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Near-Equality of the Penrose Inequality
for Rotationally Symmetric Riemannian
Manifolds

Dan A. Lee and Christina Sormani

Abstract. This article is the sequel to Lee and Sormani (Stability of the
Positive Mass Theorem for Rotationally Symmetric Riemannian Man-
ifolds, 2011. Preprint), which dealt with the near-equality case of the
Positive Mass Theorem. We study the near-equality case of the Penrose
Inequality for the class of complete asymptotically flat rotationally sym-
metric Riemannian manifolds with nonnegative scalar curvature whose
boundaries are outermost minimal hypersurfaces. Specifically, we prove
that if the Penrose Inequality is sufficiently close to being an equality on
one of these manifolds, then it must be close to a Schwarzschild space
with an appended cylinder, in the sense of Lipschitz distance. Since the
Lipschitz distance bounds the intrinsic flat distance on compact sets, we
also obtain a result for intrinsic flat distance, which is a more appropri-
ate distance for more general near-equality results, as discussed in Lee
and Sormani (Stability of the Positive Mass Theorem for Rotationally
Symmetric Riemannian Manifolds, 2011. Preprint).

1. Introduction

The (Riemannian) Penrose Inequality states that if (M™,g) is a complete
asymptotically flat manifold of nonnegative scalar curvature whose boundary
is an outermost minimal hypersurface, then the ADM mass of (M, g) satisfies

1 /|oM]\ "t
> — [ —— 1
mao 2 5 (I24) 7 )
where |0M| denotes the (hyper-)area of OM, and w,_; is the (hyper-)area of
the standard (n — 1)-sphere in R™. Furthermore, if equality holds, then (M, g)
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must be isometric to a Riemannian Schwarzschild manifold (or more precisely,
the part lying outside its outermost minimal hypersurface). The second state-
ment may be thought of as a rigidity theorem, and it is natural to consider
the stability of this rigidity statement. That is, if the ratio of the two sides of
the inequality is close to one, then in what sense can we say that the manifold
is “close” to a Schwarzschild manifold?

The ADM mass was defined by Arnowitt et al. [2]. The Penrose Inequality
is a refinement of the positive mass theorem, which was proved by Schoen and
Yau in dimensions less than eight [16,17], and by Witten for spin manifolds
[3,19]. The 3-dimensional Penrose Inequality was first proved by Huisken and
Ilmanen [12] (where |0M| must be replaced by the area of the largest compo-
nent of M), and later proved in full by H. Bray using a different method [5].
Bray and the first author extended Bray’s proof to spin manifolds of dimension
less than eight [6].

The problem of stability for the positive mass theorem has been studied
by the first author in [14], by Finster with Bray and Kath in [4,8,9], and by
Corvino [7]. Since the general problem of stability is a difficult one, we consid-
ered the special case of rotational symmetry (that is, SO(n) symmetry), and in
that case the authors were able to prove a comprehensive stability result [15].
Although there is no Lipschitz stability in that setting (in the sense of Lips-
chitz distance defined below), we formulated the stability in terms of intrinsic
flat distance, a notion defined by the second author and Wenger in [18]. This
article is a natural extension of that investigation to the problem of stability
for the Penrose Inequality.

We find that stability fails for the Penrose Inequality in the sense that
manifolds with almost equality in the Penrose Inequality are not necessarily
close to Schwarzschild space in any reasonable topology. Specifically, they may
instead be close to Schwarzschild spaces with a cylinder of arbitrary length
appended to the boundary. See Example 5.2 depicted in Fig. 1 below. This
behavior is to be expected because the rigidity in the Penrose Inequality only
applies to manifolds whose boundaries are outermost minimal hypersurfaces.
Since this class of Riemannian manifolds is not closed in any reasonable topol-
ogy, one does not expect a true stability result. Before we state our result, we
provide a few definitions.

Definition 1.1. Given n > 3, we say that a complete, smooth Riemannian
n-manifold is in RotSym?L if and only if it is rotationally symmetric (that
is, SO(n) symmetry); it has nonnegative scalar curvature; its connected non-
empty boundary is an outermost minimal hypersurface; and its symmetric
(n — 1)-spheres have unbounded (hyper-)area.

The class RotSymg includes the Schwarzschild spaces. The nonnegative
scalar curvature condition corresponds to the physical assumption of nonneg-
ative mass density in the time-symmetric setting. The outermost condition
is included here, just as it is in the Penrose Inequality, because complicated
geometry can “hide” behind a minimal hypersurface without affecting the
ADM mass cf. [10,12]). The outermost minimal boundary is often called an
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FIGURE 1. Sequences approaching various limits, Mg, (m, L)

apparent horizon. The last condition is much weaker than asymptotic flatness
but strong enough to exclude asymptotically cylindrical manifolds.
Recall the Lipschitz distance between metric spaces as defined in [11]:

Definition 1.2. Given two metric spaces (X,dx) and (Y,dy), the Lipschitz
distance

de(X,Y):= inf {|logdil(¢)| + |logdil(p™")| : ¢ : X — Yis bi-Lipschitz }
(2)
where

Definition 1.3. For any m > 0, define M., (m) to be the part of the n-dimen-
sional Schwarzschild space of mass m that lies outside its outermost minimal
hypersurface. For any L € [0,00), define M, (m, L) to be Mg, (m) with the

cylinder [—L, 0] x S7~1 ((2m)%2) glued to its outermost minimal hypersurface
boundary, where the sphere S™~1((2m) %2) = OMZ, (m) denotes the standard
(n — 1)-sphere of radius (2m)ﬁ.

Theorem 1.4. Let n > 3. For any € > 0, there exists § > 0 such that if
M € RotSym,aL satisfies

n—=2

146 [|OM]|\ T

mapm < N (L|) ) (4)
n—1
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then
de (M, Mélch(m()vL)) <, (5)

n—2
where mg = % (IaMl) "_1, and L is the depth of M, as defined in Sect. 3.1.

Wn—1

In other words, if the ratio of the two sides of the Penrose Inequality is
close enough to one, then the space must be close to an appended Schwarzs-
child space in Lipschitz distance, see Theorem 3.4 for a more precise statement
implicitly describing the dependence of § on e.

As alluded to above, the reason why we need the appended Schwarzs-
child spaces is that we may have a sequence of manifolds in RotSymg whose
limit has a boundary that is not outermost. This situation is described in
Example 5.2 and depicted in Fig. 1 below. Example 5.4 demonstrates that one
cannot improve the Lipschitz convergence to C? convergence.

Note that Theorem 1.4 does not hold without the assumption of rota-
tional symmetry, as seen in Example 5.5. The basic reason why we obtain
such a strong result in Theorem 1.4 is that rotational symmetry combined
with the existence of a boundary of fixed size rules out the possibility of a
thin, deep gravity well. These deep gravity wells are the reason why neither
Lipschitz distance nor even Gromov—Hausdorff distance provide a useful topol-
ogy for a more general theorem. This is discussed in our earlier work [15], in
which we propose intrinsic flat distance as an appropriate topology.

The intrinsic flat distance was defined by the second author and Wenger
in [18] based on the work of Ambrosio and Kirchheim [1]. It estimates the dis-
tances between compact Riemannian n-manifolds by filling in (in the sense of
metric space isometric embeddings) the space between them with a countably
H" 1 rectifiable metric space and measuring the H" ™! measure of the filling
space and the H™ measure of any excess boundary. It was proved in [18] that
the intrinsic flat distance between two Riemannian manifolds with boundary
can be bounded in terms of the Lipschitz distance between them, their diame-
ters, their volumes and the (hyper-)areas of their boundaries. In recent of work
of the second author and Lakzian, an explicit filling manifold is constructed
between two spaces which are close in the Lipschitz sense [13], see Sect. 4.1 for
the precise statement. Using this bound we conclude the following:

Theorem 1.5. Let n > 3, and let 0 < Ag < Aq. For any D > 0 and € > 0,
there exists § > 0 such that if M € RotSym? satisfies |OM| = Ay and

n—2
1496 Ay \"*
< — 6
manw < 5 (2)7 (©)
then
dr (Tp(21) € M, Tp(%1) € Mgy, (mo, L)) <e, (7)
n—2
where mgo = % (Li]\i‘) n , L is the depth of M, 1 and ¥ are the respective

symmetric spheres of area Ay in M and Mg, (mo, L), Tp denotes the tubular
neighborhood of radius D, and dr denotes intrinsic flat distance.
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For more discussion of intrinsic flat distance and its application to the
study of nonnegative scalar curvature, see [15]. Note that a scale-invariant
version of this result would require a scalable version of intrinsic flat distance.

In the final section of the paper we provide examples and propose that
some version of Theorem 1.5 holds without the restriction of rotational sym-
metry, see Conjecture 5.9 and subsequent remarks.

2. Basic Facts About RotSymZ

2.1. Geodesic Coordinates

In this article we consider Riemannian manifolds (M, g) in RotSymg, defined
in Definition 1.1. Since (M, g) is rotationally symmetric we can write its metric
in geodesic coordinates, as g = ds? + r(s)?go for some function 7 : [0, 00) —
(0,00), where go is the standard metric on the (n — 1)-sphere and s is the
distance from the boundary, OM.

Let ¥ be the symmetric sphere that is a distance s from the boundary.
We then have the following formulae for the (hyper-)area and mean curvature:

B = wpoyr™ (8)
n—1dr
HZ == r & (9)

At a point p € ¥ the scalar curvature is

n—1 ar\? d?r
R = -2)[1— [ — —2r—|. 10
r2 <(n ) l <ds> ] 7Ad32> (10)
Since OM is an outermost minimal hypersurface, %L»:o =0, and % is
either positive for all s > 0 or negative for all s > 0. The last condition in the

definition of RotSym? states that r(s) is unbounded, therefore it must be the
case that

d
IZ>O Vs € (0, 00). (11)

Recall the definition of the Hawking mass of a surface X in a three-dimen-
sional manifold:

mH(E)::% % 1_;/<I§E>2 . (12)
¥

We define a natural Hawking mass function on symmetric spheres > in M €
RotSymg that agrees with the usual definition in dimension three.

mu(S) = Tn; <1 - (Zf) . (13)




1542 D. A. Lee and C. Sormani Ann. Henri Poincaré

Alternatively, we may view mpy as a function of s. Applying (10), one can
compute
dmpy rnolodr

ds  2(n—1) &R' (14)

Since we are studying manifolds with % > 0 for s > 0, we observe that the
monotonicity of the Hawking mass, usually called Geroch monotonicity:

de
> 1
ds — 0, (15)

is actually equivalent to nonnegativity of R.
We define the ADM mass of M to be the limit of the Hawking mass
function:

mapm(M) := lim my € [0, 0. (16)

§—00

For asymptotically flat manifolds in RotSym?L , this agrees with the usual def-
inition of the ADM mass. Note that the Penrose Inequality for manifolds in
RotSym? then follows immediately from Geroch monotonicity (15).

2.2. Graphical Coordinates

Since % > 0 for s > 0, the map s — r(s) defines a smooth change of coordi-
nates away from dM. In r coordinates, the metric takes the form

o= (%) @ o, (a7)
dr '
By Geroch monotonicity (15), we see that % < 1 everywhere. We now choose
z(r) to be an increasing function (determined up to a constant) such that

1+ (j) - (j) (18)
g= <1 + (Sj)2> dr? + r2g,. (19)

Note that this formula exhibits a Riemannian isometric embedding of (M, g)
into R™*1 as the graph of the radial function z(r). That is, we may view

M = {(2,z"T") e R" : 2"t = 2(|]2'))}. (20)

so that

For this reason, we call this choice of coordinates radial graphical coordinates.
We also observe that r — z(r) defines a smooth change of coordinates
away from OM, and in z coordinates, the metric is

g= (jﬁ)z dz? +r(2)%go. (21)

Also note that unlike the r-coordinates, these z-coordinates are nonsingular
at OM . We call this choice of coordinates vertical graphical coordinates.



Vol. 13 (2012) Near-Equality of the Penrose Inequality 1543

2.3. Appended Schwarzchild Spaces
We recall that the n-dimensional Schwarzschild space Mg, (m) of mass m may

be described in radial graphical coordinates as the manifold [(2m)ﬁ,oo) X
S~ with the metric

2m \ !
gSch = <1 — r”_Q) dr? + r?gp. (22)
In vertical graphical coordinates, the metric becomes
)", 2
gsch = dz" + r(2)" g, (23)

where

dz 2m
_— = —_—. 24
dr — Vrn2-_2m (24)

By convention, we choose vertical graphical coordinates so that Mge, (m) has
z = 0. For L > 0, the appended Schwarzschild space Mgc,(m, L) is obtained
by gluing Mg, (m) to the space [—L, 0] x S*~! with the cylindrical metric

gyt = d22 + (2m) 72 gy (25)

along their common sphere at z = 0.

3. Lipschitz Estimates

In this section we define the depth and prove all Lipschitz estimates needed
to prove our main results.

3.1. Depth

Let M € RotSym‘9 and assume that mapy is finite. For convenience, we

no

express the important quantities mapy and |0M| in different units, defining

n—2
1 /|oM|\ 1
== >0 26
Mo 2 (wnl) ( )
1
1 OM|\ ™ T
ro :=1(0) = (2mg) "2 = <||) >0 (27)
Wn—1
r o= (277”LADM)ﬁ > 0. (28)
These quantities will be applied to define the depth and again in subsequent
proofs.
We define 4 so that
n—=2
140 (|OM|\"*
=— | — 29
MADM 9 (wnl ) ( )

Using the definitions above, we can rewrite this as

7"?72 =(1+ (5)7”6172. (30)
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We now define rs and As so that

rs = (1+V8)m2rg (31)
As = wn_lrg_l. (32)

Recall that Mgy, (mg) may be isometrically embedded into R with its
boundary embedded at the level z = 0 and radius r = 71y, as described in
Sect. 2.3. We can also isometrically embed M into R™™! via the function z(r)
introduced in Sect. 2.2, and this embedding is defined only up to constant.
Let us choose this constant so that M intersects the standard embedding of
Mscn(mo) in R™1 at » = 75, see Fig. 2 below.

Definition 3.1. We define the depth of M € RotSymg to be L such that when
M is embedded into R™*! as described above and depicted in Fig. 2, OM
embeds into r = rg and z = —L.

Remark 3.2. We note that although the depth is an invariant of M € RotSym?
which could plausibly be generalized to non-rotationally symmetric spaces,
the definition is not quite natural in the sense that it depends on an arbitrary
choice for what 75 should be. As one can see from the proof in the next section,
if we were to replace v/d by 6/3 in the definition of depth, Theorem 1.4 would
still hold true. Nevertheless, the concept of depth may be worthy of further
investigation.

Lemma 3.3. The depth L is always nonnegative.

Proof. Consider the functions r(s) and z(r) as defined for the manifold M. By
Geroch monotonicity (15), we have

mH(aM) < mH(E) < MADM (33)

Jix

S$™x [0,L]

/.

FiGURE 2. The depth L and the bi-Lipschitz map ¢ are
defined by embedding M and Mg, (mg) into R+ so that
they intersect at r = rj
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for any symmetric sphere 3. By the definitions of Hawking mass (13) and rg
and r; in (27) and (28), this becomes

dr\ 2
7“6“2 < pn2 (1 - (d) > < 7“?72. (34)
s
ro\" 2 dr 2 ri\" 2
- () 2 (a) =1- () (35)

By combining (35) and (18), we see that for all r > rg,

1 (%)H > (1 n (;192) B (36)

Therefore

rn2 dz\”
—F 5 <1 — 37
A + (dr) (87)
dz o2 2my
= . 38
dr = \| yn—2 — rg*Q rn=2 — 2myg (38)

Using (24) and the fact that the graphs of M and Mge, (mo) intersect at r = g,
we can integrate the above inequality to see that M cannot lie above Mgep, (o)
in R"*! in the region where r < rs. In particular, this means that M cannot
lie above OMsgen(myg), so that —L = z(rg) < 0, as desired. O

3.2. Proof of Theorem 1.4
Theorem 1.4 is an easy consequence of the following theorem.
Theorem 3.4. Let n > 3, and let M € RotSymg. Define 6 so that
n—2
146 (|OM]\ "1
MADM = —5— (' |) ; (39)

2 Wn—1

and assume 0 < § < 1. Define mg = 3 (LaMl‘) A = (1 + \/5)%\3]\/.“,
and let L be depth of M. Then there exists a rotationally symmetric bi-Lips-
chitz map ¢ : M — Mgen(mo, L) that maps symmetric spheres of area A > As

to symmetric spheres of area A such that for any tangent vector v € TM,

9(v,v) < hg (40)

hs —— <
5 gSch L(QO*U YU )

where

h(;:max{(lJr\[) ,(1+ Vo)1 +6), (1 ﬁ)*l}. (41)

Theorem 1.4 follows from this theorem because \/hs is then a bound on
dil(¢) and dil(p~1), so that

dﬁ(M, Msch(mo, < 210g \/ log h5 (42)

which converges to 0 as 6 — 0.
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Proof. We will prove Theorem 3.4 by explicitly constructing the bi-Lipschitz
map. Let (M,g), d, mg, As, and L be as described in the statement of the
theorem. We define 7, r1, and rs as in Sect. 3.1, and we isometrically embed
M and Mg, (mg) into R* ™! as in Sect. 3.1. Then we embed Mg, (mg, L) so
that OM = OMgcn(mo, L) and such that the Schwarzschild domain within
Msen(mo, L) agrees with the embedding of Mge,(mo), see Fig. 2 above.

We define the bi-Lipschitz map ¢ : M — Mg, (mg, L) as follows. In
the region where r > rs, ¢ projects M vertically in R to Msen(mo, L).
That is, under this map, the two manifolds have the same r coordinates and
sphere coordinates, but different z coordinates. In particular ¢ preserves the
areas of symmetric spheres of area A > As. In the region where r < rg, ¢
projects M horizontally in R"*! to Mg, (mo, L). That is, under this map, the
two manifolds have the z coordinates and sphere coordinates, but different r
coordinates. The vertical and horizontal lines in Fig. 2 depict the map . Since
the two definitions match up at r = rg, this map is clearly bi-Lipschitz.

We now prove (40) for the region where r > r5. Recall that in this region,
o preserves both the r coordinate and the sphere coordinates, so it suffices to
assume v is purely radial. Note that the assumption that § < 1 implies that
ro < ryp < rs, so that when r > rs, (35) tells us that

2
ro\ "2 dr 1\ "2
=(2)" = (F) 21-(B) s 43
r - <ds) - r (43)
By comparing (17) to (22), the inequalities in (43) tell us that for any radial
tangent vector v € T M based at a point with r > rs,

1— 2myg 1_ 2mg
s S ) S k= 29 (14)
1-— (%0) gsch, L($x0, Pxv) 1-— (%1)
By the definition of ry, we have
n—2
1_ (re

= gsenn(pavpv) T 1 o (1)

s

One can see that over r € [rs, 00), the right hand side is maximized at r = rg,
so that

g(v,v) - 7"?_2 - rg_Q B 1 (46)

gsen,L(0xv,uv) T PRy 1/

We now prove (40) for the region where 7o < r < rs. Since in this region,
o changes the r-coordinate, we must separately consider vectors that are tan-
gent to the symmetric spheres, as well as ones that are orthogonal to the sym-
metric spheres. However, the image of a symmetric sphere in M with radius
rog < r < rs under ¢ is another symmetric sphere with radius ro < r < rs.
Therefore it is clear that for any v € T'M that is tangent to a symmetric sphere
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and based at a point with ro <r <rj,

(
(

(14 Vo) < LD (1 Gy, )

IN

Now let us consider tangent vectors that are radial, that is, orthogonal
to the symmetric spheres. Using (34), we see that for any r > rg,

e (- ()= g

By (18), this may be written

2
7“0)”*2 dz (rl)"*Q
— <[—) <([— ) 50
( T - (ds “\r (50)
Consider a radial tangent vector v € TM based at a point with ro < r < 7s.
We consider two cases. In the first case, z(r) > 0, so that ¢ projects the point

to a point on Mg, (mg). Recall that in this region, ¢ does not change z. So
by comparing (21) to (23), the inequalities in (50) tell us that

<

r(z) n—2 2mg g(v,v) r(z) n—2 2myo
( To ) Tsen(2)"72 = gSch, L (90, Pxv) = (n) Tsch(2)" 2 (51)
(v,v

(
rs n—2 ) o n—2 o n—2
B e ()
o 95ch, L (940, 9s0) 1 s

g(v,v) —1 -1
1+\/52m2(1+5) (1+\/5) ) (53)

Q
<

where rscn(2) describes how the r coordinate on Mge, (mg) depends on z. In
the second case, v is based at a point with z(r) < 0, so that it projects to the
cylindrical part of Mgc,(mo, L). By comparing (21) to (25), then inequalities
in (50) tell us that

r(z)\" " g(v,v) r(2)\" "
<7“0> e T (m) (54)
1+vVe e — I gy (55)

gSch,L(SO*’Uv SD*’U) B

So we have (40) for vectors tangent to symmetric spheres or perpendicular to
them. In this situation, one can also see that it holds for their linear combina-
tions. O

3.3. Lipschitz Estimates for Tubular Neighborhoods

The following proposition is useful for the proof of Theorem 1.5.
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Proposition 3.5. Let n > 3, and let 0 < Ag < Ay. For any D > 0 and € > 0,
there exists 0 > 0 such that for all M € RotSym? satisfying |OM| = Ay and

n—2
1+6 [ Ay !
mADM < 5 (wn1> ) (56)
we have
de (Tp(21) € M, Tp(%1) € Mgy, (mo, L)) <, (57)

2 Wn—1
symmetric spheres of area Ay in M and Mg, (mo, L), Tp denotes the tubular
neighborhood of radius D, and dp denotes Lipschitz distance.

n—2
where mg = 3 (\BM\ ) "' L is the depth of M, £y and & are the respective

Proof. Following the proof of Theorem 1.4, for small enough § there exist L > 0
and a bi-Lipschitz map ¢ : M — Mgen (mo, L) such that

de (Tp(%1), (T (X1))) < €/2. (58)

While p(¥;) = %1, it is not true that ¢(Tp (X)) = Tp(21). We can define a
bi-Lipschitz map ¢ : o(Tp(21)) — Tp(E1) that preserves 3; while scaling
the distance to 3 by a constant factor on the part inside ¥, and another
constant factor on the outside part. Since we know that the ratios between
distances in M and Mgen (mo, L) tend to 1 as 6 — 0, we can arrange for these
constant factors to be close to 1. This controls gsen, (v, v)/gscn, L (¥v, ¥:v)
for radial tangent vectors v. And since % < 1, we can also control
9seh,L(V, V) /gsen, L (Y0, ,v) for v that are tangent to the symmetric spheres.
So we can choose ¢ small enough so that

dc(p(Tp (1)), T (S1)) < €/2, (59)

completing the proof of (57). O

4. Intrinsic Flat Distance

4.1. Review of the Intrinsic Flat Distance

The intrinsic flat distance measures the distances between compact oriented
Riemannian manifolds by filling in the space between them. This notion was
first defined in work of the second author and Wenger in [18] applying the
theory of integral currents on metric spaces developed by Ambrosio and Kir-
chheim [1]. However, here we estimate the intrinsic flat distance using only an
understanding of Riemannian geometry.

Given two compact oriented Riemannian manifolds M{* and M3 with
boundary, and metric isometric embeddings v; : M; — Z into some Riemann-
ian manifold (possibly piecewise smooth with corners) an upper bound for the
intrinsic flat distance is attained as follows:

dr(MJ, MY) < vol,, 1 (B™) + vol,, (A™) (60)
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where B™*! is an oriented region in Z and A" is defined so that the oriented

integrals satisfy
/w— /wz/w+/w (61)
A

1 (My) 2 (Mz) oB

for any differential n-form w on Z. We call B"*! a filling manifold between
My and Ms and A" the excess boundary.
Recall that a metric isometric embedding, ¥ : M — Z is a map such that

dz(¥(z),¥(y) =dm(z,y)  Vo,y € M. (62)

This is significantly stronger than a Riemannian isometric embedding which
preserves only the Riemannian structure and thus lengths of curves but not
distances between points as in (62). For example, S has a metric isometric
embedding as the equator of a hemisphere but only a Riemannian isometric
embedding as a circle in a plane.

Theorem 5.6 of [18] states that the intrinsic flat distance between oriented
Riemannian manifolds may be bounded as follows:

n+1

d}‘(Ml,Mg) S < > )\nil()\f 1) maX{Dl,DQ}(Vl +A1) (63)
where A = edc(MuM2) - Dy — diam(M;), Vi = vol,, (M;) and A; = vol,,_1(9M;).
This is proved using the theory of currents.

In work of the second author and Lakzian, the following more construc-
tive statement is proved using Riemannian geometry [13]. Here the statement
provides the explicit Riemannian manifold Z which in this case is the filling
manifold, B, and

A=0B\ (Y1(My) Utpa(Mz)). (64)

Suppose My and Ms are oriented precompact Riemannian manifolds with a
bi-Lipschitz map ¢ : M1 — My and suppose there exists € > 0 such that

(1+6)2q(V,V) < g2V, 0. V) < (1 4+€)21(V,V) VYV € TM. (65)
Then for any

arccos(1 +¢)~*

to —t1 > max{diam(M; ), diam(Ms)} (66)

there is a pair of metric isometric embeddings 1; : M; — Z = M x [t1, o] with
a metric

g >dt* + max cos®((t —t;)w/D;)g; on Z (67)
and
g =dt* +g; on (M) =M x {t;}. (68)

Thus the intrinsic flat distance between the manifolds

dr(My, My) <2|ta —t1] (Vi + Vo + A1 + Ag), (69)
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where D; = diam(M;), V; = vol,,(M;) and A; = vol,—1(9M;). In the proof of
this theorem, the cosine term in (67) arises from a comparison to the equator
isometrically embedded in a sphere of diameter D;.

Constructive estimates on the intrinsic flat distance are also provided
in previous work of the authors studying the stability of the positive mass
theorem [15]. In that paper, no bi-Lipschitz maps are constructed. Instead
metric isometric embeddings are created from Riemannian isometric embed-
dings using strips whose widths are bounded by controlling the embedding
constant.

4.2. Intrinsic Flat Estimates

Theorem 1.5 now follows from Proposition 3.5 combined with the bound on
intrinsic flat distance in terms of Lipschitz distance.

Proof of Theorem 1.5. Assume the hypotheses of Theorem 1.5. Note that the

r-coordinate of OM is ry = ( Ao )ﬁ, while the r-coordinate of both 34

Wn—1
1
and 3 is ry = (ﬁ) m (Note that this is not the same r; from Sect. 3.)

Choose M; to be Tp(X1) C Msen(mo, L) and My to be Tp(31) C M,
and apply the bound (63) together with Proposition 3.5 to see that for any
€ > 0, we can find § > 0 so that

dr (To(£1), Tp (1)) < (” 1

where Dy, Dy, V4, and A are defined as described just below (63). (Here we
use A} instead of A; because A; is already in use in this proof.)

Using monotonicity of the areas of the level sets and the triangle inequal-
ity, we have

> eV (ef — 1) max {D1, Do} (Vi + A}),  (70)

D; = diam (TD( 1)) < 2D +7(ry + D) 71
Dy = diam (TD( 1)) <2D +7(r1 + D) 72
Vl = VOln ( )

< DAy + Vol (7‘51}1 ro,m1 + D)) C Msch(mo))
All = VOln_l (8TD(21))
< 2vol,_1 (rgch(rl + D)) C Msch(m0)> . (76

Since all of these terms are bounded uniformly depending only on rq, r1, my,
and D, which in turn are bounded in terms of Ay, Ay, and D, the result
follows. ]

5. Further Remarks

In the first subsection we explain why it is necessary to introduce a notion
of depth and use appended Schwarzschild manifolds in the statements of our
main theorems. We also explain why Theorem 1.4 cannot be strengthened to
C? closeness of the metrics. In the second subsection, we consider the stability



Vol. 13 (2012) Near-Equality of the Penrose Inequality 1551

of the positive mass theorem in [15] and contrast it with the situation for the
Penrose Inequality. In the third subsection, we present Example 5.5 demon-
strating the necessity of rotational symmetry to obtain the Lipschitz bounds
in Theorem 1.4, followed by Remark 5.7 explaining heuristically why these
examples may be controlled using the intrinsic flat distance. We close with a
subsection describing open problems and conjectures.

5.1. Rotationally Symmetric Examples

First we describe the examples depicted in Fig. 1. Recall from Sect. 2 that for
rotationally symmetric manifolds with outermost minimal boundaries, mono-
tonicity of the Hawking mass of the symmetric spheres is equivalent to non-
negativity of scalar curvature. Therefore, we have the following lemma which
will be useful for constructing examples:

Lemma 5.1. There is a bijection between elements of RotSymz and smooth
increasing functions my : [rg,00) — R such that

1
m(ro) = 576" (77)
and
1
mpy(r) < 57"”72 (78)

forr > rg. In this section we will call these functions admissible Hawking mass
functions.

This lemma was proved in [15].

Example 5.2. Let n > 3. Given any 0 < Ag < Aj, and any large L > 0 and
small 6 > 0, there exists M € RotSym? with [9M| = Ay such that

146 [ Ay \ "
< —
maow < 23° (20)7 (79)
and also
d(OM, %) > L, (80)

where ¥ is the symmetric sphere of area A;.

Remark 5.3. This example shows that the appended Schwarzschild manifolds
must be included in Theorem 1.4.

1
Proof. Let r; := (MA11> N (Again, this r1 is not the same 7 from Sect. 3.)
Then
T1 d
s
A(OM,S1) = / < ar (81)
T0

Let € > 0 and define r_ and 7. so that
i1 —€) = 2 (82)

—€

P21 —€) = (1+6)rg 2. (83)
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We define a continuous admissible Hawking function mpy : [roo0) — oo as
follows:

17“8 2 forrg <r<r,
my(r) =< ir"=2(1—¢) forr, <r <7, (84)

NI= N= N

2(140) for7. <r

Be Lemma 5.1, this admissible Hawking function defines an element of
RotSymz, and one can easily see that it has all of the desired properties except
for d(OM,%1) > L. To see that we can choose € small enough to make this
true, observe that by the definition of my (13), we have 4 = /e over the

region r, < r < 7. Assuming that ¢ is small enough so that 7. < ry, we have
A(OM, %) / 1 (85)

_ LO(1+6)M -1 (56)

Ve (1—6)”%2

which tends to infinity as € — 0. Note that this example can be modified in a
straightforward manner to obtain a smooth example. 0

The next example proves that the Lipschitz convergence cannot be im-
proved to C? convergence in Theorem 1.4.

FEzample 5.4. There exists a sequence M; € RotSymZ such that each
|OM;| = Ao,

J—00 Wn—1

tim mapai(M;) = ( o ) (s7)

and M; converges to Mgcn(mo) in the Lipschitz sense, but not in the C? sense,
n—2

n—1
where mgy = ( Ao ) .

Wn—1

Proof. Choose a sequence m; \, mo. For each j we construct an admissible
Hawking function mg) such that mg)(r) = myg for r € [rg,2r¢], and then

. ()
mg) (r) takes a a very brief sharp turn upward so that "}i—’?{ > % for some

€ (2rg,3r¢), and then mg) = m; for r € [3ry,00). By our proof Theorem

1.4, the corresponding manifolds must converge to Mg, (mg) in the Lipschitz
sense. (We know that the depths are zero, because each M; is exactly Schwarzs-
child in a fixed neighborhood of 9M;.) But (13) tells us that

() n—2
myy r
= R 88
dr 2 7 (88)

and therefore R can be arbitrarily large as j — oo, so C? convergence is
impossible. O
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5.2. Contrasting with Positive Mass Stability

Theorem 1.5 is not a stability statement, because the appended Schwarzschild
space depends on the depth of M. In particular, this means that if we have
a sequence of manifolds M; with fixed |0M,| whose §,’s approach zero, the
sequence need not converge to anything, since their depths need not converge
(which is intuitively clear from 5.2). In this sense Theorem 1.5 is weaker than
the positive mass stability theorem proved by the authors in [15]. There we
proved that if M € RotSymg has ADM mass close to zero, then tubular neigh-
borhoods in M are close in the intrinsic flat sense to tubular neighborhoods
in Euclidean space. In particular, a sequence M; whose masses approach zero
must converge to Euclidean space in the pointed intrinsic flat, with appropri-
ately chosen basepoints.

On the other hand Theorem 1.4 is far stronger than the positive mass
stability theorem in [15] in the sense that we are able to obtain Lipschitz esti-
mates rather than just intrinsic flat estimates. The reason one cannot obtain
Lipschitz estimates for the near-equality case of the positive mass theorem is
that there 9M can be both arbitrarily small and arbitrarily deep. If we look at
a limit of such examples with masses approaching zero, we see that the deep
regions are not becoming close to a cylinder but rather a line segment. There
cannot be a bi-Lipschitz map from a region of dimension > 3, to a region
of dimension 1. However, this interior region can be controlled by construct-
ing a filling manifold and estimating its volume, leading to a stability result
formulated in terms of intrinsic flat distance [15].

Note that in [15], it was possible to obtain a Lipschitz estimate away
from the thin, deep well, which could have been proved in a manner similar
to Sect.3 and such a proof could have been used as a step in proving the
main results of [15], but instead we chose a proof that emphasized features of
intrinsic flat distance which are better suited to more general problems. Even
in the Penrose setting, the Lipschitz estimate in Theorem 1.4 is special to the
rotationally symmetric case, as seen below.

5.3. Many Wells

In this subsection we present Example 5.5 demonstrating the necessity of rota-
tional symmetry in Theorem 1.4, followed by Remark 5.7 explaining heuristi-
cally why these example with many wells can be controlled with the intrinsic
flat distance.

Ezample 5.5. There exist sequences of Riemannian manifolds satisfying all the
hypotheses of Theorem 1.4 except the rotational symmetry, with 6; — 0, such
that the sequence does not become Lipschitz close (or even Gromov—Hausdorff
close) to Mgcn(mo, L) for any L.

Proof. One may construct a Riemannian manifold with many wells similar to
the example constructed in [15]. As in that example, one begins with a rota-
tionally symmetric manifold with thin regions of constant sectional curvature.
The only difference is that here we start with manifolds M]’ € RotSym,aL that
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have fixed boundary of (hyper-)area Ay and edit in thin strips of constant
curvature while ensuring that

mapm(Mj) — mo = ! ( Ao )nl . (89)

2 \wn-1

We can do this in a way such that M J’ converge in the Lipschitz sense to some
Mscn(my).

Next we edit in rotationally symmetric wells of some fixed depth h > 0
replacing small balls in the strips of constant sectional curvature. We can
edit in arbitrarily many such wells just as in the example constructed in [15].
This creates new manifolds M; which satisfy all the conditions of Theorem 1.4
except the rotational symmetry. As they have increasingly many wells of depth
h, they have no Gromov—Hausdorff limit and do not converge in the Lipschitz
sense. U

Remark 5.6. Suppose that M™ is asymptotically flat with positive scalar cur-
vature and that M is outermost minimizing. Suppose further that M con-
tains many rotationally symmetric wells, W;, as in Example 5.5. If n < 8, the
Penrose Inequality guarantees that

n—1 n

ZmH((()Wi)Z% < mapm(M)»=2 —mg(OM)n

= (90)

To see this, replace each well W; by a region of mge, (mpg (W;)) to create a new
manifold N, and then apply the Penrose Inequality to N [6]. (Even though we
are in higher dimensions, we can make sense of the Hawking mass here because
W, is rotationally symmetric, and OM is minimal.)

Remark 5.7. Example 5.5 does not appear to contradict an extension of Theo-
rem 1.5 to the setting where there is no rotational symmetry. One can imagine
constructing fillings for each well and controlling the volume of each filling in
terms of the Hawking mass at the top of each well using techniques similar to
those developed in [15].

5.4. Conjectures

Although Theorem 1.4 does not generalize, we hope that Theorem 1.5 does.
We propose a conjecture along the lines of what we conjectured for stability
of the positive mass theorem in [15].

Definition 5.8. Let M be a subclass of asymptotically flat three dimensional
Riemannian manifolds of nonnegative scalar curvature, whose boundaries are
outermost minimal surfaces.

Conjecture 5.9. Let 0 < Ag < Ay. For any D > 0 and ¢ > 0, there exists 6 > 0
depending on these constants, such that for any M3 € M satisfying

A
mapm < (1 +5),/é, (91)

where Ay is the area of one connected component of OM , then
dr (Tp(21) C€ M, Tp(E1) C M., (mo, L)) <, (92)
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where X1 1s a special surface of area Ay, L is the depth of M, ¥1 is the sym-
metric sphere of area Ay in Mgen(mo, L) and mg = \/1‘%—‘;.

We are deliberately vague as to how restrictive the class M needs to be.
The conjecture may require uniform conditions at infinity. We have also been
vague as to what the special surface, 31, should be. The main point about ¥,
is that it should avoid the wells and also not escape to infinity. Please see [15]
for more discussion about how ¥; might be defined. We have also been vague
as to what the appropriate definition of depth should be in the general setting;
see Remark 3.2 for further discussion regarding this notion of depth.
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