we define the restriction

Ξ|γ ..= {ξ ∩ γ .. ξ ∈ Ξ, ξ ∩ γ �= ∅} .
Moreover, for γ ⊂ E(C) and Ξ ∈ P(E(C)) we define

μγ(Ξ) ..= 1 (Ξ|γ consists of two blocks of equal size) . (4.4)

We also set μ∅(Ξ) ..= 1. For a partition Γ ∈ P(E(C)) we define the subset

H(Γ) ..= {Ξ � Γ .. μγ(Ξ) = 1 for each γ ∈ Γ} . (4.5)

Thus, H(Γ) is the subset of partitions Ξ that refine each block of Γ into two
pieces of equal size. We call any Ξ ∈ H(Γ) a halving partition of Γ. If Γ is a
pairing, Ξ ∈ H(Γ) is simply the atomic partition.

Armed with these definitions, we return to the computation of (4.2) to
be plugged into (4.1). We first focus on the first term of (4.2). The idea is to
partition all edges e ∈ E(C) first using the unordered labels [xe], yielding a
partition Γ, and second using the ordered labels xe, yielding a finer partition
Ξ ∈ H(Γ). In other words, the blocks of Γ collect those edges that have the
same unordered labels, while each such block is further subdivided into two
smaller blocks according to the two possible orderings of the same unordered
label. We express this constraint on x using the indicator function

BΓ,Ξ(x) ..= 1(P (x) = Γ)1(Po(x) = Ξ). (4.6)

Notice that the partitions Γ and Ξ yield a nonzero contribution only if each
block of Γ is subdivided by Ξ into two blocks of equal size, because EAk

xyA
l
yx =

0 unless k = l (recall from (2.4) that Hxy =
√
SxyAxy). This justifies the

restriction Ξ ∈ H(Γ). Thus, we write

E

∏

e∈E(C)

Hxe
=

∑

Γ∈P(E(C))

1(P (x) = Γ)
∏

γ∈Γ

E

∏

e∈γ

Hxe

=
∑

Γ∈P(E(C))

∑

Ξ∈H(Γ)

BΓ,Ξ(x)
∏

γ∈Γ

(
μγ(Ξ)

∏

e∈γ

√
Sxe

)
, (4.7)

Here in the first step we used that Hxe
and Hxe′ are independent if [xe] �= [xe′ ],

and in the second step that E
∏

e∈γ Hxe
vanishes unless the partition Po(x)|γ

consists of two blocks of equal size.
Similarly, we find for the second term of (4.2) that

E

⎛

⎝
∏

e∈E(C1)

Hxe

⎞

⎠E

⎛

⎝
∏

e∈E(C2)

Hxe

⎞

⎠

=
∑

Γ∈P(E(C))

∑

Ξ∈H(Γ)

BΓ,Ξ(x)
∏

γ∈Γ

(
μγ∩E(C1)(Ξ)μγ∩E(C2)(Ξ)

∏

e∈γ

√
Sxe

)
.

(4.8)
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In order to express A(x) (see (4.2)) we subtract (4.8) from (4.7), which yields

A(x) =
∏

e∈E(C)

√
Sxe

∑

Γ∈Pc(E(C))

∑

Ξ∈H(Γ)

BΓ,Ξ(x)D(Γ,Ξ), (4.9)

where we defined

D(Γ,Ξ) ..=
∏

γ∈Γ

μγ(Ξ) −
∏

γ∈Γ

(
μγ∩E(C1)(Ξ)μγ∩E(C2)(Ξ)

)
(4.10)

as well as the set of connected partitions

Pc(E(C)) ..=
{
Γ ∈ P(E(C)) ..

there is a γ ∈ Γ such that γ ∩ E(C1) �= ∅ and γ ∩ E(C2) �= ∅}. (4.11)

The restriction of the summation in (4.9) from Γ ∈ P(E(C)) to Γ ∈ Pc(E(C))
follows from the observation that if Γ is such that each γ ∈ Γ satisfies γ ⊂
E(C1) or γ ⊂ E(C2), then D(Γ,Ξ) = 0 for all Ξ ∈ H(Γ). We also record
that D(Γ,Ξ) is either 0 or 1. In analogy to (4.11), we also define the subset
Mc(E(C)) ..= Pc(E(C)) ∩ M(E(C)) of connected pairings.

4.2. The Refining Pairing of a Partition

Next, we break up larger blocks of the partition Γ ∈ P(E(C)) into pairings. The
blocks of Γ were defined by the label coincidences, which remain unchanged
by the breaking up of Γ; hence this breaking up of Γ may seem artificial. It
is however a very convenient technical device, since it allows us to reduce the
estimates on partitions with arbitrarily large blocks to estimates on pairings.
In particular, it allows us to use the machinery developed in [3] to control the
oscillations.

Thus, given a partition Γ ∈ P(E(C)) and one of its halving partitions
Ξ ∈ H(Γ), we introduce a rule for breaking up Γ into a refining pairing Π =
Φ(Γ,Ξ) ∈ M(E(C)). Although there is much arbitrariness in the choice of
such a pairing, we define it precisely so as to ensure that, apart from the
obvious condition Π � Γ, it fulfils the three following properties which will be
important for the rest of the argument.
(a) The two edges of each bridge of Π belong to different blocks of Ξ.
(b) If Γ ∈ Pc(E(C)) is a connected partition and Ξ ∈ H(Γ) then Φ(Γ,Ξ) ∈

Mc(E(C)) is a connected pairing. In other words, connectedness is main-
tained after the refinement.

(c) How a block γ ∈ Γ is broken up into pairings does not depend on the
other blocks of Γ.

The refinement operation Φ can be easily defined using a greedy algorithm
that successively breaks up large blocks of Γ into bridges, such that these
three properties are satisfied at each step. In particular, when constructing Π
from Γ and Ξ, we always break up blocks of Γ into smaller blocks in such a way
that the restriction of Ξ to these smaller blocks is again a halving partition.

The precise definition of the operation Φ is the following. We introduce
a total order on the edges E(C) as follows. The edges of C1 are increasing from
left to right (see Fig. 1); the edges of C2 are increasing from right to left; any
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edge of C1 is smaller than any edge of C2. Now suppose that Ξ ∈ H(Γ). We
construct Π = Φ(Γ,Ξ) recursively as follows. Set Γ0

..= Γ and k ..= 0.
(i) If Γk is a pairing then set Π ..= Γk and stop the recursion. Otherwise let

γ ∈ Γk satisfy |γ| > 2.
(ii) Let e be the first edge of γ and e′ the last edge of γ that does not belong

to the same block of Ξ as e. Set Γk+1 to be Γk in which the block γ has
been split into the pieces {e, e′} and γ\{e, e′}.

(iii) Increment k by one and go to step (i).
It is immediate that this algorithm terminates after a finite number of steps
and that Π = Φ(Γ,Ξ) is a pairing. In fact, Φ(Γ,Π) ∈ Mc(E(C)) is a connected
pairing. To see this, note that there exists a γ ∈ Γ such that γ ∩ E(C1) �= ∅
and γ ∩ E(C2) �= ∅. It is not hard to see that in at least one step (ii) of the
algorithm operating on γ we have e ∈ E(C1) and e′ ∈ E(C2), so that the bridge
{e, e′} ∈ Φ(Γ,Ξ) connects the two components of C.

Hence we may plug the trivial identity 1 =
∑

Π∈Mc(E(C)) 1 (Φ(Γ,Ξ) = Π)
into (4.9) and use (4.1) to get

〈
TrH(n1) ; TrH(n2)

〉
=

∑

Π∈Mc(E(C))

∑

Γ�Π

∑

Ξ∈H(Γ)

1 (Φ(Γ,Ξ) = Π) D(Γ,Ξ)

×
∑

x∈TV (C)

I(x)BΓ,Ξ(x)
∏

{e,e′}∈Π

Sxe
. (4.12)

(Recall that here C ≡ C(n1, n2).) It is convenient to introduce the set of all
connected pairings,

Mc
..=

⊔

n1,n2�0..
n1+n2 even

Mc (E(C(n1, n2))) ,

with which we associate the following definitions.

Definition 4.2. With each pairing Γ ∈ Mc we associate its underlying graph
C(Γ), and regard n1 and n2 as functions on Mc in self-explanatory notation. We
also frequently abbreviate V (Γ) ≡ V (C(Γ)), and refer to V (Γ) as the vertices
of Γ.

Next, suppose that Ξ ∈ H(Γ) and Π = Φ(Γ,Ξ). Then BΓ,Ξ(x) = 1 implies∏
π∈Π Jπ(x) = 1, where we defined the indicator function

J{e,e′}(x) ..= 1([xe] = [xe′ ])1(xe �= xe′) = 1(xa(e) = xb(e′))1(xa(e′) = xb(e)).
(4.13)

To understand this implication, we first recall, from the definition of B in (4.6),
that BΓ,Ξ(x) = 1 ensures that the edges receive the same unordered labels
within each block of Γ and the halving partition Ξ divides each block in two
according to whether the labels are the same as ordered labels. In particular, if
Γ is a pairing, i.e. if Ξ is atomic and Γ = Π, then Jπ(x) = 1 directly follows for
each pair π ∈ Γ. If Γ has larger blocks, then the definition of Φ guarantees that
every bridge in Π = Φ(Γ,Ξ) is halved by Ξ, i.e. their labels, under BΓ,Ξ(x) = 1,
are the same as unordered but not as ordered labels.
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Therefore, we may restrict the summation over Π in (4.12) to the set

R ..=

{
Π ∈ Mc

.. there is an x ∈ T
V (Π) such that I(x)

∏

π∈Π

Jπ(x) �= 0

}
.

This set of pairings was also given in [3, Equation (4.26)], using a more combi-
natorial definition which we shall not need here. To interpret the set R, observe
that the right-hand side of (4.13) induces a series of constraints among the
labels x; in R we simply require that these constraints hold and be compatible
with the nonbacktracking condition from (4.3), which requires certain labels to
be distinct. As explained in [3, Sections 4.1 and 4.2], the restriction from Mc

to R is significant, and plays an essential role in estimating the contribution
of pairings.

Thus we write (4.12) as
〈
TrH(n1) ; TrH(n2)

〉
=

∑

Π∈R

1(n1(Π) = n1)1(n2(Π) = n2)

×
∑

Γ�Π

∑

Ξ∈H(Γ)

1 (Φ(Γ,Ξ) = Π) D(Γ,Ξ)
∑

x∈TV (C)

I(x)BΓ,Ξ(x)
∏

{e,e′}∈Π

Sxe
.

(4.14)

This is the appropriate decomposition of the left-hand side in terms of pairings
Π of all possible graphs C. It is the correct analogue of [3, Equation (4.27)]
without making any simplifications.

4.3. Skeletons

The summation in (3.17) is highly oscillatory, which requires a careful resum-
mation of graphs of different order. We perform a local resummation procedure
of the so-called ladder subdiagrams, which are subdiagrams with a pairing
structure that consists only of parallel bridges. This is the second resumma-
tion procedure mentioned in the introduction. Concretely, we regroup pairings
Π into families that have a similar structure, differing only in the number of
parallel bridges per ladder subdiagram. Their common structure is represented
by the simplest element of the family, the skeleton, whose ladders consist of
a single bridge. The concept of skeleton pairing was introduced in [3, Section
4.2]. Here, we merely recall the main ideas for the convenience of the reader,
and refer to [3, Section 4.2] for full details.

The basic idea is to construct the skeleton Σ of a pairing Π ∈ Mc by
collapsing parallel bridges of Π. By definition, the bridges {e1, e′

1} and {e2, e′
2}

are parallel if b(e1) = a(e2) and b(e′
2) = a(e′

1). With each Π ∈ Mc we associate
a couple (Σ,b), where Σ ∈ Mc has no parallel bridges, and b = (bσ)σ∈Σ ∈ N

Σ.
The pairing Σ is obtained from Π by successively collapsing parallel bridges
until no parallel bridges remain. The integer bσ denotes the number of parallel
bridges of Π that were collapsed into the bridge σ. Conversely, for any given
couple (Σ,b), where Σ ∈ Mc has no parallel bridges and b ∈ N

Σ, we define
Π = G(Σ,b) as the pairing obtained from Σ by replacing, for each σ ∈ Σ, the
bridge σ with bσ parallel bridges. Thus we have a one-to-one correspondence
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Figure 2. A pairing Π (left) and its skeleton (Σ,b) (right).
As in [3, Section 4.1], we draw a pairing Π by drawing a line
connecting the edges e and e′ for each bridge {e, e′} ∈ Π. Next
to each skeleton bridge σ ∈ Σ we indicate the multiplicity bσ
describing how many bridges of Π were collapsed into σ. We
draw the ladder vertices Vl(Π) in grey and the vertices Vs(Π)
are drawn in black or white (see Definition 4.3)

between pairings Π and couples (Σ,b). Instead of burdening the reader with
formal definitions of this correspondence, we refer to Fig. 2 for an illustration.
When no confusion is possible, in order to streamline notation we shall identify
Π with (Σ,b).

Definition 4.3. Fix Σ ∈ Mc and b ∈ N
Σ. As above, abbreviate Π ..= G(Σ,b).

(i) For σ ∈ Σ we introduce the ladder encoded by σ, denoted by Lσ(Σ,b) ⊂ Π
and defined as the set of bridges of Π that are collapsed into the skeleton
bridge σ. Note that Lσ(Σ,b) consists of |Lσ(Σ,b)| = bσ parallel bridges.

(ii) We say that a vertex i ∈ V (Π) touches the bridge {e, e′} ∈ Π if i is
incident to e or e′. We call a vertex i a ladder vertex of Lσ(Σ,b) if it
touches two bridges of Lσ(Σ,b). Note that a ladder consisting of b parallel
bridges gives rise to 2(b− 1) ladder vertices.

(iii) We say that i ∈ V (Π) is a ladder vertex of Π if it is a ladder vertex of
Lσ(Σ,b) for some σ ∈ Σ. We decompose the vertices V (Π) = Vs(Π) �
Vl(Π), where Vl(Π) denotes the set of ladder vertices of Π.

See Fig. 2 for an illustration of Definition 4.3.
Next, for a pairing Σ ∈ Mc we define the set of admissible multiplicities

B(Σ) ..=
{
b ∈ N

Σ .. G(Σ,b) ∈ R
}
. (4.15)

We define the set of admissible skeletons as

S ..= {Σ ∈ Mc
.. B(Σ) �= ∅}.

Due to the nonbacktracking condition and the requirement that parallel
bridges are collapsed, not every pairing is an admissible skeleton, and not
every family of multiplicities b of a skeleton Σ ∈ S is admissible. A combina-
torial characterization of S is given in [3, Lemma 4.6], which we shall however
not need here. All that we shall need about B(Σ) is the following simple result,
proved in [3, Lemma 4.6].
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Lemma 4.4. For any Σ ∈ S the set N
Σ\B(Σ) is finite.

Here ends the summary of the material from [3, Section 4.2]. We may
now obtain the desired decomposition of F̃ η(E1, E2) as a sum over skeletons.
Plugging (4.14) into (3.17) yields

F̃ η(E1, E2) =
∑

Π∈R

1(2|Π| � Mμ) 2Re
(
γ̃n1(Π)(E1, φ1)

)
2Re

(
γ̃n2(Π)(E2, φ2)

)

×
∑

Γ�Π

∑

Ξ∈H(Γ)

1 (Φ(Γ,Ξ) = Π)D(Γ,Ξ)

×
∑

x∈TV (Π)

I(x)BΓ,Ξ(x)
∏

{e,e′}∈Π

Sxe

=
∑

Σ∈S

Ṽ(Σ), (4.16)

where we defined the value of the skeleton Σ ∈ S as

Ṽ(Σ) ..=
∑

b∈B(Σ)

1

(
2
∑

σ∈Σ

bσ � Mμ

)
2Re

(
γ̃n1(Σ,b)(E1, φ1)

)

× 2Re
(
γ̃n2(Σ,b)(E2, φ2)

)

×
∑

Γ�G(Σ,b)

∑

Ξ∈H(Γ)

1 (Φ(Γ,Ξ) = G(Σ,b)) D(Γ,Ξ)

×
∑

x∈TV (Σ,b)

I(x)BΓ,Ξ(x)
∏

{e,e′}∈G(Σ,b)

Sxe
. (4.17)

This definition is the correct generalization of V(Σ) in [3, Equation (4.31)]
without assuming any simplifications. In particular, V(Σ) and Ṽ(Σ) differ by
a term E in the terminology of [3].

4.4. Classification of Skeletons

In this short subsection we recall the splitting, introduced in [3, Section 4.4], of
the skeletons Σ ∈ S into three classes: the dumbbell skeletons, the small error
skeletons, and the large error skeletons. The dumbbell skeletons are the eight
simplest skeletons, denoted by D1, . . . , D8, whose contribution is of leading
order and yields Vmain from (3.23). They are defined in Fig. 3.

The contributions of the other skeletons has to be estimated and shown
to be much smaller. As pointed out in [3, Section 4.4], it turns out that when
estimating Ṽ(Σ) we are faced with two independent difficulties. First, strong
oscillations in the b-summations in the definition of Ṽ(Σ) (4.17) give rise to
cancellations which have to be exploited carefully. Second, due to the combi-
natorial complexity of the skeletons, the size of S grows exponentially with M ,
which means that we have to deal with combinatorial estimates. It turns out
that these two difficulties may be effectively decoupled: if |Σ| is small then only
the first difficulty matters, and if |Σ| is large then only the second one matters.
(As usual, |Σ| denotes the cardinality of Σ, i.e. the number of bridges in Σ.)
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Figure 3. The eight dumbbell skeletons D1, . . . , D8

Hence we split the set S in the dumbbell skeletons, the small error skeletons,
and the large error skeletons. The splitting into small and large skeletons is
done using a fixed large cutoff K ∈ N. In other words, we write

S = SD � S�
K � S>

K ,

where we abbreviated SD
..= {D1, . . . , D8} for the set of dumbbell skeletons,

and defined the set of small skeletons S�
K

..= {Σ ∈ S\SD
.. |Σ| � K} as well

as the set of large skeletons S>
K

..= {Σ ∈ S\SD
.. |Σ| > K}. The constant K

will be chosen large enough in Proposition 4.5 below.

4.5. Large Skeletons

We first estimate the contribution of the large skeletons S>
K . As in [3, Section

4.4], the estimate of the large skeletons is rather simple, since for large enough
K their contribution is small even if we estimate them by taking the absolute
value inside the summations in (4.17). Hence, the oscillatory effects present in
the prefactors γ̃ are not exploited. The precise estimate is the following, which
is analogous to [3, Proposition 4.8].

Proposition 4.5. For large enough K, depending on μ, we have
∑

Σ∈S>
K

|Ṽ(Σ)| � CKNM
−2. (4.18)

Proof. Recall the definition (4.13) of Jπ(x) for a bridge π = {e, e′}, which
encodes the constraints of coincidences of the labels associated with the vertices
a(e), b(e), a(e′), and b(e′). The basic estimate is

∑

Γ�G(Σ,b)

∑

Ξ∈H(Γ)

1 (Φ(Γ,Ξ) = G(Σ,b)) BΓ,Ξ(x) �
∏

π∈G(Σ,b)

Jπ(x) (4.19)

for any Σ ∈ S, b ∈ N
Σ, and x ∈ T

V (Σ,b). In order to prove (4.19), we make
the two following observations: (i) each side of (4.19) is either zero or one,
and (ii) if the right-hand side of (4.19) is zero then so is its left-hand side.
Observation (i) follows from the trivial fact that for any x there are unique
partitions Γ,Ξ ∈ P(E(C)) such that BΓ,Ξ(x) = 1. Observation (ii) follows from
the fact that if π ∈ Φ(Γ,Ξ) then BΓ,Ξ(x) = BΓ,Ξ(x)Jπ(x), since, by definition
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of Φ, the event Jπ(x) = 1 is a consequence of the event BΓ,Ξ(x) = 1. This
concludes the proof of (4.19)

For the following we may drop the nonbacktracking condition encoded
by I (see (4.3) for the definition), but we still keep the condition on the labels
imposed by two traces and implemented by I0. From (4.17) and (4.19) we
therefore get, using (3.20) and the trivial bound D(Γ,Ξ) � 1, that

|Ṽ(Σ)| � C
∑

b∈NΣ

1

(
2
∑

σ∈Σ

bσ � Mμ

)
∑

x∈TV (Σ,b)

I0(x)
∏

{e,e′}∈G(Σ,b)

J{e,e′}(x)Sxe
.

Next, we may perform the summation over all labels of x indexed by the
ladder vertices of G(Σ,b) (see Definition 4.3). After this summation, each
ladder Lσ(Σ,b) of G(Σ,b) is replaced with a single bridge that encodes an
entry of Sbσ instead of S. Thus we get the bound

|Ṽ(Σ)|�C
∑

b∈NΣ

1

(
2
∑

σ∈Σ

bσ �Mμ

)
∑

x∈TV (Σ)

I0(x)
∏

{e,e′}∈Σ

J{e,e′}(x)
(
Sb{e,e′}

)
xe
.

(4.20)

See [3, Section 4.2] for the full details of the summation over the labels of the
ladder vertices. The right-hand side of (4.20) is equal to [3, Equation (4.42)],
which was estimated in [3, Section 4.4]. The result from [3, Section 4.4] is
(4.18). This concludes the proof of Proposition 4.5. �
4.6. Small Skeletons

For the following we fix K to be the constant from Proposition 4.5. In order
to handle the small skeletons in S�

K ∪ SD, we have to exploit carefully the
oscillations in (4.17). Since the set of small skeletons S�

K ∪ SD is finite and
independent of M , it suffices to compute (in the case of SD) or estimate (in
the case of S�

K) the contribution of each such skeleton individually. The details
of the following estimates will be somewhat different for the two cases (C1)
and (C2); for definiteness, we focus on the (harder) case (C2), i.e. we assume
that φ1 and φ2 both satisfy (2.8). The case (C1) is handled using a similar
argument whose details we omit.

Before proceeding further, we want to replace the summation over b ∈
B(Σ) with b ∈ N

Σ (recall that B(Σ) from (4.15) encodes a restriction on the
ladder multiplicities imposed by the nonbacktracking condition). To this end,
we split Ṽ(Σ) = Ṽ0(Σ) − Ṽ1(Σ) arising from the splitting 1(b ∈ B(Σ)) =
1 − 1(b /∈ B(Σ)) plugged into (4.17). The goal of this subsection is to prove
the following result.

Proposition 4.6. Suppose that φ1 and φ2 satisfy (2.8). Suppose moreover that
(2.10) holds for some small enough c∗ > 0. Then for any fixed K ∈ N and
small enough δ > 0 in Proposition 3.2 there exists a constant c0 > 0 such that

|Ṽ(Σ)| � |Ṽ0(Σ)| + |Ṽ1(Σ)| � CΣN

M
R2(ω + η)M−c0 . (4.21)

for all Σ ∈ S�
K .
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This bound is much smaller than the true size of the leading term,

|Vmain| � N

M
R4(ω + η),

which is obtained from the dumbbell skeletons computed in Sect. 3.4 (see
Proposition 3.3).

The rest of this subsection is devoted to the proof of Proposition 4.6.
We focus on the main term, Ṽ0(Σ). The estimate of Ṽ1(Σ) is much easier and
is sketched at the end of this subsection. To guide the reader, we split the
somewhat lengthy argument into eight steps.

Step 1. Conditioning on ladders. A key idea behind the estimate of Ṽ0(Σ) is
that the ladders in G(Σ,b) that remain ladders in Γ � G(Σ,b) (see the sum-
mation over Γ in (4.17)) will be summed up explicitly. (Recall that Lσ(Σ,b)
denotes the ladder in G(Σ,b) encoded by the skeleton bridge σ ∈ Σ and con-
sisting of bσ parallel bridges.) To make this classification of ladders precise, we
say that a partition Γ (with Γ � G(Σ,b)) disrupts the ladder Lσ(Σ,b) if there
is a π ∈ Lσ(Σ,b) such that π /∈ Γ, i.e. a bridge of the ladder is contained in a
strictly larger block of Γ. We shall classify all partitions Γ � G(Σ,b) according
to the set ζ ⊂ Σ of skeleton bridges whose ladders {Lσ(Σ,b) .. σ ∈ ζ} the par-
tition Γ disrupts. The other ladders Lσ(Σ,b), where σ lies the complementary
set ζ̄ ..= Σ\ζ, are not disrupted by Γ, i.e. for σ ∈ ζ̄ and π ∈ Lσ(Σ,b) we have
π ∈ Γ. We denote the set of partitions Γ that disrupt precisely the ladders
encoded by the skeleton bridges ζ by Fζ(Σ,b); explicitly,

Fζ(Σ,b) ..=
{
Γ � G(Σ,b) .. Γ disrupts Lσ(Σ,b) for σ ∈ ζ

and does not disrupt Lσ(Σ,b) for σ ∈ ζ̄
}
.

We shall sometimes refer to ζ as the set of disrupted skeleton bridges and to
the ζ̄ as the set of not disrupted skeleton bridges.

Our strategy will be to sum carefully, by making use of oscillations, the
labels associated with ladders that are not disrupted by Γ, while using a more
brutal approach for the ladders that are disrupted by Γ. The latter summation
will be estimated by taking the absolute value inside the summation. The
resulting loss is compensated by the fact that the summation variables are
subject to additional constraints owing to their being disrupted by Γ. As it
turns out, these constraints lead to a reduction in summation that is sufficient
to compensate the loss resulting from ignoring the phases of the summands.
We note that an even more refined strategy could be applied, in which we
would subdivide ladders disrupted by Γ into subladders that are not disrupted
by Γ. We would then sum these not disrupted subladders explicitly (making
use of oscillations), and sum the remaining labels of the ladder more brutally,
again making use of constraints imposed by the disrupting by Γ. As it turns
out, however, such a refined approach is mercifully not needed, and we choose
to characterize a ladder as “disrupted by Γ” and to sum its labels brutally as
soon as even one of its bridges is not contained in Γ.
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For any given skeleton Σ ∈ S, we split the summation over Γ and Ξ in
(4.17) according to the set ζ of disrupted skeleton bridges:

Ṽ0(Σ) =
∑

ζ⊂Σ

Vζ(Σ), (4.22)

where we defined

Vζ(Σ) ..=
∑

b∈NΣ

1

(
2
∑

σ∈Σ

bσ � Mμ

)

× 2Re
(
γ̃n1(Σ,b)(E1, φ1)

)
2Re

(
γ̃n2(Σ,b)(E2, φ2)

)

×
∑

Γ∈Fζ(Σ,b)

∑

Ξ∈H(Γ)

1 (Φ(Γ,Ξ) = G(Σ,b)) D(Γ,Ξ)

×
∑

x∈TV (Σ,b)

I(x)BΓ,Ξ(x)
∏

{e,e′}∈G(Σ,b)

Sxe
. (4.23)

(To unburden notation, we omit a tilde in the definition of Vζ .)
Next, in (4.23) we first replace γ̃ni(Σ,b)(Ei, φi) with (ψη

i ∗ γni(Σ,b))(Ei)
using (3.18), and then introduce a cutoff in the tail of ψη

i by replacing ψη
i

with ψ�,η
i from (3.65) where θ ..= δ (here we used the estimate (3.67)), and by

replacing the indicator function 1
(
2
∑

σ∈Σ bσ � Mμ
)

with
∏

σ∈Σ 1(bσ � Mμ)
using (3.67). We omit the details of these brutal estimates, which are similar
to those used to obtain (3.68) from (3.64) and (3.23); the only additional com-
plication is the summation over Γ and Ξ, which may be easily dealt with using
(4.19). Using the splitting (3.44) (with xi = γ̃ni(Σ,b)(Ei, φi)) we therefore get

Vζ(Σ) = 2Re
(V ′

ζ(Σ) + V ′′
ζ (Σ)

)
+Oq,Σ(NM−q), (4.24)

where we defined

V ′
ζ(Σ) ..=

∑

b∈{1,...,[Mμ]}Σ

(
γn1(Σ,b) ∗ ψ�,η

1

)
(E1)

(
γn2(Σ,b) ∗ ψ�,η

2

)
(E2)

×
∑

Γ∈Fζ(Σ,b)

∑

Ξ∈H(Γ)

1 (Φ(Γ,Ξ) = G(Σ,b)) D(Γ,Ξ)

×
∑

x∈TV (Σ,b)

I(x)BΓ,Ξ(x)
∏

{e,e′}∈G(Σ,b)

Sxe
, (4.25)

and V ′′
ζ (Σ) is defined similarly but without the complex conjugation on

γn2(Σ,b). We give the details of the estimate for the (harder) term V ′
ζ(Σ). Thus,

throughout the following, we only consider V ′
ζ(Σ); the estimates for V ′′

ζ (Σ) are
almost identical, up to minor differences that are explained in Step 8 at the
end of this subsection.

Next, we use (3.7) to rewrite the factors γ. To that end, we have to classify
the bridges of Σ into three classes according to the following definition, which
is the same as Definition 4.13 in [3].

Definition 4.7. For i = 1, 2 we define

Σi
..= {σ ∈ Σ .. σ ⊂ E(Ci)} ,



758 L. Erdős and A. Knowles Ann. Henri Poincaré

the set of bridges consisting only of edges of Ci. We abbreviate Σd
..= Σ1 ∪ Σ2

(the set of “domestic bridges”). We also define Σc
..= Σ\Σd, the set of bridges

connecting the two components of C.

Since each σ ∈ Σc contains one edge of C1 and one edge of C2, and each
σ ∈ Σi contains two edges of Ci, we find that the number of edges in the ith
chain Ci(ni) of the graph C(n1, n2) with pairing G(Σ,b) is

ni(Σ,b) =
∑

σ∈Σc

bσ + 2
∑

σ∈Σi

bσ.

Recalling the notation (3.40), we therefore get

V ′
ζ(Σ) =

∑

b∈{1,...,[Mμ]}Σ

(
s
∏

σ∈Σ

χbσ
σ

)
∗ ψ�,η

1 (E1) ∗ ψ�,η
2 (E2)

×
∑

Γ∈Fζ(Σ,b)

∑

Ξ∈H(Γ)

1 (Φ(Γ,Ξ) = G(Σ,b)) D(Γ,Ξ)

×
∑

x∈TV (Σ,b)

I(x)BΓ,Ξ(x)
∏

{e,e′}∈G(Σ,b)

Sxe
, (4.26)

where we defined the shorthand

s ≡ s(E1, E2) ..= T (E1)T (E2) ei(A1−A2)

and the phases

χσ ≡ χσ(E1, E2) ..=

⎧
⎪⎨

⎪⎩

−e2iA1 if σ ∈ Σ1

−e−2iA2 if σ ∈ Σ2

ei(A1−A2) if σ ∈ Σc.

(4.27)

(On the first line of the right-hand side of (4.26), the stars denote the convolu-
tions with respect to the variables E1 and E2 on which s and χσ depend.) The
precise form of the function s is irrelevant; we only need the bound |s| � 5.
From now on we drop the explicit mention of the domain {1, . . . , [Mμ]}Σ of
the b-summation in our expressions.

Step 2. Decoupling of the ζ- and ζ̄-variables. We fix Σ ∈ S�
K and ζ ⊂ Σ,

where ζ is the set of the disrupted skeleton bridges. In order to perform the
ladder summations for the complementary set ζ̄, we shall have to split the
x and b variables according to the splitting Σ = ζ � ζ̄. Recalling Definition
4.3, we split the labels according to x = (xs,xl), where xs = (xi)i∈Vs(Σ,b)

and xl = (xi)i∈Vl(Σ,b). We further split xl = (xσ)σ∈Σ, where xσ contains
the labels xi indexed by ladder vertices i of Lσ(Σ,b) (see Definition 4.3). We
also introduce the set Lζ(Σ,b) ..=

⋃
σ∈ζ Lσ(Σ,b), which yields the splitting

xl = (xζ ,xζ̄). Finally, we split the multiplicities b = (bσ)σ∈Σ = (bζ ,bζ̄), where
bζ = (bσ)σ∈ζ .

Our next goal is to fix the multiplicities bζ and the labels xs,xζ , and
to sum over bζ̄ and xζ̄ . In order to perform the summation over bζ̄ and xζ̄ ,
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we shall first have to decouple them from the other summation variables,
i.e. remove the constraints on the summation variables that involve the fixed
variables. The key idea behind the decoupling is to parametrize a partition
Γ ∈ Fζ(Σ,bζ ,bζ̄) using a partition Γ̃ ∈ Fζ(Σ,bζ ,1) combined with the missing
multiplicities bζ̄ . Here bζ̄ = 1 denotes the trivial multiplicities (bσ)σ∈ζ̄ where
bσ = 1 for all σ ∈ ζ̄. Informally, we collapse all ladders encoded by the set of
not disrupted skeleton bridges ζ̄ into single bridges.

To make this idea precise, we first observe that there is a canoni-
cal bijection between the skeleton vertices Vs of Γ ∈ Fζ(Σ,bζ ,bζ̄) and of
Γ̃ ∈ Fζ(Σ,bζ ,1) (since the length of each ladder can be varied independently
without changing the skeleton structure). Similarly, for each σ ∈ ζ there is
a canonical bijection between the ladders Lσ in Γ and Γ̃ (since the length of
each ladder encoded by a disrupted skeleton bridge in ζ is the same in Γ and
Γ̃). Instead of a cumbersome formal definition, we refer to Fig. 2, where the
skeleton vertices Vs are drawn in black or white. We shall use these bijections
tacitly throughout the following, in particular identifying the sets Vs of Γ and
Γ̃ as well as the labels xζ of Γ and Γ̃.

Next, given a Γ ∈ Fζ(Σ,bζ ,bζ̄), the above bijection uniquely defines
Γ̃ ∈ Fζ(Σ,bζ ,1). Moreover, we may recover the partition Γ ∈ Fζ(Σ,bζ ,bζ̄)
from Γ̃ ∈ Fζ(Σ,bζ ,1) and bζ̄ . To that end, we note that Γ coincides with
Γ̃ on the set of edges

⋃ {π .. π ∈ Lζ(Σ,b)} (which is common to both Γ and
Γ̃), and that on the complementary set

⋃{
π .. π ∈ Lζ̄(Σ,b)

}
the partition Γ

coincides with the pairing G(Σ,b). We have an analogous parametrization of
Ξ ∈ H(Γ) using Ξ̃ ∈ H(Γ̃): on the set of edges

⋃ {π .. π ∈ Lζ(Σ,b)} the partition
Ξ coincides with Ξ̃, and that on the complementary set

⋃{
π .. π ∈ Lζ̄(Σ,b)

}

the partition Ξ is atomic. We shall sometimes use the notations Γ = Γ(Γ̃,bζ̄)
and Ξ = Ξ(Ξ̃,bζ̄) to denote these parametrizations.

The following lemma says roughly that the operation Φ (introduced in
Sect. 4.2) for refining partitions into pairings commutes with the parametriza-
tion (Γ̃, Ξ̃) �→ (Γ,Ξ), and that the indicator function D (see (4.10)) is invari-
ant under this parametrization. Note that it was precisely because of this first
property that the algorithm Φ had to be defined carefully in Sect. 4.2, so that
how it breaks up a block of Γ is independent of the other blocks of Γ.

Lemma 4.8. Let Γ̃ ∈ Fζ(Σ,bζ ,1) and Ξ̃ ∈ H(Γ̃). Let bζ̄ be arbitrary, and let
Γ = Γ(Γ̃,bζ̄) and Ξ = Ξ(Ξ̃,bζ̄). Then the following hold.

(i) D(Γ̃, Ξ̃) = D(Γ,Ξ).
(ii) Φ(Γ̃, Ξ̃) = G(Σ,bζ ,1) if and only if Φ(Γ,Ξ) = G(Σ,bζ ,bζ̄).

Proof. To prove (i), we note that D = 1 if and only if the first term on the
right-hand side of (4.10) is one and the second term is zero. It is easy to check
that each term remains invariant under the change (Γ̃, Ξ̃) �→ (Γ,Ξ). The claim
(ii) is an easy consequence of the definition of the algorithm Φ. �
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Using Lemma 4.8 and the parametrization defined above, we may rewrite
(4.26) as

V ′
ζ(Σ) =

∑

bζ

∑

Γ̃∈Fζ(Σ,bζ ,1)

∑

Ξ̃∈H(Γ̃)

1
(
Φ(Γ̃, Ξ̃) = G(Σ,bζ ,1)

)
D(Γ̃, Ξ̃)

×
∑

xs

∑

xζ

⎛

⎝
∏

{e,e′}∈Lζ(Σ,bζ ,1)

Sxe

⎞

⎠

×
∑

bζ̄

∑

xζ̄

I(x)BΓ(Γ̃,bζ̄),Ξ(Ξ̃,bζ̄)(x)

(
s
∏

σ∈Σ

χbσ
σ

)

∗ψ�,η
1 (E1) ∗ ψ�,η

2 (E2)

⎛

⎝
∏

{e,e′}∈Lζ̄(Σ,b)

Sxe

⎞

⎠ . (4.28)

In (4.28) we separated the summations over bζ̄ and xζ̄ from their coun-
terparts without bars, but the variables bζ̄ and xζ̄ are still coupled to the
variables bζ , xs, and xζ through the indicator functions I and B. We there-
fore have to rewrite these indicator functions in a more amenable form. Define
the set of unordered edge labels

Ebζ
(xs,xζ) ..= {[xe] .. {e, e′} ∈ Lζ(Σ,bζ ,1)} ,

which collects all unordered edge labels associated with edges belonging to the
ζ-bridges. As the notation implies, this set does not depend on the labels xζ̄ .
Moreover, we have the trivial bound

∣∣Ebζ
(xs,xζ)

∣∣ � CΣM
μ.

We also recall the indicator function Jπ(x) from (4.13), which enforces the
unordered edge labels to coincide within a bridge π. Introduce the indicator
function

J{e,ẽ},{e′,ẽ′}(x) ..= 1 ([xe] = [xe′ ] = [xẽ] = [xẽ′ ])

associated with the event that two bridges, π = {e, ẽ} and π′ = {e′, ẽ′}, have
the same unordered edge labels. Notice that this is a very atypical situation;
the leading contribution comes from the case when all bridges have distinct
edge labels.

Using these notations, we may rewrite the above indicator function B as

BΓ(Γ̃,bζ̄),Ξ(Ξ̃,bζ̄)(x)

= BΓ̃,Ξ̃(xs,xζ)

⎛

⎝
∏

{e,e′}∈Lζ̄(Σ,bζ ,bζ̄)

J{e,e′}(xs,xζ̄)1
(
[xe] /∈ Ebζ

(xs,xζ)
)
⎞

⎠

×
⎛

⎝
∏

π �=π′∈Lζ̄(Σ,bζ ,bζ̄)

(
1 − Jπ,π′(xs,xζ̄)

)
⎞

⎠ . (4.29)



Vol. 16 (2015) Altshuler–Shklovskii Formulas 761

The first factor implements all constraints among the ζ-bridges of Lζ(Σ,bζ ,
bζ̄) � Lζ(Σ,bζ ,1). The remaining factors provide an explicit form of the
constraints among the remaining ζ̄-bridges, which will be needed for the sub-
sequent summation over the ζ̄-variables: the second factor implements the
condition that edges of Lζ̄(Σ,bζ ,bζ̄) belonging to the same bridge have com-
patible labels (as defined by J{e,e′}) and that their labels be distinct from the
labels associated with the ζ-bridges; the final factor implements the condition
that distinct ζ̄-bridges have distinct unordered labels.

Plugging (4.29) into (4.28) yields

V ′
ζ(Σ) =

∑

bζ

∑

Γ∈Fζ(Σ,bζ ,1)

∑

Ξ∈H(Γ)

1 (Φ(Γ,Ξ) = G(Σ,bζ ,1))

×D(Γ,Ξ)
∑

xs

∑

xζ

BΓ,Ξ(xs,xζ)

⎛

⎝
∏

{e,e′}∈Lζ(Σ,bζ ,1)

Sxe

⎞

⎠

×
∑

bζ̄

∑

xζ̄

I(x)

⎛

⎝
∏

{e,e′}∈Lζ̄(Σ,bζ ,bζ̄)

J{e,e′}(xs,xζ̄)1
(
[xe] /∈ Ebζ

(xs,xζ)
)
Sxe

⎞

⎠

×
⎛

⎝
∏

π �=π′∈Lζ̄(Σ,bζ ,bζ̄)

(
1−Jπ,π′(xs,xζ̄)

)
⎞

⎠
(
s
∏

σ∈Σ

χbσ
σ

)
∗ ψ�,η

1 (E1) ∗ ψ�,η
2 (E2),

(4.30)

where we dropped the tildes from the partitions Γ̃ and Ξ̃ to unclutter notation.

Step 3. Resolution of coincidences among the ζ̄-labels. Our current goal is to
estimate the last two lines of (4.30) by making use of the oscillations in the
phases χσ for σ ∈ ζ̄. To unclutter notation, in the following we frequently
omit the arguments Σ, b = (bζ ,bζ̄), and x, unless they are needed to avoid
confusion. We have to factorize the right-hand side of (4.30) into a product
over σ. The main obstacle is the profusion of indicator functions introducing
constraints among the ζ̄-labels xζ̄ . We split

∏

π �=π′∈Lζ̄

(
1 − Jπ,π′(xs,xζ̄)

)

=

⎛

⎝
∏

σ∈ζ̄

(1 − Uσ(xs,xσ))

⎞

⎠

⎛

⎝
∏

σ �=σ′∈ζ̄

(1 − Uσ,σ′(xs,xσ,xσ′))

⎞

⎠ ,

where we defined the indicator functions

1 − Uσ
..=

∏

π �=π′∈Lσ

(1 − Jπ,π′), 1 − Uσ,σ′ ..=
∏

π∈Lσ

∏

π∈Lσ′

(1 − Jπ,π′). (4.31)

The first expression excludes that two different bridges within the same ladder
σ have the same labels, while the second excludes that two bridges from dif-
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ferent ladders have the same labels. We adopt the convention that Uσ,σ
..= 0.

We also introduce the indicator function

1 − Ũσ
..=

∏

{e,e′}∈Lσ

(
1 − 1

(
[xe] ∈ Ebζ

))
, (4.32)

which excludes that any label in a ζ̄-ladder σ coincide with a ζ-label. (Note
that the right-hand side depends on the choice of ordering of the pair {e, e′}; it
may be chosen arbitrarily, since we shall always use 1−Ũσ within an expression
in which [xe] = [xe′ ] for {e, e′} ∈ Lσ.)

The idea behind these definitions is that the term 1 is typical (and hence
yields a leading contribution); the error terms Uσ, Uσ,σ′ , and Ũσ yield smaller
contributions resulting from coinciding summation labels. We expand

J ..=

⎛

⎝
∏

σ∈ζ̄

(1 − Uσ)(1 − Ũσ)

⎞

⎠

⎛

⎝
∏

σ,σ′∈ζ̄

(1 − Uσ,σ′)

⎞

⎠ =
∑

α,β⊂ζ̄

∑

γ⊂ζ̄2

Jα,β,γ ,

(4.33)

where we defined

Jα,β,γ
..=

∏

σ∈α

(−Uσ)
∏

σ∈β

(−Ũσ)
∏

{σ,σ′}∈γ

(−Uσ,σ′). (4.34)

Thus we have the splitting J =
∑

ξ⊂ζ̄ Jξ, where

Jξ
..=

∑

α,β⊂ζ̄

∑

γ⊂ζ̄2

1(ξ = α ∪ β ∪ [γ])Jα,β,γ (4.35)

and we defined [γ] ..=
⋃{{σ, σ′} .. {σ, σ′} ∈ γ}. The interpretation of Jξ is that

it imposes constraints precisely on the ladders Lσ indexed by σ ∈ ξ. Hence,
the set ξ consists of all σ ∈ ζ̄ such that Jξ introduces a constraint among the
labels of Lσ. Abbreviate the complementary set by ξ̄ ..= ζ̄\ξ; these are the
ζ̄-ladders whose labels are not subject to restrictions. We split the variables
bζ̄ = (bξ,bξ̄) and xζ̄ = (xξ,xξ̄) in self-explanatory notation. Thus, we have
Jξ(xs,xζ̄) ≡ Jξ(xs,xξ), so that Jξ does not depend on the ξ̄-labels xξ̄.

Hence we may write the two last lines of (4.30) as
∑

ξ⊂ζ̄ Rξ, where

Rξ
..=

∑

bζ̄

∑

xζ̄

⎛

⎝
∏

{e,e′}∈Lζ̄

J{e,e′}Sxe

⎞

⎠

× I(x)Jξ(xs,xξ)

(
s
∏

σ∈Σ

χbσ
σ

)
∗ ψ�,η

1 (E1) ∗ ψ�,η
2 (E2). (4.36)

We first fix the ξ-variables and sum over the ξ̄-variables, using the fact
that Jξ does not depend on the ξ̄-variables. Before we may do this summation,
we have to deal with a final complication arising from the indicator function
I(x) implementing the nonbacktracking condition. Since I(x) couples labels
associated with vertices at distance two from each other, I(x) does not fac-
torize over the ladders σ ∈ ξ̄. However, provided we treat the first and last
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Figure 4. A ladder Lσ with its labels. The skeleton xs-labels
are denoted by x1, x2, x′

1, and x′
2, the edge labels by z1 and z2

and the inner labels by y1, . . . , y5. We display each label next
to the vertex it is associated with and omit the argument σ.
The choice of names associated with the ordering of the ver-
tices is immaterial. Since the omnipresent indicator functions
J{e,e′} force two labels on the same side of a bridge to coin-
cide, we use the same letter for them. For later purposes, we
distinguish the labels x1 and x′

1 as well as x2 and x′
2, although

the same indicator functions always impose that x1 = x′
1 and

x2 = x′
2

summation label of each ladder separately, such a factorization is possible. For
each σ ∈ ξ̄ we split xσ = (yσ, zσ) into its inner labels yσ and its edge labels
zσ. By definition, zσ consists of the labels associated with all ladder vertices of
Lσ(Σ,b) that are adjacent to a vertex that is not a ladder vertex of Lσ(Σ,b);
note that for bσ = 1 there are no such vertices, for bσ = 2 there are two such
vertices, and for bσ � 3 there are four such vertices. See Fig. 4 for an illus-
tration of this splitting. We also abbreviate yξ̄ = (yσ)σ∈ξ̄ and zξ̄ = (zσ)σ∈ξ̄.
Thus we get the factorization

I(x) = Ĩ(xs,xζ ,xξ, zξ̄)
∏

σ∈ξ̄

(
1 −Wσ(xs,xζ , zξ̄,yσ)

)
,

where the first factor Ĩ includes all terms in the product on the right-hand
side of (4.3) that do not depend on the inner labels yσ of any σ ∈ ξ̄; the
remaining terms on the right-hand side of (4.3) depend on precisely one yσ, so
that they may be factorized over σ ∈ ξ̄ and written in the form 1 −Wσ. The
interpretation of Wσ = 0 is that, given (xs,xζ ,xξ, zξ̄), the summation over yσ

is unrestricted. A glance at Fig. 4 should clarify this splitting. Plugging this
into (4.36) yields

Rξ =
∑

bξ

∑

xξ

Jξ(xs,xξ)

⎛

⎝
∏

{e,e′}∈Lξ

J{e,e′}Sxe

⎞

⎠

×
∑

bξ̄

∑

zξ̄

Ĩ(xs,xζ ,xξ, zξ̄)
∑

yξ̄

⎛

⎝
∏

σ∈ξ̄

(
1 −Wσ(xs,xζ , zξ̄,yσ)

)
⎞

⎠

×
⎛

⎝
∏

{e,e′}∈Lξ̄

J{e,e′}Sxe

⎞

⎠
(
s
∏

σ∈Σ

χbσ
σ

)
∗ ψ�,η

1 (E1) ∗ ψ�,η
2 (E2). (4.37)
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Similarly to the above splitting of ζ̄ = ξ � ξ̄, we perform a final splitting
Rξ =

∑
ϑ⊂ξ̄ Rξ,ϑ, obtained by applying to the right-hand side of (4.37) the

splitting
∏

σ∈ξ̄

(1 −Wσ) =
∏

σ∈ξ̄

(1 −Wσ) (1(bσ � 3) + 1(bσ � 2)) =
∑

ϑ⊂ξ̄

Kξ,ϑ, (4.38)

where Kξ,ϑ collects all terms containing a factor Wσ or 1(bσ � 2) for some
σ ∈ ϑ. The leading contribution is the term K∅,ξ, corresponding to ϑ = ∅. Note
that Kξ,ϑ does not depend on yσ for all σ ∈ ϑ̄ ..= ξ̄\ϑ. Moreover, note that for
each σ ∈ ϑ̄ we have bσ � 3 for nonzero summands in Rξ,ϑ.

Step 4. Summing over the ξ̄-variables using oscillations. We now explicitly
perform the yσ-summations for each σ ∈ ϑ̄. To that end, for σ ∈ Σ we introduce
the labels x1, x2, x′

1, x
′
2, z1, and z2 associated with the vertices at the ends of

the ladder Lσ, as defined in Fig. 4.
We may sum up the yσ-labels for σ ∈ ϑ̄. The result is

Rξ,ϑ =
∑

bξ

∑

xξ

Jξ

⎛

⎝
∏

{e,e′}∈Lξ

J{e,e′}Sxe

⎞

⎠

×
∑

bξ̄

∑

zξ̄

Ĩ
∑

yϑ

Kξ,ϑ

⎛

⎝
∏

{e,e′}∈Lϑ

J{e,e′}Sxe

⎞

⎠
(
s

(
∏

σ∈Σ

χbσ
σ

)

×
⎛

⎝
∏

σ∈ϑ̄

Sx1(σ)z1(σ)

(
Sbσ−2

)
z1(σ)z2(σ)

Sz2(σ)x2(σ)δx1(σ)x′
1(σ)δx2(σ)x′

2(σ)

⎞

⎠

⎞

⎠

∗ψ�,η
1 (E1) ∗ ψ�,η

2 (E2).

We may now explicitly sum up the geometric series arising from the
summation over bσ = 3, 4, . . . , [Mμ] for each σ ∈ ϑ̄. This summation exploits
the required cancellations, and, having done it, we may take the absolute value
inside the summation. Estimating Ĩ � I0 (recall (4.3)), we get

|Rξ,ϑ| � C
∑

bξ

∑

xξ

|Jξ|I0
⎛

⎝
∏

{e,e′}∈Lξ

J{e,e′}Sxe

⎞

⎠

×
∑

bϑ

∑

xϑ

(
∏

σ∈ϑ

(Wσ + 1(bσ � 2))

)⎛

⎝
∏

{e,e′}∈Lϑ

J{e,e′}Sxe

⎞

⎠

×
∏

σ∈ϑ̄

(
Z̃x1(σ)x2(σ)(σ) δx1(σ)x′

1(σ)δx2(σ)x′
2(σ)

)
, (4.39)

where we defined

Z̃xy(σ) ..=
∑

u,w

Sxu sup
{

|(Z(χσ(E1 − v1, E2 − v2)S))uw| .. |v1|,

|v2| � 2ηMδ/2
}
Swy (4.40)
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and

Z(x) ..=
[Mμ]−2∑

b=1

xb =
x(1 − x[Mμ]−2)

1 − x
. (4.41)

Note that the condition on v1 and v2 in (4.40) amounts to constraining them
to lie in the support of ψ�,η

1 (v1)ψ
�,η
2 (v2) in the convolution integral; see (3.66)

and recall that θ = δ.
Bearing later applications in mind, we introduce a general class of matri-

ces Z(σ), parametrized by the bridges σ of Σ, which satisfy a set of simple
bounds that are sufficient to conclude the proof.

Definition 4.9. Recall the splitting Σ = Σ1 � Σ2 � Σc from Definition 4.7. We
call the family of matrices Z(σ,E1, E2, L) ≡ Z(σ) parametrized by σ ∈ Σ
admissible if

|Zxy(σ)| � C

M
,

∑

y

|Zxy(σ)| � C logN (4.42)

for σ ∈ Σ1 ∪ Σ2 and

|Zxy(σ)| � C

M
M2δR2(ω + η),

∑

y

|Zxy(σ)| � CMμ (4.43)

for σ ∈ Σc.

As advertised, the matrix Z̃ from (4.40) satisfies the estimates in Defini-
tion 4.9.

Lemma 4.10. For small enough δ the matrices Z̃ from (4.40) are admissible in
the sense of Definition 4.9.

Proof. The claim is a trivial corollary of [3, Lemma 4.16]. We remark that the
proof of [3, Lemma 4.16] relies on the estimates (3.35) and (3.36). It makes
essential use of the oscillations in the sum (4.41). See [3] for the full details. �

In this step we have achieved the main goal: to exploit the oscillations
from an appropriate subset of the ladders. In the remainder of the argument
we have to perform the remaining summations. We shall not use oscillations
any longer: only the size of the terms and their combinatorics will matter.

Step 5. Summing over the ξ̄-variables without oscillations. We now sum over
the remaining ξ̄-variables, i.e. the ϑ-variables bϑ and xϑ in (4.39). This is a
straightforward estimate, since the right-hand side of (4.39) factorizes over all
ladders encoded by σ ∈ ϑ. The contribution to the right-hand side (4.39) of
an individual ladder σ ∈ ϑ incident to skeleton vertices with labels x1 = x′

1

and x2 = x′
2 from xs (see Fig. 4) is estimated by
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[Mμ]∑

b=1

∑

y1,...,yb−1

Sx1y1Sy1y2 · · ·Syb−2yb−1Syb−1x2

×
[(

1 −
b−4∏

i=1

1(yi �= yi+2)

)
+ 1(b � 2)

]
� Zx1x2(σ), (4.44)

where Z satisfies Definition 4.9 (in fact, it satisfies the stronger bound (4.42)
for all σ). To prove (4.44), we note that the estimate of the term proportional
to 1(b � 2) is trivial. We deal with the other term by writing 1(yi �= yi+2) =
1 − 1(yi = yi+2) and using the elementary bound

0 � 1 −
n∏

i=1

(1 − ai) �
n∑

i=1

ai (ai ∈ [0, 1]) (4.45)

(with ai = 1(yi = yi+2) and n = b − 4 in this case). This yields b − 4 � Mμ

terms, each of which is bounded by M−1(Sk)x1x2 for some k ∈ N. The factor
M−1 comes from the

∑

yi+1

Syiyi+1Syi+1yi
= (S2)yiyi

� C

M
(4.46)

summations in the event ai = 1(yi = yi+2); the rest of the S-factors are
summed up freely. This concludes the proof of (4.44). Recall that Rξ =∑

ϑ⊂ξ̄ Rξ,ϑ and |ξ| � |Σ|. Plugging (4.44) into (4.39) therefore yields

|Rξ| � CΣ I0(xs)
∑

bξ

∑

xξ

|Jξ(xs,xξ)|

×
⎛

⎝
∏

{e,e′}∈Lξ(Σ,bζ ,bξ,1)

J{e,e′}Sxe

⎞

⎠

⎛

⎝
∏

{e,e′}∈Lξ̄(Σ,bζ ,bξ,1)

J{e,e′}Zxe
({e, e′})

⎞

⎠,

(4.47)

where we split b = (bζ ,bξ,bξ̄) and abbreviated bξ̄ = 1 to denote bσ = 1 for
all σ ∈ ξ̄.

Remark 4.11. For future purposes we observe that if ϑ �= ∅ then the estimate
(4.47) is in fact valid with an extra factor M2μ−1 on the right-hand side. (In
(4.47) we simply estimated this factor by one.) This factor arises from the
preceding argument for σ ∈ ϑ: for each indicator function ai in (4.45) we get
a factor M−1, there are Mμ such terms, and the bσ-summation yields another
factor Mμ.

Step 6. Summing over the ξ-variables. Fix ξ ⊂ Σ. We may now sum over
bξ and xξ on the right-hand side of (4.47). The summation over bξ will be
performed trivially, yielding a factor M |ξ|μ. Hence it suffices to regard all bξ

as fixed. Since for any fixed ξ the sum on the right-hand side of (4.35) contains
OΣ(1) terms, it suffices to estimate the contribution of a single term Jα,β,γ

to the right-hand side of (4.47). Thus, for the following we fix α, β ⊂ ζ̄ and
γ ⊂ ζ̄2 satisfying ξ = α ∪ β ∪ [γ]. Define β′ ..= β\α. Moreover, let γ′ be a



Vol. 16 (2015) Altshuler–Shklovskii Formulas 767

minimal subset of γ such that ξ = α ∪ β′ ∪ [γ′]. Since β′ ⊂ β and γ′ ⊂ γ, we
may estimate

|Jα,β,γ | �
∏

σ∈α

Uσ

∏

σ∈β′
Ũσ

∏

{σ,σ′}∈γ′
Uσ,σ′ . (4.48)

We therefore need to estimate

CΣ I0(xs)M |ξ|μ ∑

xξ

⎛

⎝
∏

σ∈α

Uσ

∏

σ∈β′
Ũσ

∏

{σ,σ′}∈γ′
Uσ,σ′

⎞

⎠

×
⎛

⎝
∏

{e,e′}∈Lξ(Σ,bζ ,bξ,1)

J{e,e′}Sxe

⎞

⎠

⎛

⎝
∏

{e,e′}∈Lξ̄(Σ,bζ ,bξ,1)

J{e,e′}Zxe
({e, e′})

⎞

⎠.

(4.49)

For each factor U in (4.49) we shall use the estimates

Uσ �
∑

π �=π′∈Lσ

Jπ,π′ ,

Ũσ �
∑

{e,e′}∈Lσ

1
(
[xe] ∈ Ebζ

)
, (4.50)

Uσ,σ′ �
∑

π∈Lσ

∑

π′∈Lσ′

Jπ,π′ ,

which follow by applying the estimate (4.45) to the definitions (4.31) and
(4.32).

Next, we sum over xξ, by summing over the labels of the ladder vertices
xσ for σ ∈ ξ. The basic intuition behind this summation is that, thanks to
the coincidences imposed by the factors in the first line of (4.49), the ladder
associated with σ may be estimated by an admissible factor Z (see Definition
4.9) times a small factor M−1 as in (4.46). This factor will compensate the
factors of Mμ arising from summations over bσ, over π ∈ σ, and possibly over
π′ ∈ σ. (Recall that μ < 1/3, so that three factors of Mμ are affordable for
each factor of M−1. In fact, the estimates presented here only produce at most
two factors of Mμ for each factor M−1, and in particular work up to μ < 1/2.)
Some care is needed in accounting for the coincidences in Uσ,σ′ , since here
two bσ-summations need to be compensated. Together with the summations
over π, π′, the combinatorics give a factor M4μ, which would not be affordable
against the gain of M−1, but it turns out that in the generic situation the
gain is in fact M−2. In order to observe this gain, we need to perform this
summation in an appropriate order. To that end, it is convenient to introduce
a graph S = (V (S), E(S)) ..= (ξ, γ′), whose vertices are identified with the
ladders in ξ, and which encodes which distinct ladders are connected by a
factor Jπ,π′ . Note that S is a forest graph by the minimality assumption on
γ′. We say that {σ, σ′} ∈ γ′ is a twig of S if σ and σ′ both have degree one
and do not belong to α ∪ β′. The twigs represent the problematic factors of
Jπ,π′ from which M−2 needs to be gained.
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The summation proceeds as follows. First, we sum recursively over all xσ

for σ /∈ α∪β′. We do this by starting at the leaves of S, at each step removing
the leaf σ after the summation over xσ has been completed. If we encounter a
leaf that belongs to a twig {σ, σ′}, we sum xσ and xσ′ simultaneously. Finally,
after only vertices in α ∪ β′ remain, we sum up the associated labels xσ one
by one.

Now we give more details about each step of the summation. Suppose
that σ /∈ α∪β′ is a leaf of S that does not belong to a twig (e.g. σ3 in Fig. 4).
Let σ′ be the vertex of S adjacent to σ (continuing with the example σ = σ3

from Fig. 4, we have σ′ = σ4). We now estimate
∑

xσ

Uσ,σ′(xs,xσ,xσ′)
∏

{e,e′}∈Lσ

J{e,e′}Sxe
� CM2μ−1Zx1(σ)x2(σ)(σ), (4.51)

where x1(σ) and x2(σ) are skeleton labels incident to Lσ (see Fig. 4). The
proof of (4.51) follows by estimating Uσ,σ′ as in (4.50), and by noting that the
sum contains O(M2μ) terms, and in each term the number of free summation
labels is reduced by at least one, leading to a factor M−1Z; we omit further
details. (In fact, it is not hard to check that the factor M2μ−1 on the right-
hand side of (4.51) may be improved to Mμ−1, by the simple observation that
the generic case leads to a reduction of M−2, while a weaker reduction of M−1

is obtained only for O(Mμ) terms and not the generic O(M2μ) terms.) Having
summed over xσ, we strike the vertex σ and the edge {σ, σ′} from the tree and
repeat this process until S has no more leaves in ξ\(α∪β′) that do not belong
to twigs.

Next, we estimate the x-summation associated with twigs. Let {σ, σ′} be
a twig of S (e.g. {σ1, σ2} in Fig. 4). Similarly to above, we claim that

∑

xσ,xσ′

Uσ,σ′(xs,xσ,xσ′)
∏

{e,e′}∈Lσ∪Lσ′

J{e,e′}Sxe

� CM−1Zx1(σ)x2(σ)(σ)Zx1(σ′)x2(σ′)(σ′). (4.52)

To see this, we estimate Uσ,σ′ using (4.50) and note that the coincidence Jπ,π′

typically reduces the number of free summation labels by two. Here “typically”
means that at least one of π and π′ is only incident to ladder vertices (or, more
informally, is away from its skeleton vertices, i.e. the ends of the ladder). This
yields a gain M−2 and there are O(M2μ) such terms, so the total gain is
bounded by M2μ−2 � M−1. In the non-typical situation (i.e. where both π
and π′ are incident to skeleton vertices), we only gain a factor M−1 from the
coincidences, since in this case one of the two labels incident to a bridge is a
skeleton label, which is fixed so that Jπ,π′ forces only one instead of two ladder
labels to coincide. But this may happen only if π and π′ are both at an end
of their ladders, so the number of such terms is only O(1). This concludes the
proof of(4.52). We repeat this process for each twig of S, after which we strike
the twig from S.

This leaves us with the summation over xσ for σ ∈ α ∪ β′ (e.g. σ5 in
Fig. 5). These summations factorize over σ ∈ α ∪ β′, and may be estimated
individually (again by using the bound from (4.50)). For σ ∈ α we get
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Figure 5. The forest S. Vertices in α ∪ β′ are inside the
shaded region. The leftmost connected component of S is its
only twig

∑

xσ

Uσ(xs,xσ)
∏

{e,e′}∈Lσ

J{e,e′}Sxe
� CMμ−1Zx1(σ)x2(σ)(σ), (4.53)

and a similar estimate applies for the case σ ∈ β′, where Uσ(xs,xσ) in (4.53)
is replaced with Ũσ(xs,xζ ,xσ).

We may now conclude the summation over the labels xξ in (4.49) by
noting that on the right-hand sides of (4.51), (4.52), and (4.53) each factor
Z carries a factor that is bounded by CM−μ. (This follows from μ < 1/3; in
fact, μ < 1/2 would be enough here.) Going back to (4.47), we have therefore
proved that

|Rξ| � CΣ I0(xs)
∑

bξ

⎛

⎝
∏

{e,e′}∈Lξ(Σ,bζ ,1)

M−μJ{e,e′}Zxe
({e, e′})

⎞

⎠

×
⎛

⎝
∏

{e,e′}∈Lξ̄(Σ,bζ ,1)

J{e,e′}Zxe
({e, e′})

⎞

⎠

� CΣ I0(xs)
∏

{e,e′}∈Lζ̄(Σ,bζ ,1)

J{e,e′}Zxe
({e, e′}),

where the multiplicities 1 refer to bζ̄ .
Recalling (4.30) and the definition of Rξ given before (4.36), we therefore

conclude that

|V ′
ζ(Σ)| � CΣ

∑

bζ

∑

Γ∈Fζ(Σ,bζ ,1)

∑

Ξ∈H(Γ)

1 (Φ(Γ,Ξ) = G(Σ,bζ ,1))
∑

xs

I0(xs)

×
∑

xζ

BΓ,Ξ(xs,xζ)

⎛

⎝
∏

{e,e′}∈Lζ(Σ,bζ ,1)

Sxe

⎞

⎠

⎛

⎝
∏

{e,e′}∈Lζ̄(Σ,1)

Zxe
({e, e′})

⎞

⎠ ,

(4.54)

where we used the boundsD(Γ,Ξ), J{e,e′} � 1 as well as the canonical bijection
Lζ̄(Σ,bζ ,1) � Lζ̄(Σ,1) described in Step 2 at the beginning of this subsection.

Remark 4.12. Similarly to Remark 4.11, we note that if ξ �= ∅ then the estimate
(4.54) is in fact valid with an extra factor M2μ−1 on the right-hand side. More
precisely, from each σ ∈ α∪β′ we gain a factorM2μ−1. Moreover, from each σ ∈
[γ′] we also get a factor M2μ−1, except if σ belongs to a twig {σ, σ′}, in which
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case the whole twig {σ, σ′} gives rise to a single factor M2μ−1. All of these
observations follow easily from the preceding argument, as in Remark 4.11.

Step 7. Summing over the ζ-variables. Our next goal is to sum over the vari-
ables bζ and xζ in (4.54). The basic philosophy is similar to that of Step 6:
the restrictions in the summation arising from the constraint Γ ∈ Fζ(Σ,bζ ,1)
yield powers of M−1, which will compensate the factor Mμ|ζ| arising from the
bζ-summation.

The key observation behind estimating the right-hand side of (4.54) is
that, by definition of Fζ(Σ,bζ ,1), if Γ ∈ Fζ(Σ,bζ ,1) then each ladder Lσ with
σ ∈ ζ contains a bridge π ∈ Lσ that is contained in a block of Γ of size greater
than two. Thus, for any xs, xζ , and Γ for which the corresponding summand
on the right-hand side of (4.54) is nonzero, we have

1 �
∑

α⊂ζ

∑

γ⊂ζ2

1(ζ = α ∪ [γ])
∏

σ∈α

Uσ

∏

{σ,σ′}∈γ

Uσ,σ′ . (4.55)

The interpretation of the right-hand side of (4.55) is that each ladder Lσ must
contain a bridge that is either (i) in the same block as another bridge of Lσ

(implemented by the factor Uσ) or (ii) in the same block as a bridge of a
different ladder Lσ′ (implemented by the factor Uσ,σ′). Plugging (4.55) into
the right-hand side of (4.54) and using (4.19) yields

|V ′
ζ(Σ)| � CΣ I0(xs)

∑

α⊂ζ

∑

γ⊂ζ2

1(ζ = α ∪ [γ])

×
∑

xs

∑

bζ

∑

xζ

(
∏

σ∈α

Uσ

)⎛

⎝
∏

{σ,σ′}∈γ

Uσ,σ′

⎞

⎠

×
⎛

⎝
∏

{e,e′}∈Lζ(Σ,bζ ,1)

J{e,e′}Sxe

⎞

⎠

⎛

⎝
∏

{e,e′}∈Lζ̄(Σ,1)

J{e,e′}Zxe
({e, e′})

⎞

⎠.

(4.56)

We may now estimate the sum over xζ exactly as in Step 6, by estimating
the indicator functions Uσ and Uσ,σ′ as in (4.50) and using the facts that the
sums over α and γ contain OΣ(1) terms and that for each α and γ we have
ζ = α ∪ [γ]. The result is

|V ′
ζ(Σ)| � CΣ

∑

xs

I0(xs)
∑

bζ

⎛

⎝
∏

{e,e′}∈Lζ(Σ,1)

M−μJ{e,e′}Zxe
({e, e′})

⎞

⎠

×
⎛

⎝
∏

{e,e′}∈Lζ̄(Σ,1)

J{e,e′}Zxe
({e, e′})

⎞

⎠

� CΣ

∑

xs

I0(xs)

⎛

⎝
∏

{e,e′}∈Σ

J{e,e′}Zxe
({e, e′})

⎞

⎠ , (4.57)

where in the last step we used that G(Σ,1) = Σ.
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Remark 4.13. Exactly as in Remark 4.12, we note that if ζ �= ∅ the estimate
(4.57) is valid with an additional factor M2μ−1 on the right-hand side.

Step 8. Summing over xs and conclusion of the proof of Proposition 4.6. To
conclude the estimate of V ′

ζ(Σ), we use the following estimate on skeleton
pairings from [3, Lemma 4.22].

Lemma 4.14. Suppose that Σ /∈ SD and that Z satisfies Definition 4.9. Then
for small enough δ there exists a c0 > 0 such that

∑

x∈TV (Σ)

I0(x)

⎛

⎝
∏

{e,e′}∈Σ

J{e,e′}Zxe
({e, e′})

⎞

⎠ � CΣN

M
R2(ω + η)M−c0 .

Now (4.57) and Lemma 4.14 yield

|V ′
ζ(Σ)| � CΣN

M
R2(ω + η)M−c0 (4.58)

for all ζ ⊂ Σ. An identical argument yields the same bound for |V ′′
ζ (Σ)| for all

ζ ⊂ Σ, where V ′′
ζ (Σ) we defined after (4.25). The only difference is that χσ in

(4.27) is replaced with

χσ =

⎧
⎪⎨

⎪⎩

−e2iA1 if σ ∈ Σ1

−e2iA2 if σ ∈ Σ2

ei(A1+A2) if σ ∈ Σc.

The estimates are otherwise the same, since the resulting factors (4.40) again
satisfy Definition 4.9. (In fact, they satisfy even better bounds, since in (4.43)
the argument ω+η is replaced with the larger constant κ). This concludes the
estimate of Ṽ0(Σ) in (4.21).

What remains is the estimate of Ṽ1(Σ). This is straightforward, since the
set N

Σ\B(Σ) is finite by Lemma 4.4, so that the b-summation in the definition
of Ṽ1(Σ) ranges over a set of size O(1). Hence we do not need to make use
of oscillations, and may perform a brutal estimate by immediately taking the
absolute value inside the summation. The result is that |Ṽ1(Σ)| is bounded
by the right-hand side of (4.57) for some admissible matrices Z; we omit the
details. Lemma 4.14 then completes the estimate of Ṽ1(Σ). This concludes the
proof of Proposition 4.6.

4.7. Computation of Ṽ(Σ) for Σ ∈ SD

In this section, we compute Ṽ(Σ) for Σ being one of the eight skeletons of SD,
depicted in Fig. 3.

Proposition 4.15. For small enough δ in Proposition 3.2 there exists a constant
c0 > 0 such that

∑

Σ∈SD

Ṽ(Σ) = Vmain +O

(
N

M
M−c0R2(ω + η)

)
,

where Vmain was defined in (3.23).
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The rest of this subsection is devoted to the proof of Proposition 4.15.
The argument is very similar to that of Sect. 4.6, and we shall therefore only
highlight the differences. As before, we split the right-hand side of (4.17) using
(3.44), which gives Ṽ(Σ) = 2Re(Ṽ ′(Σ)+Ṽ ′′(Σ)). We focus on the leading order
term, Ṽ ′(Σ); the term Ṽ ′′(Σ) may be dealt with in exactly the same way, and
yields a smaller-order contribution. Exactly as in Step 3 of Sect. 4.6, we split
Ṽ ′(Σ) using ζ ⊂ Σ (see (4.22)), ξ ⊂ ζ̄ (see (4.35)) and ϑ ⊂ ξ̄ (see (4.38)); this
gives

Ṽ ′(Σ) =
∑

ξ⊂ζ̄

∑

ϑ⊂ξ̄

V ′
ζ,ξ,ϑ(Σ)

in self-explanatory notation. First, we observe that for the leading terms
V ′

∅,∅,∅(Σ) we have
∑

Σ∈SD

V ′
∅,∅,∅(Σ) = 2Re V ′

main +Oq(NM−q),

where V ′
main was introduced in (3.45). Indeed, if ζ = ∅, ξ = ∅, and ϑ = ∅ then

it is not hard to see that the x-summations of V ′
ζ,ξ,ϑ(Σ) within all ladders

of G(Σ,b) are unconstrained. This yields precisely 2Re V ′
main (see (3.23) and

(3.45)).
What remains is to estimate the error terms, i.e. V ′

ζ,ξ,ϑ(Σ) for ζ∪ξ∪ϑ �= ∅.
The strategy is very similar to that of Sect. 4.6: a nonempty ζ ∪ ξ ∪ ϑ induces
coincidences among the x-labels, which yields a subleading contribution even
after taking absolute value inside summation. Here, however, the bounds (4.42)
and (4.43) are not quite good enough: as observed in [3, Equation (4.58)],
applying them to a dumbbell skeleton yields an error bound that is larger
than the main term. For ζ = ξ = ϑ = ∅ the arguments of Sect. 4.6 yield the
bound |V ′

∅,∅,∅(Di)| � (N/M)R2(ω+ η)Mμ for any skeleton Di (see [3, Section
4.5] for more details); this bound cannot be improved using the methods of
Sect. 4.6. However, if ζ ∪ ξ ∪ ϑ �= ∅ then the estimates of Sect. 4.6 get an
additional factor M2μ−1 on the right-hand side. This fact was observed in
Remarks 4.11–4.13.

In order to derive the precise estimate, we consider only the most com-
plicated dumbbell skeleton, Σ = D8, and we use the labelling from Fig. 6 to
analyse V ′

ζ,ξ,ϑ(D8). In particular, we identify the bridges of Σ with the set
{1, 2, 3, 4}. The key estimate is the following.

Lemma 4.16. Suppose that ζ ∪ ξ ∪ ϑ �= ∅. Then we have

|V ′
ζ,ξ,ϑ(D8)| � M2μ−1

∑

y1,y2,y3,y4

|Zy1y3(1)||Zy2y4(2)||Zy4y3(3)||Zy3y4(4)|,

where Z(1) and Z(2) satisfy (4.42), and Z(3) and Z(4) satisfy (4.43).

Proof. The proof follows the argument of Sect. 4.6 to the letter, except that
we need the squeeze out an extra factor M2μ−1. This extra factor is however
already present in the estimates of Sect. 4.6, as observed in Remarks 4.11–
4.13. �
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Figure 6. The skeleton D8. We indicate the four indepen-
dent labels y1, . . . , y4 next to the vertices that carry them, and
the multiplicities b1, . . . , b4 next to their associated bridges
of D8

Using Lemma 4.16, it is easy to conclude the proof of Proposition 4.15.
Combining Lemma 4.16 with (4.42) and (4.43) yields, for ζ ∪ ξ ∪ ϑ �= ∅,

|V ′
ζ,ξ,ϑ(D8)| � CNM2μ−1Mμ(logN)2

M2δ

M
R2(ω + η) � CN

M
M−c0R2(ω + η),

for small enough δ > 0 in Proposition 3.2, since 3μ− 1 < 0. Similar estimates
hold for Σ = D1, . . . , D7. This concludes the proof of Proposition 4.15.

4.8. Conclusion of the Proof of Proposition 3.3 and Theorems 2.2–2.4

The estimate (3.26) follows from Propositions 4.5, 4.6, and 4.15. Recalling
Propositions 3.4 and 3.7, we have therefore proved Proposition 3.3.

The rest of the proof is the same as in [3, Section 4.7], and we summa-
rize the argument. Using Proposition 3.3 and (3.19), we have computed the
numerator of (3.9). The denominator is easily computed from the following
result, proved in [3, Lemma 4.24].

Lemma 4.17. For E ∈ [−1 + κ, 1 − κ] we have

EY η
φ (E) = 4

√
1 − E2 +O(η) = 2πν(E) +O(η). (4.59)

Now Theorems 2.2–2.4 follow immediately with (2.44), (2.51) and

Θη
φ1,φ2

(E1, E2) ..=
(LW )d

N2

Vmain

EY η
φ1

(E1)EY
η
φ2

(E2)
. (4.60)

5. Extensions

5.1. Higher-Order Correlations

In this section we prove Theorem 2.7. Since the proof is almost identical to
that of Theorem 2.2, we only outline the differences. In this section we use the
notation MX ..= X − EX. As in (3.8), it suffices to compute
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F η(E1, . . . , Ek) ..= E

(
k∏

i=1

M (Trφη
i (H/2 − Ei))

)

= F̃ η(E1, . . . , Ek) +Oq(NkM−q)

for all q > 0, where we defined

F̃ η(E1, . . . , Ek)

..=
∑

n1+···+nk�Mμ

(
k∏

i=1

2 Re (γ̃n2(E2, φ2))

)
E

(
k∏

i=1

M(TrH(ni))

)
.

(See (3.19).) In order to evaluate the expectation on the right-hand side, we
use a trivial extension of the graphical technology introduced in Sect. 4. Here,
the graph C ≡ C(n1, . . . , nk) = C1(n1) � · · · � Ck(nk) consists of k disjoint
oriented chains, whereby the ith chain Ci has ni edges. Plugging in (3.1), we
get a sum over the labels x = (xi)i∈V (C).

We now proceed as in Sect. 4, introducing the partitions Γ ∈ P(E(C)).
The only novel ingredient is a classifications of such partitions Γ according
to their induced partitions on the chains of C, indexed by the set {1, . . . , k}.
More precisely, for each Γ ∈ P(E(C)) we define the induced partition P (Γ) ∈
P(k) ..= P({1, . . . , k}) as the finest partition on {1, . . . , k} such that i and j
belong to the same block of P (Γ) if there exists a γ ∈ Γ such that i, j ∈ γ.
The interpretation of P (Γ) is that components of C that are linked by a block
of Γ belong to the same block of P (Γ). Previously, when computing the two-
point correlation function we considered only partitions that linked the two
chains of C, so that P (Γ) was always trivial. Now we have several chains and
their connectivity structure, described by P (Γ), is more complicated. We note
that P (Γ) would have remained trivial if we had considered the kth order
cumulants instead of the correlation functions of Xi in Theorem 2.7. In our
case, the subtraction of the expectation value in the definition of Xi guarantees
only that P (Γ) has no atoms.

We write

E

(
k∏

i=1

M(TrH(ni))

)
=
∑

x

I(x)

⎛

⎝
∏

e∈E(C)

√
Sxe

⎞

⎠E

⎡

⎣
k∏

i=1

M

⎛

⎝
∏

e∈E(Ci)

Axe

⎞

⎠

⎤

⎦ ,

and decompose the expectation according to

E

⎡

⎣
k∏

i=1

M

⎛

⎝
∏

e∈E(Ci)

Axe

⎞

⎠

⎤

⎦

=
∑

p∈P∗(k)

∑

Γ∈P(E(C))

1(P (Γ) = p)
∑

Ξ∈H(Γ)

BΓ,Ξ(x)D(Γ,Ξ) (5.1)

(compare with (4.9)). Here P∗(k) ⊂ P(k) is the set of partitions with no
atoms, H(Γ) is the set of halving partitions of Γ, and
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D(Γ,Ξ) ..=
∏

γ∈Γ

μγ(Ξ)
k∏

i=1

⎛

⎝1 −
∏

γ∈Γ

μγ∩E(Ci)(Ξ)

⎞

⎠ , (5.2)

which generalizes the indicator function (4.10) to the case k � 3. In order to
see this, we note (recalling that any monomial of in the entries of A is either
equal to one or has zero expectation) that the expectation on the left-hand
side of (5.1) is equal to one if and only if E

∏
e∈E(Ci)

Axe
= 0 for all i and

E
∏

e∈E(C)Axe
= 1. These two conditions easily yield (5.2). Note that the

restriction p ∈ P∗(k) imposes that Γ has to be a connected partition in the
sense that for any chain Ci there is another chain Cj such that some block
of Γ has a nontrivial intersection with both Ci and Cj . For the purposes of
this proof, this is the appropriate generalization of the concept of connected
partition (4.11) to a k-component graph. Note also that, for P (Γ) = p and
Ξ ∈ H(Γ), the indicator function D(Γ,Ξ) factorizes over the blocks of p.

Note that summation over p on the right-hand side of (5.1) yields the
decomposition

F̃ η(E1, . . . , Ek) =
∑

p∈P∗(k)

F̃ η
p (E1, . . . , Ek) (5.3)

in self-explanatory notation. Now we split the right-hand side of (5.3) into the
terms p ∈ M(k) (i.e. the pairings) and p ∈ P∗(k)\M(k). The former terms will
yield the leading term of (2.28) and the latter terms the error term of (2.28).

Let us consider an error term arising from a p ∈ P∗(k)\M(k). We may
repeat the estimates of Sect. 4 and [3, Section 4] with merely cosmetic changes.
Omitting the details, we get the following bounds. Each block b of p of size |b|
yields a contribution bounded by

N

M
M−|b|+2(R2(ω0 + η)Mμ)|b|−1 (5.4)

to F̃ η(E1, . . . , Ek). (Recall ω0 defined in the statement of Theorem 2.7.) The
bound (5.4) may be seen from the power counting estimate [3, Equation (4.57)],
and we omit the details. Note that (5.4) generalizes [3, Equation (4.58)] to the
case |b| � 3. In addition to (5.4), we have the stronger bound

N

M
R4(ω0 + η) (5.5)

for blocks b of size |b| = 2, as follows by the explicit computation from Propo-
sition 3.3. Again, we omit the details of the uninteresting modifications to the
argument of Sect. 4 and [3, Section 4].

Using (5.4) and (5.5), it is easy to conclude the proof. To illustrate the
procedure, we give the details for the worst-case scenario: k is odd, p consists
of one block of size three and (k − 3)/2 blocks have size two. In that case we
get from (5.4) and (5.5) the bound
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∣∣∣F̃ η
p (E1, . . . , Ek)

∣∣∣ � N

M
M−1(R2(ω0 + η)Mμ)2

(
N

M
R4(ω0 + η)

)(k−3)/2

�
√
M

N

(
N

M
R4(ω0 + η)

)k/2

,

where in the first step we used that 3μ < 1 and R2(ω0+η)2 � Mμ. Essentially,
a block of size greater than two yields an additional small factor bounded by
(M/N)1/2. This concludes the estimate of the error terms.

The main terms arise from the pairings p ∈ M(k) for even k. If p is a
pairing, the quantity F̃ η

p (E1, . . . , Ek) is equal to a product over the blocks of
p, up to some constraints among the summation labels imposed by BΓ,Ξ(x).
These constraints may be removed exactly as in Sect. 4 at the expense of the
error in (2.28), and the result is a pure product over k/2 independent two-point
functions. This concludes the proof of Theorem 2.7.

5.2. The Real Symmetric Case, β = 1
In this section, we explain the changes needed to the arguments of Sect. 4 to
prove Theorems 2.2, 2.3, and 2.4 for β = 1 instead of β = 2. The necessary
changes under the simplifications (S1)–(S3) of [3] were explained in [3, Section
5.1]. Here we describe the changes required for the full proof, as presented in
Sect. 4.

The origin of the difference between the cases β = 1 and β = 2 is that
for β = 1 we have EH2

xy = Sxy, while for β = 2 we have EH2
xy = 0 (in

addition to EHxyHyx = E|Hxy|2 = Sxy, which is valid in both cases). This
leads to additional terms for β = 1, which may be included in the argument
of Sect. 4 as follows. Recall that the main idea of the partitions Γ and Ξ
introduced in Sect. 4.1 is that blocks of Γ correspond to edges that have the
same unordered labels, and blocks of Ξ to edges that have the same ordered
labels. Since EAk

xyA
l
yx is now nonzero if and only if k+ l is even, we find that

the indicator function μγ(Ξ) defined in (4.4) has to be replaced with

μ̃γ(Ξ) ..= 1(|γ| is even)1(Ξ|γ has at most two blocks).

This definition ensures that for BΓ,Ξ(x) = 1 (recall (4.6)) we have E
∏

e∈γ

Axe
= 1 if and only if μ̃γ(Ξ) = 1. For a given Γ, we let Ξ range over H̃(Γ),

defined as H(Γ) in (4.5) except that μγ(Ξ) is replaced with μ̃γ(Ξ). With these
definitions, the construction of Sect. 4.1 remains the same. In defining the
refining pairing Π of (Γ,Ξ) as in Sect. 4.2, we forgo the condition (a) of Sect. 4.2
by choosing the edge e′ in Step (ii) of Φ to be simply the largest edge of γ;
otherwise the algorithm is unchanged.

This leads to pairings Π whose two edges may either have different or
coinciding ordered labels. We call the former twisted bridges and the latter
straight bridges; these concepts were first introduced in Section 9 of [5], and
were discussed in more detail in the current context in [3, Section 5.1]. For-
mally, we assign to each bridge of Π a binary tag, which indicates whether
the bridge is straight or twisted. The constraint imposed by a straight bridge
{e, e′} is given by the indicator function J{e,e′}(x) defined in (4.13). Similarly,
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Figure 7. Left picture: a straight bridge (left) and a twisted
bridge (right); labels with the same name are forced to coin-
cide by the bridge. Right picture: two antiparallel twisted
bridges, which form an antiladder of size two

the constraint imposed by a twisted bridge {e, e′} is given by the indicator
function

J̃{e,e′}(x) ..= 1(xe = xe′) = 1(xa(e) = xa(e′))1(xb(e′) = xb(e)).

By augmenting the pairings Π to tagged pairings, the argument of Sect. 4
carries over easily.

The graphical representation and construction of the tagged skeleton
(Σ,b) from the tagged pairing Π is covered in detail in [3, Section 5.1]. Here
we give a short summary. Recall that the key observation behind the defin-
ition of a skeleton was that parallel straight bridges yield a large contribu-
tion but a small combinatorial complexity. Now antiparallel twisted bridges
behave analogously, whereby two bridges {e1, e′

1} and {e2, e′
2} are antiparallel

if b(e1) = a(e2) and b(e′
1) = a(e′

2). (Recall that they are parallel if b(e1) = a(e2)
and b(e′

2) = a(e′
1).) See Fig. 7 for an illustration. An antiladder is a sequence

of bridges such that two consecutive bridges are antiparallel. We represent
straight bridges (as before) by solid lines and twisted bridges by dashed lines.

As in Sect. 4.3, to each tagged pairing Γ we assign a tagged skeleton Σ
with associated multiplicities b. The skeleton Σ is obtained from Γ by succes-
sively collapsing parallel straight bridges and antiparallel twisted bridges until
none remains. We take over all notions from Sect. 4.3, such as Ṽ(·), with the
appropriate straightforward modifications for tagged skeletons.

As it turns out, allowing twisted bridges results in eight new dumbbell
skeletons, called D̃1, . . . , D̃8 below, each of which has the same value Ṽ(·) as
its counterpart without a tilde. They are defined in Fig. 8.

Hence, for β = 1 the leading term is simply twice the leading term of
β = 2, which accounts for the trivial prefatory 2/β in the final formulas. Any
other skeleton may be estimated by a trivial modification of the argument
from Sect. 4; we omit further details.

5.3. General Band Matrices

In this subsection, we outline how to prove the results of Sect. 2.4 for gen-
eral band matrices satisfying Definition 2.9. The main difference is that, since
H is not unimodular as in Sect. 2.1, the key identity (3.2) does not hold.
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Figure 8. The eight dumbbell skeletons D̃1, . . . , D̃8 with
twisted bridges

Instead, we have to correct the identity (3.2) with some error terms, thus effec-
tively perturbing around (3.2). This generalization was explained in detail in
[4, Section 6.1], and we summarize it here.

The error terms entering the general recursion relation are the random
matrices Φ2 and Φ3, defined through

(Φ2)xy
..= δxy

∑

z

(|Hxz|2 − Sxz

)
, (Φ3)xy

..= −|Hxy|2Hxy.

We also introduce the notations

(Φ3H
(n))x0xn+1

..=
∑

x1,...,xn

[
n−1∏

i=0

1(xi �= xi+2)

]
(Φ3)x0x1Hx1x2 · · ·Hxnxn+1 ,

Φ2H
(n) ..= Φ2H

(n).

Then (3.2) is replaced with

Un(H/2) =
∑

k�0

∑

a∈{2,3}k

∑

�0+···+�k=n−|a|
H(�0) Φa1H

(�1) · · · Φak
H(�k), (5.6)

where the sum ranges over �i � 0 for i = 0, . . . , k. Here we use the abbre-
viation a = (a1, . . . , ak) as well as |a| ..=

∑k
i=1 ai. For a proof of (5.6), see

[4, Proposition 6.2]. Note that in the unimodular case of Sect. 2.1 we have
Φ2H

(n) = Φ2H
(n) = 0 and Φ3H

(n) = − 1
M−1H

(n−2), so that (5.6) reduces
to (3.2).

The leading term of (5.6) is the term k = 0, which gives Un(H/2) =
H(n)+· · · . The error terms in . . . contain the matrices Φ2 and Φ3. The presence
of either one of these factors leads to a subleading contribution. The basic
idea why Φ3 is small is that it carries an extra factor |Hxy|2 � M−1. The
reason why Φ2 is small is that it has zero expectation. Proving that the terms
k � 1 in (5.6) yield a subleading contribution is a nontrivial extension of the
analysis in the unimodular case, and requires in particular the introduction
of more complicated graphs and a more intricate analysis of the partitions
induced on the edges of these graphs. The details for the case of quantum
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diffusion were carefully worked out in [4]. The argument of [4] may be taken
over to the current setup. Owing to the increased complexity of the error
terms, the oscillations cannot be exploited as effectively as in Sect. 4, but,
following carefully the arguments of Sect. 4 combined with [4, Sections 6–
9], one finds that the error estimates in Theorem 2.2 remain valid for any
sufficiently small positive ρ. The only new ingredient needed in the proof is the
observation that in addition to entries of S arising from rungs Sxy = EHxyHyx

of straight ladders, we get entries of T arising from rungs Txy = EH2
xy of

twisted antiladders (see Sects. 5.2 and [3, Sections 5.1]). It is not hard to see
that the estimates of Proposition 3.5 on the matrix S remain true for the
matrix T . (See Proposition 5.2 below.)

Having described the estimate of the error terms, we devote the rest of
this subsection to the analysis of the main term Θ, resulting from the dumb-
bell skeletons D1, . . . , D8, D̃1, . . . , D̃8. The contribution Vmain of the dumb-
bells D1, . . . , D8 was obtained in Sect. 4.7, and was found to equal Vmain from
(3.41) up to negligible error terms. Similarly, the contribution of the skeletons
D̃1, . . . , D̃8 is given by

Ṽmain =
∞∑

b1,b2=0

∑

(b3,b4)∈A
2 Re (γ2b1+b3+b4 ∗ ψη

1 ) (E1)

× 2 Re (γ2b2+b3+b4 ∗ ψη
2 ) (E2) Ib1+b2 TrT b3+b4 +Oq(NM−q), (5.7)

Note that the only difference between (5.7) and (3.41) is that the factor
TrSb3+b4 of (3.41) was replaced with TrT b3+b4 in (5.7). Indeed, as explained
in Sect. 5.2 and [3, Sections 5.1], each twisted bridge gives rise to an entry
of T just as each straight bridge gives rise to an entry of S. As in (4.60), the
leading term Θ is given by

Θη
φ1,φ2

(E1, E2) =
(WL)d

N2

Vmain + Ṽmain

EY η
φ1

(E1)EY
η
φ2

(E2)
. (5.8)

The asymptotics of Vmain were worked out in Proposition 3.3 (i)–(iii).
What therefore remains is an asymptotic analysis of Ṽmain from (5.7). In

order to give it, we introduce the quantities

Δ ..=
1
2

∑

x∈T

g
( x

W

)2

Sx0 − |D−1/2w|2, w ..=
1
2

∑

x∈T

x

W
g
( x

W

)
Sx0, (5.9)

as well as

Υ ..=
∑

x∈T

h
( x

W

)
Sx0. (5.10)

Recalling the definitions (2.38) and (2.39), it is not hard to see that

Δ = Δ0 +O(W−1), Υ = Υ0 +O(W−1). (5.11)

In particular, Δ and Υ are bounded from below by some positive constant
since Δ0 and Υ0 are. Moreover, we set

σ̃ ..= Δλ2 + Υϕ, (5.12)
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which is analogous to σ from (2.40). Using Δ0 > 0 and Υ0 > 0, we therefore
have

σ̃ = σ(1 +O(W−1)). (5.13)

The following result gives the asymptotic behaviour of Ṽmain, in analogy
to (i)–(iii) for Vmain from Proposition 3.3.

Proposition 5.1 (Asymptotics of Ṽmain). The quantity Ṽmain from (5.7) satisfies
the following estimates.

(i) Suppose that (2.19) holds. Then for d = 1, 2, 3 we have

Ṽmain =
(2/π)d/2Bd

ν(E)2
√

detD

(
L

2πW

)d
(

2Re
(
πσ̃

2
+ i

ω

ν(E)

)d/2−2

+O
(
(ω + σ̃)d/2−2

(√
ω + σ̃ +M−τ/2

)))
. (5.14)

Moreover, for d = 4 we have

Ṽmain =
8

ν(E)2
√

detD

(
L

2πW

)d

(min{|logω|, |log σ̃|} +O(1)) . (5.15)

(ii) Suppose that (2.19) holds and that d = 2. If φ1 and φ2 satisfy (C1) then

Ṽmain =
8

πν(E)2
√

detD

(
L

2πW

)2

×
(

4πην(E) + π2ν(E)2σ̃
4ω2 + (4η + πν(E)σ̃)2

+ (Q− 1)min{|logω|, |log σ̃|} +O(1)
)
,

(5.16)

and if φ1 and φ2 satisfy (C2) then

Ṽmain =
8

πν(E)2
√

detD

(
L

2πW

)2

×
(

π2ν(E)2σ̃
4ω2 + (πν(E)σ̃)2

+ (Q− 1)min{|logω|, |log σ̃|} +O(1)
)
.

(5.17)

(iii) Suppose that ω = 0. Then the exponent μ from Proposition 3.2 may be
chosen so that there exists an exponent c1 > 0 such that for d = 1, 2, 3
we have

Ṽmain =
2d/2

ν(E)2
√

detD

(
L

2πW

)d (
η

ν(E)

)d/2−2

×
(
Vd

(
φ1, φ2;

2σ̃
πν(E)η

)
+O(M−c1)

)
(5.18)
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(recall the definition (2.41)) and for d = 4 we have

Ṽmain =
4

ν(E)2
√

detD

(
L

2πW

)4

× (V4(φ1, φ2)min{|log η|, |log σ̃|} +O(1)) . (5.19)

Once Proposition 5.1 is proved, Theorems 2.11 and 2.12 easily follow
using (5.8), (5.11), (5.12), (5.13), Lemma 4.17, and Proposition 3.3 (i)–(iii).

The rest of this subsection is devoted to the proof of Proposition 5.1. The
argument is similar to the computation of Vmain in the proof of Proposition
3.3. It relies on the following result, which is the generalization of Proposition
3.5 to the case σ̃ > 0.

Proposition 5.2. Let T be as in (2.33) and α ∈ C satisfy |α| � 1 and |1−α| �
4/M + (W/L)2. Then all estimates of Proposition 3.5 remain valid provided
we replace S with T and α with α − σ̃. (In particular, u � 0 and ζ ∈ S

1 are
the polar coordinates of 1 − α+ σ̃ = uζ.) All constants depend in addition on
g and h.

Proof. See Appendix C. �

The following result is the generalization of Proposition 3.9 to the case
σ̃ > 0.

Proposition 5.3. Suppose that (2.12) holds. Let b > 0 be fixed and J ..= 1 −
M−c2η for some c2 > 0. Fix a smooth real function e ∈ L1(R) satisfying the
condition (C2) (see (2.8)), and recall the notation eη(v) = η−1e(η−1v). Then
for d � 3 we have

1
2π

∫
dv eη(v)Tr

T

(1 + ibv − J T )2

=
(bη)d/2−2

√
detD

(
L

2
√
πW

)d
∞∫

0

dt e−tσ̃/(ηb) t1−d/2 ê(t) +O

(
N

M
R4(η)M−c0

)

(5.20)

for some constant c0 > 0, and for d = 4 we have

1
2π

∫
dv eη(v)Tr

T

(1 + ibv − J T )2

=
min{|log η|, |log σ̃|}√

detD

(
L

2
√
πW

)4

ê(0) +O

(
N

M

)
. (5.21)

Proof. See Appendix C. �

Armed with Propositions 5.2 and 5.3, we may complete the proof of
Proposition 5.1 by following the arguments of Sects. 3.3 and 3.4 almost to the
letter; we omit the uninteresting details.
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6. Beyond the Diffusive Regime

Throughout this paper we made the assumption (2.27) that we are in the
diffusive regime; see Remark 2.5 for a more detailed discussion. While (2.27)
is physically important and necessary for computing the asymptotics of the
leading terms (Theorems 2.3 and 2.4), it is not fundamental for the proof of
Theorem 2.2. We now restate this theorem without the lower bound in (2.12)
(which implied (2.27)) and explain the proof.

Theorem 6.1. Fix ρ ∈ (0, 1/3) and d ∈ N, and set η ..= M−ρ. Suppose that
the test functions φ1 and φ2 satisfy either both (C1) or both (C2). Suppose
moreover that

W � L � WC (6.1)

for some constant C.
Then there exists a constant c0 > 0 such that, for any E1, E2 satisfying

(2.10) for small enough c∗ > 0, the local density–density correlation satisfies

〈Y η
φ1

(E1) ;Y η
φ2

(E2)〉
〈Y η

φ1
(E1)〉〈Y η

φ2
(E2)〉

=
1

(LW )d

(
Θη

φ1,φ2
(E1, E2) +M−c0O

(
R2(ω + η) +

M

N(ω + η)

))
, (6.2)

where Θ is defined in (4.60) with Vmain defined in (3.23).

Proof. The proof follows that of Theorem 2.2 to the letter. Recall that the
key input for the proof of Theorem 2.2 is Proposition 3.5 (i). (The other
parts of Proposition 3.5 are only needed for Theorems 2.3 and 2.4.) With the
assumption |1−α| � 4/M+(W/L)2 of Proposition 3.5 relaxed to |1−α| � 4/M ,
the estimate (3.35) remains true, and the estimate (3.36) is replaced with

sup
x,y

∣∣∣∣∣

(
S

(1 − αS)k

)

xy

∣∣∣∣∣ � C

M
R2k(|1 − α|) +

C

N |1 − α|k . (6.3)

The proof of (6.3) follows that of (3.36) up to (B.13). Since the lattice spacing
of the Riemann sum is no longer smaller than one, the bound of the right-
hand side of (B.13) requires, in addition to the integral approximation, the
contribution of the origin r = 0. This yields (6.3).

Using (6.3) instead of (3.36), it is easy to conclude the proof of Theo-
rem 6.1. �

Having established Theorem 6.1, what remains is the asymptotic analysis
of Θ, i.e. of (3.23). This was done in the diffusive regime (2.27) in Sect. 3, using
Proposition 3.5 (ii) and (iii) as input; the result was given in Theorems 2.3
and 2.4. If (2.27) does not hold, this analysis, along with (3.37)–(3.39), has to
be modified. We omit the details.

We conclude this section by noting that, instead of correlation functions
of real linear statistics of the form (2.9), we may also consider correlation
functions of Green functions and even at spectral parameters with different
imaginary parts. The estimate of the subleading graphs is unchanged. In order
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to compute the contribution of the leading dumbbell graphs, instead of the
right-hand side of (3.44), we have to compute x1x2 or x1x2 (in the notation of
(3.44)) for the case (C1). Thus we get, for instance, for η1, η2 � W−ρ/3 with
ρ ∈ (0, 1/3), that

〈
Tr (H/2 − E1 − iη1)

−1 ; Tr (H/2 − E2 + iη2)
−1
〉

= V̂main +O

(
N

M
R2(ω̂) +

1
ω̂

)
(6.4)

and
〈
Tr (H/2 − E1 − iη1)

−1 ; Tr (H/2 − E2 − iη2)
−1
〉

= O

(
N

M
R2(ω̂) +

1
ω̂

)
,

(6.5)

where we defined ω̂ ..= ω + min{η1, η2}, and the leading term is given by

V̂main
..= T (E1)T (E2)

eiA
η1
1

1 + e2iA
η1
1 I

e−iA
η2
2

1 + e−2iA
η2
2 I Tr

ei(A
η1
1 −A

η2
2 )S

(
1 − ei(A

η1
1 −A

η2
2 )S

)2 .

(6.6)

We again omit the asymptotic analysis of V̂main.
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Appendix A. Proof of Proposition 3.2

Using the identity

φη(H/2 − E) = 2Re

∞∫

0

dt φ̂(ηt) eitEe−itH/2

(recall that φ is real), we get from (3.8)

F η(E1, E2)

=

〈
2 Re Tr

∞∫

0

dtφ̂1(ηt)e−i(H/2)t+iE1t ; 2 Re Tr

∞∫

0

dtφ̂2(ηt)e−i(H/2)t+iE2t

〉
.

We now truncate in the norm of H. Fix δ satisfying 0 < 2δ < μ−ρ. From
[4], Proposition 5.4, we find that there exists an ε > 0 and an event Ξ (both
depending on δ) such that

1(Ξ) ‖H‖ � M δ, P(Ξc) � M−εM . (A.1)
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Using
∫∞
0

dt φ̂i(ηt) = O(η−1) = O(Mρ) for i = 1, 2, we get

F η(E1, E2) =

〈
1(Ξ)2Re Tr

∞∫

0

dtφ̂1(ηt)e−i(H/2)t+iE1t ;

1(Ξ)2Re Tr

∞∫

0

dtφ̂2(ηt)e−i(H/2)t+iE2t

〉
+O(N2M2ρ−εM ).

Next, we truncate in t. Since φ1 and φ2 are smooth, for any q > 0 there
is a Cq such that |φ̂i(t)| � Cq t

−q for i = 1, 2. We conclude that

F η(E1, E2) =

〈
1(Ξ) 2 Re Tr

Mρ+δ∫

0

dt φ̂1(ηt) e−i(H/2)t+iE1t ;

1(Ξ) 2 Re Tr

Mρ+δ∫

0

dt φ̂2(ηt) e−i(H/2)t+iE2t

〉
+Oq

(
N2M2ρ−δ(q−1)

)

for all q > 0. Recalling (3.16), we therefore get using (3.4)

F η(E1, E2) =
∞∑

n1,n2=0

2 Re (γ̃n1(E1, φ1)) 2Re (γ̃n2(E2, φ2))

×
〈
1(Ξ) TrH(n1) ;1(Ξ) TrH(n2)

〉
+Oq

(
N2M2ρ−δ(q−1)

)
.

(A.2)

Next, we truncate in n1 and n2. From (3.6) and |φ̂i(t)| � 1 we find that

|γ̃n1(E1, φ1)γ̃n2(E2, φ2)|

� C
M (ρ+δ)(n1+1)

n1!
M (ρ+δ)(n2+1)

n2!
� C

(2Mρ+δ)n1+n2+2

(n1 + n2)!
. (A.3)

In order to estimate the contribution of the terms n1+n2 � Mμ in (A.2),
we need the following rough bound on Chebyshev polynomials, proved in [4,
Lemma 5.5]:

|Un(E/2)| � Cn(1 + |E|)n. (A.4)

Using (3.2) we therefore get

1(Ξ)‖H(n)‖ � (CM δ)n.
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Recalling (A.3), we have the bound

∣∣∣∣∣
∑

n1+n2>Mμ

2 Re (γ̃n1(E1, φ1)) 2 Re (γ̃n2(E2, φ2))
〈
1(Ξ)Tr H(n1);1(Ξ)Tr H(n2)

〉∣∣∣∣∣

� N2M2μ
∑

n1+n2>Mμ

(
CMρ+δ

n1 + n2

)n1+n2

(CMδ)n1+n2

� N2M2μ
∑

n1+n2>Mμ

(
CMρ+2δ−μ

)n1+n2 � N2 exp(−Mμ).

Summarizing, we have proved that

F η(E1, E2) =
∑

n1+n2�Mμ

2 Re (γ̃n1(E1, φ1)) 2Re (γ̃n2(E2, φ2))

×
〈
1(Ξ) TrH(n1) ;1(Ξ) TrH(n2)

〉
+ Oq

(
N2M2ρ−δ(q−1)

)
.

Next, we remove the indicator function 1(Ξ). We use (A.4) with the determin-
istic bound

‖H‖ � max
x

∑

y

|Hxy| � 2
√
M

to get

∣∣∣∣∣∣

∑

n1+n2�Mμ

2 Re (γ̃n1(E1, φ1)) 2Re (γ̃n2(E2, φ2))
〈
1(Ξc) TrH(n1) ; TrH(n2)

〉
∣∣∣∣∣∣

� N2M4μ
(
C

√
M
)Mμ

P(Ξc) � N2 exp(−M c),

where we used the trivial bound |γ̃n(E, φ)| � CMμ and (A.1). This (together
with analogous estimates for the other error terms) proves (3.19), after a
renaming of q. The claim about the improved bound in (3.19) in the case
φ is analytic follows in exactly the same way.

Moreover, (3.18) follows easily from (3.16), (3.12), and the estimate
|φ̂i(t)| � Cqt

−q, which yield

|(γn ∗ ψη
i )(Ei) − γ̃n(Ei, φi)| �

∞∫

Mρ+δ

Cq(tη)−q � CqM
ρM−δ(q−1).

What remains is the proof of (3.20). We use the bound (3.6) and the
identity (3.12) to get, for large enough K,



786 L. Erdős and A. Knowles Ann. Henri Poincaré

|(ψη ∗ γn)(E)| �
n/K∫

0

dt
∣∣∣φ̂(ηt)an(t)

∣∣∣+
∞∫

n/K

dt
∣∣∣φ̂(ηt)an(t)

∣∣∣

�
n/K∫

0

dt
(
Ct

n

)n

+

∞∫

n/K

dt
∣∣∣φ̂(ηt)

∣∣∣ � e−n + Cq(ηn)−q,

by the decay of φ̂. Moreover, the bound |(ψη ∗ γn)(E)| � C follows from (3.7).
The estimate of γ̃(E, φ) is similar, using (3.18). This concludes the proof of
Proposition 3.2.

Appendix B. Proofs of Propositions 3.5 and 3.9

In this appendix we establish resolvent estimates and asymptotics for the
matrix S, and give the proof of Propositions 3.5 and 3.9. We use the discrete
Fourier transform. To that end, we define the lattice

T
∗ ..=

2π
L

T =
(

[−π, π) ∩ 2πZ

L

)d

dual to T, so that

Sxy =
1
N

∑

p∈T∗
eip·(x−y)Ŝ(p), Ŝ(p) ..=

∑

x∈T

e−ip·xSx0.

Note that Ŝ(p) is naturally defined for all p ∈ [−π, π)d. For q ∈ [−πW, πW )d,
define

ŜW (q) ..= Ŝ(q/W ) =
∑

x∈T

e−iq·x/W 1
M − 1

f
( x

W

)

=
1

M − 1

∑

v∈W −1T

e−iq·vf(v), (B.1)

where in the second equality we used that [x]L = x for x ∈ T. For the following
we recall the definition (3.25) of I.

Lemma B.1. The function ŜW is real and symmetric, and satisfies |ŜW (q)| �
I. Moreover, for any ε > 0 there is a δε > 0 such that

∣∣∣ŜW (q)
∣∣∣ � 1 − δε if |q| � ε (B.2)

for large enough W (depending on ε). Finally, we have the expansion

ŜW (q) = I − q ·Dq + Q(q) +O(|q|4+c), (B.3)

where c is the constant from (2.34). Here D is the covariance matrix defined
in (3.21) and

Q(q) ..=
1
4!

∑

x∈T

(x · q/W )4Sx0.
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An immediate consequence of Lemma B.1 is the bound, valid for n � 2,

TrSn =
∑

p∈T∗
Ŝ(p)n � In−2

∑

p∈T∗

∣∣∣Ŝ(p)
∣∣∣
2

= In−2N
∑

x∈T

S2
x0 � CInN/M,

(B.4)

where in the third step we used Parseval’s identity.

Proof of Lemma B.1. The bound |ŜW (q)| � I is trivial and that ŜW is real
and symmetric follows immediately from the fact that f is real and symmetric.
Next, (B.2) follows from the identity

I − ŜW (q) =
1

M − 1

∑

u∈W −1T

(1 − cos(q · u)) f(u) ;

we omit the details. Finally, (B.3) follows by applying Taylor’s theorem with a
fourth order remainder, combined with the estimates (2.34) and |eit−1| � 2|t|c
for any c ∈ (0, 1). �

Proof of Proposition 3.5. The proof of (3.35) is almost identical to the proof
of [6, Proposition A.2 (ii)], using [6, Proposition A.3 (ii)]. We omit the details.

In order to prove (3.36), by translation invariance of S we may set y = 0.
To begin with, we note that the case |α| � 1/2 is trivial by the identity

S
(1−αS)k = S (

∑∞
n=0 α

nSn)k combined with Sn
xy � InM−1. Throughout the

following we therefore assume that |α| � 1/2.
The proofs of (3.36), (3.37), and (3.38) rely on the Fourier space repre-

sentation
(

S

(1 − αS)k

)

x0

=
1
N

∑

p∈T∗
eip·x Ŝ(p)

(1 − αŜ(p))k

=
1
N

∑

q∈WT∗
eiq·x/W ŜW (q)

(1 − αŜW (q))k
. (B.5)

Before giving the full proofs, we give a short overview of the argument.
Approximating the summation in (B.5) with a integral, we get

(
S

(1 − αS)k

)

x0

≈ 1
(2πW )d

∫

[−πW,πW ]d

dq eiq·x/W ŜW (q)

(1 − αŜW (q))k
.

Next, we approximate ŜW (q) ≈ 1 − q · Dq (see (B.3)); this approximation is
only valid for small q, but for d � 4 the main contribution to the integral
comes precisely from small values of q. This yields, for α ≈ 1,

(
S

(1 − αS)k

)

x0

≈ 1
(2πW )d

∫

[−πW,πW ]d

dq eiq·x/W 1
(1 − α(1 − q ·Dq))k

≈ 1
(2πW )d

∫

[−πW,πW ]d

dq eiq·x/W 1
(1 − α+ q ·Dq)k

.
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By assumption on α, we have Re(1 − α) > 0. Now (3.36) will follow using
D � c and (3.34). In order to prove (3.37) and (3.38), we write

(
S

(1 − αS)2

)

00

≈ 1
(2πW )d

∫

[−πW,πW ]d

dq
1

(uζ + q ·Dq)k

=
ud/2−2

(2πW )d

∫

[−πu−1/2W,πu−1/2W ]d

dq
1

(ζ + q ·Dq)2 ,

from which (3.37) and (3.38) will easily follow using the elementary identity
∫

Rd

dr
1

(ζ + |r|2)2 = Bd ζ
d/2−2. (B.6)

Now we give the full proof of (3.36), (3.37), and (3.38). Let ε > 0 to be
chosen later, and split the summation on the right-hand side of (B.5) according
to

(
S

(1 − αS)k

)

x0

=
1
N

∑

q∈WT∗
1(|q| � ε) eiq·x/W ŜW (q)

(1 − αŜW (q))k

+
1
N

∑

q∈WT∗
1(|q| > ε) eiq·x/W ŜW (q)

(1 − αŜW (q))k
. (B.7)

Using (B.2), we write the second term of (B.7) as

1
N

∑

q∈WT∗
1(|q| > ε)

(
eiq·x/W ŜW (q) +O

(
|ŜW (q)|2

δk
ε

))
. (B.8)

We write the first term of (B.8) as
1
N

∑

q∈WT∗
1(|q| > ε) eiq·x/W ŜW (q)

=
1
N

∑

q∈WT∗
eiq·x/W ŜW (q) − 1

N

∑

q∈WT∗
1(|q| � ε) eiq·x/W ŜW (q)

= Sx0 +O

⎛

⎝ 1
M

M

N

∑

q∈WT∗
1(|q| � ε)

⎞

⎠ = O(M−1).

Moreover, we estimate the second term of (B.8) by
C

δk
ε

1
N

∑

q∈WT∗
|ŜW (q)|2 =

C

δk
ε

∑

x∈T

S2
x0 � C

δk
εM

,

where in the first step we used Parseval’s identity. We conclude that the second
term of (B.7) is bounded by Cδ−k

ε M−1.
In order to estimate the first term of (B.7), we use (B.3) and (2.36) to

choose ε > 0 such that ŜW (q) = I − a(q) with

c|q|2 � a(q) � C|q|2 � 1 for |q| � ε,
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for some c > 0. Thus we get
∣∣∣∣∣∣
1
N

∑

q∈WT∗
1(|q| � ε) eiq·x/W ŜW (q)

(1 − αŜW (q))k

∣∣∣∣∣∣
� 2
N

∑

q∈WT∗

1(|q| � ε)

|1 − α(I − a(q))|k
.

(B.9)

Consider first the case Reα < 0. In that case the right-hand side of (B.9) is
bounded by

2
M

M

N

∑

q∈WT∗
1(|q| � ε) � C

M
.

For the following we therefore assume that Reα > 0, as well as |α| � 1/2.
Defining the polar variables

t ..=
∣∣∣∣
1 − α

α

∣∣∣∣ , ξ ..=
1 − α

tα
(B.10)

and writing q = t1/2r, we may estimate the right-hand side of (B.9) by

2
N |α|ktk

∑

r∈Wt−1/2T∗

1(|r| � εt−1/2)
∣∣ξ + (1 − I)t−1 + t−1a(t1/2r)

∣∣k
. (B.11)

An elementary estimate shows that

{α ∈ D
.. Reα � 0}

⊂
{
α ∈ D

.. Re
1−α
α

� 0
}

∪
{
α ∈ D

..
∣∣∣∣Im

1−α
α

∣∣∣∣ �
∣∣∣∣Re

1−α
α

∣∣∣∣

}
, (B.12)

where D denotes the closed unit disc (the first set is the disc |α− 1/2| � 1/2,
while the second one contains the union of the two discs |α−(1/2±i/2)| � 1/

√
2

in the complementary regime |α−1/2| > 1/2, which together clearly cover the
left-hand side). Using that |ξ| = 1, we conclude that for each α ∈ D with
Reα > 0 we have |Im ξ| > 1/2 or Re ξ > 1/2. Since −1/4 � (1 − I)t−1 � 0 by
assumption on α, we find that (B.11) is bounded by

2
N |α|ktk

∑

r∈Wt−1/2T∗

1(|r| � εt−1/2)
∣∣1/8 + t−1a(t1/2r)

∣∣k

� Ctd/2−k

M

M

Ntd/2

∑

r∈Wt−1/2T∗

1(|r| � εt−1/2)
(1 + |r|2)k

. (B.13)

Now (3.36) follows easily using a Riemann sum estimate, (3.34), and the fact
that c(W/L)2 < t � 4.

In order to prove (3.37) and (3.38), we write

Tr
S

(1 − αS)2
=

∑

q∈WT∗

ŜW (q)

(1 − αŜW (q))2
. (B.14)
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Exactly as in the proof of (3.36) (see (B.7) and the rest of its paragraph), we
find that

Tr
S

(1 − αS)2
=

∑

q∈WT∗

ŜW (q)

(1 − αŜW (q))2
1(|q| � ε) +O

(
N

δ2εM

)
. (B.15)

Writing ŜW (q) = I − a(q) as above and recalling the notation u = |1 − α|, we
find, repeating the estimates from the proof of (3.36) and using a(q) � C|q|2,
∑

q∈WT∗

ŜW (q)

(1 − αŜW (q))2
1(|q| � ε) = I

∑

q∈WT∗

1(|q| � ε)

(1 − αŜW (q))2
+O

(
N

M
R2(u)

)
.

(B.16)

Using (B.3) we get

1 − αŜW (q) = 1 − α+ q ·Dq +O(M−1 + u|q|2 + |q|4).
A simple estimate using Riemann sums, as in the previous paragraph, therefore
yields
∑

q∈WT∗

1(|q| � ε)

(1 − αŜW (q))2
=

∑

q∈WT∗

1(|q| � ε)
(1−αv +q ·Dq)2 +

N

M
O

(
R2(u)+

ud/2−2

Mu

)
.

(B.17)

At this point we differentiate between the cases d � 3 and d = 4. Suppose
first that d � 3. We define

v(r) ..=
1

(ζ + r ·Dr)2 ,

where 1 − α = uζ. Writing q = u1/2r, we get
∑

q∈WT∗

1(|q| � ε)
(1 − α+ q ·Dq)2 =

1
u2

∑

r∈Wu−1/2T∗

1(|r| � εu−1/2)v(r)

=
1
u2

∑

r∈Λ∗
v(r) +O(1), (B.18)

where we introduced the infinite lattice Λ∗ ..= 2πu−1/2WL−1
Z

d, which is
the dual lattice of Λ = u1/2LW−1/2

Z
d. In the last step we used a Riemann

sum estimate using the fact that the spacing of Λ∗ is bounded from above
by some positive constant (since |1 − α| � (W/L)2). We denote by v̂(y) ..=∫

Rd e−ir·yv(r) dr the Fourier transform of v. Using the Poisson summation
formula we therefore find

∑

q∈WT∗

1(|q| � ε)
(1 − α+ q ·Dq)2 =

1
u2

(
Lu1/2

2πW

)d ∑

y∈Λ

v̂(y) +O(1)

=
1
u2

(
Lu1/2

2πW

)d ∫

Rd

v(r) dr +O
(
1 + e−cLW −1u1/2

)
,
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for some positive constant c depending only on D. Here we used that v is
analytic in a neighbourhood of the real axis that is uniform in ζ by assumption
on α. Therefore, v̂(y) is exponentially small in the lattice constant of Λ for all
y ∈ Λ\{0}. We may now get rid of the constraint |q| � ε to get

∑

q∈WT∗

1(|q| � ε)
(1 − α+ q ·Dq)2

=
1
u2

(
Lu1/2

2πW

)d
⎛

⎝
∫

Rd

1
(ζ + r ·Dr)2 dr +O

(
e−cLW −1u1/2

+ u2−d/2
)
⎞

⎠ .

Recalling (B.6), (B.15), (B.16), and (B.17), we therefore find

Tr
S

(1 − αS)2
=

ud/2−2

√
detD

(
L

2πW

)d [
Bd ζ

d/2−2

+O

(
e−cLW −1u1/2

+
1
Mu

+ u2−d/2 + 1(d = 1)u+ 1(d = 2)u|log u|
)]

.

This concludes the proof of (3.37).
Suppose now that d = 4. Writing q = u1/2r, we get
∑

q∈WT∗

1(|q| � ε)
(1 − α+ q ·Dq)2 =

1
u2

∑

r∈Wt−1/2T∗

1(|r| � εu−1/2)
(ζ + r ·Dr)2

=
(

L

2πW

)4
⎛

⎝
∫

R4

dr
1(|r| � εu−1/2)
(ζ + r ·Dr)2 +O(1)

⎞

⎠ ,

Using that WL−1u−1/2 � C by assumption on α, we get

∑

q∈WT∗

1(|q| � ε)
(1 − α+ q ·Dq)2 =

(
L

2πW

)4
⎛

⎝
∫

R4

dr
1(1 � |r| � u−1/2)

(ζ + r ·Dr)2 +O(1)

⎞

⎠

=
(

L

2πW

)4
⎛

⎝
∫

R4

dr
1(1 � |r| � u−1/2)

(r ·Dr)2 +O(1)

⎞

⎠ ,

where in the second step we used that |ζ| = 1 together with Re ζ � 0. The
change of variables r = D−1/2p and the estimate
∣∣∣1
(
1 � |D−1/2p|

)
− 1 (1 � |p|)

∣∣∣ � 1
(
‖D−1‖−1/2 � |p| � ‖D‖1/2

)
(B.19)

(together with a similar estimate to translate the upper bound |r| � u−1/2

into |p| � u−1/2) yield, after a short calculation,

∑

q∈W T∗

1(|q| � ε)

(1−α+q · Dq)2
=

1√
det D

(
L

2πW

)4

⎛

⎝
∫

R4

dp
1(1 � |p| � u−1/2)

|p|4 + O(1)

⎞

⎠.

Recalling (B.15), (B.16), and (B.17), we find that (3.38) follows.
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What remains is the proof of (3.39). Let therefore d = 2. The proof is very
similar to that of (3.37) given above, except that we have to keep one more
term from the expansion (B.3). In order to convey its ideas more clearly, we
unburden the notation by explaining the computation in terms of the integral

(
L

2πW

)2 ∫

R2

dq
ŜW (q)

(1 − αŜW (q))2

instead of the Riemann sum (B.14); the Riemann sum approximation may be
controlled using Poisson summation, exactly as after (B.18) above. Throughout
the argument we tacitly use (B.3), in which we replace the factor I with 1;
the resulting error is a distraction of order (Mu)−1 and may be controlled as
above. For small enough ε we get

∫

R2

dq
ŜW (q)

(1 − αŜW (q))2
=

∫

|q|�ε

dq
ŜW (q)

(1 − αŜW (q))2
+O(1)

=
∫

|q|�ε

dq
1 − q ·Dq

(1 − αŜW (q))2
+O(1).

We write

1 − αŜW (q) = 1 − α+ q ·Dq − Q(q) +O
(|1 − α| |q|2 + |q|4+c

)
,

which yields

1

(1 − αŜW (q))2
=

1
(1 − α+ q ·Dq − Q(q))2

+O

(
(|1 − α| |q|2 + |q|4+c)(|1 − α| + |q|2)

(1 − αŜW (q))2(1 − α+ q ·Dq − Q(q))2

)
.

A routine estimate similar to the one yielding (B.17) above therefore gives

∫

R2

dq
ŜW (q)

(1 − αŜW (q))2
=

∫

|q|�ε

dq
1 − q ·Dq

(1 − α+ q ·Dq − Q(q))2
+O(1)

=
∫

R2

dq
1

(1 − α+ q ·Dq)2 −
∫

|q|�ε

dq
q ·Dq

(1 − α+ q ·Dq)2

+
∫

|q|�ε

dq
2Q(q)

(1 − α+ q ·Dq)3 +O(1). (B.20)

The first term of (B.20) is
∫

R2

dq
1

(uζ + q ·Dq)2 =
1√

detD
π

uζ
.
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To compute the second term of (B.20), we introduce the variable p through
q = u1/2D−1/2p. Using (B.19), we get

−
∫

|q|�ε

dq
q ·Dq

(1 − α+ q ·Dq)2

= − 1√
detD

∫

|p|�εu−1/2

dp
|p|2

(ζ + |p|2)2 +O(1) = −π|log u|√
detD

+O(1).

Finally, the third term of (B.20) is
∫

|q|�ε

dq
2Q(q)

(1 − α+ q ·Dq)3 =
1

12W 4

∑

x∈T

Sx0

∫

|q|�ε

dq
(x · q)4

(1 − α+ q ·Dq)3

=
1

12W 4
√

detD

∑

x∈T

Sx0

∫

1�|p|�u−1/2

×dp
(D−1/2x · p)4

|p|6 +O(1)

=
π

32W 4
√

detD

∑

x∈T

Sx0|D−1/2x|4|log u| +O(1).

This concludes the proof of (3.39). �

Proof of Proposition 3.9. The proof relies on the Fourier space representation
(B.5). Before giving the full proof, we sketch the calculation for d � 3. Approx-
imating the Riemann sum from (B.5) with an integral and noting that, as in
the proof of Proposition 3.5, the leading contribution to the integral comes
from the singularity at q = 0, we find

Tr
S

(1 + ibv − J S)2
≈
(

L

2πW

)d ∫

Rd

dq
1

(1 − J + ibv + q ·Dq)2 .

Using the identity

1
2π

∫

R

dv eη(v)
1

(x+ iv)2
=

∞∫

0

dt e−xt t ê(ηt), (B.21)

valid for x � 0, we therefore get

1
2π

∫

R

dv eη(v)Tr
S

(1 + ibv − J S)2

≈
(

L

2πW

)d ∫

Rd

dq
1
2π

∫

R

dv eη(v)
1

(1 − J + ibv + q ·Dq)2
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= b−2

(
L

2πW

)d ∫

Rd

dq

∞∫

0

dt e−(1−J )t/b e−tq·Dq/b t ê(ηt)

≈ πd/2bd/2−2

√
detD

(
L

2πW

)d
∞∫

0

dt t1−d/2 ê(ηt),

where in the third step we used that 1 − J � η. The claim will now follow by
the change of variables ηt �→ t.

Now we give the full proof of Proposition 3.9. Similarly to (B.5) we get

Tr
S

(1 + ibv − J S)2
=

∑

q∈WT∗

ŜW (q)
(
1 + ibv − J ŜW (q)

)2

=
∑

q∈WT∗

ŜW (q)
(
1 + ibv − J ŜW (q)

)2 1(|q| � ε) +O

(
N

δ2εM

)
,

where the last step holds for all ε > 0, exactly as in (B.7) and (B.15) above.
Next, following the argument from (B.15) to (B.17) almost to the letter, we
get, in analogy to (B.17),

Tr
S

(1 + ibv − J S)2

=
∑

q∈WT∗

ŜW (q)
(
1 + ibv − J ŜW (q)

)2

=
∑

q∈WT∗

1(|q| � ε)
(1 + ibv − J (I − q ·Dq))2 +O

(
N

M
R2(ηM−c2)

)
(B.22)

for some ε which we fix in the following. Plugging (B.22) into (B.21) and
changing variables v → v/b yields

1
2π

∫

R

dv eη(v)Tr
S

(1 + ibv − J S)2
= U +O

(
N

M
R2(ηM−c2)

)
, (B.23)

where we defined

U ..=
1
b2

∑

q∈WT∗
1(|q| � ε)

∞∫

0

dt exp
(

−1 − J (I − q ·Dq)
b

t

)
t ê(ηt)

=
1

(bη)2

∞∫

0

ds s ê(s) e−(1−J I)(bη)−1s
∑

q∈WT∗
1(|q| � ε)e−(bη)−1sq·Dq. (B.24)

Introducing the variable r ..= s1/2(bη)−1/2q, we find by Riemann sum
approximation
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∑

q∈WT∗
1(|q| � ε)e−(bη)−1sq·Dq (B.25)

=
∑

r∈s1/2(bη)−1/2WT∗

1(|r| � εs1/2(bη)−1/2) e−r·Dr

=
(

(bη)1/2L

2πs1/2W

)d
⎡

⎣
∫

Rd

dr 1(|r| � εs1/2(bη)−1/2) e−r·Dr +O

(
s1/2W

η1/2L

)⎤

⎦

(B.26)

=
(

(bη)1/2L

2πs1/2W

)d [
πd/2

√
detD

+O

(
s1/2W

η1/2L
+ e−cη−1s

)]
, (B.27)

where c is some positive constant depending on ε and b. This estimate will be
used where s � η. On the other hand, we have the trivial bound

∑

q∈WT∗
1(|q| � ε)e−(bη)−1sq·Dq � CN

M
, (B.28)

which will be used for small s.
Next, let δ be an exponent satisfying

0 < 2δ < min{1/3 − ρ, c2, ρ}.
We split the integration over s ∈ [0,∞) in (B.24) into the interval [η,Mδ] and
its complement. Using (B.28) and the rapid decay of ê(s) for large s to estimate
the integrand for s /∈ [η,Mδ], together with the bound e−(1−J I)(bη)−1s =
1 +O(M−δ) for s � M δ, we therefore get

U =
1

(bη)2

Mδ∫

η

ds s ê(s) e−(1−J I)(bη)−1s

(
(bη)1/2L

2πs1/2W

)d

×
[

πd/2

√
detD

+O

(
s1/2W

η1/2L
+ e−cη−1s

)]
+O

(
N

M

)

=
(bη)d/2−2

√
detD

(
L

2
√
πW

)d
Mδ∫

η

ds s1−d/2 ê(s)
[
1 +O

(
s1/2W

η1/2L
+ e−cη−1s

)]

+O

(
N

M

)
. (B.29)

At this point we distinguish the cases d � 3 and d = 4. Let us start with d � 3.
Observing that by (2.12) we have s1/2W

η1/2L
� M−δ for s � M δ, we find

U =
(bη)d/2−2

√
detD

(
L

2
√
πW

)d
∞∫

0

ds s1−d/2 ê(s) +O

(
N

M

(
1 +R4(η)M−δ

))
.

Now (3.95) follows from (B.23) and the fact that R2(ηM−c2) � CR4(η)M−δ.
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Finally, let d = 4. From (B.29) we get

U =
1√

detD

(
L

2
√
πW

)4
1∫

η

ds s−1 ê(s) +O

(
N

M

)

=
|log η|√
detD

(
L

2
√
πW

)4

ê(0) +O

(
N

M

)
.

Now (3.96) follows from (B.23). �

Appendix C. Proofs of Propositions 5.2 and 5.3

The arguments of this appendix are similar to those of Appendix B. We take
over the notations from Appendix B without further comment, and only give
the proofs when they differ significantly from those of Appendix B.

For q ∈ [−πW, πW )d we define (in analogy to ŜW (q) from (B.1))

T̂W (q) ..=
1

M − 1

∑

r∈W −1T

e−iq·r f(r) [1 − ϕh(r)] eiλg(r)

=
∑

x∈T

cos(q · x/W − λg(x/W )) [1 − ϕh(x/W )]Sx0. (C.1)

We remark that for all practical purposes T̂W (q) should be thought of as its
limit as W → ∞, i.e. the integral

lim
W→∞

T̂W (q) =
∫

Rd

dr cos(q · r − λg(r)) [1 − ϕh(r)] f(r). (C.2)

The following result generalizes Lemma B.1 to the case ϕ, λ �= 0.

Lemma C.1. (i) For each fixed ε > 0 there exists a δε > 0 such that if
max{λ, ϕ, |q|} � ε then |T̂W (q)| � 1 − δε for large enough W (depending
on ε).

(ii) We have the expansion

T̂W (q) = I − σ̃ − (q − λD−1w) ·D(q − λD−1w) + Q(q)
+O

(|q|4+c + |q|3λ+ |q|2ϕ+ ϕ2 + λ4
)
, (C.3)

where c is the constant from (2.34).

Proof. For ε ∈ (0, 1) and K > 0 define the compact domain

DK
..=

{
(λ, ϕ, q) ∈ [0, 1] × [0, 1] × R

d .. |q| � K, max{λ, ϕ, |q|} � ε
}
.

Then for each fixed triple (λ, ϕ, q) ∈ DK it is not hard to see from (C.2) that
limW→∞|T̂W (q)| < 1, by assumption on g and h. Since DK is compact and the
map (λ, ϕ, q) �→ limW→∞|T̂W (q)| is continuous, we conclude that there exists
a δε > 0 such that limW→∞|T̂W (q)| � 1 − δε for all (λ, ϕ, q) ∈ DK . Since the
convergence of TW is uniform in (λ, ϕ, q) ∈ DK , we conclude (after renaming
δε) that |T̂W (q)| � 1 − δε for (λ, ϕ, q) ∈ DK and large enough W .
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What remains in the proof of (i) is to prove |T̂W (q)| � 1 − δε in the case
|q| > K and q ∈ [−πW, πW )d for some large enough K > 0. To that end, we
use summation by parts. Let |q| � K. Without loss of generality, suppose that
|q1| � |qi| for all i = 1, . . . , d, so that |q1| � Kd−1/2. To simplify notation,
we assume that f , g, and h are C1 and not just piecewise C1. The piecewise
C1 case may be handled similarly by restriction to individual pieces combined
with a simple estimate of the boundary terms arising from the summation
by parts. Define the discrete derivative (Dif)(r) ..= W

(
f(r +W−1ei) − f(r)

)

where ei is the standard unit vector in the i-direction. Then we have

T̂W (q) =
ieiq1/(2W )

2W sin(q1/(2W ))
1

M − 1

∑

r∈W −1T

D1(e−iq·r) f(r) [1 − ϕh(r)] eiλg(r).

Since |q1| � πW , the first fraction is bounded in absolute value by C/|q1| �
C/|q|. The rest may be estimated using summation by parts by a constant,
using the assumptions on f , g, and h; we omit the details. The result is
|T̂W (q)| � C/|q|, where the constant C does not depend on λ or ϕ. Choosing
K large enough that C/K � 1/2 completes the proof of part (i).

In order to prove (ii), we expand cos in (C.1) to fourth order and use
(2.34) to get

T̂W (q) = I −AW (q) − ϕ
∑

x∈T

h(x/W )Sx0

+Q(q) +O
(|q|4+c + |q|3λ+ |q|2ϕ+ ϕλ2 + λ4

)
,

where we introduced the quadratic term

AW (q) ..=
1
2

∑

x∈T

(q · x/W − λg(x/W ))2 Sx0

= (q − λD−1w) ·D(q − λD−1w) + λ2Δ. (C.4)

This concludes the proof of (ii). �

Proof of Proposition 5.2. The proof of Proposition 3.5 may be taken over with
minor modifications, using Lemma C.1 as input. The bound (3.35) for T is
proved similarly to (3.35) for S. All of the remaining claims rely on Fourier
space analysis. We use the expansion (C.3) instead of (B.3). In the summation
over q in (B.5) we shift the origin by introducing the new variable q̃ ..= q −
λD−1w. Using it we may write (C.3) as

T̂W (q) = I − σ̃ − q̃ ·Dq̃ + Q(q̃) +O
(|q̃|4+c + |q̃|3λ+ |q̃|2ϕ+ ϕ2 + λ4

)
.

(C.5)

Then all the Fourier space arguments from the proof of Proposition 3.5 carry
over provided one replaces 1 − α with 1 − α+ σ̃. �

Proof of Proposition 5.3. The proof follows along the same lines as that of
Proposition 3.9, using (C.3) instead of (B.3). We use the same shift in Fourier
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space as in the proof of Proposition 5.2, and work with (C.5). The only change
to the proof of Proposition 3.9 is that in (B.29) we get the additional factor
e−s(λ2Δ+ϕΥ)/(ηb). For the case d = 4 we use the elementary estimate

1∫

η

1
s

e−sσ̃/(ηb) ds = min{|log η|, |log σ̃|} +O(1).

�
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[4] Erdős, L., Knowles, A.: Quantum diffusion and delocalization for band matrices
with general distribution. Ann. H. Poincaré 12, 1227–1319 (2011)
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