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Abstract. In the framework of non-relativistic QED, we show that the
renormalized mass of the electron (after having taken into account radi-
ative corrections) appears as the kinematic mass in its response to an
external potential force. Specifically, we study the dynamics of an elec-
tron in a slowly varying external potential and with slowly varying initial
conditions and prove that, for a long time, it is accurately described by
an associated effective dynamics of a Schrödinger electron in the same
external potential and for the same initial data, with a kinetic energy
operator determined by the renormalized dispersion law of the transla-
tion-invariant QED model.

1. Introduction

In this paper we show that the renormalized mass of the electron, taking into
account radiative corrections due to its interaction with the quantized electro-
magnetic field, and the kinematic mass appearing in its response to a slowly
varying external potential force are identical. Our analysis is carried out within
the standard framework of non-relativistic quantum electrodynamics (QED).
The renormalized electron mass, mren, is defined as the inverse curvature at
zero momentum of the energy (dispersion law), E(p), of a dressed electron
as a function of its momentum p (no external potentials are present), i.e.,
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mren = E′′(0)−1, while the kinematic mass of the electron enters the (effec-
tive) dynamical equations when it moves under the influence of an external
potential force.

Our starting point is the dynamics generated by the Hamiltonian, HV ,
describing a non-relativistic electron interacting with the quantized electro-
magnetic field and moving under the influence of a slowly varying potential,
Vε. We consider the time evolution of dressed one-electron states parameter-
ized by wave functions uε

0 ∈ H1(R3), with ‖uε
0‖L2 = 1 and ‖∇uε

0‖L2 ≤ εκ, with
0 ≤ κ < 1

3 , and prove that their evolution is accurately approximated, during
a long interval of time, by an effective Schrödinger dynamics generated by the
one-particle Schrödinger operator

Heff := E(−i∇x) + Vε(x) , (1.1)

with kinetic energy given by the dispersion law E(p). This result is in line with
the general idea that any kind of physical dynamics is an effective dynamics
that can ultimately be derived from a more fundamental theory. While results
of a similar nature have been proven for quantum-mechanical particles inter-
acting with massive bosons [26], ours is the first result covering electrons
interacting with photons (or, more generally, massless bosons) and reveal-
ing effects of radiative corrections to the electron mass. Our derivation relies
in an essential way on recent regularity results on the mass shell, i.e., the
ground-state energy and the corresponding ground-state vector as a function
of total momentum [9,10]. An interesting result on the effective dynamics of
two heavy particles interacting via exchange of massless bosons has previously
been obtained in [27]. We refer to [1,4,5,12,14–21,23,25] for further related
works.

In the usual model of non-relativistic QED, the Hilbert space of states of a
system consisting of a single electron and arbitrarily many photons (described
in the Coulomb gauge) is given by

H := L2(R3) ⊗ F , (1.2)

where L2(R3) is the Hilbert space of square-integrable wave functions describ-
ing the electron degrees of freedom, (electron spin is neglected for notational
convenience). The space F is the Fock space of physical states of photons,

F :=
⊕

n≥0

Fn.

Here Fn := Sym(L2(R3 × {+,−} ) )⊗n denotes the physical Hilbert space of
states of n photons. The Hamiltonian acting on the space H is given by the
expression

HV := H + Vε ⊗ 1f , (1.3)

where H is the generator of the dynamics of a single, freely moving non-
relativistic electron minimally coupled to the quantized electromagnetic field,
i.e.,

H :=
1
2
(−i∇x ⊗ 1f +

√
αA(x))2 + 1el ⊗Hf , (1.4)
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and where Vε(x) := V (εx) is a slowly varying potential, with ε > 0 small; its
precise properties are formulated in Theorem 1.1 below. Furthermore,

A(x) :=
∑

λ

∫

|k|≤1

dk
|k|1/2

{ελ(k) eikx ⊗ aλ(k) + h.c.} (1.5)

denotes the quantized electromagnetic vector potential in the Coulomb gauge
with an ultraviolet cutoff imposed, |k| ≤ 1, and

Hf :=
∑

λ

∫
dk |k| a∗

λ(k) aλ(k) (1.6)

is the photon Hamiltonian. In Eqs. (1.5) and (1.6), a∗
λ(k), aλ(k) are the usual

photon creation- and annihilation operators, λ = ± indicates photon helicity,
and ελ(k) is a polarization vector perpendicular to k corresponding to helicity
λ. We note that all results in this paper hold for sufficiently small values of
the fine structure constant, 0 < α � 1.

We observe that the Hamiltonian H is translation-invariant, in the sense
that H commutes with translations, Ty : Ψ(x) → eiy·Pf Ψ(x + y), for y ∈ R

3,
where Pf :=

∑
λ

∫
dk k a∗

λ(k)aλ(k) is the momentum operator of the quantized
radiation field. Hence H commutes with the total momentum operator

Ptot := −i∇x ⊗ 1f + 1el ⊗ Pf , (1.7)

of the electron and the photon field: [H,Ptot] = 0. It follows that H can be
decomposed as a direct integral

UHU−1 =

⊕∫

R3

H(p)dp, (1.8)

of fiber operators, H(p), over the spectrum of Ptot, where H(p) is defined on
the fiber space Hp

∼= F in the direct integral decomposition, H ∼= ∫ ⊕
R3 dpHp, of

H. The operator U : H → ∫ ⊕ dpHp is a generalized Fourier transform defined
on smooth, rapidly decaying functions,

(UΨ)(p) := (FeiPf ·xΨ)(p) = (2π)−3/2

∫

R3

e−i(p−Pf )·xΨ(x)dx, (1.9)

where F is the standard Fourier transform for Hilbert space-valued functions,

(FΨ)(p) = (2π)−3/2

∫

R3

e−ip·xΨ(x)dx.

For smooth, rapidly decaying vector-valued functions Φ(p) ∈ H, its inverse is
given by

(U−1Φ)(x) := e−iPf ·x(F−1Φ)(x) = (2π)−3/2

∫

R3

eix·(p−Pf )Φ(p)dp. (1.10)

We note that

(UHΨ)(p) = H(p)(UΨ)(p), (UPtotψ)(p) = p (Uψ)(p). (1.11)
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Since U is the composition of two unitary operators, eiPf ·x and the standard
Fourier transform F , it is unitary, too, and Eq. (1.10) defines its inverse.

We define creation- and annihilation operators, b∗λ(k) and bλ(k), on the
fiber spaces Hp by

bλ(k) := Ueikxaλ(k)U−1, b∗λ(k) := Ue−ikxa∗
λ(k)U−1 , (1.12)

i.e.,

(Ueikxaλ(k)Ψ)(p) = bλ(k)(UΨ)(p)

(Ue−ikxa∗
λ(k)Ψ)(p) = b∗λ(k)(UΨ)(p),

(1.13)

for Ψ ∈ H. Obviously, the operator-valued distributions bλ(k) and b∗λ(k) com-
mute with Ptot. Thus, the operators b(∗)

λ (f) :=
∫
b
(∗)
λ (k) f̂(k)dk map the fiber

spaces Hp to themselves for any test function f . The fact that these operators
satisfy the usual canonical commutation relations is obvious. The Fock space
constructed from the operators b(∗)

λ (f), f ∈ L2(R3 × {+,−} ), and the vacuum
vector Ω is denoted by Fb.

From abstract theory, the fiber operators H(p), p ∈ R
3, are nonnegative

self-adjoint operators acting on Hp
∼= Fb. Their explicit form is determined in

the next section. We define E(p) = inf specH(p), for all p ∈ R
3, and

S :=
{
p ∈ R

3
∣∣ |p| ≤ 1

3

}
. (1.14)

Making use of approximate ground states, Φρ(p), ρ > 0, (dressed by a cloud
of soft photons with frequencies below ρ) of the operators H(p), which will be
defined in (2.14), we introduce a family of maps J ρ

0 : L2(R3) �→ H, from the
space L2(R3) of square-integrable one-particle wave functions, u, to a subspace
of dressed one-electron states, ûΦρ, as

J ρ
0 (u)(x) := (U−1 χSμ

ûΦρ)(x)

= (2π)−3/2

∫
dp û(p) eix(p−Pf ) χSμ

(p)Φρ(p),
(1.15)

where χSμ
is a smooth approximate characteristic function of the set Sμ :=

(1 − μ)S ⊂ S ⊂ R
3, (0 < μ < 1).

In this paper we study the time evolution of one-electron states, J ρ
0 (uε

0),
where uε

0 is a slowly varying one-particle wave function, dressed by an infrared
cloud of photons with frequencies below ρ. More precisely, we study solutions
of the Schrödinger equation

i∂tΨ(t) = HV Ψ(t) , with Ψ(0) = J ρ
0 (uε

0). (1.16)

The key idea is to relate the solution Ψ(t) = e−itHV J ρ
0 (uε

0) of this
Schrödinger equation to the solution of the Schrödinger equation

i∂tu
ε
t = Heff u

ε
t, with uε

t=0 = uε
0, (1.17)

corresponding to the one-particle Schrödinger operator (1.1), where we recall
that Heff = E(−i∇x) + Vε(x), with E(p) as defined above. We consider the
comparison state
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J ρ
0 (uε

t) ∈ H, (1.18)

where uε
t := e−itHeffuε

0 is the solution of (1.17) and show that Ψ(t) remains
close to J ρ

0 (uε
t), for a long time. The choice of initial data satisfying

‖uε
0‖L2(R3) = 1 and ‖∇uε

0‖L2(R3) ≤ εκ, 0 ≤ κ <
1
3
, (1.19)

guarantees that ûε
t remains concentrated in S during the time scales relevant

for this problem, provided the support of ûε
0 is contained in S.

Theorem 1.1. Let 0 < ε < 1/3, 0 ≤ κ < 1/3 and assume that uε
0 ∈ L2(R3) obeys

(1.19). Assume, furthermore, that V ∈ L∞(R3; R) is such that V̂ ∈ L1(R3) and
that V̂ is supported in the unit ball,

supp(V̂ ) ⊂ {
k ∈ R

3 | |k| ≤ 1
}
. (1.20)

Let 0 < δ < 2( 1
3 − κ), and choose ρ = ρε := ε

2
3 −δ.

Then there exists 0 < αδ � 1 such that, for all 0 ≤ α ≤ αδ, the bound

‖e−itHV J ρε

0 (uε
0) − J ρε

0 (e−itHeffuε
0)‖H ≤ Cδ

(
ε

1
3 − δ

2+κ t+ ε
4
3 − δ

2 t2
)
, (1.21)

holds for all times t ≥ 0. In particular, for all 0 ≤ t ≤ ε−2/3, we have that

‖e−itHV J ρε

0 (uε
0) − J ρε

0 (e−itHeffuε
0)‖H ≤ Cδε

1
3 − δ

2+κ t. (1.22)

Remark 1.2. We note that for this result, the regularity properties of the
dressed electron states are crucial, as described in (1.30), below.

Remark 1.3. Theorem 1.1 implies that, for all δ′ > 0 such that δ′ < 1
3 − δ

2 + κ

‖e−itHV J ρε

0 (uε
0) − J ρε

0 (e−itHeffuε
0)‖H ≤ Cδ ε

δ′
(1.23)

holds for all times t with 0 ≤ t ≤ ε−( 1
3 − δ

2+κ)+δ′
.

Remark 1.4. The initial conditions in Theorem 1.1 are chosen such that the
initial momentum is O(εκ). The conditions on the external potential imply
that the expected force, and, thus, the acceleration, is of order O(ε). Hence,
at time t, the momentum is of order O(εκ) + O(εt), and therefore the action,
E(p)t − E(0)t ≈ 1

2mren
p2t, is of order O(ε2κt) + O(ε2t3). Hence, if 1

3 − κ > δ
2

and t ≤ ε−1+κ, then this term is much larger than the error term in Eq. (1.21).
To make this remark more precise, we define the operator H̃eff := E(0)+

V (εx), and consider the difference between e−itHeff and e−itH̃eff . We write
e−itHeff − e−itH̃eff as the integral of a derivative,

e−itHeff − e−itH̃eff = −i
t∫

0

ds e−i(t−s)Heff (E(p) − E(0))e−isH̃eff , (1.24)

and use that E′(0) = 0 so that cp2 < E(p) − E(0) = 1
2mren

p2(1 + o(1)) < Cp2

(see Proposition 2.1, below). Then, using

eisH̃effp2e−isH̃eff = p2 + 2ε p · (∇V )(εx)s+ ε2ΔV (εx)s2 , (1.25)
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we find that

e−itHeff − e−itH̃eff = At +O(εt2p) +O(ε2t3), (1.26)

where At = O(tp2). Adding the second and third terms on the r.h.s. of (1.26)
to the error estimated by (1.22), we observe that

O(tε
1
3 − δ

2+κ)+O(εt2p)+O(ε2t3)=O
[
t(ε

1
3 − δ

2+κ+ε
1
3+κ+ε

2
3 )
]

= O(tε
1
3 − δ

2+κ), (1.27)

provided that 0 < t ≤ ε−2/3. Assuming that At is not only bounded above by
O(tp2), but is actually of order

‖At u
ε
0‖ ≥ C t ε2κ , (1.28)

with C ≡ C(uε
0,mren) > 0 depending on the initial data and on the renor-

malized mass mren, we can compare this contribution to (1.27) and observe
that

‖e−itHV J ρε

0 (uε
0) − J ρε

0 (e−itH̃eff uε
0) − J ρε

0 (Atu
ε
0)‖H

‖Atuε
0‖

≤ O(ε
1
3 − δ

2 −κ) (1.29)

provided ε−2κ ≤ t ≤ ε−2/3. Thus our estimate allows us to separate the main
contribution of the dynamics from the error terms on a suitable time scale.

1.1. Outline of Proof Strategy

To prove Theorem 1.1, we introduce an infrared regularized version of the model
defined by (1.3), (1.4), obtained by restricting the integration domain in the
quantized electromagnetic vector potential (1.5) to the region {σ ≤ |k| ≤ 1},
for an arbitrary infrared cutoff σ > 0. Thereby, we obtain infrared regularized
Hamiltonians HV

σ and Hσ, as well as an infrared regularized family of maps
J ρ

σ corresponding to J ρ
0 .

We note that, unlike H(p), the infrared cut-off fiber Hamiltonian Hσ(p)
has a ground-state Ψσ(p) ∈ Hp

∼= F, for every p ∈ S and for σ > 0, but
Ψσ(p) does not possess a limit in Hp

∼= F, as σ ↘ 0, when p �= 0. In partic-
ular, we expect that the number of photons in the state Ψσ(p) diverges, as
σ ↘ 0, (thus the lack of convergence of Ψσ(p) in F). This is a well-known
aspect of the infrared problem in QED [8–11,22]. It is remedied by apply-
ing a dressing transformation, Wσ,ρ

∇Eσ(p), defined in (2.14), below, to Ψσ(p),
where Eσ(p) = inf specHσ(p). The resulting vector, Φρ

σ(p) := W σ,ρ
∇Eσ(p)Ψσ(p),

describes an infraparticle (or dressed electron) state containing infrared pho-
tons with frequencies in [σ, ρ]. As σ ↘ 0, the limit

Φρ(p) = lim
σ→0

Φρ
σ(p) (1.30)

exists in F, for all p ∈ S; see Proposition 2.2. This allows us to construct the
map J ρ

0 as the limit of the maps J ρ
σ , as σ ↘ 0. Note that, while Ψσ(p) does

not converge in F as σ ↘ 0 when p �= 0, we have that limσ↘0Eσ(p) = E(p).
We note that Φρ

σ(p) is the ground-state eigenvector of the fiber Hamilto-
nian

Kρ
σ(p) := W σ,ρ

∇Eσ(p)Hσ(p) (W σ,ρ
∇Eσ(p))

∗ (1.31)
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which is obtained by applying to Hσ(p) the Bogoliubov transformation corre-
sponding to the dressing transformation Wσ,ρ

∇Eσ(p).
In Theorem 2.3, below, we prove that an estimate similar to (1.21) is

satisfied for the infrared regularized model, namely

‖e−itHV
σ J ρ

σ (uε
0) − J ρ

σ (e−itHeff,σuε
0)‖H

≤ Cδ(1 + ln(ρ−1))ε
2
3 −δt+ C α

1
2 ρ

1
2 t(εκ + εt) , (1.32)

holds uniformly in the infrared cutoff σ and the cut-off ρ > σ. This result cru-
cially uses the regularity properties of the dressed electron states Φρ

σ(p), which
allow us to take advantage of the fact that Vε is slowly varying. An additional
key ingredient is the bound ‖(Hσ(p)−Kρ

σ(p))Φρ
σ(p)‖F ≤ Cα

1
2 ρ

1
2 |p|, for p ∈ S,

proven in Appendix A. In (1.32) we take ρ = ρε := ε
2
3 −δ and absorb ln(ρ−1)

into ε
2
3 −δ.
In Sect. 3, we control the limit σ ↘ 0, thus concluding the proof of The-

orem 1.1. This requires control of the radiation emitted by the electron due to
its acceleration in the external potential Vε, in the limit σ ↘ 0.

2. Infrared Cut-off and Construction of Φρ(p)

As noted in the introduction, we analyze the original dynamics by first impos-
ing an infrared (IR) cut-off, and controlling the dynamics generated by the
resulting Hamiltonian. Thus, we define the IR regularized Hamiltonian

HV
σ = Hσ + Vε(x) ⊗ 1f , (2.1)

where

Hσ :=
1
2
(−i∇x ⊗ 1f +

√
αAσ(x) )2 + 1el ⊗Hf (2.2)

is the generator of the dynamics of a single, freely moving non-relativistic
electron minimally coupled to the electromagnetic radiation field. In (2.2),

Aσ(x) =
∑

λ

∫

σ≤|k|≤1

dk
|k|1/2

{ελ(k) eikx ⊗ aλ(k) + h.c.} (2.3)

denotes the quantized electromagnetic vector potential with an infrared and
ultraviolet cutoff corresponding to σ ≤ |k| ≤ 1. Since V ∈ L∞(R3) is a bounded
operator, D(HV

σ ) = D(Hσ) = D(−Δx ⊗ 1f + 1el ⊗ Hf ). The results in this
paper are proven for sufficiently small values of the finestructure constant,
0 < α � 1.

The Hamiltonian Hσ is also translation invariant and, similarly to H, can
be represented as the fiber integral

UHσU
−1 =

⊕∫

R3

Hσ(p)dp, (2.4)
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over the spectrum of Ptot, defined on the fiber integral
∫ ⊕ dpHp, with fibers

Hp
∼= Fb. The decomposition (2.4) is equivalent to

(UHσΨ)(p) = Hσ(p)(UΨ)(p). (2.5)

Again, by abstract theory, the fiber Hamiltonians Hσ(p), p ∈ R
3, are self-

adjoint operators on Hp
∼= Fb. Written in terms of the creation- and annihila-

tion operators on the fiber space, they are given by

Hσ(p) =
1
2
(
p− P b

f − √
αAb

σ)2 +Hb
f (2.6)

where

Hb
f :=

∑

λ

∫
dk |k| b∗λ(k) bλ(k), P b

f :=
∑

λ

∫
dk k b∗λ(k) bλ(k) (2.7)

and

Ab
σ :=

∑

λ

∫

σ≤|k|≤1

dk
|k|1/2

{ελ(k) bλ(k) + h.c.}. (2.8)

Henceforth, we will drop the superscripts “b” from the notation.
While H(p) has a ground state only for p = 0, it is proven in [2,6] that,

for p ∈ S := {p ∈ R
3||p| ≤ 1/3} and σ > 0,Hσ(p) has a non-degenerate (fiber)

ground state. This motivates the introduction of the cut-off. Properties of the
fiber ground-state energy, Eσ(p) = inf specHσ(p), are given in the following
proposition proven in [2,6,9,10]:

Proposition 2.1. There exists a constant 0 < α0 � 1 such that for all 0 < α ≤
α0, the infimum of the spectrum of the fiber Hamiltonian,

Eσ(p) = inf specHσ(p), (2.9)

satisfies:
1. For any σ > 0, Eσ ∈ C2(S), and for all p ∈ S =

{
p ∈ R

3 | |p| ≤ 1
3

}
, Eσ(p)

is a simple eigenvalue.
2. There exists a constant c < ∞ such that, for any p ∈ S and σ ≥ 0, we

have that

|∇pEσ(p) − p| ≤ c α |p| , and 1 − c α ≤ ∂2
|p|Eσ(p) ≤ 1 . (2.10)

3. The following limit exists in C2(S)

lim
σ↘0

Eσ( · ) = E( · ). (2.11)

We let Ψσ(p) ∈ F, with ‖Ψσ(p)‖F = 1, denote the normalized fiber ground
state corresponding to Eσ(p),

Hσ(p)Ψσ(p) = Eσ(p)Ψσ(p) , (2.12)

for p ∈ S. For 0 < σ < ρ ≤ 1 and p ∈ S, we introduce the Weyl operators

W σ,ρ
∇Eσ(p) := exp

⎡

⎢⎣α
1
2

∑

λ

∫

σ≤|k|≤ρ

dk
∇Eσ(p) · ελ(k)bλ(k) − h.c.

|k|1/2(|k| − ∇Eσ(p) · k)

⎤

⎥⎦ , (2.13)
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with ∇Eσ(p) ≡ ∇pEσ(p), which are unitary on F, for σ > 0. Moreover, we
define dressed electron states

Φρ
σ(p) := W σ,ρ

∇Eσ(p) Ψσ(p). (2.14)

For p ∈ S, we define the Bogoliubov-transformed fiber Hamiltonians

Kρ
σ(p) := W σ,ρ

∇Eσ(p)Hσ(p) (W σ,ρ
∇Eσ(p))

∗. (2.15)

It is convenient to define Kρ
σ(p) := Hσ(p), for p ∈ R

3 \ S.
The dressed electron states Φρ

σ(p), for p ∈ S, are the ground states of the
Bogoliubov-transformed fiber Hamiltonians Kρ

σ(p), defined in (2.15), i.e.,

Kρ
σ(p)Φρ

σ(p) = Eσ(p)Φρ
σ(p). (2.16)

The properties of these states are described in the following proposition:

Proposition 2.2. For any p ∈ S, 0 < ρ ≤ 1, and for sufficiently small values
of the finestructure constant 0 < α � 1, the ground-state eigenvector Φρ

σ(p)
satisfies

1. The strong limit

Φρ(p) := lim
σ→0

Φρ
σ(p) (2.17)

exists in F.

2. For θ < 2
3 , the vectors Φρ

σ(p) are θ-Hölder continuous in p,

sup
p,q∈S

‖Φρ
σ(p) − Φρ

σ(q) ‖
|p− q|θ ≤ C(θ) ln

1
ρ
< ∞ , (2.18)

uniformly in σ, with 0 ≤ σ < ρ ≤ 1.

The proof of θ-Hölder continuity for θ < 2
3 is given in Sect. 5; (see also

[9,10,22] for earlier results covering the range θ < 1
4 , in the case where ρ = 1).

For arbitrary u ∈ L2(R3) (with Fourier transform denoted by û), we
define the linear map

J ρ
σ : u �→ (2π)−3/2

∫

S
dp û(p) eix(p−Pf ) χSμ

(p)Φρ
σ(p) , (2.19)

where x is the electron position, χSμ
is a smooth approximate characteristic

function of the set

Sμ := (1 − μ)S ⊂ S ⊂ R
3, (2.20)

and 0 < μ < 1. Note that J ρ
σ : L2(R3) → M ⊂ H, where

M :=

⎧
⎨

⎩ (2π)−3/2

∫

R3

dp û(p) eix(p−Pf ) χSμ
(p)Φρ

σ(p)
∣∣∣u ∈ L2(R3)

⎫
⎬

⎭ , (2.21)

the subspace of vectors in H supported on the one-particle shell of the operator∫ ⊕
S dpKρ

σ(p). We also note that in (2.21) we do not require that supp(û) ⊂ Sμ;
instead, we cutoff û outside the region Sμ by multiplying it by χSμ

.
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Furthermore, we introduce the one-particle Schrödinger operator

Heff,σ := Eeff,σ(−i∇x) + Vε(x). (2.22)

Here, the kinetic energy operator is defined by

Eeff,σ(p) := Eσ(p) , p ∈ S , (2.23)

and suitably extended to p ∈ R
3 \ S. Note that the restriction of Eeff,σ to S is

twice continuously differentiable, Eeff,σ|S ∈ C2(S); see Proposition 2.1.
As a first step towards proving Theorem 1.1, we prove the following result:

Theorem 2.3. Under the conditions of Theorem 1.1, there exists αδ > 0 such
that, for all 0 ≤ α ≤ αδ, the bound (1.32) holds uniformly in the infrared cutoff
σ > 0 and the cutoff ρ > σ.

Proof. Our proof makes crucial use of the properties of the fiber ground-state
energy Eσ(p) and of the corresponding dressed electron states Φρ

σ(p), for p ∈ S,
given in Propositions 2.1 and 2.2 above. We define the operator Kρ

σ acting
on H,

Kρ
σ :=

⊕∫
Kρ

σ(p) dp, (2.24)

and the perturbed operator KV
σ := Kρ

σ + Vε. Note that the operator Kρ
σ has

the property that

Kρ
σJ ρ

σ = J ρ
σEeff,σ(−i∇). (2.25)

We write the difference on the LHS of (1.32) as the integral of a deriva-
tive, substitute HV

σ → HV
σ −KV

σ +KV
σ inside the integral, and group terms

suitably to obtain

e−itHV
σ J ρ

σ (uε
0) − J ρ

σ (e−itHeff,σ uε
0)

= −i e−itHV
σ

t∫

0

ds eisHV
σ (HV

σ J ρ
σ (uε

s) − J ρ
σ (Heffu

ε
s))

=: φ1(t) + φ2(t), (2.26)

where uε
s := e−isHeff,σ uε

0 and

φ1(t) := −i e−itHV
σ

t∫

0

ds eisHV
σ
(
Hσ −Kρ

σ

)J ρ
σ (uε

0 ) , (2.27)

where we have used the cancelation of V in HV
σ −KV

σ = Hσ −Kρ
σ, and

φ2(t) := −i e−itHV
σ

t∫

0

ds eisHV
σ
(
KV

σ J ρ
σ (uε

s) − J ρ
σ (Heffu

ε
s)
)
.

The first term on the r.h.s. of (2.26) accounts for the radiation of infrared pho-
tons, while the second term accounts for the influence of the external potential
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Vε on the full QED dynamics Ψ(t) = e−itHV
σ J ρ

σ (uε
0), as compared with the

effective Schrödinger evolution e−itHeff,σuε
0.

Using the direct integral decomposition, we obtain

φ1(t) = −i (2π)− 3
2 e−itHV

σ

×
t∫

0

ds eisHV
σ

∫

S
dp ûε

s(p) e
i(p−Pf )x(Hσ −Kρ

σ)(p)χSμ
(p)Φρ

σ(p), (2.28)

so that

‖φ1(t)‖H ≤ sup
p∈S

{ 1
|p| ‖(Hσ −Kρ

σ)(p)Φρ
σ(p)‖F

} t∫

0

‖∇uε
s ‖L2(R3) ds. (2.29)

We note that thanks to χSμ
in (2.28), which cuts off the tail of uε

s outside of
Sμ, the supremum in (2.29) can be taken only for p ∈ Sμ, respectively, S.

In Appendix A we prove the following key result:

sup
p∈S

{ 1
|p| ‖(Hσ −Kρ

σ)(p)Φρ
σ(p)‖F

}
≤ Cα

1
2 ρ

1
2 , (2.30)

uniformly in σ ≥ 0. Furthermore, we have the estimate
t∫

0

‖∇uε
s ‖L2(R3) ds ≤ C t (εκ + εt) , (2.31)

as shown below in (2.37)–(2.39), using the condition ‖∇uε
0‖L2(R3) ≤ εκ on uε

0,
and the fact that the potential V satisfies (1.20). We obtain

‖φ1(t)‖H ≤ C t (εκ + εt)α
1
2 ρ

1
2 , (2.32)

which yields the second contribution to the r.h.s. of (1.32).
For the second term on the r.h.s. of (2.26), using the fiber decomposition

and the equation Kρ
σ(p)Φρ

σ(p) = Eσ(p)Φρ
σ(p), we have that

φ2(t) = −i e−itHV
σ

t∫

0

ds eisHV
σ
(
VεJ ρ

σ (uε
s) − J ρ

σ (Vεu
ε
s)
)
. (2.33)

Let ‖Φ‖Cθ(S) := supp,q∈S
‖ Φ(p)−Φ(q) ‖

|p−q|θ .
In (2.40)–(2.47) below, we prove an estimate of the form

‖φ2(t)‖H ≤ t C ‖ ̂|∇|θVε‖L1(R3) (1 + ‖Φρ
σ‖Cθ(S)) , (2.34)

for θ < 2
3 . The key point here is that the θ-Hölder continuity of the fiber

ground-state Φρ
σ(p) enables us to gain a θ derivative of the potential, yielding

‖ ̂|∇|θVε‖L1(R3) ≤ Cεθ. Using the θ-Hölder continuity of Φρ
σ( · ), which holds

uniformly in σ, with 0 < σ < ρ, and the fact that

‖|̂∇|θV ‖L1(R3) ≤ γ , where γ := ‖V̂ (k)‖L1 < ∞ , (2.35)
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(see (1.20)) and using ‖Φρ
σ‖Cθ(S) ≤ Cδ (1 + ln(ρ−1)), which we prove in

Proposition 5.4, we arrive at

‖φ2(t)‖H ≤ Cδ t ε
θ (1 + ln(ρ−1)), (2.36)

which yields the first term on the RHS of (1.32). �

Proof of (2.31). To verify (2.31), a simple calculation shows that

∇uε
s = e−isHeff,σ ∇uε

0 − i

s∫

0

dv e−ivHeff,σ ∇Vε(x) e−i(s−v)Heff,σ uε
s. (2.37)

Using that ‖∇uε
0‖L2 ≤ εκ and that

‖∇Vε‖L∞ = ‖∇̂Vε‖L1 ≤ γ ε , (2.38)

we conclude that

‖∇uε
s ‖L2 ≤ C (εκ + εs), (2.39)

and thus (2.31). �

Proof of (2.34). In what follows we use the notation

(UΨ)(p) = Ψ̂(p) and (U−1Φ)(x) = Φ∨(x).

We define

ψs := VεJ ρ
σ (uε

s) − J ρ
σ (Vεu

ε
s). (2.40)

Using the definition of J ρ
σ and computing the Fourier transform, we find that

ψ̂s(p)=(2π)−3/2

∫

R3

dq V̂ε(p− q) û(s, q)
(
χSμ

(q)Φρ
σ(q) − χSμ

(p)Φρ
σ(p)

)
. (2.41)

By relations (2.33) and (2.40) and the unitarity of the generalized Fourier
transform we have that

‖φ2(t)‖H ≤
t∫

0

ds ‖ψs‖L2
x⊗F =

t∫

0

ds ‖ψ̂s‖L2
p⊗F. (2.42)

It is important to note that, for any function f ∈ L2(R3) with supp(f) ⊂ Sμ,

supp(V̂ε ∗ f) ⊂ S, (2.43)

for ε ≤ μ/3, since we are assuming supp(V̂ ) ⊂ {k||k| ≤ 1}, so that supp(V̂ε) ⊂
{k||k| ≤ ε}. Since the term in the integrand given by (ûε

sχSμ
Φρ

σ)(q) is sup-
ported in q ∈ Sμ, so that, by (2.43), its convolution with V̂ε has support in S,
we find

ψ̂s(p) = (2π)−3/2

×1S(p)
∫

R3

dq V̂ε(p− q) û(s, q) (χSμ
(q)Φρ

σ(q)−χSμ
(p)Φρ

σ(p)), (2.44)
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for ε ≤ μ/3, where 1S is the characteristic function of the set S. Inserting
|p − q|θ|p − q|−θ = 1 into (2.44), using the definition of |∇|θ by its Fourier
transform and using that, since χSμ

is a smooth function,

sup
p,q∈S

|p− q|−θ‖(χSμ
(q)Φρ

σ(q) − χSμ
(p)Φρ

σ(p)
)‖F ≤ C(1 + ‖Φρ

σ‖Cθ(S)), (2.45)

we obtain the bound ‖ψ̂s‖L2
x⊗F ≤ C(1 + ‖Φρ

σ‖Cθ(S))‖ |1S ûε
s| ∗ | ̂|∇|θVε| ‖L2(S).

Next, using Young’s inequality, ‖f ∗ g‖Lr ≤ ‖f‖L1‖g‖Lr , we find that

‖ψ̂s‖L2
x⊗F ≤ C(1 + ‖Φρ

σ‖Cθ(S)) ‖ ̂|∇|θVε‖L1(R3) sup
s∈[0,t]

‖1S ûε
s‖L2(R3). (2.46)

Finally, observing that

‖1S ûε
s‖L2(R3) ≤ ‖ûε

s‖L2(R3) = ‖uε
s‖L2(R3) = ‖uε

0‖L2(R3) = 1 , (2.47)

by unitarity of e−itHeff,σ , and using (2.42), we arrive at (2.34). �

3. The Limit σ ↘ 0

In this section we remove the infrared cut-off from the evolution.

Proposition 3.1. Under the conditions of Theorem 2.3, the strong limits

s− lim
σ↘0

e−itHV
σ J ρ

σ (uε
0) = e−itHV J ρ

0 (uε
0) (3.1)

and

s− lim
σ↘0

J ρ
σ (e−itHeff,σ uε

0) = J ρ
0 (e−itHeff uε

0) (3.2)

exist, for arbitrary |t| < ∞.

Proof. We write

e−itHV
σ J ρ

σ (uε
0) − e−itHV J ρ

0 (uε
0) (3.3)

= (e−itHV
σ − e−itHV

)J ρ
0 (uε

0) + e−itHV
σ (J ρ

σ − J ρ
0 )(uε

0). (3.4)

Clearly,
∥∥∥e−itHV

σ (J ρ
σ − J ρ

0 )(uε
0)
∥∥∥ = ‖(J ρ

σ − J ρ
0 )(uε

0)‖
≤ ‖uε

0‖L2 sup
p∈Sμ

‖Φρ
σ(p) − Φρ(p)‖F .

Thus,

lim
σ↘0

∥∥∥e−itHV
σ (J ρ

σ − J ρ
0 )(uε

0)
∥∥∥ = 0 ,

follows from Proposition 5.1.
Next, we discuss the first term on the right side of (3.4). In order to prove

that it converges to 0, as σ ↘ 0, it suffices to show that HV
σ converges to HV

in the norm resolvent sense; (see [24, Theorem VIII.21]), i.e.,

lim
σ↘0

∥∥(HV
σ + i)−1 − (HV + i)−1

∥∥ = 0.
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From the second resolvent equation and the fact that ‖(HV
σ + i)−1‖ ≤ 1, it

follows that
∥∥(HV

σ + i)−1 − (HV + i)−1
∥∥ =

∥∥(HV + i)−1Qσ (HV
σ + i)−1

∥∥ , (3.5)

where

Qσ :=HV −HV
σ = α

1
2A<σ(x) · vσ +

α

2
(A<σ(x))2 ,

and

vσ := −i∇x + α
1
2Aσ(x)

is the velocity operator. Here Aσ(x) is defined in (2.3), and

A<σ(x) :=
∑

λ

∫

|k|≤σ

dk
|k|1/2

{ελ(k) e−ikx ⊗ aλ(k) + h.c.}. (3.6)

In order to estimate the norm of Qσ(HV + i)−1, we use the following well-
known lemma:

Lemma 3.2. Let f, g ∈ L2(R3 × {+,−};B(Hel)) be operator-valued functions
such that ‖(1 + |k|−1)1/2f‖, ‖(1 + |k|−1)1/2g‖ < ∞. Then

‖a#(f)(Hf + 1)− 1
2 ‖ ≤ ‖(1 + |k|−1)

1
2 f‖L2 , (3.7)

‖a#(f)a#(g)(Hf + 1)−1‖ ≤ ‖(1 + |k|−1)
1
2 f‖L2 ‖(1 + |k|−1)

1
2 g‖L2 , (3.8)

where a# stands for a or a∗.

In particular, using the Kato-Rellich theorem, one easily shows that, for
α small enough, D(HV ) = D(−Δx ⊗ I + I ⊗ Hf ) ⊂ D(Hf ). Thus, we have
that

∥∥(Hf + 1)(HV + i)−1
∥∥ ≤ C,

which when combined with Lemma 3.2 yields
∥∥∥
α

2
(A<σ(x))2(HV + i)−1

∥∥∥ ≤ C ασ. (3.9)

Likewise, one verifies that
∥∥∥α

1
2A<σ(x) · vσ(HV + i)−1

∥∥∥ ≤ C α
1
2 σ

1
2 , (3.10)

since 0 ≤ v2
σ ≤ HV + ‖V ‖L∞ is bounded relative to HV . Estimates (3.9) and

(3.10) yield
∥∥Qσ(HV + i)−1

∥∥ ≤ C α
1
2 σ

1
2 .

By (3.5), we have shown that HV
σ converges to HV , as σ ↘ 0, in the norm

resolvent sense. �
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4. Proof of Theorem 1.1

In this section, we prove the bound in Theorem 1.1, which compares the full
dynamics to the effective dynamics for the system without infrared cutoff. We
have that

‖ e−itHV J ρ
0 (uε

0) − J ρ
0 (e−itHeff uε

0) ‖H

≤ ‖ e−itHV
σ J ρ

σ (uε
0) − J ρ

σ (e−itHeff,σ uε
0) ‖H

+ ‖ e−itHV
σ J ρ

σ (uε
0) − e−itHV J ρ

0 (uε
0) ‖H

+ ‖J ρ
σ (e−itHeff,σ uε

0) − J ρ
0 (e−itHeff uε

0) ‖H , (4.1)

for any t and 0 < σ < ρ ≤ 1. It follows from Theorem 2.3 that the first
term on the r.s. of the inequality sign is bounded by Cδ (1 + ln(ρ−1)) ε

2
3 −δ t+

C α
1
2 ρ

1
2 t (εκ + εt), uniformly in σ > 0.

From Proposition 3.1, it follows that the second and third terms on the
r.s. converge to zero, as σ ↘ 0. By taking σ to zero, we thus conclude that

‖e−itHV J ρ
0 (uε

0) − J ρ
0 (e−itHeff uε

0) ‖H

≤ Cδ (1 + ln(ρ−1)) ε
2
3 −δ t+ C α

1
2 ρ

1
2 t (εκ + εt) . (4.2)

Due to our choice ρ = ε
2
3 −δ, this concludes the proof of Theorem 1.1. We note

that in the inequality (1.21), the logarithmic term ln(ρ−1
ε ) has been absorbed

by an arbitrary small shift of δ, which we do not keep track of notationally. �

5. Hölder Continuity of the Ground State

We recall that Φρ
σ(p) denotes a normalized ground state of the Bogoliubov

transformed fiber Hamiltonian Kρ
σ(p) = W ρ

∇Eσ(p)Hσ(p) (W ρ
∇Eσ(p))

∗, with
infrared cutoff σ > 0 (see (2.15)). Our aim in this appendix is to prove that,
for a suitable choice of the vectors Φρ

σ(p), the map p �→ Φρ
σ(p) is θ-Hölder

continuous, for θ < 2/3.
For ρ = 1, we set

Φσ(p) := Φ1
σ(p), Kσ(p) := K1

σ(p). (5.1)

We remark that

Kρ
σ(p) =

(
W ρ,1

∇Eσ(p)

)∗
Kσ(p)W ρ,1

∇Eσ(p) , Φρ
σ(p) =

(
W ρ,1

∇Eσ(p)

)∗ Φσ(p) , (5.2)

where we recall that W ρ,1
∇Eσ(p) is defined in (2.13).

Letting

Fσ :=
⊕

n≥0

Sym(L2({k ∈ R
3, |k| ≥ σ} × {+,−}))⊗n (5.3)

denote the Fock space of photons of energies ≥ σ, and identifying Fσ with a
subspace of F, we observe that Kσ(p) leaves Fσ invariant. Let K̃σ(p) denote
the restriction of Kσ(p) to Fσ. An important property, proven in [3,10,13], is
that there is an energy gap of size ησ, where η > 0 is uniform in σ ↘ 0, in the
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spectrum of K̃σ(p) above the ground-state energy Eσ(p). Moreover, one can
choose

Φσ(p) = Φ̃σ(p) ⊗ Ω<σ , (5.4)

in the representation F � Fσ ⊗ F<σ, where

F<σ :=
⊕

n≥0

Sym(L2({k ∈ R
3, |k| ≤ σ} × {+,−} ) )⊗n. (5.5)

Now, let Ωσ denote the vacuum sector in Fσ and Π̃σ(p) be the rank-one
projection onto the eigenspace associated with Eσ(p) = inf spec(K̃σ(p)). By
[10,13],

‖Π̃σ(p)Ωσ‖ ≥ 1
3
, (5.6)

for arbitrary σ > 0 and |p| ≤ 1/3 provided that α is chosen sufficiently small.
Then Φ̃σ(p) can be chosen in the following way:

Φ̃σ(p) =
Π̃σ(p)Ωσ

‖Π̃σ(p)Ωσ‖ . (5.7)

Let N denote the number operator,

N =
∑

λ

∫
dk b∗λ(k) bλ(k). (5.8)

The following proposition has been proven in [8,10,13].

Proposition 5.1. For α � 1 and |p| ≤ 1/3, there exists a normalized vector
Φ(p) in the Fock space F such that Φσ(p) → Φ(p), strongly, as σ → 0. The
following bound holds,

‖N 1
2 Φσ(p)‖ ≤ Cα

1
2 , (5.9)

uniformly in σ ≥ 0. Moreover, For all δ > 0, there exists αδ > 0 and Cδ < ∞
such that, for all 0 ≤ α ≤ αδ, 0 ≤ σ′ < σ ≤ 1 and |p| ≤ 1/3,

‖Φσ(p) − Φσ′(p)‖ ≤ Cδ α
1
4 σ1−δ, (5.10)

|∇Eσ(p) − ∇Eσ′(p)| ≤ Cδ α
1
4 σ1−δ. (5.11)

As a consequence, we show the following corollary:

Corollary 5.2. Let 0 < ρ ≤ 1. For all δ > 0, there exists 0 < αδ � 1 such
that, for all 0 ≤ α ≤ αδ and |p| ≤ 1/3, there exists a vector Φρ(p) in the Fock
space such that Φρ

σ(p) → Φρ(p), strongly, as σ → 0. Moreover, there exists a
constant Cδ < ∞ such that, for all 0 ≤ α ≤ αδ, 0 ≤ σ′ < σ ≤ 1 and |p| ≤ 1/3,

‖Φρ
σ(p) − Φρ

σ′(p)‖ ≤ Cδ α
1
4 σ1−δ (1 + α

1
2 ln(ρ−1)). (5.12)

Proof. Using (5.2), we split

Φρ
σ(p) − Φρ

σ′(p) =
((
W ρ,1

∇Eσ(p)

)∗ − (
W ρ,1

∇Eσ′ (p)

)∗)Φσ(p)

+
(
W ρ,1

∇Eσ′ (p)

)∗(Φσ(p) − Φσ′(p)
)
. (5.13)
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By Proposition 5.1 and unitarity of W ρ,1
∇Eσ(p), the second term is estimated as

∥∥∥
(
W ρ,1

∇Eσ′ (p)

)∗(Φσ(p) − Φσ′(p)
)∥∥∥ ≤ Cδ α

1
4 σ1−δ. (5.14)

The first term in the right side of (5.13) is estimated as
∥∥∥
((
W ρ,1

∇Eσ(p)

)∗−(W ρ,1
∇Eσ′ (p)

)∗)Φσ(p)
∥∥∥ =

∥∥∥
(
1 −W ρ,1

∇Eσ(p)

(
W ρ,1

∇Eσ′ (p)

)∗)Φσ(p)
∥∥∥

≤∥∥B(ρ)Φσ(p)
∥∥ , (5.15)

by unitarity of W ρ,1
∇Eσ(p) and the spectral theorem, where

B(ρ) := α
1
2

∑

λ

∫

ρ≤|k|≤1

dk

×
(∇Eσ(p) · ελ(k) bλ(k)−h.c.

|k|1/2(|k|−∇Eσ(p) · k) − ∇Eσ′(p) · ελ(k) bλ(k)−h.c.
|k|1/2(|k|−∇Eσ′(p) · k)

)
. (5.16)

To estimate ‖B(ρ)Φσ(p)‖, we use the well-known fact that, for any f ∈ L2(R3×
{+,−}),

‖a#(f)(N + 1)− 1
2 ‖ ≤

√
2‖f‖L2 . (5.17)

Clearly,

∇Eσ(p) · ελ(k)
|k|1/2(|k| − ∇Eσ(p) · k) − ∇Eσ′(p) · ελ(k)

|k|1/2(|k| − ∇Eσ′(p) · k)
=

(∇Eσ(p) − ∇Eσ′(p)) · ελ(k)
|k|1/2(|k| − ∇Eσ(p) · k)

+
∇Eσ′(p) · ελ(k)

|k|1/2(|k| − ∇Eσ(p) · k)
(∇Eσ(p) − ∇Eσ′(p)) · k

(|k| − ∇Eσ′(p) · k) . (5.18)

Hence, by (5.11) and the facts that |∇Eσ(p)|, |∇Eσ′(p)| ≤ 1/2 for α small
enough (see Proposition 2.1 (2)), we obtain

∣∣∣
∇Eσ(p) · ελ(k)

|k|1/2(|k| − ∇Eσ(p) · k) − ∇Eσ′(p) · ελ(k)
|k|1/2(|k| − ∇Eσ′(p) · k)

∣∣∣ ≤ Cδ α
1
4 σ1−δ

|k| 3
2

. (5.19)

Thus, (5.16) and (5.17) yield that

∥∥B(ρ)Φσ(p)
∥∥ ≤ Cδ α

3
4 σ1−δ

∥∥∥
1ρ≤|k|≤1(|k|)

|k| 3
2

∥∥∥
L2

k

∥∥(N + 1)
1
2 Φσ(p)

∥∥

≤ Cδ α
3
4 σ1−δ ln(ρ−1). (5.20)

where we used (5.9) in the last inequality. Together with (5.13)–(5.15), this
concludes the proof of Corollary 5.2. �

The following result follows from [10,13] (it is also a consequence of (2.10)
in Proposition 2.1 (2)):
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Proposition 5.3. There exist αc > 0 and C > 0 such that, for all 0 ≤ α ≤ αc

and p, p′ satisfying |p| ≤ 1/3, |p′| ≤ 1/3,
∣∣∇Eσ(p) − ∇Eσ(p′)

∣∣ ≤ C |p− p′|, (5.21)

uniformly in σ > 0.

We now prove the following proposition:

Proposition 5.4. Let 0 < ρ ≤ 1. For all δ > 0, there exist αδ > 0 and Cδ < ∞
such that, for all 0 ≤ α ≤ αδ, σ > 0 and p, k ∈ R

3 satisfying |p| ≤ 1/3, |p+k| ≤
1/3,

‖Φρ
σ(p+ k) − Φρ

σ(p)‖ ≤ Cδ (1 + α
1
2 ln(ρ−1)) |k| 2

3 −δ. (5.22)

Proof. Step 1. We first prove that, for all 0 < σ < ρ ≤ 1,

‖Φρ
σ(p+ k) − Φρ

σ(p)‖ ≤ C |k| (σ− 1
2 + α

1
2 ln(ρ−1)). (5.23)

We decompose

Φρ
σ(p+ k) − Φρ

σ(p) =
(
W ρ,1

∇Eσ(p+k)

)∗ Φσ(p+ k) − (
W ρ,1

∇Eσ(p)

)∗ Φσ(p)

=
((
W ρ,1

∇Eσ(p+k)

)∗ − (
W ρ,1

∇Eσ(p)

)∗)Φσ(p)

+
(
W ρ,1

∇Eσ(p+k)

)∗ (Φσ(p+ k) − Φσ(p)
)
. (5.24)

To estimate the first term in the right side of (5.24), we proceed as in the proof
of Corollary 5.2. Namely, we have that

∥∥∥
((
W ρ,1

∇Eσ(p+k)

)∗ − (
W ρ,1

∇Eσ(p)

)∗)Φσ(p)
∥∥∥

=
∥∥∥
(
1 −W ρ,1

∇Eσ(p+k)

(
W ρ,1

∇Eσ(p)

)∗)Φσ(p)
∥∥∥

≤ ∥∥C(ρ)Φσ(p)
∥∥ , (5.25)

by the spectral theorem, where

C(ρ) := α
1
2

∑

λ

∫

ρ≤|k̃|≤1

dk̃

×
(

∇Eσ(p+ k) · ελ(k̃) bλ(k̃) − h.c.

|k̃|1/2(|k̃| − ∇Eσ(p+ k) · k̃) − ∇Eσ(p) · ελ(k̃) bλ(k̃) − h.c.

|k̃|1/2(|k̃| − ∇Eσ(p) · k̃)

)
.

Using Proposition 5.3, one verifies that
∣∣∣

∇Eσ(p+ k) · ελ(k̃)
|k̃|1/2(|k̃| − ∇Eσ(p+ k) · k̃) − ∇Eσ(p) · ελ(k̃)

|k̃|1/2(|k̃| − ∇Eσ(p) · k̃)
∣∣∣ ≤ C |k|

|k̃| 3
2
. (5.26)

Hence (5.17) implies that

∥∥C(ρ)Φσ(p)
∥∥ ≤ C α

1
2 |k|

∥∥∥
1ρ≤|k̃|≤1(k̃)

|k̃| 3
2

∥∥∥
L2

k̃

∥∥(N + 1)
1
2 Φσ(p)

∥∥

≤ C α
1
2 |k| ln(ρ−1) , (5.27)
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where we used (5.9) in the last inequality. Equations (5.25) and (5.27) yield
∥∥∥
((
W ρ,1

∇Eσ(p+k)

)∗ − (
W ρ,1

∇Eσ(p)

)∗)Φσ(p)
∥∥∥ ≤ C α

1
2 |k| ln(ρ−1). (5.28)

It remains to estimate the second term in the right side of (5.24). By
unitarity of W ρ,1

∇Eσ(p+k), it suffices to estimate ‖Φσ(p + k) − Φσ(p)‖. Using
(5.6) and the relation

∥∥(Π̃σ(p) − Π̃σ(p+ k))ϕ
∥∥2

= 〈ϕ, (Π̃σ(p+ k) + Π̃σ(p) − Π̃σ(p)Π̃σ(p+ k) − Π̃σ(p+ k)Π̃σ(p))ϕ〉
= 〈ϕ, (Π̃⊥

σ (p+ k)Π̃σ(p) + Π̃⊥
σ (p)Π̃σ(p+ k))ϕ〉,

= 〈ϕ, (Π̃σ(p)Π̃⊥
σ (p+ k)Π̃σ(p) + Π̃⊥

σ (p)Π̃σ(p+ k)Π̃⊥
σ (p))ϕ〉,

= ‖Π̃⊥
σ (p+ k)Π̃σ(p)ϕ‖2 + ‖Π̃σ(p+ k)Π̃⊥

σ (p)ϕ‖2,

for any ϕ ∈ Fσ, where Π̃⊥
σ (p) := I − Π̃σ(p), we obtain that

‖Φσ(p+ k) − Φσ(p)‖ = ‖Φ̃σ(p+ k) − Φ̃σ(p)‖
≤ 2

‖Π̃σ(p)Ωσ‖
∥∥(Π̃σ(p) − Π̃σ(p+ k))Ωσ

∥∥

≤ 6
∥∥Π̃σ(p) − Π̃σ(p+ k)

∥∥

≤ 6(
∥∥Π̃⊥

σ (p+ k)Π̃σ(p)‖ + ‖Π̃⊥
σ (p)Π̃σ(p+ k)

∥∥)

≤ 6(‖Π̃⊥
σ (p+ k)Φ̃σ(p)‖ + ‖Π̃⊥

σ (p)Φ̃σ(p+ k)‖). (5.29)

Since there is an energy gap of size ησ above Eσ(p+ k) in the spectrum
of the operator K̃σ(p+ k), we can estimate

Π̃⊥
σ (p+ k) ≤ 1

ησ

(
K̃σ(p+ k) − Eσ(p+ k)

)
,

and hence

‖Π̃⊥
σ (p+ k)Φ̃σ(p)‖ ≤ 2

η1/2σ1/2

∥∥(K̃σ(p+ k) − Eσ(p+ k)
)1/2Φ̃σ(p)

∥∥. (5.30)

We have by (2.15), (5.1), the definition after (5.3) and (2.6)

K̃σ(p+ k) = K̃σ(p) + k · ∇pK̃σ(p) + k2/2, (5.31)

where ∇pK̃σ(p) := W 1
∇Eσ(p) ∇pHσ(p) (W 1

∇Eσ(p))
∗, with ∇pHσ(p) := p− Pf −

α
1
2Aσ. Using this expansion and the Feynman-Hellman formula,

〈Φ̃σ(p),∇pK̃σ(p)Φ̃σ(p)〉 = ∇Eσ(p) , (5.32)
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together with the mean-value theorem and Proposition 5.3, we have that (see
also [7, Lemma 3.6])

∥∥(K̃σ(p+ k) − Eσ(p+ k))
1
2 Φ̃σ(p)

∥∥2

=
〈
Φ̃σ(p), (K̃σ(p+ k) − Eσ(p+ k))Φ̃σ(p)

〉

=
〈
Φ̃σ(p), (K̃σ(p) + k · (∇pK̃σ(p)) + k2/2 − Eσ(p+ k))Φ̃σ(p)

〉

= Eσ(p) − Eσ(p+ k) + k · (∇pEσ(p)) + k2/2

=
1
2
k2 +

1∫

0

k · [∇pEσ(p) − ∇pEσ(p+ τk)
]
dτ

≤ C k2. (5.33)

Hence,
∥∥(K̃σ(p+ k) − Eσ(p+ k)

) 1
2 Φ̃σ(p)

∥∥ ≤ C |k|. (5.34)

Combining (5.30) and (5.34), we obtain that

‖Π̃⊥
σ (p+ k)Φ̃σ(p)‖ ≤ C |k|σ− 1

2 . (5.35)

Proceeding in the same way, it follows likewise that

‖Π̃⊥
σ (p)Φ̃σ(p+ k)‖ ≤ C |k|σ− 1

2 , (5.36)

and hence, by (5.29), (5.23) follows.

Step 2. We now prove that ‖Φρ
σ(p+ k) − Φρ

σ(p)‖ ≤ Cδ (1 + α
1
2 ln(ρ−1)) |k| 2

3 −δ

(with Cδ < ∞ for δ > 0).
Suppose first that σ ≥ |k|2/3. Then by Step 1, we have that

‖Φρ
σ(p+ k) − Φρ

σ(p)‖ ≤ C |k| (|k|− 1
3 + α

1
2 ln(ρ−1)

)

= C |k| 2
3 + C α

1
2 ln(ρ−1) |k|. (5.37)

Conversely, assume that σ ≤ |k|2/3. We write

‖Φρ
σ(p+ k) − Φρ

σ(p)‖
≤ ‖Φρ

σ(p+ k) − Φρ(p+ k)‖ + ‖Φρ(p+ k) − Φρ
|k|2/3(p+ k)‖

+ ‖Φρ
σ(p) − Φρ(p)‖ + ‖Φρ(p) − Φρ

|k|2/3(p)‖
+ ‖Φρ

|k|2/3(p+ k) − Φρ
|k|2/3(p)‖. (5.38)

By Corollary 5.2, the first two lines are bounded by

‖Φρ
σ(p+ k) − Φρ(p+ k)‖ + ‖Φρ(p+ k) − Φρ

|k|2/3(p+ k)‖
+ ‖Φρ

σ(p) − Φρ(p)‖ + ‖Φρ(p) − Φρ
|k|2/3(p)‖

≤ Cδ α
1
4
(
1 + α

1
2 ln(ρ−1)

) |k| 2
3 (1−δ) , (5.39)

whereas by Step 1, the last term is bounded by C |k| 2
3 + C α

1
2 ln(ρ−1) |k|.

Setting δ′ = 2δ/3 and changing notations concludes the proof of the proposi-
tion. �
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Appendix A. Proof of Estimate (2.30)

In this Appendix, we prove (2.30). It asserts that

‖(Kρ
σ(p) −Hσ(p))Φρ

σ(p)‖F ≤ C α
1
2 ρ

1
2 |p| , (A.1)

for all p ∈ S, for a constant C < ∞ independent of α, σ, and ρ, where 0 < σ <
ρ ≤ 1.

To begin with, let

v	
λ(k) := α

1
2 1σ≤|k|≤ρ(|k|)

∇Eσ(p) · ε	λ(k)
|k|1/2(|k| − ∇Eσ(p) · k) , (A.2)

(scalar-valued) and

w	
λ(k) := α

1
2 1σ≤|k|≤1(|k|)

ε	λ(k)
|k|1/2

(A.3)

(vector-valued). We note that

|vλ(k)| ≤ C α
1
2 |p| 1σ≤|k|≤ρ(|k|)

|k| 3
2

(A.4)

and

|wλ(k)| ≤ C α
1
2

1σ≤|k|≤1(|k|)
|k| 1

2
(A.5)

where we have used that |∇Eσ(p)| ≤ C |p|, uniformly in the infrared cutoff
0 ≤ σ ≤ 1.

Using that

Wσ,ρ
∇Eσ(p) b

	
λ(k) (W σ,ρ

∇Eσ(p))
∗ = b	λ(k) + v	

λ(k) , (A.6)

a straightforward calculation yields

Kρ
σ(p) −Hσ(p) = W σ,ρ

∇Eσ(p)Hσ(p) (W σ,ρ
∇Eσ(p))

∗ −Hσ(p)

= 2V (p) · (∇pHσ(p)) + V 2(p) + Y (p) , (A.7)

where

∇pHσ(p) = p− Pf − α
1
2Aσ , (A.8)
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with

Aσ =
∑

λ

(
bλ(wλ) + b∗λ(wλ)

)
, (A.9)

and

V (p) :=
∑

λ

[
bλ(kvλ) + b∗λ(kvλ) + 2Re(wλ, vλ) + (vλ, kvλ)

]
, (A.10)

(vector-valued operator) and

Y (p) :=
∑

λ

[
bλ
(
(k2 + |k|)vλ

)
+ b∗λ

(
(k2 + |k|)vλ

)
+ (vλ, |k|vλ)

+2Re(k · wλ, vλ)
]
, (A.11)

(scalar-valued operator). Note that both V (p) and Y (p) are proportional to
|∇Eσ(p)| since all terms are of first or higher order in vλ (which is proportional
to |∇Eσ(p)| ≤ C|p|).

Using Lemma 3.2 and (A.4), we observe that

‖V (p)(Hf + 1)−1/2‖ ≤ 2
∥∥(|k| + |k|2) 1

2 vλ

∥∥
L2 +

∥∥|k| 1
2 vλ

∥∥2

L2 +
∥∥wλ vλ

∥∥
L1

≤ C α1/2 |p| ρ1/2 , (A.12)

and similarly

‖V (p)2(Hf + 1)−1‖ ≤ C α |p|2 ρ , (A.13)

‖Y (p)(Hf + 1)−1/2‖ ≤ C α1/2 |p| ρ. (A.14)

Next we note that for any normalized vector Φ ∈ D(H(p)), we have the esti-
mate

∥∥
(

1
2
(p− Pf )2 +Hf + 1

)
Φ
∥∥

≤ ∥∥(Hσ(p) + 1)Φ
∥∥+ α1/2

∥∥Aσ · ∇Hσ(p)Φ
∥∥+ α

∥∥A2
σ Φ

∥∥

≤ ∥∥(Hσ(p) + 1)Φ
∥∥+ C α1/2

∥∥(Hf + 1)1/2∇Hσ(p)Φ
∥∥

+ C α
∥∥(Hf + 1)Φ

∥∥. (A.15)

Since furthermore Pf and Hf commute, we have that (Hf + 1)2 ≤ ( 1
2 (p −

Pf )2 +Hf + 1)2 and hence
∥∥(Hf + 1)Φ

∥∥ ≤ 2
∥∥(Hσ(p) + 1)Φ

∥∥+ C α1/2
∥∥(Hf + 1)1/2∇Hσ(p)Φ

∥∥, (A.16)

provided α > 0 is sufficiently small. Now, we observe that
∥∥[Hf , ∇Hσ(p)] (Hf + 1)−1/2

∥∥ = α1/2
∥∥[Hf , Aσ] (Hf + 1)−1/2

∥∥ ≤ C α1/2,

(A.17)
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which implies that

‖(Hf + 1)1/2∇Hσ(p)Φ‖2

=
〈∇Hσ(p)Φ· , (Hf + 1)∇Hσ(p)Φ

〉

=
〈∇Hσ(p)2Φ , (Hf + 1)Φ

〉− 〈
[Hf , ∇Hσ(p)] Φ· , ∇Hσ(p)Φ

〉

≤ C
∥∥Hσ(p)Φ

∥∥ ∥∥(Hf + 1)Φ
∥∥+ C α1/2‖(Hf + 1)1/2∇Hσ(p)Φ‖. (A.18)

Hence, for sufficiently small α > 0, we have that

‖(Hf + 1)1/2∇Hσ(p)Φ‖ ≤ C ‖Hσ(p)Φ‖1/2 ‖(Hf + 1)Φ‖1/2. (A.19)

Inserting this estimate into (A.16), we obtain for all normalized Φ that
∥∥(Hf + 1)Φ

∥∥ ≤ C
∥∥(Hσ(p) + 1)Φ

∥∥ , (A.20)

and, additionally using (A.19), that

‖(Hf + 1)1/2∇Hσ(p)Φ‖ ≤ C
∥∥(Hσ(p) + 1)Φ

∥∥ , (A.21)

provided α > 0 is sufficiently small.
We arrive at the assertion by applying Estimates (A.12), (A.13), (A.14),

(A.20), and (A.21),
∥∥(Kρ

σ(p) −Hσ(p)
)
Φρ

σ(p)
∥∥

≤ 2‖V (p) · ∇pHσ(p)Φρ
σ(p)‖ + ‖V (p)2 Φρ

σ(p)‖ + ‖Y (p)Φρ
σ(p)‖

≤ 2‖V (p)(Hf + 1)−1/2‖ ‖(Hf + 1)1/2∇pHσ(p)Φρ
σ(p)‖

+ ‖V (p)2(Hf + 1)−1‖ ‖(Hf + 1)Φρ
σ(p)‖

+ ‖Y (p)(Hf + 1)−1/2‖ ‖(Hf + 1)Φρ
σ(p)‖

≤ C α1/2 |p| ρ1/2
∥∥(Hσ(p) + 1)Φρ

σ(p)
∥∥

≤ C ′ α1/2 |p| ρ1/2 , (A.22)

which is Inequality (A.1) or (2.30), respectively. �
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[24] Reed, M., Simon, B.: Methods of modern mathematical physics IV. Analysis of
operators. Academic Press, New York (1978)

[25] Spohn, H.: Dynamics of charged particles and their radiation field. Cambridge
University Press, Cambridge (2004)



Vol. 14 (2013) Effective Dynamics in Non-relativistic QED 1597

[26] Spohn, H., Teufel, S.: Semiclassical motion of dressed electrons. Rev. Math.
Phys. 14(1), 1–28 (2002)

[27] Tenuta, L., Teufel, S.: Effective dynamics of particles coupled to a quantized
scalar field. Commun. Math. Phys. 280, 751–805 (2008)

Volker Bach
Institut fuer Analysis und Algebra
Carl-Friedrich-Gauss-Fakultaet
Technische Universitaet Braunschweig
38106 Braunschweig, Germany
e-mail: v.bach@tu-bs.de

Thomas Chen
Department of Mathematics
University of Texas at Austin
Austin, TX 78712, USA
e-mail: tc@math.utexas.edu

Jérémy Faupin
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