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Abstract. In this paper we consider the nonlinear Hartree equation in
presence of a given external potential, for an initial coherent state. Under
suitable smoothness assumptions, we approximate the solution in terms
of a time dependent coherent state, whose phase and amplitude can be
determined by a classical flow. The error can be estimated in L2 by C

√
ε,

ε being the Planck constant. Finally we present a full formal asymptotic
expansion.

1. Introduction

Let us consider the Hartree equation in R
d:

iε∂tΨε(x, t) = −ε2

2
ΔΨε(x, t) + (V (x, t) + U(x, t)) Ψε(x, t),

Ψε(x, 0) = Ψε
0(x),

(1)

where

V (x, t) =
∫
φ(|x− y|)|Ψε(y, t)|2dy (2)

is a self-consistent potential given by a smooth two-body interaction, φ :R�R,
even, and U(·, t) : R

d
� R for all t ≥ 0, is a smooth external potential (see

the next section for our precise assumptions on φ and U . See, e.g. [6] for a
well-posedness study).

The Hartree equation describes the time evolution of a large number of
particles in a mean-field regime. In fact, if one considers an N -particle sys-
tem where the interaction potential is suitably rescaled with N (mean-field
model) and the initial datum is (almost) factorized, it turns out that the
many-body evolution is approximated, as N → ∞, by the Hartree dynamics
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(1). More precisely, the time evolution of the system, originally ruled by an N -
particle (linear) Schrödinger equation, can be described for very large N by the
one-particle (nonlinear) Eq. (1), where φ is exactly the two-body interaction
considered for the many-body dynamics. That is the reason why the radial
symmetry assumption arises quite naturally: in the physical systems described
by the many-body model the two-body interaction is actually depending only
on the particle distance (see references below for a more detailed discussion).

The previous result was originally obtained for sufficiently smooth inter-
actions (see for instance [8,9,13,22])and then it has been generalized to include
Coulomb potentials (see e.g. [2,3,7] and, more recently, [14]).

However, here we are not going to consider the case of singular interac-
tions since, as is usual in dealing with (strong) semiclassical asymptotics (see
e.g. [19,20]), the techniques we are going to use require φ to verify suitable
smoothness assumptions (see below).

In a recent paper [1] the authors of the present one considered the semi-
classical limit of the version of the Hartree equation corresponding to mixed
states for initial data whose Wigner functions do not concentrate at the clas-
sical limit.

The problem we deal with in the present paper is the semiclassical asymp-
totics for (1) when the initial state is a coherent state centered around the point
q, p of the classical phase space, namely

Ψε
0(x) = ε− d

4 a0

(
x− q√

ε

)
ei p·(x−q)

ε := ψa0
qp(x). (3)

This problem was studied in [15] in the kinetic (Wigner) picture, see
Théorème IV.2 therein. There it is shown that, under appropriate conditions,
the solution W ε of the Wigner equation corresponding to the dynamics (1),
namely

∂tW
ε + k · ∂xW

ε

=
i

ε(2π)d

∫ ∫
eiξy
(
V
(
x+

εy

2
, t
)

− V
(
x− εy

2
, t
))

dyW ε(x, k − ξ)dξ

+
i

ε(2π)d

∫ ∫
eiξy
(
U
(
x+

εy

2
, t
)

− U
(
x− εy

2
, t
))

dyW ε(x, k − ξ)dξ,

(4)

where V (x, t) is the same as in (1) equivalently written as

V (x, t) =
∫
φ(|x− y|)W ε(y, k, t)dkdy, (5)

converges, in weak∗-sense, to the solution of the (classical) Vlasov equation

∂tf + k · ∂xf − ∂xV0(x, t) · ∂kf − ∂xU(x, t) · ∂kf = 0,
f(x, k, t)|t=0 = f0(x, k),

(6)

where

V0(x, t) =
∫
φ(|x− y|)f(y, k, t)dkdy,
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and U(x, t) is the same as in (1). The initial condition for (6) is given by
f0 = w − ∗ limε→0W

ε
0 . It is easy to check that the conditions of Théorème

IV.2 in [15] are satisfied for W ε
0 (x, v) = W ε[Ψε

0](x, v),Ψ
ε
0 as in Eq. (3). In that

case (under appropriate assumptions on the pair-interaction potential φ and
the external potential U) it can be seen that the Wigner measure of the wave
function verifies

W ε[Ψε](x, k, t) ⇀ δ(x−X(t))δ(k −K(t)), as ε → 0,

where

Ẋ(t) = K(t), K̇(t) = −∇U(X(t), t), X(0) = q, K(0) = p.

In that sense, the semiclassical limit of the problem (1) is known to be the
Vlasov dynamics (6), since it is easy to recognize that, due to the smoothness
of the potentials, the limiting measure δ(x − X(t))δ(k − K(t)) is the unique
(weak) solution of the Vlasov equation with initial datum δ(x− q)δ(k − p).

The goal of the present work is to strengthen this approximation. First of
all, we construct L2 approximations, as opposed to the weak-∗ limit, and this
yields an explicit control of the error in ε which allows to recover the shape
with which W ε concentrates to a δ in phase-space.

2. Main Result

We will consider the Hartree equation in R
d:

iε∂tΨε(x, t) = −ε2

2
ΔΨε(x, t) + (V (x, t) + U(x, t)) Ψε(x, t),

Ψε(x, 0) = Ψε
0(x),

(7)

where

V (x, t) =
∫
φ(|x− y|)|Ψε(y, t)|2dy. (8)

The initial condition will be of the form

Ψε
0(x) = ε− d

4 a0

(
x− q√

ε

)
ei p·(x−q)

ε := ψa0
qp

and we will make the following assumptions on a0, φ and U :

Assumption 1.

‖a0‖L2 = ‖Ψε
0‖L2 = 1,

xA∂B
x a0(x) ∈ L2 for any pair A,B ∈ N

d with |A| + |B| � 3,
∫
xi|a0(x)|2dx = 0, ∀ i = 1 . . . d. (9)
∫
ki|â0(k)|2dk = 0, ∀ i = 1 . . . d. (10)



1616 A. Athanassoulis et al. Ann. Henri Poincaré

Assumption 2.

C3
b (R) � φ even

Assumption 3.

U ∈ C1
(
R

+
t , C

3
b (Rd

x)
)
.

We will denote by Ck
b (Rm) the set of real-valued functions on R

m which
have continuous and uniformly bounded derivatives of order 0 up to k.

Theorem 2.1. Under Assumptions 1, 2 and 3 there exists a constant C such
that, ∀t ≥ 0,

‖Ψε(·, t) − ei L(t)
ε +iγ(t)ψβt

q(t)p(t)‖L2 � CeCteC eC t

· √
ε. (11)

where βt is the solution of

i∂tβt(x) =
(

−Δ
2

+
φ′′(0)x2

2
+

〈x,H(U(q(t)), t)x〉
2

)
βt(x), (12)

β0(x) = a0(x), (13)

γ(t) = −φ′′(0)
2

t∫

0

∫
η2|βs(η)|2dηds, (14)

(q(t), p(t)) is the Hamiltonian flow associated with p2

2 + U(q, t) + φ(0) issued
from (q, p),

L(t) :=

t∫

0

(
p(s)2/2 − U(q(s), s) − φ(0)

)
ds

(the Lagrangian action along such Hamiltonian flow).

Remarks. • As shown in the proof of the Theorem, the constant C depends
only on d, ||U ||W 3,∞ , ||φ||W 3,∞ and sup|A|+|B|�3 ||xB∂A

x a0||L2 .
• Note that in the classical flow the nonlinear potential enters only via the

inessential constant φ(0). Indeed, due to the symmetry and smoothness of
φ, we have φ′(0) = 0 so that, in the limit ε → 0, the self-consistent field
∇V vanishes.

• A similar problem for φ′′(0) ≥ 0 has been faced in [4] in a semirigorous
way. Here, we treat the case φ′′(0) ≤ 0 as well and present an explicit con-
trol of momenta and derivatives of the solutions (see Lemma 2.3 below)
which allow us to estimate the error in L2.

• For a related result (Gross–Pitaevskii equation with a different scaling),
see [5].

• Assumption 1 can be relaxed by dismissing Eq. (9). Indeed, even if (9) does
not hold one can always make a change of variables x �→ x−∫ x|a0(x)|2dx.
However, in that case one would have to adjust appropriately the external
potential, which of course is not translation invariant.
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3. Proofs

3.1. A Lemma

We first prove the following

Lemma 3.1. bt(x) := eiγ(t)βt(x) as defined by (12), (13), (14) is the unique
solution of the initial value problem:(

i∂t +
1
2
Δ
)
bt(x) =

φ′′(0)
2

∫
|x− η|2|bt(η)|2dη bt(x)

+
〈x,H(U(q(t)), t)x〉

2
bt(x), (15)

b0(x) = a0(x).

Proof.

i∂tbt(x) = −γ′(t)bt(x) + eiγ(t)i∂tβt(x). (16)

By virtue of Eqs. (12), (13) and (14) we find

i∂tbt(x) =
φ′′(0)

2

∫
η2|βt(η)|2dη bt(x) + eiγ(t)

(
−Δ

2
βt(x) +

φ′′(0)
2

x2 βt(x)
)

+ eiγ(t)

( 〈x,H(U(q(t)), t)x〉
2

βt(x)
)

(17)

b0(x) = a0(x),

namely

i∂tbt(x) = −Δ
2
bt(x) +

φ′′(0)
2

x2 bt(x) +
φ′′(0)

2

∫
η2|βt(η)|2dη bt(x)

+
〈x,H(U(q(t)), t)x〉

2
bt(x) (18)

b0(x) = a0(x).

We first notice that Eq. (12) for βt(x) is a linear Schrödinger equation
with an harmonic potential; therefore, the solution βt(x) of the initial value
problem (12)–(13) is uniquely determined in L2(Rd) and

‖βt‖L2 = ‖a0‖L2 = 1, ∀t ∈ R. (19)

As a consequence of that, it turns out that the initial value problem (18) can
be rewritten as

i∂tbt(x) = −Δ
2
bt(x) +

φ′′(0)
2

∫
x2|βt(η)|2dη bt(x)

+
φ′′(0)

2

∫
η2|βt(η)|2dη bt(x) +

〈x,H(U(q(t)), t)x〉
2

bt(x). (20)

b0(x) = a0(x).

Furthermore, it is easy to check that if

xa0(x), ∂xa0(x) ∈ L2(Rd), (21)
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then

xβt(x), ∂xβt(x) ∈ L2(Rd), for all t, (22)

(see Observation 4.3 below).
Condition (21) is satisfied under Assumption 1, so the property (22) holds

and, in particular, there exists a bound C = C(t), finite for any time t, such
that ∫

|η|2|βt(η)|2dη < C(t), ∀t ∈ R. (23)

Thus, by virtue of (23) and of Assumptions 1, 2 and 3, it follows that the
initial value problem (20) is guaranteed to have a unique solution in L2 and,
clearly, ‖bt‖L2 = ‖a0‖L2 = 1, ∀t. In fact, the equation for bt(x) has turned
out to be a linear Schrödinger equation with an harmonic potential (and all
constants appearing in the potential terms are finite thanks to Assumptions 2
and 3 and Eq. (23)).

Now, it remains only to recognize that (20) is exactly the same as (15).
To this end it is sufficient to observe that, since the Eq. (12) for βt(x) is a
linear Schrödinger equation with an harmonic potential, and conditions (9)
and (10) are satisfied at time t = 0, it is guaranteed that∫

η|βt(η)|2dη = 0, ∀t. (24)

Thus, by virtue of (24), it follows that (20) can be rewritten as

i∂tbt(x) = −Δ
2
bt(x) +

φ′′(0)
2

∫
|x− η|2|βt(η)|2dη bt(x)

+
〈x,H(U(q(t)), t)x〉

2
bt(x). (25)

Finally, it is clear, by the definition of bt(x), that |βt(x)| = |bt(x)| for any
x and t. Therefore, (25) turns to be exactly the same as (15). �

3.2. Proof of Theorem 2.1

As is standard when working with coherent states, see, e.g. [11–13,17,18], we
seek an approximate solution to Eq. (1) of the form

Ψε(x, t) = ε− d
4 a

(
x− q(t)√

ε
, t

)
ei p(t)·(x−q(t))

ε ei L(t)
ε , (26)

where

q̇(t) = p(t), ṗ(t) = −∇U(q(t), t). (27)

By inserting the ansatz (26) in Eq. (1) we get

iε∂tΨ
ε(x, t) = ε− d

4

[
iε∂ta

(
x − q(t)√

ε
, t

)
− i

√
ε∇a

(
x − q(t)√

ε
, t

)
· q̇(t)

− L′(t)a
(

x − q(t)√
ε

, t

)
− (ṗ(t)(x − q(t)) − p(t)q̇(t)) a

(
x − q(t)√

ε
, t

)]

× ei
p(t)·(x−q(t))

ε ei
L(t)

ε , (28)
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and

− ε2

2
ΔΨε(x, t) = ε− d

4

[
−ε

2
Δa
(
x− q(t)√

ε
, t

)
+
p2(t)

2
a

(
x− q(t)√

ε
, t

)

−i√ε∇a
(
x− q(t)√

ε
, t

)
· p(t)
]

ei p(t)·(x−q(t))
ε ei L(t)

ε . (29)

With regard to the potential terms in (1), we find

(V (x, t) + U(x, t)) Ψε(x, t)

= ε−d/4

(∫
φ(|x− y|)ε−d/2

∣∣∣∣a
(
y − q(t)√

ε
, t

)∣∣∣∣
2

dy + U(x, t)

)

× a

(
x− q(t)√

ε
, t

)
ei p(t)·(x−q(t))

ε ei L(t)
ε . (30)

By (28), (29) and (30) we get that the amplitude a solves the following initial
value problem:

(
i∂t +

1
2
Δ
)
a(μ, t) =

1
ε
Vε(μ, t)a(μ, t)

+
1
ε

[
U(q(t) +

√
εμ, t) − U(q(t), t)

−√
ε∇U(q(t), t) · μ] a(μ, t), (31)

a(μ, 0) = a0(μ),

where

Vε(μ, t) =
∫ (

φ(
√
ε|μ− η|) − φ(0)

) |a(η, t)|2dη, (32)

q(t), p(t) are as in the claim of Theorem 2.1 and we have used the rescaling
μ = x−q(t)√

ε
.

Note that we should have

Vε(μ, t) =
∫
φ
(√
ε|μ− η|) |a(η, t)|2dη − φ(0), (33)

instead of (32) in Eq. (31). However, Eq. (31) with potential (33) is a Hartree
equation which preserves the L2 norm so that we can replace (33) by (32).

Since φ ∈ C3
b (R) is even, φ′(0) = 0 and therefore the Taylor expansion

yields

φ(
√
ε|μ− η|) − φ(0) =

ε|μ− η|2
2

φ′′(0) + ε
3
2R(|μ− η|),

|R(|μ− η|)| � C||φ′′′||L∞ |μ− η|3,
(34)
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while for the terms involving U we find

U(q(t) +
√
εμ, t) − U(q(t), t) − √

ε∇U(q(t), t) · μ
= ε

〈
μ,
H(U(q(t)), t)

2
μ

〉
+ ε

3
2RU (μ, t),

|RU (μ, t)| � C sup
α∈Nd:|α|=3

|∇αU(q(t), t)||μ|3, (35)

where H(f)ij := (∂xi
∂xj

f).
The core of the proof is to estimate the two remainders ε

3
2R(|μ− η|) and

ε
3
2RU (μ, t) so that we can substitute (φ(

√
ε|μ− η|) − φ(0)) by ε|μ−η|2

2 φ′′(0) (as
in (34)) and U(q(t)+

√
εμ, t)−U(q(t), t)−√

ε∇U(q(t), t)·μ by ε〈μ, H(U(q(t)),t)
2 μ〉

(as in (35)).
The idea of course has general similarities to the linear case [11–13,17,18];

however, we give a completely self-contained proof here.
Denote at(μ) := a(μ, t) and

ht(μ) = bt(μ) − at(μ). (36)

By straightforward substitution we get that h0(μ) = 0 (see (15)) and
⎛
⎜⎜⎜⎝i∂t +

1
2
Δ −
(
φ′′(0)

2

∫
|μ− η|2|bt(η)|2dη +

〈
μ,
H(U(q(t)), t)

2
μ

〉)

︸ ︷︷ ︸
VQ(μ,t)

⎞
⎟⎟⎟⎠ht(μ)

=
φ′′(0)

2

∫
|μ− η|2 (|bt(η)|2 − |at(η)|2

)
dη at(μ)

︸ ︷︷ ︸
I1(μ,t)

−√
ε

∫
R(|μ− η|)|at(η)|2dη at(μ)
︸ ︷︷ ︸

I2(μ,t)

−√
εRU (μ, t)at(μ). (37)

By standard manipulations it turns out that

‖ht‖L2

d
dt

‖ht‖L2 � |φ′′(0)|
2

|〈I1, ht〉| +
√
ε|〈I2, ht〉| +

√
ε|〈RU (·, t)at, ht〉|.

(38)

Moreover, the term involving I1 can be estimated as follows:

|〈I1, h〉| ≤
∣∣∣∣∣∣
∫

μ

∫

η

|μ− η|2 (|bt(η)|2 − |at(η)|2
)
dη at(μ)ht(μ)dμ

∣∣∣∣∣∣

=

∣∣∣∣∣∣
∫

μ

∫

η

|μ− η|2 (|bt(η)| − |at(η)|) (|bt(η)| + |at(η)|) dη at(μ)ht(μ)dμ

∣∣∣∣∣∣
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≤
∣∣∣∣∣∣
∫

μ

∫

η

|μ− η|2|ht(η)| (|bt(η)| + |at(η)|) dη at(μ)ht(μ)dμ

∣∣∣∣∣∣
≤ 2 ‖ht‖2

L2

∫
(1 + |μ|2)2 [|at(μ)| + |bt(μ)|]2 dμ, (39)

while, thanks to (34), the term involving I2 is estimated by

|〈I2, h〉| ≤ C
∥∥φ′′′∥∥

L∞

∣∣∣∣∣∣
∫

μ

∫

η

|μ − η|3|at(η)|2dη at(μ)h(μ, t)dμ

∣∣∣∣∣∣
≤ C
∥∥φ′′′∥∥

L∞

((∫
dη |η|3|at(η)|2

)
||at||L2 ||ht||L2

+ 3

(∫
dη |η|2|at(η)|2

)3/2

||ht||L2 + 3

(∫
dμ |μ|4|at(μ)|2

)1/2

×
(∫

dη |η| |at(η)|2
)

||ht||L2+

(∫
dμ |μ|6|at(μ)|2

)1/2

||at||2L2 ||ht||L2

)
.

(40)

One should observe here that
∫

dη |η| |at(η)|2 ≤ (∫ dη (1 + |η|2) |at(η)|2
)
.

Finally, due to (35), the term involving RU (μ, t) is controlled as follows:

|〈RU (·, t)at, ht〉|
≤ C sup

α:|α|=3

|∇αU(q(t), t)|
(∫

dμ |μ|3|at(μ)| |ht(μ)|
)

≤ C sup
t

sup
α:|α|=3

|∇αU(q(t), t)|
(∫

dμ |μ|6|at(μ)|2
)1/2

||ht||L2 . (41)

Making use of Lemma 4.2 and Eq. (70) below, one can estimate the terms
of the form || |·|mat||L2 =

(∫
dη|η|2m|at(η)|2

)1/2, for m ≤ 3, and || |·|mbt||L2 =(∫
dη|η|2m|bt(η)|2

)1/2, for m ≤ 2, in terms of the same quantities evaluated at
time t = 0. Now, by summing up the previous estimates it readily follows that
there are ε-independent functions C1(t), C2(t) such that

d
dt

||ht||L2 ≤ √
εC1(t) + C2(t)||ht||L2 . (42)

In particular, C1(t), C2(t) depend on the potentials φ and U and on the
L2-norm of moments and derivatives of a0 (up to the order 3). With regard to
the time dependence, C1(t), C2(t) are double exponentials CeCeCt

, following
Lemma 4.2 and observations 4.3, 4.4.

The conclusion follows by application of the Gronwall lemma. �

4. Auxiliary Results

Observation 4.1. Observe that under our assumptions the nonlinear Eq. (31)
can be shown to have, for any T > 0, a unique solution in C1([0, T ], L2(Rd))
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(see, e.g. [6]). Therefore, it follows (see, e.g. [21]) that the corresponding time-
dependent linear problem

(
i∂t +

1
2
Δ
)
u(μ, t) =

1
ε

∫ (
φ(

√
ε|μ− η|) − φ(0)

) |a(η, t)|2dη u(μ, t)
+

1
ε

(
U(q(t) +

√
εμ, t) − U(q(t), t) − √

ε∇U(q(t), t) · μ)u(μ, t), (43)

u(x, 0) = u0(x), u0 ∈ L2(Rd) ‖u0‖L2 = 1,

has a unique and well-defined L2 propagator.

Lemma 4.2. (Propagation of Moments and derivatives for a(x, t)). Let a(x, t)
be the solution of the initial value problem (31). Suppose that for some m ∈ N

there exists an ε-independent constant Mm > 0 such that

||xA∂B
x a0||L2 � Mm (44)

for all A,B ∈ N
d such that |A| + |B| � m.

If moreover φ ∈ Cm
b (R) and U ∈ C1(R+

t , C
m
b (Rd

x)), there exists a (finite)
ε-independent constant Cm such that

||xA∂B
x a(t)||L2 � CmeCmeCmt

Mm, (45)

for all A,B ∈ N
d such that |A| + |B| � m.

For m = 1 inequality (45) holds by assuming φ ∈ C2
b (R) and U ∈

C1(R+
t , C

2
b (Rd

x)), while in the case m = 0 formula (45) becomes an equality
and holds with unitary constant (for all t) by simply assuming φ ∈ C0

b (R) and
U ∈ C1(R+

t , C
1
b (Rd

x)).

Remarks. • The proof makes no use of an energy conservation argument,
and this is the reason why the Lemma can be established for both signs
of φ′′(0).

• φ is the same as in Sect. 2; see there for the full assumptions.

Proof. Denote

ψA,B(x, t) = xB∂A
x a(x, t), (46)

e.g. ψ0,0(x, t) := a(x, t).
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It is straightforward to check that

(
i∂t +

1
2
Δ − 1

ε
Vε(x, t) − 1

ε
U(q(t) +

√
εx, t)

+
1
ε
U(q(t), t) +

1√
ε
∇U(q(t), t) · x

)
ψA,B

=
d∑

k=1

[
Bk(Bk − 1)

2
ψA,B−2ek +Bkψ

A+ek,B−ek

]

+
1
ε

∑
0�l<A

d∏
k=1

(
Ak

lk

)
∂A−l

x Vε(x, t)ψl,B

+
1
ε

∑
0�l<A

d∏
k=1

(
Ak

lk

)
∂A−l

x U(q(t) +
√
εx, t)ψl,B

− 1√
ε

∑
0<l�A
|l|=1

d∏
k=1

(
Ak

lk

)
∂l

x (∇U(q(t), t) · x)ψA−l,B (47)

where B = (B1, . . . , Bk, . . . , Bd), l = (l1, . . . , lk, . . . , ld), A = (A1, . . . , Ak,
. . . , Ad) and 0 ≤ l < A means that 0 ≤ lk < Ak for any k = 1, 2, . . . , d.
The initial data for (47) are defined consistently by

ψA,B(x, 0) = xB∂A
x a0(x),

and in particular ψ0,0(x, 0) := a0(x).
Some remarks with regard to our notation are in order; it is clear for

example that if Bk = 0 or Bk = 1, then the first term on the right-hand side
yields no contribution and similarly for Bk = 0 in the second term and |A| = 0
for the remaining terms, respectively.

The derivation of (47) is straightforward by induction.
Denote by P (t, τ) the propagator associated with the left-hand side of

Eq. (47), which is known to be uniquely well defined in L2 (see Observation
4.1). As a consequence, for m = 0, the result claimed by Lemma 4.2 follows
from the existence of the propagator. We will proceed for m ∈ N by induction.

We will work with vectors including all the moments and derivatives,
namely,

−→
Ψ = {ψA,B}A,B:|A|+|B|≤m ∈ Xm and

||−→Ψ ||Xm
=

∑
0�|A|+|B|�m

||ψA,B ||L2 ,

where X0 := L2(Rd).
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For m = 1 we have(
i∂t +

1
2
Δ − 1

ε
Vε(x, t) − 1

ε
U(q(t) +

√
εx, t)

+
1
ε
U(q(t), t) +

1√
ε
∇U(q(t), t) · x

)
ψej ,0(x, t)

=
1
ε
∂xj

Vε(x, t)ψ0,0(x, t) +
1
ε
∂xj

U(q(t) +
√
εx, t)ψ0,0(x, t)

− 1√
ε
∂zj

U(z, t)|z=q(t) ψ
0,0(x, t), (48)

and (
i∂t +

1
2
Δ − 1

ε
Vε(x, t) − 1

ε
U(q(t) +

√
εx, t) +

1
ε
U(q(t), t)

+
1√
ε
∇U(q(t), t) · x

)
ψ0,ej (x, t) = ψej ,0(x, t) (49)

By virtue of the Duhamel formula we get

ψej ,0(x, t) = P (t, 0)ψej ,0(x, 0) +

t∫

0

dτ P (t, τ)
[
1
ε
∂xj

Vε(x, τ)ψ0,0(x, τ)
]

+

t∫

0

dτ P (t, τ)
[
1
ε
∂xj

U(q(τ) +
√
εx, τ)ψ0,0(x, τ)

− 1√
ε
∂zj

U(q(τ), τ)ψ0,0(x, τ)
]

(50)

and

ψ0,ej (x, t) = P (t, 0)ψ0,ej (x, 0) +

t∫

0

dτ P (t, τ)
[
ψej ,0(x, τ)

]
. (51)

Then, by recalling that P (t, τ) is L2-norm preserving, we find

∥∥ψej ,0(t)
∥∥

L2 ≤ ∥∥ψej ,0(0)
∥∥

L2 +

t∫

0

dτ
∥∥∥∥1ε ∂xj

Vε(x, τ)ψ0,0(τ)
∥∥∥∥

L2

+

t∫

0

dτ
∥∥∥∥
(

1
ε
∂xj

U(q(τ) +
√
εx, τ) − 1√

ε
∂zj

U(q(τ), τ)
)
ψ0,0(τ)

∥∥∥∥
L2

(52)

and

∥∥ψ0,ej (t)
∥∥

L2 ≤ ∥∥ψ0,ej (0)
∥∥

L2 +

t∫

0

dτ
∥∥ψej ,0(τ)

∥∥
L2 . (53)
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Now, taking into account the terms involving U in (52), we get

1
ε
∂xj

U(q(τ) +
√
εx, τ) − 1√

ε
∂zj

U(q(τ), τ)

=
1√
ε
∂zj

U(z, τ)|z=q(τ)+
√

εx − 1√
ε
∂zj

U(z, τ)|z=q(τ)

=
[
∂2

zj
U(z, τ)|z=q(t)+

√
δ x

]
xj , for some δ ∈ (0, ε); (54)

therefore,
∥∥∥∥
(

1
ε
∂xj

U(q(τ) +
√
εx, τ) − 1√

ε
∂zj

U(q(τ), τ)
)
ψ0,0(τ)

∥∥∥∥
L2

=
∥∥∥
[
∂2

zj
U(z, τ)|z=q(τ)+

√
δ x

]
xj ψ

0,0(τ)
∥∥∥

L2

=
∥∥∥
[
∂2

zj
U(z, τ)|z=q(τ)+

√
δ x

]
ψ0,ej (τ)

∥∥∥
L2

≤ sup
τ∈[0,t]

∥∥∂2U(·, τ)∥∥
L∞
∥∥ψ0,ej (τ)

∥∥
L2 . (55)

On the other side, with regard to the term involving Vε in (52), we have
∣∣∣∣1ε ∂xj

Vε(x, τ)
∣∣∣∣ =
∣∣∣∣
∫

dη ∂xj

1
ε
φ(

√
ε|x− η|)|ψ0,0(η, τ)|2

∣∣∣∣
≤
∫

dη
∣∣∣∣φ

′(
√
ε|x− η|)√
ε

∣∣∣∣ |ψ0,0(η, τ)|2 ≤ L

∫
dη |x− η||ψ0,0(η, τ)|2, (56)

where L is the global Lipschitz constant of φ′ (the L∞-norm of φ′′) that is
known to be finite since φ ∈ C2

b (Rd).
Here and henceforth, in order to simplify the notation, we will use freely

the conventions ψα,β
τ := ψα,β(τ) and ψα,β

τ (x) := ψα,β(x, τ), for any α, β.
Then, by (56) we get that
∥∥∥∥1ε∂xj

Vε(x, τ)ψ0,0
τ

∥∥∥∥
2

L2

≤ L2

∫
dx
∫

dη|x− η||ψ0,0
τ (η)|2

∫
dη′|x− η′||ψ0,0

τ (η′)|2|ψ0,0
τ (x)|2

≤ L2

∫
|x|2|ψ0,0

τ (x)|2dx+ 3L2

(∫
|η||ψ0,0

τ (η)|2dη
)2

≤ L2|| |x|ψ0,0
τ ||2L2 + 3L2|| |x|ψ0,0

τ ||2L2 , (57)

where we made use of the fact that ||ψ0,0
τ ||L2 = ||ψ0,0

0 ||L2 = ||a0||L2 = 1, for
any time τ .

At this point we observe that

|| |x|ψ0,0
τ ||2L2 = || |x|a(τ)||2L2 =

∑
j

||ψ0,ej (τ)||2L2 .
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Therefore, we have just proven that there exists a constant C > 0 depending
only on the L∞-norm of the second derivative of φ, such that

∥∥∥∥1ε∂xj
Vε(x, τ)ψ0,0(τ)

∥∥∥∥
L2

� C

√∑
j

||ψ0,ej (τ)||2L2 = ||ψ0,1(τ)||L2 . (58)

Now, by using (55) and (58) in (52), we obtain

∥∥ψej ,0(t)
∥∥

L2 ≤ ∥∥ψej ,0(0)
∥∥

L2 + C

t∫

0

dτ ||ψ0,1(τ)||L2 + C

t∫

0

dτ
∥∥ψ0,ej (τ)

∥∥
L2 ,

(59)

where C is not the same constant of formula (58)—we denoted it by the same
symbol just for the sake of simplicity.

Now by summing Eqs. (59) and (53) over j = 1, . . . , d, we get

||−→Ψ(t)||X1 ≤ ||−→Ψ(0)||X1 + C

t∫

0

dτ ||−→Ψ(τ)||X1 . (60)

The conclusion follows by applying the Gronwall lemma, i.e.

||−→Ψ(t)||X1 ≤ ||−→Ψ(0)||X1e
Ct ≤ M1eCt, (61)

where M1 has been defined in (44).
For m ≥ 2, the previous inductive step from m = 1 applies almost ver-

batim: first, by virtue of the Duhamel formula, we write the solution of Eq.
(47) by using the propagator P (t, τ) associated with the time evolution on
the left-hand side. Then, by using the L2-control on P (t, τ), it only remains
to show that the “source terms” appearing on the right-hand side of (47) are
bounded—uniformly in ε—in terms of ||ψA,B ||L2 or ||−→Ψ ||Xm

. The way to do
that is by using ||ψA,B ||L2 , |A| + |B| < m as constants now.

For example, let us look at the term involving the potential Vε on the
right-hand side of (47), i.e.

1
ε

∑
0�l<A

d∏
k=1

(
Ak

lk

)
∂A−l

x Vε(x, t)ψl,B(x, t)

=
1
ε

∑
0�l<A
|A−l|=1

d∏
k=1

(
Ak

lk

)
∂A−l

x Vε(x, t)ψl,B(x, t)

+
1
ε

∑
0�l<A

|A−l|>1

d∏
k=1

(
Ak

lk

)
∂A−l

x Vε(x, t)ψl,B(x, t). (62)
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The estimation for any of the terms in the last sum reads

∥∥∥∥∂A−l
x

∫
1
ε
φ(

√
ε|x− η|)|ψ0,0(η, t)|2dη ψl,B(x, t)

∥∥∥∥
2

L2

�
(
ε

|A−l|−2
2 ||φ(A−l)||L∞

)2 ∥∥∥∥
∫

|x− η||ψ0,0(η, t)|2dη ψl,B(x, t)
∥∥∥∥

2

L2

� 2D || |η|ψ0,0
t ||L2 ||ψl,B

t ||L2 || |x|ψl,B
t ||L2 +D|| |η|ψ0,0

t ||L2 ||ψl,B
t ||2L2

+D|| |x|ψl,B
t ||2L2

= 2D ||ψ0,1
t ||L2 ||ψl,B

t ||L2 ||ψl,B+1
t ||L2 + D ||ψ0,1

t ||2L2 ||ψl,B
t ||2L2

+D||ψl,B+1
t ||2L2 , (63)

where D is a constant only depending on ||φ(A−l)(x)||L∞ (that is finite under
our assumptions since A− l ≤ m). Furthermore, it is clear that, by construc-
tion, we are guaranteed that the exponent |A−l|−2

2 for ε is non negative.
On the other side, the estimate for any of the terms in the first sum on

the right-hand side of (62) is given by

||∂A−l
x

∫
1
ε
φ(

√
ε|x− η|)|ψ0,0(η, t)|2dη ψl,B(x, t)||2L2

� L||
∫

|x− η||ψ0,0(η, t)|2dη ψl,B(x, t)||2L2

� 2L|| |η|ψ0,0
t ||L2 ||ψl,B

t ||L2 || |x|ψl,B
t ||L2 + L || |η|ψ0,0

t ||L2 ||ψl,B
t ||2L2

+L |||x|ψl,B
t ||2L2

= 2L ||ψ0,1
t ||L2 ||ψl,B

t ||L2 ||ψl,B+1
t ||L2 + L ||ψ0,1

t ||2L2 ||ψl,B
t ||2L2

+L ||ψl,B+1
t ||2L2 , (64)

where L is the global Lipshitz constant of φ′ (see (56)), which is guaranteed
to be finite since φ ∈ Cm

b (Rd), with m ≥ 2.
Now, by virtue of the estimate we proved for m = 1 (see (60)), from (63)

and (64) we find that

||∂A−l
x

∫
1
ε
φ(

√
ε|x− η|)|ψ0,0(η, t)|2dη ψl,B(x, t)||2L2

≤ KM1eCt||ψl,B(t)||L2 ||ψl,B+1(t)||L2 +KM1eCt||ψl,B(t)||2L2

+K||ψl,B+1(t)||2L2 , (65)

where K = max{D,L} and we recall that |l| + |B| ≤ |A| − 1 + |B| ≤ m − 1
and |l| + |B| + 1 ≤ |A| − 1 + |B| + 1 ≤ m. Thus,

||∂A−l
x

∫
1
ε
φ(

√
ε|x− η|)|ψ0,0(η, t)|2dη ψl,B(x, t)||2L2

≤ K(M1eCt + 1)||−→Ψ(t)||2Xm
. (66)
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Concerning the terms involving the potential U on the right-hand side of
(47), the idea is quite similar. In fact, we observe that

1
ε

∑
0�l<A

d∏
k=1

(
Ak

lk

)
∂A−l

x U(q(t) +
√
εx, t)ψl,B(x, t)

− 1√
ε

∑
0<l�A,

|l|=1

d∏
k=1

(
Ak

lk

)
∂l

x (∇U(q(t), t) · x)ψA−l,B(x, t)

=
∑

0<l�A,
|l|=1

CA,l,B

(
1
ε
∂xU(q(t) +

√
εx, t)ψA−l,B(x, t)

− 1√
ε
∂x (∇U(q(t), t) · x)ψA−l,B(x, t)

)

+
1
ε

∑
0�l<A,
|A−l|>1

d∏
k=1

(
Ak

lk

)
∂A−l

x U(q(t) +
√
εx, t)ψl,B(x, t), (67)

where we made a discrete change of variable l �→ A− l in the first term of the
left-hand side.

Now, with regard to first term of the right-hand side, the estimation that
has to be used is exactly the one we did in (55); thus one finds, ∀ l : |l| = 1∥∥∥∥1ε∂xU(q(t) +

√
εx, t)ψA−l,B(t) − 1√

ε
∂x (∇U(q(t), t) · x)ψA−l,B(t)

∥∥∥∥
L2

≤ sup
t

∥∥∂2U(·, t)∥∥
L∞
∥∥ψA,B(t)

∥∥
L2 ≤ sup

t

∥∥∂2U(·, t)∥∥
L∞ ||−→Ψ(t)||Xm

(68)

(the adjustment for l = 0 is obvious).
Now, for the last term in (67) we have∥∥∥∥1ε∂A−l

x U(q(t) +
√
εx, t)ψl,B(x, t)

∥∥∥∥
L2

≤ ε
|A−l|−2

2 sup
t

||∂(A−l)U(·, t)||L∞
∥∥ψl,B(t)

∥∥
L2

≤ sup
t

||∂(m)U(·, t)||L∞ ||−→Ψ(t)||Xm
, (69)

where we used that A− l ≤ A ≤ m, |A− l| − 2 ≥ 0 and l +B < A+B ≤ m.
Similar (simpler, in fact) estimates can be shown for the other terms on

the right-hand side of (47). �
Observation 4.3 (Propagation of moments and derivatives for βt(x)). βt(x)
was defined in Eqs. (12), (13). Under the assumptions of Lemma 4.2, regular-
ity estimates for βt(x) analogous to Lemma 4.2 for a(x, t) hold, i.e. for any
t > 0

||xB∂A
x βt||L2 � Cm(t)

∑
|A′|+|B′|�m

||xB′
∂A′

x a0||L2 , ∀A,B ∈ N
d : |A| + |B| ≤ m.
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Remarks • The proof is in fact simpler than the one of Lemma 4.2. It can
easily be checked that, due to the fact that we have to deal with harmonic
potentials, the terms that arise from the differentiation of the potentials
turn to be exactly of the form xβt(x).

• As a consequence of Observation 4.3, there exists a ε-independent
constant C > 0 depending on the L∞-norm of the second x-derivative of
U(x, t) and on |φ′′(0)|, such that∫

dx |x|2|βt(x)|2 <
(∫

dx |x|2|a0(x)|2
)

eCt < ∞, ∀t.
We remind that this is exactly what we need to make the proof of
Theorem 2.1 work successfully (see (23)).

Observation 4.4 (Propagation of Moments and derivatives for bt(x)). Although
apparently bt(x) solves a nonlinear equation, it can be obtained as the solution
of a linear Schrödinger equation with an harmonic potential whose coefficients
are determined by the L2-norm of the first moment of βt(x), by φ′′(0) and
H(U) (see (25) and Lemma 3.1).

Therefore, as a consequence of Observation 4.3, it follows that, as long
as U ∈ C1

(
R

+
t , C

m
b (Rd

x)
)

and φ′′(0) is finite, we can get a result for bt(x), e.g.
analogous to Lemma 4.2 for a(x, t), i.e.

xB∂A
x bt ∈ L2, ∀A,B ∈ N

d : |A| + |B| ≤ m ∀t,
under the same assumption (44) on the (common) initial datum a0(x).

In particular, there is a bound C(t) < ∞, independent of ε, such that∫
dx |x|2m|bt(x)|2 < C(t), ∀t, m ≤ 3. (70)

We observe that (70), for m = 2, is exactly what we need to make the proof
of Theorem 2.1 work successfully (see (39), (40) and (41)).

5. Higher Order Approximations

On the basis of the above results, it seems natural to ask whether it is possible
to go beyond the

√
ε-approximation discussed previously (see (11)) and to find

higher order corrections a(k)
t (μ) to the amplitude a(0)

t (μ) := bt(μ) so that the
right-hand side of (11) is of size εm for arbitrarily large m, as this is the case
for the linear Schrödinger equation [17,18]. Although we will not present all
the (tedious) details of the construction, we claim that one can determine a
semiclassical expansion

aε
t (μ) = a

(0)
t (μ) +

√
ε a

(1)
t (μ) + ε a

(2)
t (μ) + · · · + εk/2a

(k)
t (μ) + · · · , (71)

with

a
(k)
0 (μ) = δk,0a0(μ), (72)

such that

Ψε(x, t) = ei L(t)
ε +iγ(t)ψβt

q(t)p(t) +O(ε∞).
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In order to determine the equations governing the evolution for each coefficient
a
(k)
t (μ) we need to look at the expansion for the potential terms appearing in

(31). With regard to the nonlinear part involving the pair interaction φ, we get

1
ε

(
φ(

√
ε|μ− η|) − φ(0)

)
=

|μ− η|√
ε

φ′(0) +
|μ− η|2

2
φ′′(0) +

√
ε|μ− η|3

3!
φ′′′(0)

+ · · · +
(
√
ε)k|μ− η|k

k!
φ(k)(0) + · · · (73)

In Theorem 2.1 we were assuming φ ∈ C3
b (R). Clearly, if we want to go to

higher orders in the approximation we need more smoothness on φ and on the
external potential U . Therefore, here and henceforth we assume

φ ∈ C∞
b (R), and φ even (74)

so that we have
1
ε

(
φ(

√
ε|μ− η|) − φ(0)

)

=
|μ− η|2

2
φ′′(0) + · · · + (

√
ε)2n−1 |μ− η|2n

(2n)!
φ(2n)(0) + · · · n ≥ 2 (75)

Observation 5.1. Assumption (74) is actually too strong if one wants to deal
with an approximation up to a certain order k.

With regard to the linear terms in (31) involving the external potential U ,
we get

1
ε

(
U(q(t) +

√
εμ, t) − U(q(t), t) − √

ε∇U(q(t), t) · μ)

=
〈
μ,
H(U(q(t)), t)

2
μ

〉
+ · · · + (

√
ε)n−1 ∇nU(q(t), t)

n!
· μn + · · · (76)

where of course n � 3. Here we are using the notation

∇nU · μn =
∑

α1...αd:∑
αi=n

∂nU

∂xα1
1 . . . ∂xαd

d

μα1 . . . μαd . (77)

Analogously to what we observed for the pair-interaction φ, we need more
smoothness for U , so that here and henceforth we require

U ∈ C1(R+
t , C

∞
b (Rd

x)). (78)

Now, inserting (71), (75) and (76) in (31) we readily arrive to a sequence
of problems for the coefficients a(k)

t (μ) of the expansion (71). For k = 0 we
obviously find

⎧⎪⎨
⎪⎩

(
i∂t + Δμ

2 + φ′′(0)
2

∫
dη |μ− η|2|a(0)

t (η)|2 +
〈
μ, H(U(q(t)),t)

2 μ
〉)

a
(0)
t (μ) = 0,
a
(0)
0 (μ) = aε

0(μ),

(79)
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namely, the initial value problem that we had for bt(μ) in the previous sections
(see (15)). Then, for k = 1, we find

⎧⎪⎪⎨
⎪⎪⎩

(
i∂t + Δμ

2 + φ′′(0)
2

∫
dη |μ− η|2|a(0)

t (η)|2 +
〈
μ, H(U(q(t)),t)

2 μ
〉)

a
(1)
t (μ)

= φ′′(0)
2

(∫
dη |μ− η|22�[a(0)

t (η)a(1)
t (η)]

)
a
(0)
t (μ) + ∇3U(q(t),t)

3! · μ3 a
(0)
t (μ),

a
(1)
0 (μ) = 0.

(80)

This is a linear initial value problem where the left-hand side is known to
have a unique well-defined L2-propagator P (0)(t) due to the existence and
uniqueness in L2 of the solution a

(0)
t (μ) of the zero-order initial value prob-

lem (79) and to the L2-control on its first moment (see Observation 4.4 and
(70)). Its well-posedeness in L2 follows by the L2-control on the source term
∇3U(q(t),t)

3! ·μ3 a
(0)
t (μ) and on a suitable L2-control of the first term on the RHS

of (80). Smoothness of U, φ and the L2-control on μ3 a
(0)
0 (μ) are sufficient for

that by Observation 4.4. In particular, for the first term on the RHS of (80)
we have

∥∥∥∥φ
′′(0)
2

(∫
dη |μ− η|22�[a(0)

t (η)a(1)
t (η)]

)
a
(0)
t (μ)
∥∥∥∥

2

L2

=
(
φ′′(0)

2

)2 ∫
dμ
∫

dη|μ− η|2a(0)
t (η)a(1)

t (η)

×
∫

dη′|μ− η′|2a(0)
t (η′)a(1)

t (η′) |a(0)
t (μ)|2

+
(
φ′′(0)

2

)2 ∫
dμ
∫

dη|μ− η|2a(0)
t (η)a(1)

t (η)

×
∫

dη′|μ− η′|2a(0)
t (η′)a(1)

t (η′) |a(0)
t (μ)|2

≤ C
a
(0)
t

∥∥∥a(1)
t

∥∥∥2
L2
, (81)

where C
a
(0)
t

> 0 is a constant that depends on the moments of a(0)
t (μ) up to

order 3. By virtue of (81) and the L2-control on the term involving U in (80),
the Duhamel formula and the Gronwall lemma allow one to conclude that

a
(1)
t ∈ L2(Rd), ∀t. (82)

Moreover, following along same lines as before (see Lemma 4.2, Observation 4.4
and subsequent remarks), it can be easily checked that, by assuming enough
regularity for the initial datum a

(0)
0 (μ) = a0(μ), one can control the derivatives

and moments of a(1)
t (μ) up to any fixed order m, i.e.
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xB∂A
x a

(1)
t ∈ L2(Rd), ∀t, ∀A,B ∈ N

d : |A| + |B| ≤ m. (83)

This will be crucial to go on with the higher order dynamics because, for
example, the equation for the second coefficient a(2)

t (μ) is
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
i∂t + Δμ

2 + φ′′(0)
2

∫
dη |μ− η|2|a(0)

t (η)|2 +
〈
μ, H(U(q(t)),t)

2 μ
〉)

a
(2)
t (μ)

= φ′′(0)
2

(∫
dη |μ− η|22�[a(0)

t (η)a(2)
t (η)]

)
a
(0)
t (μ) + ∇4U(q(t),t)

4! · μ4 a
(0)
t (μ)

+φ(4)(0)
4!

(∫
dη |μ− η|4|a(0)

t (η)|2
)
a
(0)
t (μ) + φ′′(0)

2

(∫
dη |μ− η|2|a(1)

t (η)|2
)

×a(0)
t (μ)

+φ′′(0)
2

(∫
dη |μ− η|22�[a(0)

t (η)a(1)
t (η)]

)
a
(1)
t (μ) + ∇3U(q(t),t)

3! · μ3 a
(1)
t (μ).

a
(2)
0 (μ) = 0,

(84)

So, again, as for the case k = 1, we obtained a linear initial value problem where
the propagator associated with the left-hand side is P (0)(t) that is known to
be well-defined in L2. Then, as before, the solution a

(2)
t (μ) can be written

through the Duhamel formula, applying the propagator P (0)(t) to the term
φ′′(0)

2

(∫
dη |μ− η|22�[a(0)

t (η)a(2)
t (η)]

)
a
(0)
t (μ) and to the various source terms

in (84). The term which is linear in a
(2)
t (μ) is estimated as in (81) while the

source terms are controlled in L2 by virtue of the control on moments and
derivatives of a(0)

t (μ) and a
(1)
t (μ). To the end, by using the Gronwall lemma,

we get

a
(2)
t ∈ L2(Rd), ∀t. (85)

and, moreover, by assuming a sufficiently high number of moments and deriv-
atives of the (zero-order) “full” initial datum a

(0)
0 (μ) = a0(μ) to be controlled

in L2, we can control as well the derivatives and moments of a(2)
t (μ) up to any

fixed order m, i.e.

xB∂A
x a

(2)
t ∈ L2(Rd), ∀t, ∀A,B ∈ N

d : |A| + |B| ≤ m. (86)

At this point it is clear how to proceed in general. The equation for a(k)
t (μ)

is a linear Schrödinger equation with a source term involving the coefficients
a
(n)
t (μ) with n < k, which have been estimated by the previous steps. The
L2-control of a(k)

t (μ) follows by the L2-control on a sufficiently high number
of moments and derivatives of a(n)

t (μ) with n < k.
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1634 A. Athanassoulis et al. Ann. Henri Poincaré
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