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Continuum Schrödinger Operators
Associated With Aperiodic Subshifts

David Damanik, Jake Fillman and Anton Gorodetski

Abstract. We study Schrödinger operators on the real line whose poten-
tials are generated by an underlying ergodic subshift over a finite alphabet
and a rule that replaces symbols by compactly supported potential pieces.
We first develop the standard theory that shows that the spectrum and
the spectral type are almost surely constant and that identifies the almost
sure absolutely continuous spectrum with the essential closure of the set
of energies with vanishing Lyapunov exponent. Using results of Damanik–
Lenz and Klassert–Lenz–Stollmann, we also show that the spectrum is a
Cantor set of zero Lebesgue measure if the subshift satisfies the Bosher-
nitzan condition and the potentials are aperiodic and irreducible. We then
study the case of the Fibonacci subshift in detail and prove results for
the local Hausdorff dimension of the spectrum at a given energy in terms
of the value of the associated Fricke–Vogt invariant. These results are
elucidated for some simple choices of the local potential pieces, such as
piecewise constant ones and local point interactions. In the latter special
case, our results explain the occurrence of so-called pseudo bands, which
have been pointed out in the physics literature.

1. Introduction

Operators associated with strictly ergodic subshifts over finite alphabets have
been studied in numerous papers since the 1980s. Many of the developments
were surveyed in [13]. Until quite recently, most of the effort was devoted to dis-
crete Schrödinger operators arising in this way. On the other hand, there have
been several works considering continuum Schrödinger operators [31], Jacobi
matrices [44], and CMV matrices [22,23,36]. Along the way it has been real-
ized that many tools and results are quite universal in these various instances.
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On the other hand, when implementing these tools and proving these results,
one does have to deal with some model-dependent features. In other words,
one may in general be guided by analogies but there does not seem to be an
automatic way of carrying over results from one model to another.

The central example in the discrete Schrödinger setting is given by the
Fibonacci Hamiltonian. Indeed, the foundational papers by Kohmoto et al. [32]
and Sütő [40,41] studied this particular model and proved for it the spectral
properties, zero-measure spectrum and singular continuous spectral measures,
which turned out to be characteristic for the entire class of models. Moreover,
the study of this key example is additionally motivated by its relevance to
the study of quasicrystals. We refer the reader to the recent survey [14], which
further explores this connection. Continuum analogues of the Fibonacci Hamil-
tonian, especially those with local point interactions leading to the so-called
Kronig–Penney model, have been studied in [3,8,25,27,29,33,42,43].

The general theory has not yet been worked out to the natural extent
possible in the continuum Schrödinger setting. Specifically, the paper [31] does
not address zero-measure Cantor spectrum, and in fact it replaces the use of
Kotani theory with Remling’s non-ergodic version of it. While this generates a
more general result on singular spectrum, it fails to provide the starting point
for a proof of zero-measure Cantor spectrum.

One main motivation for writing this paper is to study the continuum
setting with the help of Kotani theory to prove zero-measure Cantor spec-
trum in the same generality as it is known to hold in for discrete Schrödinger
operators. To the best of our knowledge, this paper gives the first explicit
example of a continuum Schrödinger operator whose spectrum is a Cantor
set of zero Lebesgue measure.1 In the discrete case, zero-measure spectrum is
known to hold also for the critical almost Mathieu operator [2,35]. This, how-
ever, is a very unstable phenomenon and quite atypical in the class of operators
the almost Mathieu operator belongs to. In particular, it is doubtful whether
there is a smooth quasi-periodic continuum potential so that the associated
Schrödinger operator in L2(R) has zero-measure spectrum. In the discrete set-
ting, zero-measure Cantor spectrum is also typical for limit-periodic potentials
in the sense of topological genericity; see [1]. No continuum analog is known,
but may possibly hold. The zero-measure Cantor spectrum phenomenon is
unstable in this scenario as well due to the fact that the periodic potentials
are dense in the limit-periodic ones. On the other hand, the zero-measure
Cantor spectrum of discrete Schrödinger operators associated with suitable
strictly ergodic subshifts is both typical and stable within this class of opera-
tors. Thus, the latter result is the primary candidate for an attempt to carry
over the phenomenon of zero-measure Cantor spectrum to the continuum, and
this is precisely what we accomplish here.

1 It appears to be even the first example of a continuum Schrödinger operator with potential
in L2

loc,unif(R) whose spectrum has zero Lebesgue measure.
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The second main motivation for writing this paper is to study the spec-
trum of the continuum version of the Fibonacci Hamiltonian, which is of
interest for several reasons. Since the continuum operator is unbounded, its
spectrum is unbounded as well, and hence there are potentially interesting
questions one can ask about the high-energy regime. Related to this, the
energy-dependence of the local structure of the spectrum may be reduced to
the value the so-called Fricke–Vogt invariant takes at the energy in question.
This value happens to be constant in the discrete case, while it is not constant
(and hence carries more information) in the continuum setting. Second, we
are able to address a phenomenon that has been pointed out in the physics
literature. Namely, the Fibonacci Kronig–Penney model may exhibit so-called
pseudo bands, where the spectrum is locally quite thick and in numerical
studies (see [3,33]) it is a priori not quite clear if the Cantor structure of the
spectrum breaks down at such energies. We show that this is due to the local
Hausdorff dimension being one at such points, which in turn comes from zeros
of the Fricke–Vogt invariant inside the spectrum. The latter phenomenon is
impossible in the discrete case.

The organization of the paper is as follows: In Sect. 2 we describe the
general setting we will work in. That is, we recall the definition of a subshift
over a finite alphabet and describe how we associate continuum Schrödinger
operators. We also prove the standard results that, given an ergodic measure
on the subshift, the spectrum and the spectral type do almost surely not
depend on the element of the subshift, and the almost sure spectrum does not
contain any isolated points. In Sect. 3 we introduce the Lyapunov exponent.
To be precise, we introduce both Lyapunov exponents that are natural in this
setting—one associated with the subshift dynamics and one associated with
the space variable on the real line—and prove that they are multiples of one
another. Then we prove another standard result, namely that the almost sure
absolutely continuous spectrum is given by the essential closure of the set of
energies where the Lyapunov exponent vanishes. The work of Klassert et al.
[31] is then used in Sect. 4 to derive the absence of absolutely continuous
spectrum whenever the potentials are aperiodic and irreducible. Our main
point here is that whenever this result applies, the Lyapunov exponent is
almost everywhere positive. This in turn then implies that the spectrum has
zero Lebesgue measure, provided that the subshift satisfies the Boshernitzan
condition; see Sect. 5. The Cantor structure is a consequence of this since the
spectrum is always closed and does not contain isolated points as shown earlier.
This completes the general theory for these continuum operators we wish to
present. Moving to a special case, we then consider the subshift generated
by the Fibonacci substitution in Sect. 6. We establish the usual connection
between the spectrum and the dynamics of the trace map, prove a result
expressing the local Hausdorff dimension of the spectrum in terms of the value
of the Fricke–Vogt invariant at the energy in question, and study the latter
quantity for two special cases, piecewise constant potentials and the Kronig–
Penney model.
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2. Subshifts Over Finite Alphabets and Associated Continuum
Schrödinger Operators

In this section we introduce the operators we will study in this work and prove
some general results concerning the spectrum and the spectral type of these
operators.

First we introduce the notion of the concatenation to make rigorous our
notion of “piecing together functions.” To that end, assume that for each
n ∈ Z, we have �n > 0 and a function fn : [0, �n) → R. Assume further that∑

n≥0 �n =
∑

n<0 �n = ∞ (this ensures that the pieced-together function will
be defined on all of R). We define the concatenation of the fn’s by

f(x) =

⎧
⎪⎨

⎪⎩

fn

(
x −∑n−1

k=0 �k

)
n ≥ 0 and x ∈

[∑n−1
k=0 �k,

∑n
k=0 �k

)
,

fn

(
x +

∑−1
k=n �k

)
n < 0 and x ∈

[
−∑−1

k=n �k,−∑−1
k=n+1 �k

)
.

We remark that the empty sums which occur for n = 0 and n = −1 are
defined to be equal to 0 by convention. We will notate this concatenation of
fn’s by f =

(
· · · |f−2|f−1| f0 |f1|f2| · · ·

)
. Note the use of a box to indicate

the position of the origin in the concatenation. One can also concatenate only
finitely many functions—for m ≤ 0 ≤ n, we can produce

(
fm| · · · f0 · · · |fn

)

in the same way, but it will only be defined on
[∑−1

k=m �k,
∑n

k=0 �k

)
.

Let A be a finite set, called the alphabet. Consider the discrete topology
on A and the product topology on AZ. The shift transformation T : AZ → AZ

is given by (Tω)(n) = ω(n + 1). Clearly, T is a homeomorphism. A subset
Ω ⊆ AZ is called T -invariant if T (Ω) = Ω. Any closed T -invariant set Ω ⊆ AZ

is called a subshift.
For every a ∈ A, we choose a length �a > 0 and a real-valued function fa ∈

L2(0, �a). Let a subshift Ω ⊆ AZ be given. For ω ∈ Ω, we define the Schrödinger
operator Hω = − d2

dx2 +Vω in L2(R) via Vω =
(
· · · fω−2 |fω−1 | fω0 |fω1 |fω2 · · ·

)
.

The potentials Vω so defined belong to L2
loc,unif(R) and hence define self-adjoint

operators in L2(R) in a standard way. We will consider the operators {Hω}ω∈Ω

as a family and be interested in statements about Hω that hold for many, most,
or all ω ∈ Ω.

Let St denote the shift operator (Stf)(x) = f(x−t) on L2(R). For ω ∈ Ω,
let Uω = S�ω0

. One readily sees that Uω is unitary and a computation reveals
that HTω = U∗

ωHωUω. Thus, spectral data will be T -invariant, so one should
expect the spectrum and spectral parts of Hω to be nonrandom. Indeed, one
has the following fact:

Proposition 2.1. Let (Ω, T ) be a subshift endowed with an ergodic measure μ.
Suppose A, �a, fa, Vω, and Hω are defined as above. Then there are closed sets
Σ,Σac,Σsc,Σpp ⊂ R such that σ•(Hω) = Σ• for • ∈ { , ac, sc, pp} for μ almost
every ω ∈ Ω.
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Proof. The proof is an adaptation of ideas in the literature; see, e.g., [10,11,
30]. We will begin by showing that a suitable family of projections is weakly
measurable.

For a fixed interval I ⊂ R, let Pω(I) = χI(Hω). Fix f, g ∈ L2(R). We
shall show that the map ω 	→ 〈f,Pω(I)g〉 is measurable. First, for each n ∈ Z+,
let Ω(n) = A{−n,...,n} and π(n) : Ω → Ω(n) the natural restriction map. For
ω ∈ Ω, we consider the cut off potential V

(n)
ω , given by V

(n)
ω = Vωχ

I
(n)
ω

, with

I
(n)
ω = (−(�ω−n

+ · · · + �ω−1), �ω0 + · · · + �ωn
). We see that ω 	→ 〈f, eitV (n)

ω g〉 is
measurable for all n ∈ N, t ∈ R. But then 〈f, eitVωg〉 is the limit of measurable
functions and hence is itself a measurable function of ω.

By the Trotter product formula, it follows that eitHω is also a weakly mea-
surable function of ω. We can approximate characteristic functions of intervals
with trigonometric polynomials to then see that Pω(I) is a weakly measurable
function of ω for all intervals I.

Since PTω(I) = U∗
ωPω(I)Uω, it follows that ω 	→ tr(Pω(I)) is measurable

and satisfies tr(PTω(I)) = tr(Pω(I)), so tr(Pω(I)) is almost surely constant.
For each pair of rational numbers p < q, let d(p, q) denote the almost sure

value of tr(Pω((p, q))) and Ωp,q the (full measure) set containing those ω ∈ Ω
for which tr(Pω((p, q))) = d(p, q). Since the set of rational pairs is countable,
it follows that Ω0 =

⋂
p<q Ωp,q is a full measure subset of Ω.

Suppose E /∈ σ(Hω1) for some ω1 ∈ Ω0. Choose rational p < q so that
E ∈ (p, q) ⊂ ρ(Hω1). Then d(p, q) = tr(Pω1((p, q))) = 0. For any other ω2 ∈
Ω0, one has tr(Pω2((p, q))) = d(p, q) = 0, so E /∈ σ(Hω2). By symmetry, there
is some nonrandom closed set Σ ⊂ R with σ(Hω) = Σ for all ω ∈ Ω0.

For the almost sure constancy of spectral parts, let Pac
ω denote orthogonal

projection onto the absolutely continuous subspace of Hω and define Psc
ω and

Ppp
ω analogously. Next, let P•

ω(I) = Pω(I)P•
ω, for • ∈ {ac, sc, pp}. Running the

argument above with Pω(I) replaced by P•
ω(I) (and a measurability proof as

in [10,30]) gives us a full measure set Ω′ ⊆ Ω and nonrandom sets Σac,Σsc,Σpp

so that σ•(Hω) = Σ• for all ω ∈ Ω′ and • ∈ {ac, sc, pp}. �

In the usual setting of ergodic dynamically defined potentials, the spec-
trum lacks isolated points. This fact carries over to the present setting.

Lemma 2.2. Let (Ω, T ) be a subshift endowed with an ergodic measure μ. Sup-
pose A, �a, fa, Vω,Hω, and Σ are defined as above. Then Σ has no isolated
points.

Proof. It is convenient for us to work with measures on the space of potentials,
so we let ν be the push-forward of μ under the map Φ : ω 	→ Vω. We also will
find it convenient to work with R-invariant families of potentials, so, to that
end, let Ω̃ = Ω×[0, 1). For each (ω, t) ∈ Ω̃, we define Vω,t(x) = Vω(x+t�ω0). Let
μ̃ denote the product of μ and Lebesgue measure, and ν̃ be the pushforward
of μ̃ under the map Ψ : (ω, t) 	→ Vω,t. Denote X = {Vω,t : ω ∈ Ω, t ∈ [0, 1)}
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As in the proof of the previous proposition, we fix an interval I and take
Pω,t = Pω,t(I) = χI(Hω,t) with Hω,t = −Δ + Vω,t. An argument similar to
the one in the above proposition establishes that tr(Pω,t) = tr(Pω).

Let {gn : n ∈ Z} be an orthonormal basis for L2(0, 1) and set gn,m =
Smgn. It follows that {gn.m : n,m ∈ Z} is an orthonormal basis of L2(R).

Let d denote the μ almost sure value of tr(Pω) and use E to denote
integration over a given probability space. One can then observe

d = EΩ(tr(Pω))
= EΩ̃(tr(Pω,t))

= EΩ̃

(
∑

n,m

〈gn,m,Pω,tgn,m〉
)

=
∑

n,m

EΩ̃ (〈gn,m,Pω,tgn,m〉)

=
∑

n,m

EΩ̃ (〈gn, S∗
mPω,tSmgn〉)

=
∑

n,m

∫

X

〈gn, S∗
mχI(−Δ + V )Smgn〉dν̃(V )

=
∑

n,m

∫

X

〈gn, χI(−Δ + V )gn〉dν̃(V ).

The last equality holds because ν̃ is invariant under the transforma-
tions (Sr)r∈R. In particular, d is either 0 or infinity according to whether∫

X
〈gn, χI(−Δ + V )gn〉dν̃(V ) is 0 for all n or positive for some n, respectively.

It follows that Σ cannot have an isolated point. To see this, observe that
if E ∈ Σ is isolated, one can choose an interval I with I ∩ Σ = {E}. But since
solution spaces are two dimensional, this would require 1 ≤ tr(Pω(I)) ≤ 2 (for
μ almost every ω), a contradiction. Hence, Σ lacks isolated points. �

3. The Lyapunov Exponent

We can associate a discrete SL(2, R) cocycle to our model as follows. For a
given energy E,ω ∈ Ω, and x0, x ∈ R, there is a unique unimodular matrix

AE,ω(x, x0) so that AE,ω(x, x0)
(

y′(x0)
y(x0)

)

=
(

y′(x)
y(x)

)

for any solution y of

−y′′ + Vωy = Ey. We note that A obeys the differential equation
∂AE,ω

∂x
(x, x0) = BE,ω(x)AE,ω(x, x0)

A(x0, x0) =
(

1 0
0 1

)

,

where BE,ω(x) =
(

0 Vω(x) − E
1 0

)

. We may note that this yields an elemen-

tary bound on the growth of these transfer matrices:
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‖AE,ω(x, x0)‖ ≤ exp

⎛

⎝

x∫

x0

‖BE,ω(x)‖dx

⎞

⎠

= exp

⎛

⎝

x∫

x0

max (1, |Vω(x) − E|) dx

⎞

⎠ .

Now, for each n ∈ Z+, we let An
E,ω denote the transfer matrix over the

subword ω0 . . . ωn−1 of ω of length n, i.e., An
E,ω = AE,ω(�ω0 + · · · + �ωn−1 , 0).

One readily sees that the cocycle condition holds:

An+m
E,ω = Am

E,T nωAn
E,ω.

In particular, we may invoke Kingman’s Subadditive Ergodic Theorem to see
the following:

Proposition 3.1. For each E ∈ R, there is a constant Ldisc(E) such that
limn→∞ 1

n log ‖An
E,ω‖ = Ldisc(E) for μ almost every ω ∈ Ω.

This discrete cocycle’s asymptotic behavior is related to the continuum
cocycle’s behavior in a natural way.

Proposition 3.2. Enumerate A = {a1, . . . , ak} and define Ωj = {ω :
ω0 = aj}. Let s = �a1μ(Ω1) + · · · + �ak

μ(Ωk), the weighted average of
the lengths. For almost every ω, the continuum Lyapunov exponent L(E) =
limx→∞ 1

x log ‖AE,ω(x, 0)‖ exists and satisfies L(E) = Ldisc(E)
s .

Proof. Consider f : Ω → R given by f(ω) = �ω0 Then,

1
N

N−1∑

n=0

f(Tnω) =
�ω0 + · · · + �ωN−1

N
.

Hence, by Birkhoff’s ergodic theorem, we have

lim
n→∞

�ω0 + · · · + �ωn−1

n
= E(f) = s

for μ almost every ω ∈ Ω.
Since limn→∞ 1

n log
∥
∥An

E,ω

∥
∥ and limn→∞

�ω0+···+�ωn−1
n exist for μ almost

every ω, we have that

lim
n→∞

1
�ω0 + · · · + �ωn−1

log
∥
∥An

E,ω

∥
∥ =

Ldisc(E)
s

.

Thus, we see that the limit defining the continuum Lyapunov exponent exists
and equals s−1Ldisc(E) along a subsequence.

Next, we want to estimate the error in approximating the matrix
AE,ω(x, 0) with a nearby point AE,ω(xn, 0), where xn = �ω0 + · · · + �ωn−1 .
To that end, assume given x > 0 and choose n with xn ≤ x < xn+1. We
observe the following estimates:

1
x

log ‖AE,ω(x, 0)‖ − 1
xn

log ‖AE,ω(xn, 0)‖ ≤ 1
xn

log ‖AE,ω(x, xn)‖
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and
1
xn

log ‖AE,ω(xn, 0)‖ − 1
x

log ‖AE,ω(x, 0)‖

≤
(

1
xn

− 1
x

)

log ‖AE,ω(x, 0)‖ +
1
xn

log ‖AE,ω(xn, x)‖.

As x goes to infinity, these estimates go to zero. In particular, there is a
full measure set of ω for which L(E) exists and is equal to Ldisc(E)/s �

With this relationship established, we may consider Z = {E : L(E) =
0} = {E : Ldisc = 0}. The celebrated theorem of Ishii–Pastur–Kotani extends
naturally to our setting:

Proposition 3.3. Σac = Zess

Proof. Let ν, Ω̃, μ̃,X, ν̃, and Vω,t be defined as in the proof of Lemma 2.2. We
will show that ν̃ is ergodic with respect to the family of maps {Sr : r ∈ R}.

Invariance is clear. To prove ergodicity, we follow Kirsch’s argument from
[28]. Assume that A is invariant under (Sr)r∈R. For each t, we may consider
the section At = {ω ∈ Ω : Vω,t ∈ A}. Notice that

T−1[At] = {ω ∈ Ω : VTω,t ∈ A} =
{
ω ∈ Ω : Vω,t ∈ S�ω0

[A] = A
}

= At

for each t, so that μ(At) = 0 or 1 for each t by ergodicity of (Ω, μ, T ). Moreover,
we have

At = {ω ∈ Ω : Vω,t ∈ A} =
{
ω ∈ Ω : Vω,0 ∈ St�ω0

[A] = A
}

= A0

for all t. We then observe that ν̃(A) = μ̃(Ψ−1[A]) =
∫ 1

0
μ(At) dt = μ(A0) and

hence ν̃(A) is 0 or 1. It follows that ν̃ is ergodic.
We can define the Lyapunov exponent on Ω̃ by L(E,ω, t) =

limx→∞ 1
x log ‖AE,(ω,t)(x, 0)‖, where AE,(ω,t)(x, 0) is the natural SL(2, R)

cocycle associated with Hω,t = −Δ + Vω,t. Standard arguments show that
L(E,ω, t) exists for μ̃ almost every (ω, t) and is μ̃ almost surely equal to a
constant L̃(E). One sees that AE,(ω,t)(x, 0) = AE,ω(x + t, t).

Let S1 denote the full measure set of Vω,t for which

lim
x→∞

1
x

log ‖AE,ω,t(x, 0)‖ = L̃(E).

Next, let S2 consist of those Vω such that Vω,t ∈ S1 for some t (this set
has full ν measure). Next, let S3 consist of those Vω for which

lim
x→∞

1
x

log ‖AE,ω(x, 0)‖ = L(E).

Since S2 and S3 have full ν measure, we may choose Vω ∈ S2 ∩ S3 and then t
such that Vω,t ∈ S1. But then, we have

L(E) = lim
x→∞

1
x

log ‖AE,ω(x, 0)‖ = lim
x→∞

1
x

log ‖AE,(ω,t)(x, 0)‖ = L̃(E).

By standard arguments, there is some nonrandom set Σ̃ac such that Σ̃ac =
σac(Hω,t) for μ̃ almost every (ω, t). Since Hω,t is unitarily equivalent to Hω,
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it follows that Σ̃ac = Σac. Moreover, the Ishii–Pastur–Kotani theorem [10,11]

implies that Σ̃ac = L̃−1(0)
ess

= Zess
. Thus, Σac = Zess

. �

4. Absence of Absolutely Continuous Spectrum

Next, we would like to prove that the absolutely continuous spectrum Σac

is empty for aperiodic models. However, there is a slight complication—even
if (Ω, T ) is aperiodic, it does not necessarily follow that the potentials are
aperiodic. For example, we could have fa(x) = fb(x) = sin(x), �a = 2π, �b =
4π. In this case, an aperiodic word containing only a’s and b’s will give rise to
the periodic potential V (x) = sin(x). To remove degenerate potentials such as
this, we must impose the following additional assumptions:

• Aperiodicity: The subshift Ω and the collection {fa : a ∈ A} are such
that the potentials Vω are not periodic.

• Irreducibility: There is some � > 0 such that the following holds.
Suppose two “pieces” of potential satisfy χ[0,�)

(
fa1 |fa2 | · · · |fak

)
=

χ[0,�)

(
fb1 |fb2 | · · · |fbn

)
(Note that this requires � < �a1 + · · · �ak

, �b1 +
· · · �bn

). Then a1 = b1. In some sense, the potential has a unique decom-
position into a concatenation of the finite pieces {fa : a ∈ A}.
Notice that aperiodicity need not imply irreducibility. To see this, con-

sider fa(x) = fb(x) = sin(x), fc(x) = sin(x − π), �a = 2π, �b = �c = π.
Under these conditions, the potentials satisfy the simple finite decompo-

sition property, as described in [31]. This enables us to prove the following:

Proposition 4.1. Σac = ∅
Proof. By [31, Theorem 4.1], if the restriction of Hω to either half-line has
nonempty absolutely continuous spectrum, then said half-line restriction must
have a potential which is eventually periodic. As the potentials under consid-
eration are not eventually periodic, it follows that both half-line restrictions
have empty absolutely continuous spectrum. By general considerations, the
absolutely continuous spectrum of the whole-line operator Hω is equal to the
union of the absolutely continuous spectra of its half-line restrictions. Hence,
Σac = ∅, as desired. �

By general measure-theoretic considerations, this immediately implies

Corollary 4.2. The Lebesgue measure of Z is zero.

Proof. Suppose S
ess

= ∅. Then, given a compact interval I, since the essential
closure of S is empty, I is covered by finitely many open intervals J1, . . . , Jm

such that |Jk ∩ S| = 0 for 1 ≤ k ≤ m. But this implies |S ∩ I| = 0 for all
compact intervals I and hence |S| = 0. In particular, the essential closure of
Z is empty, so Z must have zero Lebesgue measure. �

For these results in the special case where all intervals have length one
and the finite potential pieces are constant, see [34, Remark on p. 132].
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5. Absence of Non-Uniform Hyperbolicity and Cantor
Spectrum

In this section we prove our main result in the general setting, namely a suffi-
cient condition for zero-measure Cantor spectrum.

Definition 5.1. Let AE,ω(x, 0) be as above. We say that E ∈ UH if there are
constants C, γ > 0 such that ‖AE,ω(x, 0)‖ ≥ Ceγ|x| for every x ∈ R. That is,
the transfer matrices grow exponentially in x and uniformly on Ω.

Uniform hyperbolicity has several equivalent formulations; compare, for
example [45]. One of them is used in the proof of the following proposition.

Proposition 5.2. Σ ⊂ R\UH
Proof. Suppose E ∈ UH. Then, for every ω ∈ Ω, there exist linearly indepen-
dent solutions u± of the equation −u′′ + Vωu = Eu with L2 decay at ±∞. A
standard argument then shows that

Gω(E, x, y) =
u−(min(x, y))u+(max(x, y))
u′−(x)u+(x) − u−(x)u′

+(x)

defines the integral kernel of (Hω − E)−1. In particular, E /∈ Σ. �

Recall the following definition of condition (B) for a minimal subshift,
introduced by Boshernitzan in [6]:

Definition 5.3. Let Ω be a minimal subshift. It satisfies the Boshernitzan con-
dition (B) if there exists a T -ergodic measure μ such that

lim sup
n→∞

(

min
w∈WΩ(n)

n · μ ([w])
)

> 0.

Here, [w] denotes the cylinder set determined by a finite word w and WΩ(n)
denotes the set of words of length n that occur in elements of Ω.

We remark that condition (B) implies unique ergodicity of (Ω, T ) [7]. All
subshifts generated by primitive substitutions (this includes in particular the
case of the Fibonacci substitution considered later in the paper) and, more
generally, all linearly recurrent subshifts satisfy (B). See [21] for many more
examples of subshifts satisfying (B).

Proposition 5.4. Suppose (Ω, T ) is a minimal subshift which satisfies (B). Then
Z = R\UH.

Proof. By [20, Theorem 1], it follows that 1
n log ‖An

E,ω‖ converges to Ldisc(E)
uniformly on Ω. From this and the estimates in Sect. 3, it follows that
1
x log ‖AE,ω(x, 0)‖ converges uniformly on Ω to L(E). But then for E ∈ R,
we have E /∈ Z ⇐⇒ L(E) > 0 ⇐⇒ E ∈ UH. �

We are now in a position to prove zero-measure Cantor spectrum. Here,
we deviate from standard conventions slightly and call a subset of R a Cantor
set if it is closed, does not contain any isolated points, and has empty interior.
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Corollary 5.5. Suppose (Ω, T ) is a minimal subshift which satisfies (B) and
such that the associated potentials Vω are aperiodic and irreducible in the sense
described in Sect. 4. Then Σ is a Cantor set of Lebesgue measure zero.

Proof. As it is the spectrum of an operator, Σ is closed. Lemma 2.2 tells us
that Σ lacks isolated points. By Propositions 5.2 and 5.4, we have Σ ⊆ Z.
The opposite inclusion, Σ ⊇ Z, follows from general principles; compare, for
example, the proof of [11, Theorem 2.9]. Thus, Σ = Z. Combining this with
Corollary 4.2, which says that |Z| = 0, it follows that Σ is nowhere dense
and of zero Lebesgue measure. Hence, Σ is a Cantor set of zero Lebesgue
measure. �

As there are many aperiodic subshifts that satisfy (B) [21] and most
choices of local potential pieces yield aperiodic and irreducible potentials Vω,
this result provides a large family of continuum Schrödinger operators whose
spectrum is a Cantor set of zero Lebesgue measure. As pointed out in the
introduction, to the best of our knowledge, no previous examples with this
spectral property were known.

6. The Case of the Fibonacci Subshift

In this section we study a special case, namely the subshift generated by the
Fibonacci substitution. The alphabet is given by A = {a, b}. The Fibonacci
substitution is the map S(a) = ab, S(b) = a. This map extends by concate-
nation to finite words over A, as well as one-sided infinite words over A.
There is a unique one-sided infinite word u over A that obeys u = S(u).
It is obtained as the limit (in the obvious sense) of the sequence of finite
words {Sn(a)}n∈Z+ . The Fibonacci subshift Ω ⊆ AZ is defined by Ω =
{ω ∈ AZ : every subword of ω is a subword of u}. It is easy to see (cf. [21])
that it satisfies (B). Given a choice of �a, �b > 0 and real-valued functions
fa ∈ L2(0, �a), fb ∈ L2(0, �b), we consider as above the Schrödinger operators
{Hω}ω∈Ω. As usual, we assume that aperiodicity and irreducibility hold unless
otherwise stated.

We may apply Corollary 5.5 and deduce the following:

Theorem 6.1. There is a Cantor set Σ ⊆ R of zero Lebesgue measure such that
σ(Hω) = Σ for every ω ∈ Ω.

Our goal is to go beyond this statement and to study fractal properties
of Σ, that is, quantities such as the local Hausdorff dimension at a point of Σ.
The properties of the spectrum are reflected by the dynamical properties of
the so-called Fibonacci trace map. Namely, the set of all energies corresponds
to a curve of initial conditions (which is model dependent), and a given energy
belongs to the spectrum if and only if the positive semiorbit of the correspond-
ing initial condition under the action of the trace map is bounded. Two spe-
cific cases (piecewise constant potential and Kronig–Penney model) have been
considered in the physics literature most often (mostly via numerical experi-
ments); see [3,25,27,29,33,42,43]. Here we provide rigorous results confirming
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and explaining the previous numerical observations for each of these models.
It is interesting to notice that there is an essential difference in the spectral
properties between these models. Namely, in the Kronig–Penney model there
are values of the energy that belong to the spectrum regardless of the value of
coupling constant, and where the local Hausdorff dimension of the spectrum is
equal to one (therefore, the so-called “pseudo bands” are formed, see also [3]).
At the same time, these pseudo bands do not appear in the piecewise constant
case, where the Hausdorff dimension of the spectrum in any compact domain
tends to zero as the coupling constant tends to infinity.

6.1. Trace Map, Fricke–Vogt Invariant, and Local Hausdorff Dimension of the
Spectrum

As is well known in the discrete case, the spectrum (and many spectral prop-
erties) of the Fibonacci model can be described in terms of the trace map.
Let us make this connection explicit. Consider the solutions of the differential
equation −u′′(x) + fa(x)u(x) = Eu(x) for real energy E. Denote the solu-
tion obeying u(0) = 0, u′(0) = 1 (resp., u(0) = 1, u′(0) = 0) by ua,D(·, E)
(resp., ua,N (·, E)). Similarly, by replacing fa with fb, we define ub,D(·, E) and
ub,N (·, E). Then, we set

M(a,E) =
(

ua,N (�a, E) ua,D(�a, E)
u′

a,N (�a, E) u′
a,D(�a, E)

)

,

M(b, E) =
(

ub,N (�b, E) ub,D(�b, E)
u′

b,N (�b, E) u′
b,D(�b, E)

)

,

and

x−1(E) =
1
2
tr (M(b, E)) , (1)

x0(E) =
1
2
tr (M(a,E)) , (2)

x1(E) =
1
2
tr (M(b, E)M(a,E)) . (3)

The map E 	→ (x2(E), x1(E), x0(E)) will be called the curve of initial condi-
tions. The trace map T : R

3 → R
3 is given by

T (x, y, z) = (2xy − z, x, y).

Define

I(x, y, z) = x2 + y2 + z2 − 2xyz − 1.

Again, as is well known, the trace map T preserves I and hence its level surfaces

SI = {(x, y, z) ∈ R
3 : I(x, y, z) = I}.

In particular, all the points Tn(x1(E), x0(E), x−1(E)) lie on the surface SI(E),
where (with some abuse of notation) we set

I(E) = I(x1(E), x0(E), x−1(E)).

The surfaces SI undergo a transition at I = 0. For negative values of
I, SI has one bounded connected component and four unbounded connected
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Figure 1. The surface SI for I < 0, I = 0, and I > 0

components. For I = 0, the four “outside” components attach to the inner part
in four conic singularities. These singularities resolve as I becomes positive, and
in this case SI is connected and smooth. We show plots of SI for I < 0, I = 0,
and I > 0 in Fig. 1.

We will need the following statement about the dynamics of T on SI for
I < 0:

Lemma 6.2. Suppose I < 0. Then, every point on the bounded connected com-
ponent of SI has a bounded T -orbit, and every point on one of the unbounded
connected components of SI has unbounded forward and backward orbit
under T .

Proof. By [4, Proposition 4], the bounded connected component of SI is for-
ward and backward invariant under T and hence the T -orbit of any point on
it is bounded.

On the other hand, by [37, Theorem 4.3], any point on one of the
unbounded components of SI has unbounded forward and backward orbits
under T . �

The dynamical spectrum B is defined by

B = {E ∈ R : {Tn(x1(E), x0(E), x−1(E))}n∈Z+ is bounded}.

Proposition 6.3. We have Σ = B.

Proof. Recall that the one-sided infinite Fibonacci word u is the limit of the
finite words Sn(a), n ≥ 0. Moreover, it is not hard to see that the Fibonacci
subshift Ω contains an element ωu whose restriction to the right half-line
coincides with u. Since the spectrum of Hω is ω-independent by minimal-
ity, we can study the set Σ by considering the spectrum of the particu-
lar operator Hωu

. For E ∈ R and n ≥ 0, denote by Mn(E) the transfer
matrix corresponding to the operator Hωu

, the energy E, and the inter-
val arising from the word Sn(a) through our substitution procedure. Due to
Sn+1(a) = Sn(ab) = Sn(a)Sn−1(a), we have

Mn+1(E) = Mn−1(E)Mn(E), n ≥ 1. (4)
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Using the Cayley–Hamilton theorem, one sees that for xn(E) := 1
2Tr Mn(E),

n ≥ 0, we have

xn+1(E) = 2xn(E)xn−1(E) − xn−2(E), n ≥ 2. (5)

Note that (4) and (5) can be used to define Mn(E) and xn(E) for n < 0. In
particular,

M−1(E) = M1(E)M0(E)−1.

Since M1(E) corresponds to S1(a) = ab and M0(E) corresponds to S0(a) =
a, this shows that the matrix M−1(E) is just the transfer matrix across fb

corresponding to the energy E. In other words, our current definition of xn(E)
for n = −1, 0, 1 agrees with the definition given above; compare (1)–(3).

In particular, we have

B = {E ∈ R : {xn(E)}n∈Z+ is bounded}.

We can now prove the inclusion “B ⊆ Σ.” Suppose E ∈ B. As is well
known (and in fact easy to check), u does not only have Sn(a), n ≥ 0 as
prefixes, but also Sn(a)Sn(a), n ≥ 2. Combining this with the boundedness of
xn(E) for E ∈ B and the Gordon lemma (see, e.g., [12,24,26]), we find that
no solution of −u′′ + Vωu

u = Eu is square-integrable at +∞. This implies by
standard arguments that E ∈ σ(Hωu

) = Σ.
Next, we prove the inclusion “Σ ⊆ B.” Denote

σn = {E ∈ R : |xn(E)| ≤ 1}.

By Floquet–Bloch theory, σn is the spectrum of the Schrödinger operator Hn

with periodic potential obtained by repeating the piece corresponding to Sn(a).
The operators Hn converge in strong resolvent sense to Hω for some suitably
chosen ω ∈ Ω. This implies

Σ = σ(Hω) ⊆
⋂

n≥0

⋃

k≥n

σk. (6)

On the other hand, a minor modification of [39, Proposition 12.8.6] shows
that E �∈ B if and only if there exists n with |xn+1(E)| > 1, |xn(E)| > 1,
and |xn+1(E)xn(E)| > |xn−1(E)|. Moreover, in this case, we necessarily have
|xk(E)| > 1 for all k ≥ n.

Combining these two facts, we can now conclude the proof. Suppose E �∈
B. Then there exists n with |xn+1(E)| > 1, |xn(E)| > 1, and |xn+1(E)xn(E)| >
|xn−1(E)|. Choose ε > 0 such that |xn+1(E′)| > 1, |xn(E′)| > 1, and
|xn+1(E′)xn(E′)| > |xn−1(E′)| for every E′ with |E − E′| < ε. For each of
these E′, we, therefore, have |xk(E′)| > 1 for all k ≥ n. This shows that

E �∈
⋃

k≥n

σk

and hence E �∈ Σ by (6). �
At this point we would like to point out a major difference between the

discrete case and the continuum case. In the discrete case, I(E) is actually
constant, while in the continuum case it is in general not constant (as we will
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explicitly see below). As we will see later, this leads to new phenomena in the
continuum case that make its study worthwhile.

Moreover, in the discrete case, the invariant is always non-negative. In
the continuum case, we cannot a priori rule out that it may be negative for
some energies. The following proposition shows that even if this happens, these
energies are not essential as they must lie outside the spectrum. As a conse-
quence, the study of the dynamics of the trace map on SI for I ≥ 0, which has
been investigated heavily in the papers on the discrete Fibonacci Hamiltonian,
is sufficient to describe the corresponding spectral properties of the continuum
Fibonacci Hamiltonian.

Proposition 6.4. We have I(E) ≥ 0 for every E ∈ Σ.

Proof. Assume there is E ∈ Σ with I(E) < 0. Then, since the forward trace
map orbit of (x2(E), x1(E), x0(E)) remains bounded by Proposition 6.3, this
point must belong to the compact component of the invariant surface SI(E)

by Lemma 6.2. Now wiggle E. By continuity of xn(·), nearby E′’s must have
I(E′) < 0 and (x2(E′), x1(E′), x0(E′)) contained in the bounded component of
SI(E) as well. Thus, again by Lemma 6.2, (x1(E′), x2(E′), x3(E′)) has bounded
forward trace map orbit, too, and hence E′ ∈ Σ by Proposition 6.3. It follows
that Σ is not a Cantor set, which contradicts Theorem 6.1. �

We can now address the local fractal dimension of the spectrum.

Theorem 6.5. There is a continuous map D : [0,∞) → (0, 1] with the following
properties:

(i) dimloc
H (E,Σ) = D(I(E)) for every E ∈ Σ.

(ii) We have D(0) = 1 and 1 − D(I) � √
I as I ↓ 0.

(iii) We have

lim
I→∞

D(I) · log I = 2 log(1 +
√

2)

(iv) D is real analytic in (0,∞).

Proof. Recall that by Lemma 2.2, Σ contains no isolated points. Therefore, by
Proposition 6.4 and [23, Theorem 2.13], dimloc

H (E,Σ) for E ∈ Σ depends only
on the value of I(E). This implies (i). Given this, (ii) follows from [17] and
(iii) follows from [15]. (iv) follows from [9, Theorem 5.23]. Together with (ii),
this implies continuity of D on [0,∞). �

6.2. Explicit Computations and Formulae in Special Cases

In this subsection we consider special choices of the local potential pieces fa, fb

for which it is possible to compute the Fricke–Vogt invariant I(E) explicitly.
As we have seen above, this has a direct connection to the local structure of
the spectrum near an energy E ∈ Σ. The explicit formulae also permit us to
identify the limit behavior of the local Hausdorff dimension of the spectrum
in the regime of large energy or small/large coupling.
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6.2.1. A Piecewise Constant Potential. For comparison purposes, let us start
with the free case, fa = fb ≡ 0. That is, we consider the free Schrödinger
operator − d2

dx2 in L2(R), but view its (zero) potential as tiled according to a
Fibonacci sequence. In this degenerate case we of course do not have aperiodic-
ity and irreducibility. However, all quantities and formulae that arise from the
presence of Fibonacci symmetries still exist. In particular, we may compute
the curve of initial conditions and the resulting Fricke–Vogt invariant I(E).

For E > 0, we have

M(a,E) = M(b, E) =

(
cos

√
E 1√

E
sin

√
E

−√
E sin

√
E cos

√
E

)

,

and hence x−1(E) = x0(E) = cos
√

E. Similarly we obtain x1(E) = cos(2
√

E).
For E < 0, we have

M(a,E) = M(b, E) =

(
cosh

√−E 1√−E
sinh

√−E√−E sinh
√−E cosh

√−E

)

,

and hence x−1(E) = x0(E) = cosh
√−E, x1(E) = cosh(2

√−E).
A direct calculation shows now that in both cases I(E) = 0. By con-

tinuity, we have also I(0) = 0. Thus, as in the discrete setting, the invariant
vanishes identically in the free case. This suggests that the dynamical behavior
of the trace map near S0 is essential for a study of the continuum Fibonacci
Hamiltonian in the small coupling regime (at least in compact energy regions),
just as it was the case in the discrete setting and which has led to numerous
recent advances [16–19].

Consider now the case fa = λ · χ[0,1) and fb = 0 · χ[0,1), where λ ≥ 0.
Clearly, when λ = 0, we obtain the free case considered above, and when
λ > 0, the resulting potentials are aperiodic and irreducible. Let us compute
the initial conditions (x1(E), x0(E), x−1(E)) first in the case E > λ. We have
(compare with (2.15) from [42]):

x−1(E) = cos
√

E,

x0(E) = cos
√

E − λ,

x1(E) = cos
√

E cos
√

E − λ − 1
2

(√
E

E − λ
+

√
E − λ

E

)

sin
√

E sin
√

E − λ.

From this we can calculate I(E) explicitly:

I(E) =
1
4

λ2

E(E − λ)
sin2

√
E sin2

√
E − λ. (7)

Notice that if sin
√

E = 0, then cos
√

E ∈ {−1, 1}, and we have either
(x1(E), x0(E), x−1(E)) = (cos

√
E − λ, cos

√
E − λ, 1), which is close to

(1, 1, 1) if E � 1, or (x1(E), x0(E), x−1(E))=(− cos
√

E − λ, cos
√

E − λ,−1),
which is close to (1,−1,−1) if E � 1.
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Let us now calculate the initial conditions and I(E) for E ∈ (0, λ). We
have (compare with (2.14) from [42])

x−1(E) = cos
√

E,

x0(E) = cosh
√

E − λ,

x1(E) = cos
√

E cosh
√

λ − E

+
1
2

(√
λ − E

E
−
√

E

E − λ

)

sin
√

E sinh
√

λ − E,

and hence (compare with (3.4) from [42])

I(E) =
1
4

λ2

E(λ − E)
sin2

√
E sinh2

√
λ − E. (8)

With these explicit formulae, we can now establish the asymptotics of
the local Hausdorff dimension of the spectrum in the small coupling regime as
well as in the high-energy regime.

Corollary 6.6. We have the following asymptotics:

lim
λ→0

inf
E∈Σ

dimloc
H (E,Σ) = 1,

lim
K→∞

inf
E∈Σ∩[K,∞)

dimloc
H (E,Σ) = 1.

Proof. From (7) and (8) we know that I(E) → 0 as λ → 0, uniformly in E ≥ 0
(hence uniformly in E ∈ Σ). This implies the first statement of Corollary 6.6
due to Theorem 6.5.

Also, from (7) we see that for any fixed value of λ, we have I(E) → 0 as
E → ∞, which implies the second statement, again by Theorem 6.5. �

In the large coupling regime, we have the following result:

Corollary 6.7. For any compact S ⊂ R, we have

lim
λ→∞

dimH(Σ ∩ S) = 0.

Proof. Consider E ∈ S with I(E) ≤ N2, and so that λ � E,N . Then, due to
(8),

√
I(E) ∼ λ1/2

∣
∣
∣sin

√
E sinh

√
λ − E

∣
∣
∣ ≤ N,

and hence | sin √
E| � N

λ1/2eλ1/2 � 1. This implies that | cos
√

E| ≥ 1/2. Now
we have

|x−1(E)| = | cos
√

E| ≤ 1, |x0(E)| = | cosh
√

λ − E| ∼ eλ1/2
> 1,
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and

|x1(E)| =

∣
∣
∣
∣
∣
cos

√
E cosh

√
λ − E

+
1
2

(√
λ − E

E
−
√

E

E − λ

)

sin
√

E sinh
√

λ − E

∣
∣
∣
∣
∣

� eλ1/2 − Cλ1/2
∣
∣
∣sin

√
E sinh

√
λ − E

∣
∣
∣

� eλ1/2 − N

> 1.

This implies E �∈ B by [40, Lemma 2] and hence E �∈ Σ by Proposition 6.3.
Therefore, for any E ∈ S ∩ Σ, we must have I(E) > N2 if λ is sufficiently
large, and this proves Corollary 6.7. �

One in general expects that in the regime of small coupling or high energy,
the local characteristics of the spectrum should approach those of the free case.
Similarly, one expects that for fixed energy (or fixed compact energy region),
the potential should dominate in the large coupling regime and hence the
situation should become as singular as possible. Corollaries 6.6 and 6.7 show
that the expected behavior holds true in the simple situation of a piecewise
constant potential, where the Fricke–Vogt invariant can be computed explicitly.
It is quite natural to expect that these results should extend to much more
general choices of the potential pieces. In fact, we ask the following:

Question 6.8. Is it true that Corollaries 6.6 and 6.7 hold regardless of the shape
of the bump? That is, if we replace fa = λ · χ[0,1) and fb = 0 · χ[0,1) by general
fa ∈ L2(0, �a) and fb ∈ L2(0, �b), do Corollaries 6.6 and 6.7 continue to hold
as stated?

6.2.2. The Kronig–Penney Model. The Kronig–Penney model places local
point interactions at a discrete set of points.2 Here we are interested in the
case where the location of these points is dictated by a Fibonacci sequence.
This model was considered in [3] in an “off-diagonal” setting. Let us make the
calculations also in the following (“diagonal”) setting: we take �a = �b = 1
and fa(x) = λδ(x), fb(x) = 0. Note that strictly speaking, this model is not
contained in the general class of models considered earlier in the paper. We
nevertheless compute the invariant in this case as, together with our earlier
results, this is quite constructive. We leave the extension of the general part
to the interested reader (note that [31] actually did consider measures rather
than potentials).

2 See [5] for an interesting connection between the Kronig–Penney model and an associated
discrete model; this was called the “French connection” in [38].



Vol. 15 (2014) Schrödinger Operators Associated 1141

For E > 0, we have

M(b, E) =

(
cos

√
E 1√

E
sin

√
E

−√
E sin

√
E cos

√
E

)

,

M(a,E) =

(
cos

√
E 1√

E
sin

√
E

−√
E sin

√
E cos

√
E

)(
1 0
λ 1

)

=

(
cos

√
E + λ√

E
sin

√
E 1√

E
sin

√
E

λ cos
√

E − √
E sin

√
E cos

√
E

)

.

In this case we have
⎧
⎪⎨

⎪⎩

x−1(E) = cos
√

E,

x0(E) = cos 2
√

E + λ
2
√

E
sin

√
E,

x1(E) = cos 2
√

E + λ
2
√

E
sin 2

√
E.

Explicit calculations show that in this case

I(E) =
λ2

4E
sin2

√
E (9)

(compare with Section 2 in [3]). Notice that, irrespective of the value of the
coupling constant λ, if sin

√
E = 0 for some energy, then the formulae above

show that this energy is in the spectrum, and the corresponding point is on
internal part of the Cayley cubic. Since there are no isolated points in the
spectrum, this implies that at those points the local Hausdorff dimension of
the spectrum is equal to one (which explains the nature of “pseudo bands”
mentioned in [3], see also [33] where a similar observation was made), and in
all other points of the spectrum, its local Hausdorff dimension is strictly less
than one. In particular, this shows that the analog of Corollary 6.7 does not
hold in this case, which shows an essential difference between the two simple
models we have considered.

Certainly, due to (9), the analog of Corollary 6.6 does hold for this model.
This shows that at least the heuristics leading to the general expectation in
the small coupling and high-energy regimes do apply in this case.
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[41] Sütő, A.: Singular continuous spectrum on a Cantor set of zero Lebesgue measure
for the Fibonacci Hamiltonian. J. Stat. Phys. 56, 525–531 (1989)



1144 D. Damanik et al. Ann. Henri Poincaré
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