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Towards a Construction of Inclusive Collision
Cross-Sections in the Massless Nelson Model

Wojciech Dybalski

Abstract. The conventional approach to the infrared problem in perturba-
tive quantum electrodynamics relies on the concept of inclusive collision
cross-sections. A non-perturbative variant of this notion was introduced
in algebraic quantum field theory. Relying on these insights, we take first
steps towards a non-perturbative construction of inclusive collision cross-
sections in the massless Nelson model. We show that our proposal is con-
sistent with the standard scattering theory in the absence of the infrared
problem and discuss its status in the infrared-singular case.

1. Introduction

The interpretation of physical states of quantum electrodynamics (QED) at
asymptotic times is plagued by the computational and conceptual difficulties
known as the infrared problem [4]. On the perturbative side a partial solution
was given in [29,40] with the help of the concept of inclusive cross-sections.
These cross-sections incorporate all the outgoing photon configurations whose
energy is below the sensitivity of the detector. An attempt to go beyond the
inclusive cross-sections was made in [12,20,31], where a concrete expression
for scattering states involving soft-photon clouds (i.e. infinite families of low
energy photons) was proposed.

The two approaches mentioned above have their counterparts on the non-
perturbative side: In the algebraic framework of local relativistic quantum field
theory (QFT) a model independent construction of inclusive cross-sections,
proposed in [7,8] and developed further in [18,19,30,34,35], is a promising yet
still incomplete programme. In the complementary setting of non-relativistic
QED careful choices of soft-photon clouds resulted in a rigorous construction
of scattering states for a class of simplified models of QED [10,11,15,32,33],
including the Nelson model.
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In the present paper we take first steps towards a construction of inclu-
sive cross-sections in the massless Nelson model along the lines set in algebraic
QFT. Let us therefore recall the formulation of QED in this latter setting.
As usually in relativistic quantum theory, one assumes the existence of the
total energy and momentum operators (H,P ), acting on the physical Hilbert
space H, whose joint spectrum is contained in the closed forward lightcone.
Moreover, H carries the Faraday tensor Fμν and the conserved current jν ,
defined as Wightman quantum fields (i.e. certain distributions taking values
in unbounded operators on a domain in H [39]), and subject to the Maxwell
equations. By smearing the distributions jν , Fμν with suitable test-functions
and taking bounded functions of the resulting operators one obtains elements
of the algebra of observables A ⊂ B(H).

As shown in [6] using the Maxwell equations, the physical Hilbert space
does not contain single-electron states. More precisely, the relativistic mass
operator

√
H2 − P 2 has no eigenvectors whose electric charge is different from

zero. Hence the electron is an infraparticle what precludes the conventional
approach to scattering theory based on the LSZ asymptotic fields [5,17,27,37].
An alternative approach, proposed in [7,8], aims at a direct construction of
inclusive cross-sections, without recourse to asymptotic fields. As a first step
one has to identify in the theoretical setting particle detectors of some finite
energy sensitivity δ. To this end one chooses an observable Bδ ∈ A which
decreases energy by δ and is almost local in the sense of [2]. Next, one intro-
duces the following sequences of observables

Cδ,t(χ) := eiHt

(∫
R3

dxχ(x/t) e−iPx(B∗
δ Bδ)eiPx

)
e−iHt (1.1)

which have the interpretation, as t → ∞, of particle detectors sensitive to par-
ticles whose velocity is contained in the support of the function χ ∈ C∞

0 (R3)
and whose energy is larger than δ [2]. It was shown in [7] that in any local, rel-
ativistic QFT the sequences {Cδ,t(χ)}t∈R have weak limit points C+

δ as t → ∞
which are closable operators on a dense domain of states of bounded energy.
The structure of these limit points was investigated in [34,35], conditions for
their non-triviality were found in [18] and a general scheme for construction
of inclusive collision cross-sections was proposed in [8]. So far this scheme was
tested only in asymptotically complete theories of massive particles, where no
infrared problems arise [38]. More importantly, the problem of convergence of
the sequences {Cδ,t(χ)}t∈R, which is essential for their interpretation as par-
ticle detectors, remains open to date in the presence of infraparticles. This
problem is the main obstacle to the understanding of infraparticle scattering
in the general framework of algebraic QFT. In order to shed some light on this
issue, we reformulate the programme outlined in [8] in the setting of non-rel-
ativistic QED, where this and related questions appear to be more tractable.

Let us consider the massless, translationally invariant Nelson model given
by the Hamiltonian and momentum operators
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H =
p2

2M
+

∫
R3

dq |q|a∗
qaq + λ

∫
R3

dq
ρ̂(q)√
2|q| (e

−iqxa∗
q + eiqxaq), (1.2)

P = p +
∫
R3

dq q a∗
qaq, (1.3)

acting on the Hilbert space H = L2(R3) ⊗ Γ(L2(R3)). Here the first factor
is the space of states of the massive particle, which we call ‘electron’, whose
position and momentum operators are denoted by (x, p). The second factor
is the bosonic Fock space containing states of scalar massless particles, which
we call ‘photons’. The corresponding creation and annihilation operators are
denoted by a∗

q , aq. The form factor ρ̂ ∈ C∞
0 (R3) is the Fourier transform of

the charge density ρ of the electron. If the total charge (2π)3/2ρ̂(0) and the
coupling constant λ are different from zero, then the Hilbert space does not
contain states describing a single (dressed) massive particle. More precisely,
the operator H − E(P ), where ξ → E(ξ) is the lower boundary of the joint
spectrum of the family of commuting operators (H,P ), has no eigenvectors
with eigenvalue zero [21,28]. Scattering states in this infraparticle situation
were constructed in [32,33] by a careful description of the soft-photon clouds
accompanying the massive particle. The goal of the present work is comple-
mentary: We propose a strategy aiming at a direct construction of (inclusive)
cross-sections, avoiding a consideration of scattering states. The first step is
to identify suitable counterparts of the particle detectors (1.1) in the present
concrete setting.

To construct a photon detector, we use the following approximants

Cg,t(χ) := eitHdΓ(gχ(y/t)g)e−itH , (1.4)

where (y, k) are the photon position and momentum operators, χ, g ∈
C∞

0 (R3) are real valued, the support of g is isolated from zero, and we denote
g := g(k). As t → ∞, this observable has an interpretation of a detector sen-
sitive to photons whose momentum belongs to the support of g and whose
direction of motion is restricted by the support of χ (cf. Proposition 3.2).
{Cg,t(χ)}t∈R converges strongly to the limit C+

g (χ) on all vectors from the
relevant energy range. This fact, stated as Theorem 5.1 below, can be proven
using methods developed in [14,23].

As an electron detector we propose the asymptotic velocity of the elec-
tron, approximated by

Ct(f) := eitHf(x/t)e−itH , (1.5)

where f ∈ C∞
0 (R3). At asymptotic times this observable is sensitive to elec-

trons whose velocity belongs to the support of f (cf. Proposition 3.1). In the in-
fraparticle situation the convergence of {Ct(f)}t∈R to a particle detector C+(f)
is known only on the infraparticle scattering states constructed in [32,33]. The
problem of convergence of this sequence of operators on all vectors from the
relevant energy subspace does not seem to be amenable to existing methods.
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This important open problem will not be addressed in the present paper, apart
from some remarks in Sect. 5.

Let us now outline the construction of inclusive cross-sections with the
help of the particle detectors C+

g (χ) and C+(f), which is the main subject of
the present paper. To leave the problem of convergence of {Ct(f)}t∈R+ aside,
let us introduce an infrared cut-off i.e. suppose that q → ρ̂(q) vanishes in a
neighbourhood of zero. Under this assumption it was shown in [23] that for
a sufficiently small coupling constant λ the model is asymptotically complete
up to a certain energy value Σ > inf σ(H). Restricting attention to the corre-
sponding subspace 1(−∞,Σ](H)H of the Hilbert space, it is easy to prove the
existence of the particle detectors C+

g (χ) and C+(f). (See Propositions 3.1
and 3.2). Now let S+ ⊂ R

3 be a compact subset of momenta of the electron.
With the help of a sequence of functions fn(∇E( · )), tending pointwise to the
characteristic function of S+, we construct C+

S+ := s- limn C+(fn). Similarly,
for any compact subset R+ ⊂ R

3\{0} of photon momenta, the corresponding
detector C+

R+ is constructed. Next, for any prescribed configuration of (hard)
particles, given by mutually disjoint sets S+, R+

1 , . . . , R+
n+ , we define the set

of total energies of this configuration

Δ = {E(ξ) + |q1| + · · · + |qn+ | | ξ ∈ S+, q1 ∈ R+
1 , . . . , qn+ ∈ R+

n+ }. (1.6)

Then |Δ| := sup Δ − inf Δ gives the experimental uncertainty of the total
energy of the system. The energies of hard photons should be larger than this
uncertainty i.e. |Δ| < inf{ |q| | q ∈ R+

j , 1 ≤ j ≤ n+ } should hold. It is our main
result that under this assumption the operator

Q+ := 1Δ(H)C+

R+
1

. . . C+

R+
n+

C+
S+ (1.7)

is an orthogonal projection thus it has a clear quantum mechanical interpre-
tation in terms of particle measurements. Every non-zero vector from the
range of this projection describes the prescribed configuration of hard par-
ticles and some unspecified configuration of soft photons whose total energy is
less than |Δ|. (See Theorem 4.1). By reversing the time direction, the above
construction can be repeated for an incoming configuration of hard particles
S−, R−

1 , . . . , R−
n− resulting in a projection Q−. The (inclusive) cross-section for

the collision process S−, R−
1 , . . . , R−

n− → S+, R+
1 , . . . , R+

n+ is proportional to
the transition probability

Pr =
∣∣∣∣
(

Q−Ψ−

‖Q−Ψ−‖ ,
Q+Ψ+

‖Q+Ψ+‖
)∣∣∣∣

2

, (1.8)

where Ψ± ∈ 1(−∞,Σ](H)H are chosen so that Q±Ψ± �= 0. The physical situa-
tion dictates the choice Ψ+ = Q−Ψ−. Then, exploiting the fact that Q± are
orthogonal projections, we obtain

Pr =
(

Q−Ψ−

‖Q−Ψ−‖ , Q+ Q−Ψ−

‖Q−Ψ−‖
)

. (1.9)

The remaining dependence of this quantity on the vector Ψ− reflects the ambi-
guities inherent in the experimental procedure of the initial state preparation.
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While the technical aspects of the above construction still rely on the
standard scattering theory, we conjecture that the operators Q± also exist
and are orthogonal projections in the presence of the infrared problem. In this
general context they should provide a natural language for a description of col-
lision processes, which has a counterpart in the relativistic setting of algebraic
QFT [8].

Our paper is organized as follows: In Sect. 2 we recall some known facts
about the Nelson model which are relevant to the present investigation. In
Sect. 3 the convergence of the particle detector approximants (1.4) and (1.5)
is established on the subspace of scattering states. The proofs of these results,
which exploit methods presented in [23], are given in the Appendices. In Sect. 4
we prove that the operators Q+, given by (1.7), are orthogonal projections on
the subspace of scattering states. In Sect. 5 we discuss the feasibility of our con-
struction in the presence of the infrared problem. In particular, we point out
that the convergence of photon detectors can be established in this situation.

2. Preliminaries

In this section, which serves mostly to introduce notation, we provide a sur-
vey of some known facts about the Nelson model, which will be needed in the
sequel.

Let h be a Hilbert space and let Γ(h) := ⊕n≥0 ⊗n
s h be the symmetric

Fock space over h. We denote by a∗(h) and a(h), h ∈ h, the creation and anni-
hilation operators and set φ(h) = a∗(h) + a(h). For any self-adjoint operator
b, acting on (a dense domain in) h, we denote by dΓ(b) a self-adjoint operator,
acting on (a dense domain in) Γ(h), defined by

dΓ(b)|⊗n
s h =

n∑
i=1

(I ⊗ · · · ⊗ I︸ ︷︷ ︸
i−1

⊗b ⊗ I ⊗ · · · I). (2.1)

For a more detailed exposition of the Fock space combinatorics we refer e.g.
to [23].

Let Hel = L2(R3) be the Hilbert space of the (bare) electron, whose
position and momentum operators are denoted by (x, p). Let h = L2(R3) be
the Hilbert space of a single photon, whose position and momentum operators
are denoted by (y, k). The normalized elements of Hel (resp. h) are electron
(resp. photon) wave-functions in momentum space. On the full Hilbert space
H = Hel ⊗ Γ(h) we define the Hamiltonian and momentum operators of the
Nelson model

H = Ω(p) + Hph + φ(Gx), (2.2)

P = p + Pph. (2.3)

Here Ω(p) = p2

2M ⊗ I,Hph = I ⊗ dΓ(ω), where ω(q) = |q| and ω := ω(k), Pph =
I ⊗ dΓ(k), Gx(q) = κ(q)e−iqx, where κ(q) = λ ρ̂(q)√

2ω(q)
and ρ̂ ∈ C∞

0 (R3) is a

positive function. It is a consequence of the Kato–Rellich theorem that H is
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self-adjoint on the domain of self-adjointness of H0 := Ω(p) + Hph and its
spectrum σ(H) is bounded from below.

The operators (H,P ), given by (2.2), (2.3), form a family of four com-
muting self-adjoint operators on a domain in H. The lower boundary of their
joint spectrum is denoted by ξ → E(ξ). We recall the following facts:

Lemma 2.1. There exists Σ > inf σ(H) and λ > 0 s.t. for E(ξ) < Σ and some
ε > 0
(a) ξ → E(ξ) is real analytic,
(b) ξ → ∇E(ξ) is invertible,
(c) |∇E(ξ)| < 1,
(d) ‖|∇Ω(p)|1(−∞,Σ+ε](H)‖ < 1.

Parts (a)–(c) of this lemma follow from [1]. Part (d) is a consequence of
Lemma 11 of [23]. We assume in the sequel that Σ and λ are chosen as in the
above lemma.

Next, we define the subspace of dressed single-particle states

Hdes = 1(−∞,Σ](H)1{0}(H − E(P ))H. (2.4)

In Sects. 3 and 4 we assume that Hdes �= {0}. This holds e.g. in the presence
of an infrared cut-off, i.e. if q → ρ̂(q) vanishes in some neighbourhood of zero
[21,23], and is expected to hold whenever the massive particle is neutral i.e.
if ρ̂(0) = 0. On the other hand, Hdes = {0} if λ �= 0 and the massive particle
is charged i.e. ρ̂(0) > 0 [21,28]. We hope that our construction of inclusive
cross-sections can be extended to this general situation. We discuss some first
steps in Sect. 5.

Proceeding to the construction of asymptotic creation and annihilation
operators of massless particles, we introduce the spaces

L2
ω(R3) = {h ∈ L2(R3) | ‖h‖2

ω :=
∫
R3

dq|h(q)|2(1 + ω(q)−1
)

< ∞}, (2.5)

L2,ω(R3) = {h ∈ L2
ω(R3) |ωh ∈ L2

ω(R3) }. (2.6)

We recall the following results:

Lemma 2.2. (a) For every n ∈ N the operator Hn
ph(H + i)−n is bounded.

(b) For every n ∈ N there is a constant Cn, s.t. for all h1, . . . , hn ∈ L2
ω(R3)

‖a#(h1) . . . a#(hn)(Hph + 1)−n/2‖ ≤ Cn

N∏
j=1

‖hj‖ω, (2.7)

where a#( · ) stands for a creation or annihilation operator.

Part (a) of this lemma is an adaptation of an argument from [22] to the
case of the Nelson model, part (b) is standard. In view of the above lemma,
we can define the asymptotic creation operator

a∗
+(h)Ψ := s- lim

t→∞ eitHa∗(ht)e−itHΨ, (2.8)
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where ht = e−iωth and Ψ is any vector from the domain of (c+H)
1
2 for which

the limit exists. (Here c ≥ 0 is s.t. σ(H) + c ⊂ (0,∞)). The following fact,
which is a result from [24] adapted to the case of the Nelson model, concerns
the properties of these operators:

Lemma 2.3. Choose Σ > inf σ(H) and λ > 0 s.t. ‖|∇Ω(p)|1(−∞,Σ+ε](H)‖ < 1
for some ε > 0. (Cf. Lemma 2.1). Then, for any h1, . . . , hn ∈ L2,ω(R3) and
Ψ ∈ 1(−∞,Σ](H)H the following limit

s- lim
t→∞ eitHa#(h1,t) . . . a#(hn,t)e−itHΨ (2.9)

exists and equals

a#
+(h1) . . . a#

+(hn)Ψ. (2.10)

Let us now prove the following lemma, which is a sharpened variant of
Theorem 4 (iv) of [22]:

Lemma 2.4. Let Ψ ∈ Ran1[E1,E2](H), where E1 ≤ E2 ≤ Σ. Let h1, . . . , hn ∈
L2,ω(R3) be functions of compact support (in the sense of distributions), mj :=
inf{ω(q) | q ∈ supphj } and Mj := sup{ω(q) | q ∈ supphj }. Then the vector

Ψn := a∗
+(hn) . . . a∗

+(h1)Ψ (2.11)

belongs to Ran1[E1+m1+···+mn,E2+M1+···+Mn](H).

Proof. We proceed by induction. For n = 0 the statement is trivially true.
Suppose it holds for n − 1 creation operators. We choose f̂ ∈ C∞

0 (R) s.t.
f̂(ω( · )) = 1 on supphn and vanishes on a slightly larger set. We write

a∗
+(hn)Ψn−1 = a∗

+(f̂(ω)hn)Ψn−1

= s- lim
t→∞

1√
2π

∫
ds f(s)eiHta∗(e−iωteiωshn)e−iHtΨn−1

= s- lim
t→∞

1√
2π

∫
ds f(s)eiHs

(
eiHta∗(e−iωthn)e−iHt

)
e−iHsΨn−1, (2.12)

where in the last step we made use of the dominated convergence theorem for
Bochner integrable functions to enter with the limit under the integral sign
and make a change of variables. (Norm continuity of the integrand follows from
Lemma 2.2). Next, we recall that for any A ∈ B(H) and compact set Δ ⊂ R

the operator A(f) :=
∫

ds f(s)eiHsAe−iHs satisfies [3]

A(f)1Δ(H)H ⊂ 1{Δ+supp f̃}(H)H. (2.13)

Each operator A := eiHta∗(e−iωthn)e−iHt1Δn−1(H), where Δn−1 = [E1+m1+
· · ·+mn−1, E2+M1+· · ·+Mn−1], belongs to B(H) by Lemma 2.2. Making use
of the induction hypothesis and of formula (2.13), we complete the proof. �
Let L2,ω

c (R3) be the subspace of functions from L2,ω(R3) which are compactly
supported (in the sense of distributions). We define the following space
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H+
0 = Span{ a∗

+(h1) . . . a∗
+(hn)Ψ |Ψ ∈ Hdes, hj ∈ L2,ω

c (R3),

1 ≤ j ≤ n, n ∈ N } (2.14)

as well as its norm closure H+ = (H+
0 )cl.

3. Particle Detectors

In this section we collect the relevant properties of the electron detectors C+(f)
and the photon detectors C+

g (χ), defined as limits of the respective sequences

Ct(f) := eitHf(x/t)e−itH , (3.1)

Cg,t(χ) := eitHdΓ(gχ(y/t)g)e−itH , (3.2)

as t → ∞. Here f ∈ C∞
0 (R3), χ, g ∈ C∞

0 (R3)R, the support of g does not
contain zero and we wrote g := g(k) in (3.2) above. In particular, we show
that these limits exist on vectors from H+

0 .
The following proposition describes the action of the electron detector on

scattering states. Although this result may be known (cf. Remark 2i in [33]), we
have not found a proof in the literature. Thus we include the straightforward
argument in Appendix A.

Proposition 3.1. Let h1, . . . , hn ∈ L2,ω
c (R3), f ∈ C∞

0 (R3) and Ψ ∈ Hdes. Then

s- lim
t→∞ eiHtf(x/t)e−iHta∗

+(h1) . . . a∗
+(hn)Ψ = a∗

+(h1) . . . a∗
+(hn)f(∇E(P ))Ψ.

(3.3)

The action of the photon detector on scattering states is described in the
following proposition, proven in Appendix B.

Proposition 3.2. Let ε>0 be s.t. |∇E(ξ)|<1−ε for E(ξ)≤Σ. (Cf. Lemma 2.1).
Choose χ∈C∞

0 (R3)R, s.t. suppχ ⊂ { v ∈ R
3 | ||v| − 1| ≤ ε/4 } and χ(v) = 1 if

|v| = 1. Let h1, . . . , hn ∈ L2,ω
c (R3) and Ψ ∈ Hdes. Then

s- lim
t→∞ eiHtdΓ

(
gχ(y/t)g

)
e−iHta∗

+(h1) . . . a∗
+(hn)Ψ

=
n∑

j=1

a∗
+(h1) . . . a∗

+

(
g2hj

)
. . . a∗

+(hn)Ψ (3.4)

for g ∈ C∞
0 (R3)R vanishing in a neighbourhood of zero.

The above results justify the physical interpretation of C+(f), C+
g (χ), as

particle detectors sensitive to particles whose momenta are specified by the
supports of the functions f and g. For the construction of collision cross-sec-
tions it is essential that these operators are invariant under time translations.
While it is evident on H+

0 by the above two propositions, it can easily be shown
in more generality.
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Proposition 3.3. Let Σ′ > 0 be arbitrary and let Ψ1,Ψ2 ∈ 1(−∞,Σ′](H)H be
s.t. the limits

eisHC+(f)e−isHΨ1 := s- lim
t→∞ ei(t+s)Hf(x/t)e−i(t+s)HΨ1, (3.5)

eisHC+
g (χ)e−isHΨ2 := s- lim

t→∞ ei(t+s)HdΓ(gχ(y/t)g)e−i(t+s)HΨ2 (3.6)

exist for s = 0. Then the limits exist for all s ∈ R and eisHC+(f)e−isHΨ1 =
C+(f)Ψ1, eisHC+

g (χ)e−isHΨ2 = C+
g (χ)Ψ2.

The proof of this proposition, which partly comes from [23], is given in Appen-
dix C.

4. Inclusive Collision Cross-Sections

In this section we give a detailed construction of the operators Q+, defined
precisely in (4.4) below, which we used to define transition probabilities of
inclusive collision processes in (1.9). In particular, we show that these opera-
tors are orthogonal projections on H+, what validates their interpretation as
coincidence arrangements of particle detectors.

Let S+ ⊂ R
3 be a compact subset of electron momenta s.t. E(ξ) ≤ Σ

for ξ ∈ S+. Making use of Lemma 2.1 (b), we choose a family of functions
fε ∈ C∞

0 (R3) s.t. ξ → fε(∇E(ξ)) approximates pointwise the characteris-
tic function 1S+( · ) of the set S+ as ε → 0. Exploiting Proposition 3.1 and
Lemma 2.2, we can meaningfully define for any h1, . . . , hn ∈ L2,ω

c (R3) and
Ψ ∈ Hdes

C+
S+a∗

+(h1) . . . a∗
+(hn)Ψ := s- lim

ε→0
s- lim

t→∞ eiHtfε(x/t)e−iHta∗
+(h1) . . . a∗

+(hn)Ψ

= a∗
+(h1) . . . a∗

+(hn)1S+(P )Ψ. (4.1)

Clearly, C+
S+ extends to an orthonormal projection on H+.

Now let R+ ⊂ R
3 be a compact subset of photon momenta s.t. R+∩{0} =

∅. Let q → gε(q) be a family of positive functions from C∞
0 (R3), vanishing in

some neighbourhood of zero, which tends pointwise to the characteristic func-
tion 1R+( · ) of R+ and let χ be chosen as in Proposition 3.2. Making use of
Proposition 3.2 and Lemma 2.2, we define

C+
R+a∗

+(h1) . . . a∗
+(hn)Ψ

:= s- lim
ε→0

s- lim
t→∞ eiHtdΓ(gεχ(y/t)gε)e−iHta∗

+(h1) . . . a∗
+(hn)Ψ

=
n∑

j=1

a∗
+(h1) . . . a∗

+(1R+hj) . . . a∗
+(hn)Ψ. (4.2)

C+
R+ is an unbounded operator. It is defined on H+

0 ⊂ H+ and leaves this
subspace invariant.

Next, given a collection of sets S+, R+
1 , . . . , R+

n , we define the set of total
energies of the corresponding particle configuration

Δ = {E(ξ) + ω(q1) + · · · + ω(qn) | ξ ∈ S+, qj ∈ R+
j , 1 ≤ j ≤ n }. (4.3)
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Then |Δ| := sup Δ − inf Δ is the accuracy with which the total energy of this
particle configuration is known. The sets R+

1 , . . . , R+
n should describe ‘hard

photons’, whose energies are larger than |Δ|. If this condition is met, then the
corresponding operator Q+, given by (4.4) below, is an orthogonal projection,
what validates its interpretation as a quantum mechanical measurement. This
is the content of the following theorem, which is our main result.

Theorem 4.1. Let S+, R+
1 , . . . , R+

n be compact subsets of R
3 s.t. R+

i ∩R+
j = ∅

for i �= j and E(ξ) ≤ Σ for ξ ∈ S+. Let Δ be given by (4.3). If |Δ| <
inf{ω(q) | q ∈ R+

j , 1 ≤ j ≤ n }, then the operator

Q+ := 1Δ(H)C+

R+
1

. . . C+

R+
n
C+

S+ (4.4)

is an orthogonal projection on H+. Moreover, Ran Q+ is spanned by vectors
of the form

a∗
+(h1) . . . a∗

+(hn)a∗
+(h′

n+1) . . . a∗
+(h′

m)Ψ, (4.5)

where m ≥ n,Ψ ∈ 1S+(P )Hdes, hi, h
′
j ∈ L2,ω

c (R3), supp hi ⊂ R+
i , supp h′

j ⊂
{ q ∈ R

3 | |q| ≤ δj }, δn+1 + · · · + δm ≤ |Δ|.
Proof. The subspace H+

0 is spanned by vectors of the form

Ψ+ = a∗
+(h1) . . . a∗

+(hm)Ψ, (4.6)

where hi ∈ L2,ω
c (R3), 1 ≤ i ≤ m and Ψ ∈ Hdes. It is clear from Proposition 3.2

that Q+Ψ = 0 for m < n. For m ≥ n the expression Q+Ψ+ is a sum of terms
of the form

Ψ+
1 := 1Δ(H)a∗

+(1R+
i1

h1) . . . a∗
+(1R+

in
hn)a∗

+(hn+1) . . . a∗
+(hm)1S+(P )Ψ.

(4.7)

We decompose hn+i = h′
n+i + h′′

n+i, where supph′′
n+i ⊂ { k ∈ R

3 | |k| ≥
|Δ| }, supp h′

n+i ⊂ { k ∈ R
3 | |k| < |Δ| } and 1 ≤ i ≤ (m − n). Then, Q+Ψ+ is

a sum of terms of the form

Ψ+
2 := 1Δ(H)a∗

+(1R+
i1

h1) . . . a∗
+(1R+

in
hn)a∗

+(h′′
n+1) . . . a+(h′′

n+j)

· a∗
+(h′

n+j+1) . . . a∗
+(h′

m)1S+(P )Ψ. (4.8)

We will show that terms for which j ≥ 1 are zero. First, we note that

Emax := sup Δ = sup {E(ξ) | ξ ∈ S+} +
n∑

j=1

sup{ω(q) | q ∈ R+
j }. (4.9)

Next, we obtain from Lemma 2.4 that Ψ+
2 ∈ Ran1[Emin,∞)(H), where Emin

satisfies

Emin ≥ inf {E(ξ) | ξ ∈ S+} +
n∑

j=1

inf{ω(q) | q ∈ R+
j } + |Δ|. (4.10)
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Hence Emin − Emax ≥ 0. Since Ψ+
2 is not an eigenvector of H, Ψ+

2 = 0 for
j ≥ 1. We conclude that Q+Ψ+ is a sum of terms of the form

Ψ+
2 := 1Δ(H)a∗

+(1R+
i1

h1) . . . a∗
+(1R+

in
hn)a∗

+(h′
n+1) . . . a∗

+(h′
m)1S+(P )Ψ.

(4.11)

Since C+

R+
i

, C+
S+ commute with H by Proposition 3.3, 1R+

i
h′

j = 0 by assump-

tion and 1R+
i′
1R+

j′
= 0 for i′ �= j′, it is evident that Q+Q+Ψ+ = Q+Ψ+.

To prove the second part of the theorem, it suffices to justify the support
property of the functions h′

j . It follows from the above discussion that vectors
of the form (4.11) span Ran Q+. Let us fix ε > 0 and let l = (m − n) be the
number of soft photons in Ψ+

2 . It suffices to consider the case l > 0. We define
χj to be the characteristic function of the set { q ∈ R

3 | (j − 1) ε
l ≤ |q| ≤ j ε

l },
where j ∈ {1, . . . , [l |Δ|

ε ] + 1}. Then h′
n+i(q) =

∑
jn+i

χjn+i
(q)h′

n+i(q). Substi-
tuting this decomposition to (4.11), we obtain that Ψ+

2 is a sum of terms of
the form

Ψ+
3 := 1Δ(H)a∗

+(1R+
i1

h1) . . . a∗
+(1R+

in
hn)

· a∗
+(χjn+1h

′
n+1) . . . a∗

+(χjm
h′

m)1S+(P )Ψ. (4.12)

If the above vector is non-zero, then Lemma 2.4 gives

(jn+1 − 1)
ε

l
+ · · · + (jm − 1)

ε

l
≤ |Δ|. (4.13)

Now let δn+i := sup{ |q| | q ∈ suppχjn+i
h′

n+i }. Since δn+i ≤ jn+i
ε
l , it follows

from the above relation that δn+1 + · · ·+ δm ≤ |Δ|+ ε. By choosing f̂n ∈ S(R)
s.t. s- limn→∞ f̂n(H) = 1Δ(H), writing f̂n(H) = 1√

2π

∫
dt eiHtfn(t) and mak-

ing use of the fact that eiHta∗
+(h)e−iHt = a∗

+(eiωth), we obtain the following:
For any ε > 0, Q+Ψ+ belongs to the subspace Hε spanned by vectors of the
form

a∗
+(h1) . . . a∗

+(hn)a∗
+(h′

n+1) . . . a∗
+(h′

m)Ψ, (4.14)

where m ≥ n,Ψ ∈ 1S+(P )Hdes, hi, h
′
j ∈ L2,ω

c (R3), supp hi ⊂ R+
i , supp h′

j ⊂
{ k ∈ R

3 | |k| ≤ δj }, δn+1 + · · · + δm ≤ |Δ| + ε. By identifying Hε with a sub-
space of Γ(L2({ k ∈ R

3 | |k| ≥ |Δ| }))⊗Γ(L2({ k ∈ R
3 | |k| ≤ |Δ| }))⊗Hdes and

noting that

s- lim
ε→0

I ⊗ 1[0,|Δ|+ε](Hph) ⊗ I = I ⊗ 1[0,|Δ|](Hph) ⊗ I, (4.15)

we obtain that
⋂

ε>0 Hε coincides with the subspace described in the statement
of the theorem. �
The construction of the subspace of incoming scattering states H− and of the
corresponding projections Q− proceeds analogously as above, by taking the
limit t → −∞. Assuming that 1(−∞,E](H)H+ = 1(−∞,E](H)H− for some
E ≤ Σ, (which holds under conditions specified in [23] as a consequence of
asymptotic completeness) transition probabilities for inclusive collision pro-
cesses below this energy can be defined using formula (1.9).
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5. Conclusion and Outlook

In this work we made first steps towards a construction of inclusive collision
cross-sections in the massless Nelson model, following ideas developed in alge-
braic quantum field theory [8]. We identified suitable asymptotic observables
which play the role of particle detectors. Their coincidence arrangements can
be used for preparation of incoming and outgoing configurations of hard par-
ticles accompanied by some unspecified configurations of soft photons.

We tested the proposed construction in the absence of the infrared prob-
lem, to show that it is consistent with predictions of standard scattering the-
ory. As for the infrared-singular case, the first question is the existence of
the particle detectors C+

g (χ) and C+(f). In the case of the photon detector,
a positive answer can be inferred from the existing literature: Using meth-
ods developed in [14], the convergence of t → eiHtdΓ(χ(y/t))e−iHt is estab-
lished in [23] for the Nelson model with an infrared cut-off. The convergence
of t → eiHtdΓ(gχ(y/t)g)e−iHt, where g vanishes in a neighbourhood of zero,
can be established analogously in the absence of the infrared cut-off. Thus, by
a minor modification of the proof of Theorem 26 of [23], one obtains:

Theorem 5.1. Let λ,Σ be s.t. ‖ |∇Ω(p)|1(−∞,Σ](H)‖ ≤ β for some β < 1.
Let χ ∈ C∞

0 (R3)R be s.t. suppχ ⊂ { v ∈ R
3 | |v| > β } and suppose that

g ∈ C∞
0 (R)R vanishes in a neighbourhood of zero. Then the limit

C+
g (χ)Ψ := s- lim

t→∞ eiHtdΓ(gχ(y/t)g)e−iHtΨ (5.1)

exists for any Ψ ∈ Ran1(−∞,Σ)(H).

The problem of existence of C+(f) = s- limt→∞ eiHtf(x/t)e−iHt in the
presence of the infrared problem appears to be more difficult. To our knowledge,
it is only resolved on the subspace of infraparticle scattering states, constructed
in [32,33]. We recall that an analogous asymptotic observable (asymptotic
velocity) plays a central role in quantum mechanical scattering theory, where
it exists under very general conditions [13]. There the main ingredient of the
proof of convergence is the equality of the average velocity x/t and the instan-
taneous velocity p/M of the particle at asymptotic times (Graf’s propagation
estimate [25]). This route seems difficult in the setting of non-relativistic QED
due to the phenomenon of the electron mass renormalization. We hope, how-
ever, that recently developed powerful time dependent [16] and spectral [9]
methods will shed some light on the question of existence of the asymptotic
velocity of the electron in models of non-relativistic QED. In view of the frame-
work proposed in the present paper, an answer to this question will allow for
a meaningful definition of inclusive collision cross-sections in these models. It
may also clarify the problem of convergence of the particle detector approxi-
mants (1.1) and thus contribute to the understanding of the infrared problem
in relativistic (algebraic) quantum field theory.
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Appendix A. Proof of Proposition 3.1

In this Appendix we give a proof of Proposition 3.1. More technical part of
this discussion is postponed to subsequent lemmas.

Proof of Proposition 3.1. Making use of Lemma 2.4, we obtain

eiHtf(x/t)e−iHta∗
+(h1) . . . a∗

+(hn)Ψ

= eiHtf(x/t)e−iHtg′(H)a∗
+(h1) . . . a∗

+(hn)Ψ (A.1)

for some g′ ∈ C∞
0 (R). There holds

eiHtf(x/t)g′(H)a∗(h1,t) . . . a∗(hn,t)Ψt

= eiHt[f(x/t), g′(H)]a∗(h1,t) . . . a∗(hn,t)Ψt

+eiHtg′(H)a∗(h1,t) . . . a∗(hn,t)f(x/t)Ψt, (A.2)

where Ψt = e−iHtΨ. The first term on the r.h.s. tends to zero as t → ∞
by Lemmas A.2 and 2.2. To treat the second term, we choose a real-valued
function Ẽ ∈ C∞

0 (R3) which coincides with ξ → E(ξ) for E(ξ) ≤ Σ. We write

eiHtg′(H)a∗(h1,t) . . . a∗(hn,t)f(x/t)Ψt

= eiHtg′(H)a∗(h1,t) . . . a∗(hn,t)e−iẼ(P )t

× (
eiẼ(P )tf(x/t)e−iẼ(P )tΨ − f(∇Ẽ(P ))Ψ

)
+ eiHtg′(H)a∗(h1,t) . . . a∗(hn,t)e−iHtf(∇Ẽ(P ))Ψ. (A.3)

Since ‖g′(H)a∗(h1,t) . . . a∗(hn,t)‖ is bounded uniformly in time, (see
Lemma 2.2), the first term on the r.h.s. above converges to zero, by
Lemma A.3 with the above choice of the function Ẽ. The second term con-
verges to the r.h.s. of (3.3) by Lemma 2.4. This concludes the proof. �
In the proof of the auxiliary Lemma A.2, stated below, there enter two ingre-
dients. The first is a simple fact from the pseudodifferential calculus, whose
proof can be found in [22].

Lemma A.1. Let f ∈ S(R3), h ∈ Cn(R3) and sup|α|=2 ‖∂αh‖∞ < ∞, where
∂α = ∂α1

1 ∂α2
2 ∂α3

3 and |α| = α1 + α2 + α3. Then

i[h(k), f(εx)] = iε∇h(k) · ∇f(εx) + R1,t(ε)

= iε∇f(εx) · ∇h(k) + R2,t(ε), (A.4)
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where

‖Rj,t(ε)‖ ≤ Cε2 sup
|α|=2

‖∂αh‖∞
∫
R3

du |u|2|f̂(u)| (A.5)

for some constant C independent of ε.

The second ingredient is the Helffer–Sjöstrand functional calculus, which
we summarize following [22]: Let f ∈ C∞

0 (R, C) and A be a self-adjoint oper-
ator. Then f(A) can be represented as follows

f(A) = − 1
π

∫
dudv ∂z̄ f̃(z)(z − A)−1, z = u + iv. (A.6)

This holds for any function f̃ ∈ C∞
0 (R2, C) s.t. |∂z̄ f̃(z)| ≤ C|v|, f̃(z) = f(z)

and ∂z̄ f̃(z) = 1
2

(
∂uf + i∂vf

)
(z) = 0 for all z ∈ R. Such f̃ is called an

almost-analytic extension of f . For any n ∈ N there exist extensions for which
|∂z̄ f̃(z)| ≤ C|v|n.

Lemma A.2. For any f ∈ C∞
0 (R3) and h ∈ C∞

0 (R) there holds

‖[h(H), f(x/t)]‖ ≤ C/t (A.7)

for some constant C ≥ 0 independent of t.

Proof. We choose an almost-analytic extension of h s.t |∂z̄h̃(u, v)| ≤ C|v|2.
Then, for z = u + iv

[h(H), f(x/t)]

= − 1
π

∫
dudv ∂z̄h̃(u, v)[(z − H)−1, f(x/t)]

= − 1
π

∫
dudv ∂z̄h̃(u, v)(z − H)−1[Ω(p), f(x/t)](z − H)−1. (A.8)

Now by Lemma A.1, [Ω(p), f(x/t)] = 1
t (∇f)(x/t)∇Ω(p) + R2(t), where

‖R2(t)‖ ≤ c′/t2. We note the following estimate

‖∂iΩ(p)(z − H)−1‖ ≤ ‖∂iΩ(p)(c + H)− 1
2 ‖ ‖(c + H)

1
2 (z − H)−1‖, (A.9)

where c ≥ 0 is chosen s.t. σ(H) + c ⊂ (0,∞). The first factor on the r.h.s. of
(A.9) above can be estimated as follows:

‖∂iΩ(p)(c + H)− 1
2 ‖2 = ‖(c + H)− 1

2 |∂iΩ(p)|2(c + H)− 1
2 ‖

≤ (2/M)‖(c + H)−1/2(Ω(p))(c + H)−1/2‖
≤ (2/M)‖(H + c1)(c + H)−1‖, (A.10)



Vol. 13 (2012) Inclusive Cross-Sections in the Nelson Model 1441

where the bound Ω(p) ≤ H+c1 for some constant c1 follows e.g. from Lemma 8
of [23]. The second factor on the r.h.s. of (A.9) gives

‖(c + H)
1
2 (z − H)−1‖2 = ‖(z̄ + H)−1(c + H)(z + H)−1‖

= sup
w≥0

w

(u + w − c)2 + v2

= sup
w≥R

w

(u + w − c)2 + v2

+ sup
0≤w≤R

w

(u + w − c)2 + v2
, (A.11)

where R ≥ sup{ |u| | ∂z̄h̃(u, · ) �= 0} + c + 1. The second term on the r.h.s. of
(A.11) can be estimated by R/v2 and the first one by supw≥R w/(w−R+1)2 ≤
C. Hence,

‖∂iΩ(p)(z − H)−1‖ ≤ C/|v|. (A.12)

Making use of the above facts and of the obvious inequality ‖(z − H)−1‖ ≤
C/|v|, we complete the proof. �

Let us now proceed to the second auxiliary lemma which we used in the proof
of Proposition 3.1.

Lemma A.3. Let f ∈ C∞
0 (R3) and Ẽ ∈ C∞

0 (R3) be a real-valued function.
Then

s- lim
t→∞ eiẼ(P )tf(x/t)e−iẼ(P )t = f(∇Ẽ(P )). (A.13)

Proof. Let Ψ ∈ H. By the functional calculus for a family of commuting
self-adjoint operators, we obtain

eiẼ(P )tf(x/t)e−iẼ(P )tΨ = f(x/t + ∇Ẽ(P ))Ψ. (A.14)

We note that, by Theorem VIII.25 of [36], xi/t+ ∂iẼ(P ) converges to ∂iẼ(P )
in the strong resolvent sense. In fact, the domain of xi, denoted D(xi), is a
common core for all the approximants and the limit, and for any Φ ∈ D(xi)

s- lim
t→∞(xi/t + ∂iẼ(P ))Φ = ∂iẼ(P )Φ. (A.15)

Thus we obtain (A.13) e.g. by approximating f in the supremum norm by func-
tions of the form fε(x) =

∑
j fε,j,1(x1)fε,j,2(x2)fε,j,3(x3), where fε,j,k ∈ S(R)

and the sum is finite. �

Appendix B. Proof of Proposition 3.2

In this Appendix we prove Proposition 3.2 which establishes the existence of
the photon detectors on scattering states of bounded energy. As in Appendix A,
the more technical part of this discussion is given in subsequent lemmas.
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Proof of Proposition 3.2. By Lemma 2.4, we obtain

eiHtdΓ(gχ(y/t)g)e−iHta∗
+(h1) . . . a∗

+(hn)Ψ

= eiHtdΓ(gχ(y/t)g)e−iHtg′(H)a∗
+(h1) . . . a∗

+(hn)Ψ

= eiHt[dΓ(gχ(y/t)g), g′(H)]e−iHta∗
+(h1) . . . a∗

+(hn)Ψ

+ eiHtg′(H)dΓ(gχ(y/t)g)e−iHta∗
+(h1) . . . a∗

+(hn)Ψ, (B.1)

for some g′ ∈ C∞
0 (R). It follows from Lemma B.1 and Proposition 3.1 that the

term with the commutator tends to zero. As for the last term on the r.h.s. of
(B.1), we note that

sup
t

‖g′(H)dΓ(gχ(y/t)g)‖ < ∞. (B.2)

This is a consequence of Lemmas C.1 and 2.2 (a). Thus we can write

g′(H)eiHtdΓ(gχ(y/t)g)e−iHta∗
+(h1) . . . a∗

+(hn)Ψ

= g′(H)eiHtdΓ(gχ(y/t)g)a∗(h1,t) . . . a∗(hn,t)Ψt + o(1)

= g′(H)eiHt
n∑

j=1

a∗(h1,t) . . . a∗(gχ(y/t)ghj,t) . . . a∗(hn,t)Ψt

+ g′(H)eiHta∗(h1,t) . . . a∗(hn,t)dΓ(gχ(y/t)g)Ψt + o(1), (B.3)

where o(1) denotes a rest term which tends to zero in norm as t → ∞ and we
used that [dΓ(gχ(y/t)g), a∗(hj,t)] = a∗(gχ(y/t)ghj,t). Let us first study one
of the terms in the sum above. We will show that a∗(gχ(y/t)ghj,t) can be
replaced with a∗({g2χ(∇ω)hj}t) at a cost of an error term of order o(1). We
set

h̃j,t := e−iωtg
(
eiω̃tχ(y/t)e−iω̃t − χ(∇ω̃)

)
ghj , (B.4)

where ω̃ is a smooth, compactly supported function which coincides with ω on
the support of g. We obtain

‖g′(H)eiHta∗(h1,t) . . . a∗(h̃j) . . . a∗(hn,t)Ψt‖
= ‖g′(H)eiHta∗(h1,t) . . . ǰ . . . a∗(hn,t)a∗(h̃j,t)Ψt‖
≤ ‖g′(H)eiHta∗(h1,t) . . . ǰ . . . a∗(hn,t)‖ ‖a∗(h̃j,t)g′(H)‖ ‖Ψ‖, (B.5)

where ǰ denotes the omission of the j-th creation operator. By Lemma 2.2
the first factor on the r.h.s. above is bounded uniformly in time, whereas the
second factor satisfies

‖a∗(h̃j,t)g′(H)‖ ≤ C‖(1 + ω−1)
1
2 h̃j,t‖, (B.6)

for some constant C ≥ 0. Denoting g̃(q) = (1 + ω(q)−1)
1
2 g(q), we obtain

‖(1 + ω−1)
1
2 h̃j,t‖ ≤ ‖g̃‖∞‖(

eiω̃tχ(y/t)e−iω̃t − χ(∇ω̃)
)
ghj‖. (B.7)

Proceeding as in the proof of Lemma A.3, we obtain

s- lim
t→∞ eiω̃tχ(y/t)e−iω̃t = χ(∇ω̃). (B.8)
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Hence, we have shown that
n∑

j=1

g′(H)eiHta∗(h1,t) . . . a∗(gχ(y/t)ghj,t) . . . a∗(hn,t)Ψt

=
n∑

j=1

g′(H)eiHta∗(h1,t) . . . a∗({g2χ(∇ω̃)hj}t) . . . a∗(hn,t)Ψt + o(1). (B.9)

Making use of Lemma 2.4 and exploiting the fact that |∇ω̃(q)| = 1 for q ∈
supp g, we obtain in the limit t → ∞ the r.h.s. of (3.4).

It still has to be shown that the remaining terms on the r.h.s. of (B.3)
tend to zero. To this end, we write

‖g′(H)eiHta∗(h1,t) . . . a∗(hn,t)dΓ(gχ(y/t)g)Ψt‖
≤ ‖g′(H)eiHta∗(h1,t) . . . a∗(hn,t)‖ ‖dΓ(gχ(y/t)g)Ψt‖. (B.10)

Here the first factor on the r.h.s. is uniformly bounded by Lemma 2.2. The
second factor vanishes for t → ∞ by Lemma B.2. �
In the above proof we used the following two lemmas:

Lemma B.1. Let f ∈ C∞
0 (R3) be s.t. supp f ⊂ {u ∈ R

3 | |u| ≤ β }. Choose
χ ∈ C∞

0 (R3) s.t. suppχ ⊂ { v ∈ R
3 | |v| ≥ β + ε } for some β, ε > 0. Then

‖[dΓ(gχ(y/t)g), g′(H)]‖ ≤ C, (B.11)
‖[dΓ(gχ(y/t)g), g′(H)]f(x/t)‖ ≤ C/t, (B.12)

for c independent of t, g′ ∈ C∞
0 (R) and g ∈ C∞

0 (R3)R s.t. g vanishes in a
neighbourhood of zero.

Proof. We apply the Helffer–Sjöstrand functional calculus (see Appendix A).
Choosing an almost-analytic extension g̃′ of g′ s.t. |∂z̄ g̃

′(u, v)| ≤ C|v|3, we
obtain

i[dΓ(gχ(y/t)g), g′(H)]

= − 1
π

∫
dudv ∂z̄ g̃

′(u, v)(z − H)−1dΓ(gi[ω̃, χ(y/t)]g)(z − H)−1

+
1
π

∫
dudv ∂z̄ g̃

′(u, v)(z − H)−1φ(igχ(y/t)gGx)(z − H)−1, (B.13)

where z = u+iv, ω̃ is a smooth, compactly supported function which coincides
with ω on the support of g. To obtain (B.13), we used

i[dΓ(gχ(y/t)g), φ(Gx)] = φ(igχ(y/t)gGx), (B.14)

i[dΓ(gχ(y/t)g),dΓ(ω)] = dΓ(i[gχ(y/t)g, ω]). (B.15)

Next, we denote by C1,t, C2,t the first and the second term on the r.h.s. of
(B.13), respectively. First, we show that

‖C1,t‖ ≤ C/t. (B.16)
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To this end, we note that for c ≥ 0 s.t. σ(H) + c ⊂ (0,∞)

(c + H)− 1
2 dΓ(gi[ω̃, χ(y/t)]g)(c + H)− 1

2

≤ C

t
(c + H)− 1

2 dΓ(g2)(c + H)− 1
2 + O(t−2)

≤ C ′

t
(c1H + c2)(c + H)−1 + O(t−2), (B.17)

where we made use of the pseudodifferential calculus (cf. Lemma A.1) and of
the fact that dΓ(b1) ≤ dΓ(b2) for any self-adjoint operators b1, b2 s.t. b1 ≤ b2.
The term O(t−2) denotes a family of bounded operators s.t. ‖O(t−2)‖ ≤ Ct−2

for some constant C. Noting, as in the proof of Lemma A.2, that ‖(c+H)
1
2 (z−

H)−1‖ ≤ C/|v|, we obtain (B.16).
As for C2,t, we first show that it is bounded uniformly in t. To this end,

we note that, by Lemma 2.2 (b),

‖(1 + Hph)− 1
2 φ(igχ(y/t)gGx)(1 + Hph)− 1

2 ‖
≤ C sup

x
‖(1 + ω−1)

1
2 gχ(y/t)gGx‖

≤ C‖(1 + ω−1)
1
2 g‖‖χ‖∞‖g‖∞‖G‖. (B.18)

Exploiting the fact that ‖(1+Hph)
1
2 (z−H)−1‖ ≤ c/|v|, we obtain that ‖C2,t‖ <

∞ uniformly in t. This concludes the proof of (B.11). To verify (B.12), we still
have to check that ‖C2,tf(x/t)‖ ≤ C/t as t → ∞. Setting hx := igχ(y/t)gGx,
we obtain

(z − H)−1φ(hx)(z − H)−1f(x/t)

= (z − H)−1φ(hx)(z − H)−1[Ω(p), f(x/t)](z − H)−1

+ (z − H)−1φ(hx)f(x/t)(z − H)−1. (B.19)

By Lemma A.1, i[Ω(p), f(x/t)] = 1
t ∇f(x/t)∇Ω(p) + Rt, where ‖Rt‖ ≤ C/t2.

We note that ‖|∇Ω(p)|(c + H)− 1
2 ‖ < ∞ and ‖(c + H)

1
2 (z − H)−1‖ ≤ C/|v|.

From the latter inequality and from (B.18) we obtain supx ‖(z−H)−1φ(hx)(z−
H)−1‖ ≤ C/|v|2. Hence the contribution to C2,t, corresponding to the first
term on the r.h.s. of (B.19), is bounded by C/t. To estimate the second term
on the r.h.s. of (B.19), we note that

‖(1 + Hph)− 1
2 φ(hx)f(x/t)(1 + Hph)− 1

2 ‖
≤ C‖(1 + ω−1)

1
2 g‖∞ sup

|x|/t≤β

‖χ(y/t)gGx‖. (B.20)

To show that this expression tends to zero, we recall that Gx(q) = κ(q)e−iqx,
where κ(q) = λ ρ̂(q)√

2ω(q)
, ρ̂ ∈ C∞

0 (R3) and obtain, similarly as in Lemma 9 of [23],
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sup
|x|/t≤β

‖χ(y/t)gGx‖2 ≤ sup
|x|/t≤β

∫
|y|/t≥β+ε

dy |ĝκ(y − x)|2

≤
(

1
εt

)n ∫
dy |ĝκ(y)|2|y|n. (B.21)

The integral on the r.h.s. is finite for any n ≥ 0, since gκ ∈ C∞
0 (R3). Using the

estimate ‖(1 + Hph)
1
2 (z − H)−1‖2 ≤ c/|v|2, we conclude that ‖C2,tf(x/t)‖ ≤

C/t as t → ∞. �

Lemma B.2. Let ε > 0 be s.t. |∇E(ξ)| < 1− ε for E(ξ) ≤ Σ. (Cf. Lemma 2.1).
Then, for any χ ∈ C∞

0 (R3) s.t. suppχ ⊂ { v ∈ R
3 | ||v| − 1| ≤ ε/4 } and

Ψ ∈ Hdes,

lim
t→∞ ‖dΓ(gχ(y/t)g)Ψt‖ = 0, (B.22)

where Ψt = e−iHtΨ and g ∈ C∞
0 (R3)R vanishes in a neighbourhood of zero.

Proof. We choose a real-valued function Ẽ ∈ C∞
0 (R3) which coincides with

ξ → E(ξ) for E(ξ) ≤ Σ and satisfies |∇Ẽ(ξ)| < 1 − ε for all ξ ∈ R
3. As

Ψ has bounded energy, we can choose g′ ∈ C∞
0 (R) s.t. Ψ = g′(H)Ψ. Since,

by Lemma B.1 and Proposition 3.1, [dΓ(gχ(y/t)g), g′(H)]Ψt tends strongly to
zero as t → ∞, we obtain

‖dΓ(gχ(y/t)g)Ψt‖ = ‖g′(H)eiẼ(P )tdΓ(gχ(y/t)g)e−iẼ(P )tΨ‖ + o(1)

≤ c‖eiẼ(P )t(1 + Hph)− 1
2 dΓ(gχ(y/t)g)(1 + Hph)− 1

2 e−iẼ(P )tΨph‖ + o(1),
(B.23)

where we set Ψph = (1 + Hph)
1
2 Ψ and the constant c is independent of t. We

decompose Ψph =
∑

m Ψph,m into components with fixed photon number and
write

‖eiẼ(P )t(1 + Hph)− 1
2 dΓ(gχ(y/t)g)(1 + Hph)− 1

2 e−iẼ(P )tΨph‖2

=
∑
m

‖(1 + Hph)− 1
2

m∑
j=1

g(kj)χ(yj/t + ∇Ẽ(P ))g(kj)(1 + Hph)− 1
2 Ψph,m‖2,

(B.24)

where we identified Ψph,m with (classes of) square-integrable functions on
R

3 ×R
3m and made use of the fact that eiẼ(P )tyi

je
−iẼ(P )t = yi

j +∂iẼ(P )t on a
suitable dense domain in L2(R3) ⊗ L2(R3)⊗m. In order to enter with the limit
t → ∞ under the sum, we show that the above sequence can be estimated by a
uniformly convergent sequence independent of t and make use of the dominated
convergence theorem. To this end, we estimate in the m-particle subspace
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(1 + Hph)− 1
2

m∑
j=1

g(kj)χ(yj/t + ∇Ẽ(P ))g(kj)(1 + Hph)− 1
2

≤ ‖χ(y/t + ∇Ẽ(P ))‖ ‖g(k)2|k|−1‖
m∑

j=1

ω(kj)(1 + Hph)−1

≤ C(1 + Hph)−1Hph ≤ C ′. (B.25)

Clearly, C ′ can be chosen uniformly in t and m. Thus we can enter with
the limit under the sum in (B.24). The expression tends to zero because
yi

j/t + ∂iẼ(P ) tends to ∂iE(P ) in the strong resolvent sense and ∇Ẽ(P ) has
its spectrum outside of the support of χ. (Cf. the proof of Lemma A.3). �

Appendix C. Proof of Proposition 3.3

Proof of Proposition 3.3. The invariance of C+(f) follows from the the esti-
mate

‖f(x/(t − s)) − f(x/t)‖ = ‖
s∫

0

d
ds′ f(x/(t − s′))ds′‖

≤ s

(t − s)
sup
v∈R3

|∇f(v) · v|, (C.1)

where the r.h.s. tends to zero as t → ∞.
The invariance of C+

g (χ) can be proven by an analogous argument (cf.
the proof of Theorem 26 of [23]): We note that

‖dΓ
(
g(χ(y/(t − s)) − χ(y/t))g

)
(c + H)−1‖ ≤ c′‖

s∫
0

ds′ d
ds′ χ(y/(t − s′))‖

≤ c′ s

(t − s)
sup
u∈R3

|∇χ(u) · u|,
(C.2)

where c is sufficiently large and in the first step we made use of Lemma 2.2 (a)
and Lemma C.1 stated below. �
The above proof relies on the following lemma:

Lemma C.1. Let χ be a bounded operator on the single-photon space. Then

‖dΓ(gχg)(1 + Hph)−1‖ ≤ c‖χ‖, (C.3)

where c is independent of χ and g ∈ C∞
0 (R)R vanishes in a neighbourhood of

zero.

Proof. Without loss of generality we can assume that χ is self-adjoint. We
note the following

dΓ(gχg)(1 + Hph)−1 = [dΓ(gχg), (1 + Hph)−1/2](1 + Hph)−1/2

+ (1 + Hph)−1/2dΓ(gχg)(1 + Hph)−1/2. (C.4)
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The second term on the r.h.s. above satisfies

(1 + Hph)−1/2dΓ(gχg)(1 + Hph)−1/2

≤ ‖χ‖ ‖ω(k)−1g2(k)‖Hph(1 + Hph)−1. (C.5)

As for the first term, we recall that

(1 + Hph)−1/2 =
1
π

∞∫
0

dλλ− 1
2

1
λ + 1 + Hph

. (C.6)

Thus we obtain

i[dΓ(gχg), (1 + Hph)−1/2]

=
1
π

∞∫
0

dλλ− 1
2 (λ + 1 + Hph)−1dΓ(gi[χ, ω̃]g)(λ + 1 + Hph)−1

≤ ‖[χ, ω̃]‖ ‖ω(k)−1g2(k)‖ 1
π

∞∫
0

dλλ− 1
2 (λ + 1 + Hph)−1Hph(λ + 1 + Hph)−1

≤ ‖[χ, ω̃]‖ ‖ω(k)−1g2(k)‖ 1
π

∞∫
0

dλλ− 1
2 (λ + 1)−1, (C.7)

where ω̃ is a smooth, compactly supported function which coincides with ω
on the support of g. Since the integral on the r.h.s. of (C.7) is convergent, the
proof of the lemma is complete. �
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[23] Fröhlich, J., Griesemer, M., Schlein, B.: Asymptotic completeness for Compton
scattering. Commun. Math. Phys. 252, 415–476 (2004)

[24] Griesemer, M., Zenk, H.: Asymptotic electromagnetic fields in non-relativistic
QED: the problem of existence revisited. J. Math. Anal. Appl. 354, 339–346
(2009)

[25] Graf, G.M.: Asymptotic completeness for N-body short-range quantum systems:
a new proof. Commun. Math. Phys. 132, 73–101 (1990)

[26] Haag, R.: Local Quantum Physics. Springer, New York (1992)

[27] Haag, R.: Quantum field theories with composite particles and asymptotic con-
ditions. Phys. Rev. 112, 669–673 (1958)

[28] Hasler, D., Herbst, I.: Absence of ground states for a class of translation invariant
models of non-relativistic QED. Commun. Math. Phys. 279, 769–787 (2008)

[29] Jauch, J.M., Rohrlich, F.: The infra-red divergence. Helv. Phys. Acta 27, 613–636
(1954)



Vol. 13 (2012) Inclusive Cross-Sections in the Nelson Model 1449

[30] Johannsen, K.: Teilchenaspekte im Schroermodell. Diplomarbeit, Universität
Hamburg (1991)

[31] Kibble, T.: Coherent soft-photon states and infrared divergencies. I. Classical
currents. J. Math. Phys. 9, 315–324 (1968)

[32] Pizzo, A.: One-particle (improper) states in Nelson’s massless model. Ann. Henri
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