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Abstract. This article proposes the construction of Wigner measures in the
infinite dimensional bosonic quantum field theory, with applications to the
derivation of the mean field dynamics. Once these asymptotic objects are
well defined, it is shown how they can be used to make connections between
different kinds of results or to prove new ones.

1. Introduction

The bosonic quantum field theory relies on two different bases: On one side the
quantization of a symplectic space, the approach followed for example by Berezin
in [5], Kree-Raczka in [34]; on the other side the gaussian stochastic processes pre-
sentation also known as the integral functional point of view followed for example
by Glimm-Jaffe in [25] and Simon in [43]. Both approaches have to be handled
in order to tackle on the most basic problems in constructive quantum field the-
ory (see [3, 15]). The interaction of constructive quantum field theory with other
fields of mathematics like pseudodifferential calculus (see [6] or [35]) or stochastic
processes (see [2, 38]) is often instructive.

In the recent years the mean field limit of N -body quantum dynamics has
been reconsidered by various authors via a BBGKY-hierarchy approach (see [4,16,
17, 19, 20, 45] and [21] for a short presentation) mainly motivated by the study of
Bose–Einstein condensates (see [12]). Although this was present in earlier works
around the so-called Hepp method (see [32] and [24]), the relationship with the
microlocal or semiclassical analysis in infinite dimension has been neglected. Diffi-
culties are known in this direction: 1) The gap between the inductive and projec-
tive construction of quantized observable in infinite dimension; 2) the difficulties to
built algebras of pseudodifferential operators which contain the usual hamiltonians
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and preserve some properties of the finite dimensional calculus like a Calderon–
Vaillancourt theorem, a good notion of ellipticity or the asymptotic positivity
with a G̊arding inequality; 3) even when step 2) is possible, no satisfactory Egorov
theorem is available.

Recall the example of an N -body Schrödinger hamiltonian

HN = −Δ +
1
N

∑

1≤i<j≤N

V (xi − xj) , on R
dN ,

and consider the time-evolved wave function

ΨN (t) = e−itHN ψ⊗N , ψ ∈ L2(Rd) .

The 1-particle marginal state, the quantum analogous of the one particle empirical
distribution in the classical N -body problem, is given by

Tr
[
A�1(t)

]
=

〈
ΨN (t) ,

1
N

[
N∑

i=1

I ⊗ · · · I ⊗ I ⊗ A︸︷︷︸
i

⊗I ⊗ · · · ⊗ I

]
ΨN (t)

〉
.

The mean field limit says that in the limit N → ∞, the marginal state evolves
according to a non-linear Hartree equation

�1(t) = |z(t)〉〈z(t)|+ o(1) , as N →∞ ,

with
{

i∂tz = −Δz + (V ∗ |z|2)z on Rt × R
d

z(t = 0) = ψ .

By setting N = 1
ε and in the Fock space framework with ε-dependent CCR (i.e.:

[a(g), a∗(f)] = ε 〈g, f〉), the problem becomes

HN =
1
ε

[∫

Rd

∇a∗(x)∇a(x) dx +
∫

R2d

V (x− y)a∗(x)a∗(y)a(x)a(y) dxdy

]

=
1
ε
Hε

e−itHN = e−i t
ε Hε

,

Tr
[
A�1(t)

]
=

〈
ΨN (t) , dΓ(A)ΨN (t)

〉
=

〈
ΨN (t) , pA(z)WickΨN (t)

〉
,

where pA is the polynomial pA(z) = 〈z ,Az〉 . Higher order marginals, taking
into accounts correlations, can be defined after using the polynomials pA(z) =
〈z⊗k , Az⊗k〉 with A ∈ L (L2(Rkd)) .

On this example, the scaling of the hamiltonian, of the time scale and of
the observables as Wick operators enters formally in the ε-dependent semiclassical
analysis. The Hepp method concerns the evolution of squeezed coherent states [12,
24,32], which amounts in the finite dimensional case to the phase-space evolution
of a gaussian state according to the time dependent quadratic approximation of
the non linear hamiltonian, centered on the solution to the classical hamiltonian
equation. We refer the reader to [13] for accurate developments of such an approach
in the finite dimensional case.
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In the nineties and as a byproduct of the development of microlocal anal-
ysis, alternative and more flexible methods were introduced in order to study
the semiclassical limit with the help of Wigner (or semiclassical) measures (see
[10,21,29,36,46]). Such objects are defined by duality and rely on the asymptotic
positivity of the ε-dependent quantizations. It gives a weak but more flexible form
of the principal term of the semiclassical (here mean-field) approximation. Via the
introduction of probability measures on the symplectic phase-space, it provides an
interesting way to analyze the relationship between the two basic approaches to
quantum field theory. Further in finite dimension, the Wick, anti-Wick and Weyl
quantizations are asymptotically equivalent in the limit ε → 0. This is not so
obvious in infinite dimension.

Several attempts have been tried to develop an infinite dimensional Weyl
pseudodifferential calculus with an inductive approach. Lascar in [35] introduced
an algebra and a notion of ellipticity in this direction, making more effective the
general presentation of [34]. The works of Helffer–Sjöstrand in [28,31] and Amour–
Kerdelhué–Nourrigat in [1] about the pseudodifferential calculus in large dimension
motivated by the analysis of the thermodynamical limit enter in this category.
With such an approach, it is not clear that the infinite dimensional phase-space is
well explored and that no information is lost in the limit ε → 0. Meanwhile this
inductive approach is limited by Hilbert–Schmidt type restriction like in Shale’s
theorem about the quasi-equivalence of gaussian measures. It is known after [26]
that the nonlinear transformations which preserve the quasi-equivalence with a
given gaussian measure within the Schrödinger representation are very restricted
and do not cover realistic models. Hence no Egorov theorem can be expected with
Weyl observables.

Simple remarks suggests alternative point of views. The Wick calculus with
polynomial symbols present encouraging specificities: It contains the standard
hamiltonians, it makes an algebra under more general assumptions (the Hilbert–
Schmidt condition can be relaxed) and allows some propagation results when tested
on appropriate states (see [19, 20]). Meanwhile the Wigner measures in the limit
ε → 0 can be defined very easily via the separation of variables as weak distribu-
tion, in a projective way which fits with the stochastic processes point of view.

After reviewing and sometimes simplifying or improving known results and
techniques about the mean field limit, our aim is to show the interests of the
extension to the infinite dimensional case of Wigner measures:

• After the introduction of the small parameter ε → 0 and the definition of
Weyl operator W (z), z ∈ Z the phase-space, choosing between the quantiza-
tion of symplectic space and the stochastic processes point of view is no more
a question of general principles nor of mathematical taste. It is a matter of
scaling. The symplectic geometry arises when considering macroscopic phase-
space translation W ( z

ε ), while the operator W (z) is used with this scaling in
the introduction of Wigner measures via their characteristic function. Correc-
tions to the mean field limit considered for example in [11] with a stochastic
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processes point of view can be interpreted within this picture: They attempt
to give a better information on the shape of the state in a small phase-space
scale.

• Once the Wigner measures are well defined as Radon measures, it is possi-
ble to make explicit the relationship between different kinds of results and
to extend them in a flexible way. It accounts for the propagation of chaos
(result obtained via the BBGKY approach) according to the classical hamil-
tonian dynamics in the phase-space. Actually we shall prove in a very general
framework that the propagation of squeezed coherent states as derived via
the Hepp method implies a weak version of the mean field limit for product
states. Further propagation results can be obtained for some non standard
mixed states without reconsidering a rather heavy analysis process.

• The comparison between the Wick, Weyl and anti-Wick quantization can be
analyzed accurately in the infinite dimensional case. With the Wick calculus,
complete asymptotic expansions can be proved after testing with some spe-
cific states. The relationship of such results with the propagation of Wigner
measures works in a rather general setting but has to be handled with care.

• The gap between the projective and inductive approaches can be formulated
accurately in the limit ε → 0. We shall explain in the examples the possibility
of a dimensional defect of compactness.

This work is presented and illustrated with examples simpler than more realistic
models considered in other works like [4,16,17,24,32] with more singular interac-
tion potentials. That was our choice in order to make the correspondence between
various approaches more straightforward and to pave the way for further improve-
ments. We hope that this information will be valuable for other colleagues and
useful for further developments.

The outline of this article is the following. In Section 2, standard notions
about the symmetric Fock space are recalled and Wick calculus is specified. In
Section 3 the Weyl and Anti-Wick calculus are introduced in a projective way
after recalling accurately (most of all the scaling) of finite dimensional semiclassical
calculus. The Section 4 recalls the distinction between coherent states and product
or Hermite states, and their properties when measured with different kinds of
observables. The two methods used to derive the mean field dynamics, the Hepp
method and the analysis through truncated Dyson expansions, are reviewed within
our formalism and with some variations in Section 5. The Wigner measures are
introduced in Section 6 with the extension of some finite dimensional properties
and specific infinite dimensional phenomena. Finally examples and applications
are detailed in Section 7, in particular: 1) reconsidering a simple presentation of
the Bose–Einstein condensation shows an interesting example of what we call the
dimensional defect of compactness; 2) a general result says that the propagation
of squeezed coherent states, which can be attacked via the Hepp method, implies
a slightly weaker form of the propagation of chaos (formulated with product states
and Wick observables); 3) the mean field dynamics can be easily derived for some
states which present some asymptotically vanishing correlations.
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2. Fock space and Wick quantization

After introducing the symmetric Fock space with ε-dependent CCR’s, an algebra
of observables resulting from the Wick quantization process is presented.

2.1. Fock space

Consider a separable Hilbert space Z endowed with a scalar product 〈., .〉 which is
anti-linear in the left argument and linear in the right one and with the associated
norm |z| =

√
〈z, z〉. Let σ = Im〈., .〉 and S = Re〈., .〉 respectively denote the

canonical symplectic and the real scalar product over Z . The symmetric Fock
space on Z is the Hilbert space

H =
∞⊕

n=0

n∨
Z = Γs(Z ) ,

where
∨n Z is the n-fold symmetric tensor product. Almost all the direct sums

and tensor products are completed within the Hilbert framework. This is omitted
in the notation. On the contrary, a specific alg superscript will be used for the
algebraic direct sums or tensor products.

For any n ∈ N, the orthogonal projection of
⊗n Z onto the closed subspace∨n Z will be denoted by Sn. For any (ξ1, ξ2, . . . , ξn) ∈ Z n, the vector ξ1 ∨ ξ2 ∨

· · · ∨ ξn ∈
∨n Z will be

ξ1 ∨ ξ2 ∨ · · · ∨ ξn = Sn(ξ1 ⊗ ξ2 · · · ⊗ ξn) =
1
n!

∑

σ∈Σn

ξσ(1) ⊗ ξσ(2) · · · ⊗ ξσ(n) .

The family of vectors (ξ1 ∨ · · · ∨ ξn)ξi∈Z is a generating family of
∨n,alg Z and a

total family of
∨n Z . Thanks to the polarization identity

ξ1 ∨ ξ2 ∨ · · · ∨ ξn =
1

2nn!

∑

εi=±1

ε1 · · · εn

⎛

⎝
n∑

j=1

εjξj

⎞

⎠
⊗n

, (1)

the same property holds for the family (z⊗n)n∈N,z∈Z .
For two operators Ak :

∨ik Z →
∨jk Z , k = 1, 2, the notation A1

∨
A2

stands for

A1

∨
A2 = Sj1+j2 ◦ (A1 ⊗A2) ◦Si1+i2 ∈ L

(
i1+i2∨

Z ,

j1+j2∨
Z

)
.

Any z ∈ Z is identified with the operator |z〉 :
∨0 Z = C � λ → λz ∈ Z =∨1 Z while 〈z| denotes the linear form Z � ξ → 〈z , ξ〉 ∈ C. The creation and

annihilation operators a∗(z) and a(z), parameterized by ε > 0, are then defined
by:

a(z)|∨n Z =
√

εn 〈z| ⊗ I∨n−1 Z

a∗(z)|∨n Z =
√

ε(n + 1) Sn+1 ◦ ( |z〉 ⊗ I∨n Z ) =
√

ε(n + 1) z
∨

I∨n Z .



1508 Z. Ammari and F. Nier Ann. Henri Poincaré

Each of (a(z))z∈Z and (a∗(z))z∈Z are commuting families of operators and they
satisfy the canonical commutation relations (CCR):

[
a(z1), a∗(z2)

]
= ε〈z1, z2〉I . (2)

We also consider the canonical quantization of the real variables Φ(z) = 1√
2
(a∗(z)+

a(z)) and Π(z) = Φ(iz) = 1
i
√

2
(a(z) − a∗(z)). They are self-adjoint operators on

H and satisfy the identities:
[
Φ(z1),Φ(z2)

]
= iεσ(z1, z2)I ,

[
Φ(z1),Π(z2)

]
= iεS(z1, z2)I .

The representation of the Weyl commutation relations in the Fock space

W (z1)W (z2) = e−
iε
2 σ(z1,z2)W (z1 + z2) (3)

= e−iεσ(z1,z2)W (z2)W (z1) ,

is obtained by setting W (z) = eiΦ(z). The generating functional associated with
this representation is given by

〈
Ω,W (z)Ω

〉
= e−

ε
4 |z|

2
,

where Ω is the vacuum vector (1, 0, . . .) ∈ H . The total family of vectors E(z) =
W

(√
2z

iε

)
Ω = e

1
ε [a∗(z)−a(z)]Ω, z ∈ Z , have the explicit form

E(z) = e−
|z|2
2ε

∞∑

n=0

1
εn

a∗(z)n

n!
Ω

= e−
|z|2
2ε

∞∑

n=0

ε−n/2 z⊗n

√
n!

. (4)

The number operator is also parametrized by ε > 0,

N|
∨n Z = εnI|

∨n Z .

It is convenient to introduce the subspace

Hfin =
alg⊕

n∈N

n∨
Z

of H , which is a set of analytic vectors for N .
For any contraction S ∈ L (Z ), |S|L (H ) ≤ 1, Γ(S) is the contraction in H

defined by

Γ(S)|∨n Z = S ⊗ S · · · ⊗ S .

More generally Γ(B) can be defined by the same formula as an operator on Hfin

for any B ∈ L (Z ). Meanwhile, for any self-adjoint operator A : Z ⊃ D(A) → Z ,
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the operator dΓ(A) is the self-adjoint operator given by

e
it
ε dΓ(A) = Γ(eitA)

dΓ(A)|∨n,alg D(A) = ε

[
n∑

k=1

I ⊗ · · · ⊗ A︸︷︷︸
k

⊗ · · · ⊗ I

]
.

For example N = dΓ(I) .

2.2. Wick operators

In this subsection we consider the Wick symbolic calculus on (homogeneous) poly-
nomials. We will show some product and commutation formulas useful later for
the application. For example time evolved Wick observables can be expressed as
ε-asymptotic expansion of quantized Wick symbols. For a detailed exposition on
more general Wick polynomials we refer the reader to [15].

A (p, q)-homogeneous polynomial function of z ∈ Z is defined as P�(z) =
	(z⊗q, z⊗p), where 	 is a sesquilinear form on (

⊗q,alg Z )× (
⊗p,alg Z ), with

P�(λz)= λ̄qλpP�(z). Owing to the polarization formula (1) and the identity

	(η⊗q, ξ⊗p) =
∫ 1

0

∫ 1

0

	
(
[e2iπθη + e2iπϕξ]⊗q, [e2iπθη + e2iπϕξ]⊗p

)
e2iπ(qθ−pϕ) dθ dϕ

the correspondence 	 → P� is a bijection when the set of forms is restricted to the
sesquilinear forms on (

∨q,alg Z )× (
∨p,alg Z ). Any of the continuity properties of

P� are thus encoded by the continuity properties of the sesquilinear form 	 with
the following hierarchy (from the weakest to the strongest)

|	(η1 ∨ · · · ∨ ηq, ξ1 ∨ · · · ∨ ξp)| ≤ C� |η1|Z . . . |ηq|Z |ξ1|Z . . . |ξp|Z ,

ηi ∈ Z , ξj ∈ Z (5)

|	(φ, ψ)| ≤ C� |φ|∨q Z |ψ|∨p Z , ψ ∈
p∨

Z , φ ∈
q∨

Z

(6)
∣∣∣∣∣∣

∑

1≤i,j≤K

ci,j	(φi, ψj)

∣∣∣∣∣∣
≤ C�

∣∣∣∣∣∣

∑

1≤i,j≤K

ci,j〈φi| ⊗ ψj

∣∣∣∣∣∣
(
∨q Z )∗⊗(

∨p Z )

,

K ∈ N , cij ∈ C , φi ∈
q∨

Z , ψj ∈
p∨

Z . (7)

For example, when p = q = 1 the two first ones define L (Z ), while the third one
defines the space of Hilbert–Schmidt operators. By Taylor expansion any (p, q)-
homogeneous polynomial P admits Gâteaux differentials and we set

∂k
z ∂k′

z P (z)[u1, . . . , uk, v1, . . . , vk′ ] = ∂̄u1 · · · ∂̄uk
∂v1 · · · ∂vk′ P (z)

where ∂̄u, ∂v are the complex directional derivatives relative to u, v ∈ Z .
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Definition 2.1. For p, q ∈ N, the set of (p, q)-homogeneous polynomial functions
on Z which satisfy the continuity condition (6) is denoted by Pp,q(Z ):

(
b(z) ∈Pp,q(Z )

)
⇔

{
b̃ = 1

p!
1
q!∂

p
z∂q

zb(z) ∈ L (
∨p Z ,

∨q Z ) ,

b(z) =
〈
z⊗q , b̃z⊗p

〉
.

The subspace of Pp,q(Z ) made of polynomials b such that b̃ is a compact operator
b̃ ∈ L ∞(

∨p Z ,
∨q Z ) (resp. b ∈ L r(

∨p Z ,
∨q Z )) is denoted by P∞

p,q(Z ) (resp.
Pr

p,q(Z )).

Remark 2.2. In the case of Z = C
d the symbol is often written b(z, z). Of course

our polynomials have an holomorphic and antiholomorphic part but we prefer to
keep the notation b(z). The symbol b is simply considered as a function of the
point z ∈ Z . The writing b(z, z) would suggest that Z is endowed with a complex
conjugation operator, which is not necessary at this level.

It will be sometimes convenient to consider b̃ as an operator from
⊗p Z into⊗q Z with the obvious convention for symmetric operators b̃ = Sq b̃Sp . Owing

to the condition b̃ ∈ L (
∨p Z ,

∨q Z ) for b ∈ Pp,q(Z ), this definition implies that
any differential ∂j

z∂k
z b(z) at the point z ∈ Z equals

∂j
z∂k

z b(z) =
p!

(p− k)!
q!

(q − j)!

(
〈z⊗q−j |

∨
I∨j Z

)
b̃
(
z⊗p−k

∨
I∨k Z

)

∈ L

(
k∨

Z ,

j∨
Z

)
. (8)

We will mainly work with fixed homogeneity degrees p, q but the key statement of
this section (Proposition 2.7) says that ⊕alg

p,q∈N
Pp,q(Z ) is an algebra of symbols

with the same explicit product formula as in the finite dimensional case.
With any “symbol” b ∈Pp,q(Z ), a Wick monomial bWick can be associated

according to:

bWick : Hfin →Hfin , (9)

bWick
|
∨n Z =1[p,+∞)(n)

√
n!(n + q − p)!

(n− p)!
ε

p+q
2

(
b̃
∨

I∨n−p Z

)
∈L

(
n∨

Z ,

n+q−p∨
Z

)
,

with b̃ = (p!)−1(q!)−1∂p
z∂q

zb(z) .
Here are the basic symbol-operator correspondence:

〈z, ξ〉 ←→ a∗(ξ)
〈ξ, z〉 ←→ a(ξ)

√
2S(ξ, z) ←→ Φ(ξ)√
2σ(ξ, z) ←→ Π(ξ)

〈z,Az〉 ←→ dΓ(A)
|z|2 ←→ N .

Other examples can be derived from the next propositions. The first one is a direct
consequence of the definition (9).

Proposition 2.3. The following identities hold true on Hfin for every b ∈ Pp,q(Z ):

(i)
(
bWick

)∗ = b̄Wick.
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(ii)
(
C(z)b(z)A(z)

)Wick = CWickbWickAWick, if A ∈Pα,0(Z ), C ∈P0,β(Z ).

(iii) ei t
ε dΓ(A)bWicke−i t

ε dΓ(A) =
(
b(e−itAz)

)Wick, if A is a self-adjoint operator
on Z .

Proposition 2.4.

(i) The Wick operator associated with b(z) =
∏p

i=1 〈z, ηi〉×
∏q

j=1 〈ξj , z〉, ηi, ξj ∈
Z , equals

bWick = a∗(η1) · · · a∗(ηp)a(ξ1) · · · a(ξq) .

(ii) For b ∈Pp,q(Z ) and z ∈ Z the equality

〈z⊗j , bWickz⊗k〉 = δ+
k−p,j−q

√
k!j!

(k − p)!(j − q)!
ε

p+q
2 |z|k−p+j−q

b(z) (10)

holds for any k, j ∈ N. The symbol δ+
α,β denotes δα,β1[0,+∞)(α) where δα,β is

the standard Kronecker symbol.

Proof. (i) is a direct consequence of Proposition 2.3 with (〈z , ξ〉)Wick = a∗(ξ) and
(〈ξ, z〉)Wick = a(ξ) .

(ii) This comes directly from the definition (9) of bWick . �

The next result specifies the boundedness properties of bWick.

Lemma 2.5. For b ∈ Pp,q(Z ), the estimate

∣∣bWick
∣∣
L (

∨k Z ,
∨j Z )

≤ δ+
k−p,j−q (jε)

q
2 (kε)

p
2

∣∣∣b̃
∣∣∣
L (

∨p Z ,
∨q Z )

,

with b̃ =
1

p!q!
∂p

z∂q
z̄b , (11)

holds for any k, j ∈ N.
This implies

∣∣∣〈N〉−
q
2 bWick 〈N〉−

p
2

∣∣∣
L (H )

≤
∣∣∣b̃

∣∣∣
L (

∨p Z ,
∨q Z )

. (12)

Proof. A consequence of (10) is bWick(
∨k Z ) ⊂

∨j Z with j = k − p + q. For
ψ ∈

∨k Z and j = k − p + q, write
∣∣bWickψ

∣∣∨j Z

=
√

j!k!
(k − p)!

ε
p+q
2

∣∣∣Sj(b⊗ I⊗ k−p Z )ψ
∣∣∣∨j Z

≤ (jε)
q
2 (kε)

p
2

√
j!

(j − q)!jq

√
k!

(k − p)!kp

∣∣∣b⊗ I⊗ k−p Z

∣∣∣
L (

⊗ k Z ,
⊗ j Z )

|ψ|∨k Z . �
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An important property of our class of Wick polynomials is that a composition
of bWick

1 ◦ bWick
2 with b1, b2 ∈ ⊕alg

p,qPp,q(Z ) is a Wick polynomial with symbol in
⊕alg

p,qPp,q(Z ). In the following we prove this result and specifies the Wick symbol
of the product.

For b ∈Pp,q(Z ), specific cases with j = 0 or k = 0 of (8) imply

∂k
z b(z) ∈

(
k∨

Z

)∗

and ∂j
zb(z) ∈

j∨
Z ,

for any fixed z ∈ Z . For two symbols bi ∈Ppi,qi
(Z ), i = 1, 2, and any k ∈ N, the

new symbol ∂k
z b1.∂

k
z̄ b2 is now defined by

∂k
z b1 . ∂k

z̄ b2(z) =
〈
∂k

z b1(z), ∂k
z̄ b2(z)

〉
(
∨k Z )∗,

∨k Z
. (13)

We also use the following notation for multiple Poisson brackets:

{b1, b2}(k) = ∂k
z b1.∂

k
z̄ b2 − ∂k

z b2.∂
k
z̄ b1 ,

{b1, b2} = {b1, b2}(1) .

These operations with polynomials are easier to handle than there corresponding
versions for the operators b̃i ∈ L (

∨pi Z ,
∨qi Z ). Nevertheless their explicit oper-

ator expressions as contracted products allow to check that ⊕alg
p,qPp,q(Z ) is stable

w.r.t these operations .

Lemma 2.6. Fix p1, p2, q1 and q2 in N. For two polynomials bi ∈ Ppi,qi
(Z ), i =

1, 2, set b̃i = (pi!qi!)−1 ∂pi
z ∂qi

z̄ bi and for any k ∈ {0, . . . ,min{p1, q2}}

b̃1

k
� b̃2 =

1
(p1 + p2 − k)!(q1 + q2 − k)!

∂p1+p2−k
z ∂q1+q2−k

z̄

[
∂k

z b1.∂
k
z̄ b2

]
.

Then

b̃1

k
� b̃2 =

p1!
(p1 − k)!

q2!
(q2 − k)!

Sq1+q2−k(b̃1 ⊗ I⊗ q2−k Z )(I⊗ p1−k ⊗ b̃2)

∈ L

(
p1+p2−k∨

Z ,

q1+q2−k∨
Z

)
, (14)

with the estimate
∣∣∣∣b̃1

k
� b̃2

∣∣∣∣
L (

∨p1+p2−k Z ,
∨q1+q2−k Z )

≤ p1!
(p1 − k)!

q2!
(q2 − k)!

∣∣∣b̃1

∣∣∣
L (

∨p1 Z ,
∨q1 Z )

∣∣∣b̃2

∣∣∣
L (

∨p2 Z ,
∨q2 Z )

. (15)

Proof. For ψ ∈
∨p1 Z and φ ∈

∨q2 Z , introduce the vector

〈z⊗q2−k, φ〉 =
(
〈z⊗q2−k| ⊗ I⊗ k Z

)
φ =

(q2 − k)!
q2!

∂k
z bφ(z) ∈

k∨
Z
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with bφ(z) = 〈zq2 , φ〉 and the form

〈ψ, z⊗p1−k〉 :=
(p1 − k)!

p1!
∂k

z bψ(z) ∈
(

k∨
Z

)∗

, with bψ(z) =
〈
ψ , z⊗p1

〉
.

The identity
〈
〈ψ, z⊗p1−k〉, 〈z⊗q2−k, φ〉

〉
(
∨k Z )∗,

∨k Z

= 〈ψ ⊗ z⊗q2−k, z⊗p1−k ⊗ φ〉⊗ p1+q2−k Z (16)

is obviously true when ψ = ξ⊗p1 and φ = η⊗q2 with ξ, η ∈ Z . Since (ξ⊗n)ξ∈Z is a
total space of

∨n Z with the polarization identity (1), the identity (16) holds for
all φ ∈

∨q2 Z and all ψ ∈
∨p1 Z . After noticing the relations

∂k
z b1(z) =

p1!
(p1 − k)!

〈ψ, z⊗p1−k〉 , ∂k
z b2(z) =

q2!
(q2 − k)!

〈z⊗q2−k, φ〉 ,

with ψ = b̃∗1z
⊗q1 and φ = b̃2z

⊗p2 , the identity (16) leads to

∂k
z b1.∂

k
z̄ b2(z)

=
p1!

(p1 − k)!
q2!

(q2 − k)!

〈
z⊗q1+q2−k, (b̃1 ⊗ I⊗ q2−k Z ) (I⊗ p1−k Z ⊗ b̃2)z⊗p2+p1−k

〉
.

Therefore ∂k
z b1.∂

k
z̄ b2 is a continuous homogeneous polynomial in

Pp1+p2−k,q1+q2−k(Z ) with the associated operator given by (14). The estimate
(15) follows immediately by (14). �

Proposition 2.7. The formulas
(i)

bWick
1 bWick

2 =

⎛

⎝
min{p1,q2}∑

k=0

εk

k!
∂k

z b1.∂
k
z̄ b2

⎞

⎠
Wick

=
(
eε〈∂z,∂ω̄〉b1(z)b2(ω) |z=ω

)Wick

,

(17)
(ii)

[bWick
1 , bWick

2 ] =

⎛

⎝
max{min{p1,q2} , min{p2,q1}}∑

k=1

εk

k!
{b1, b2}(k)

⎞

⎠
Wick

, (18)

hold for any bi ∈ Ppi,qi
(Z ), i = 1, 2 as identities on Hfin.

Remark 2.8. This result has exactly the form of the finite dimensional formula.
Lemma 2.6 gives the relation with the writing which can be found in [19].

Proof. The second statement (ii) is a straightforward consequence of the first
one (i). Let us focus on (i) which will be proved in several steps.

Step 0: Before proving the identity, first notice that both sides are well defined.
Actually, for any b ∈ Pp,q(Z ), the operator bWick sends Hfin into itself. Hence,
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the product bWick
1 ◦ bWick

2 is well defined as an operator Hfin → Hfin. Finally we
know from Lemma 2.6 that eε〈∂z,∂ω〉b1(z)b2(ω)

∣∣
z=ω

belongs to ⊕alg
p,qPp,q(Z ).

Step 1: Consider b1(z) = 〈η , z〉 and b2(z) = 〈z , ξ〉q, q ∈ N. The formula

a(η)a∗(ξ)q = a∗(ξ)qa(η) + εq〈η , ξ〉a∗(ξ)q−1

is exactly
bWick
1 bWick

2 = (b1b2)Wick + ε(∂zb1.∂z̄b2)Wick .

Step 2: Consider b1(z) = βp(z) = 〈η , z〉p and b2(z) = 〈z , ξ〉q, p, q ∈ N. The
induction is already initialized for p = 1 according to Step 1. Assume that the
formula is true for p− 1 and all q ∈ N and compute

βWick
p bWick

2 = βWick
1

[
βWick

p−1 bWick
2

]
= βWick

1

⎡

⎣
min{p−1,q}∑

k=0

εk

k!
〈
∂k

z βp−1 , ∂k
z̄ b2

〉Wick

⎤

⎦

= a(η)

⎡

⎣
min{p−1,q}∑

k=0

εk

k!
〈η , ξ〉k q!

(q − k)!
(p− 1)!

(p− 1− k)!
a∗(ξ)q−ka(η)p−1−k

⎤

⎦

=
min{p−1,q}∑

k=0

εk

k!
〈η , ξ〉k q!(p− 1)!

(q − k)!(p− 1− k)!
[
a∗(ξ)q−ka(η)p−k

+ε(q − k)〈η , ξ〉a∗(ξ)q−ka(η)p−(k+1)
]

=
min{p,q}∑

k=0

εk〈η, ξ〉kq!(p− 1)!
k!(q − k)!(p− 1− k)!

[
1[0,p−1](k) +

k

(p− k)
1[1,p](k)

]

× a∗(ξ)q−ka(η)p−k

=
min{p,q}∑

k=0

εk

k!
〈
∂k

z βp , ∂k
z̄ b2

〉Wick
.

We used several times the relation

∂j
zβn(z) =

n!
(n− j)!

〈η , z〉n−j〈η |⊗j

and its dual version for ∂j
z̄b2 .

Step 3: From Step 2, the statement (ii) of Proposition 2.3 leads to

a∗(ξ1)q1a(η1)p1 a∗(ξ2)q2a(η2)p2

=
min{p1,q2}∑

k=0

εk

k!

(
∂k

z

(
〈z, ξ1〉q1〈η1, z〉p1

)
.∂k

z̄

(
〈z, ξ2〉q2〈η2, z〉p2

))Wick
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for any ξ1, ξ2, η1, η2 ∈ Z and any p1, q1, p2, q2 ∈ N . Again the polarization for-
mula (1) in the form

n∏

i=1

a�(ξi) =
1

2nn!

∑

εi=±1

ε1 · · · εn

⎡

⎣a�

⎛

⎝
n∑

j=1

εjξj

⎞

⎠

⎤

⎦
n

,

yields the result for any

b�(z) =
p�∏

i=1

〈z , ξ�
i 〉

q�∏

j=1

〈η�
j , z〉 , 	 = 1, 2 ,

that is for any b̃� in the form

b̃� = |ξ�
1 ∨ · · · ∨ ξ�

p�
〉〈η�

1 ∨ · · · ∨ η�
q�
| , 	 = 1, 2 . (19)

Step 4: We want to check the identity

〈
ψn′ , bWick

1 ◦ bWick
2 ψn

〉
=

min{p1,q2}∑

p=0

εp

p!
〈
ψn′ , (∂p

z b1∂
p
z b2)Wickψn

〉

for any ψn ∈
∨n Z and any ψn′ ∈

∨n′
Z , n, n′ ∈ N.

From the definition of bWick, the left-hand side equals
〈
ψn′ , bWick

1 ◦ bWick
2 ψn

〉

= Cn,n′,p1,2,q1,2,ε

〈
ψn′ ,

(
b̃1

∨
I
∣∣∨n+q2−p2−p1 Z

)(
b̃2

∨
I
∣∣∨n−p1 Z

)
ψn

〉

= Cn,n′,p1,2,q1,2,ε

〈(
b̃∗1

∨
I
∣∣∨n′−q1 Z

)
ψn′ ,

(
b̃2

∨
I
∣∣∨n−p1 Z

)
ψn

〉
.

Similarly and owing to Lemma 2.6, every term of the right-hand side satisfies
〈
ψn′ , (∂p

z b1∂
p
z b2)Wickψn

〉

= C ′
n,n′,p,p1,2,q1,2,ε

〈
ψn′ ,

[(
b̃1⊗I⊗ q2−p Z

)(
I⊗ p1−p Z ⊗ b̃2

) ∨
I∨n−p1−p2+p Z

]
ψn

〉

= C ′
n,n′,p,p1,2,q1,2,ε

〈(
b̃∗1 ⊗I⊗ n′−p1 Z

)
ψn′ ,

(
I⊗ p1−p Z ⊗ b̃2 ⊗ I∨n−p1−p2+p Z

)
ψn

〉
.

Hence for fixed ψn, ψn′ ∈Hfin, both side are sesquilinear continuous expression of
(b̃1, b̃2) when the first factor is considered with the ∗-strong topology of operators
and the second one with the strong topology. The operators (19) for which the
equality is true, form a total family for these topologies. This can be proved in two
steps: approximate first any finite rank operators by linear combinations of the
specific rank one operators (19) and then any bounded operators by finite rank
operators. Thus the equality holds for any b� ∈Pp�,q�

(Z ), 	 = 1, 2 . �
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Remark 2.9. The formulas (17) and (18) make sense with ε-dependent symbols.
One can work with polynomials in ε

b(z, ε) =
n∑

α=0

εαbα(z) , bα ∈ Pp,q(Z )

or with asymptotic sums

b(z, ε) ∼
∞∑

α=0

εαbα(z) bα ∈ Pp,q(Z ) .

The expression (17) and (18) take then the form

bWick
1 bWick

2 ∼
∞∑

j=0

εj

⎛

⎝
∑

α+β+k=j

1
k!

(
∂k

z b1,α.∂k
z̄ b2,β

)
⎞

⎠
Wick

[
bWick
1 , bWick

2

]
∼

∞∑

j=1

εj

⎛

⎝
∑

α+β+k=j

1
k!

(
∂k

z b1,α.∂k
z̄ b2,β − ∂k

z b2,β .∂k
z̄ b1,α

)
⎞

⎠
Wick

,

for b1 ∼
∑

α εαb1,α ∈ Pp1,q1(Z ) and b2 ∼
∑

β εβb2,β ∈ Pp2,q2(Z ) . Here (p1, q1)
(resp. (p2, q2)) does not depend on α (resp. β).

We have the following useful result.

Proposition 2.10. For any b ∈ ⊕alg
p,q∈N

Pp,q(Z ) we have:

(i) bWick is closable and the domain of its closure contains

H0 = vect
{
W (z)φ, φ ∈ Hfin, z ∈ Z

}
.

(ii) By setting E(z) = W (
√

2z
iε )Ω according to (4), the identity

b(z) =
〈
E(z) , bWickE(z)

〉
(20)

holds for every z ∈ Z .
(iii) For any z0 ∈ Z the identity

W

(√
2

iε
z0

)∗

bWickW

(√
2

iε
z0

)
=

(
b(z + z0)

)Wick

holds on H0 where b( · + z0) ∈ ⊕alg
p,q∈N

Pp,q(Z ) .

Proof. (i) bWick is closable by Proposition 2.3 (i). It is enough to consider b ∈
Pp,q(Z ) when we prove that H0 is a core for the closure of bWick. The last
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statement is deduced from the estimate
∞∑

n=0

1
n!

∣∣∣bWick Φ(z)nϕ(k)
∣∣∣
H
≤ |b̃|L (

∨p Z ,
∨q Z ) |ϕ(k)|∨k Z

×
∞∑

n=0

(
√

2ε)n

n!

√
(n + k)!

k!
[
ε(n + k + q)

] p+q
2 |z|n

<∞ (21)

for any ϕ(k) ∈
∨k Z and z ∈ Z . In order to prove (21), use Lemma 2.5 and

estimate the action of bWick on Φ(z)nϕ(k) by maxp≤r≤k+n |bWick|L (
∨r Z ,

∨r−p+q)

and bound the norm of Φ(z)nϕ(k) by |ϕ(k)| |z|n
√

(2ε)n(n+k)!
k! .

(ii) One writes for b ∈ Pp,q(Z ) and z ∈ Z

〈
E(z) , bWickE(z)

〉
= e−

|z|2
ε

∑

n1,n2∈N

〈z⊗n1 , bWickz⊗n2〉√
n1!
√

n2!

= e−
|z|2

ε

∑

n1,n2∈N

δ+
n1−q,n2−p

ε
p+q
2 |z|n1−p+n2−q

√
(n1 − q)!

√
(n2 − p)!ε

n1+n2
2

b(z)

= b(z) .

(iii) The fact that b(. + z0) remains in the class ⊕alg
p,q∈N

Pp,q(Z ) come from
the Taylor expansion and (8). In order to prove the equality, differentiate A(t) =[
W (

√
2

iε tz0)b(z + tz0)WickW (
√

2
iε tz0)∗

]
in a weak sense on H0. Proposition 2.7 im-

plies

i∂tA(t) = W

(√
2

iε
tz0

) [
−

[
Φ

(√
2

iε
z0

)
, b(z + tz0)Wick

]

+ i∂tb(z + tz0)Wick

]
W

(√
2

iε
tz0

)∗

= W

(√
2

iε
tz0

)[〈
iz0, ∂zb(z+tz0)

〉
−

〈
∂zb(z+z0) , iz0

〉
+i∂tb(z+tz0)

]Wick

× W

(√
2

iε
tz0

)∗

= 0 . �

Remark 2.11. The relation (20) allows to define easily the Wick symbol of an
operator which is defined as a series, when it makes sense, instead of a Wick
polynomial. For example the Wick symbol of the Weyl operator W (ξ) equals

〈
E(z) , W (ξ)E(z)

〉
=

〈
Ω , e−iεσ(ξ,

√
2z

iε )W (ξ)Ω
〉

= ei
√

2S(ξ,z)e−
ε|ξ|2

4 . (22)
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A variation of Proposition 2.10 ensures that b(Az+z0) can be Wick quantized
for any bounded complex affine transformation in Z when b ∈ Pp,q(Z ). Actually
real symplectic affine transformations of symbols in Pp,q(Z ) may also be Wick
quantized but only under a Hilbert–Schmidt condition on A which agrees with
Shale’s theorem or the presentation of general Bogoliubov transformations (see [5]).
The following result will be useful in Subsection 5.1.

Proposition 2.12. Let B ∈ L (Z ) and let B2 ∈ L 2(Z ) be an Hilbert–Schmidt
operator on Z and let J : Z � z → Jz =: z ∈ Z be any anti-unitary oper-
ator on Z . Then for any b ∈ Pp,q(Z ) the polynomial b(Bz + B2z) belongs to
⊕p′+q′=p+qPp′,q′(Z ) with the estimate

∣∣∣∂q′

z ∂p′

z b(Bz + B2z)
∣∣∣
L (

∨p′
Z ,

∨q′ Z )

≤ Cp,q

(
|B|L (Z ) + |B2|L 2(Z )

)p+q
∣∣∣b̃

∣∣∣
L (

∨p Z ,
∨q Z )

.

Proof. For b ∈Pp,q(Z ) write, after recalling b̃ = Sq b̃Sp in L (
⊗p Z ,

⊗q Z ),

b(Bz + B2z) =
〈
(Bz + B2z)⊗q , b̃(Bz + B2z)⊗p

〉

=
q∑

j=0

p∑

k=0

Cj
qCk

p

〈
(Bz)⊗q−j ⊗ (B2z)⊗j , b̃(B2z)⊗k ⊗ (Bz)⊗p−k

〉

=
q∑

j=0

p∑

k=0

Cj
qCk

p 	j,k(z⊗q+k−j , z⊗p+j−k) .

The sesquilinear form 	j,k is defined on (
⊗q−j Z ⊗alg

⊗k Z ) × (
⊗j Z ⊗alg

⊗p−k Z ) by

	j,k (φ1 ⊗ φ2, ψ1 ⊗ ψ2) =
〈
(B⊗q−jφ1)⊗ (B⊗j

2 ψ2) , b̃(B⊗k
2 φ2)⊗ (B⊗p−k)ψ1

〉
.

It satisfies for Φ =
∑N

α=1 φ1,α ⊗ φ2,α and Ψ =
∑N

β=1 ψ1,β ⊗ ψ2,β

	j,k (Φ,Ψ) =
N∑

β=1

〈
(B⊗j

2 ψ2,β) , CΦ(B⊗p−k)ψ1,β

〉

=
N∑

β=1

〈
ψ2,β , (B∗

2)⊗jCΦ(B⊗p−k)ψ1,β

〉

with

CΦ =
N∑

α=1

(
〈B⊗q−jφ1,α| ⊗ I⊗ j Z

)
b̃
(
|B⊗k

2 φ2,α〉 ⊗ I⊗ p−k Z

)
∈L

(
p−k⊗

Z ,

j⊗
Z

)
.

Since B⊗j
2 is a Hilbert–Schmidt operator the estimate

|	j,k (Φ,Ψ)| ≤ |B2|jL 2(Z ) |B|
p−k
L (Z ) |CΦ|L (

⊗ p−k Z ,
⊗ j Z ) |Ψ|⊗ p−k+j(Z )
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holds for any Ψ ∈
⊗j Z ⊗alg

⊗p−k Z . In order to estimate |CΦ|L (
⊗ p−k Z ,

⊗ j Z )

take any U ∈
⊗j Z and any V ∈

⊗p−k Z and compute

|〈U , CΦV 〉| =
∣∣∣∣∣

N∑

α=1

〈
B⊗q−jφ1,α ⊗ U , b̃(B⊗k

2 φ2,α ⊗ V )
〉∣∣∣∣∣

=

∣∣∣∣∣

N∑

α=1

〈
φ1,α , (B∗)⊗q−jCUV B⊗k

2 φ2,α

〉
∣∣∣∣∣

with CUV =
(
I⊗ q−j Z ⊗ 〈U |

)
b̃
(
I⊗ k Z ⊗ |V 〉

)
∈ L

(
k⊗

Z ,

q−j⊗
Z

)
.

Again the Hilbert–Schmidt condition implies

|〈U , CΦV 〉| ≤ |B2|kL 2(Z )|B|
q−j
L (Z ) |U |⊗ j Z

∣∣∣b̃
∣∣∣
L (

∨p Z ,
∨q Z )

|V |⊗ p−k Z |Φ|⊗ q−j+k Z .

We have proved an estimate for |CΦ| which implies that the estimate

|	j,k(Φ,Ψ)| ≤ |B2|j+k
L 2(Z ) |B|

p+q−k−j
L (Z )

∣∣∣b̃
∣∣∣
L (

∨p Z ,
∨q Z )

|Φ|⊗ q−j+k Z |Ψ|⊗ p−k+j ,

extends continuously to any Φ ∈
⊗q−j+k Z and any Ψ ∈

⊗p−k+j Z . It
holds in particular when Φ ∈

∨q−j+k Z and Ψ ∈
∨p−k+j Z . Hence 	j,k(z) ∈

Pp−k+j,q−j+k(Z ) holds for any (j, k), j ≤ q and k ≤ p, with a norm estimate
which yields the final result. �

3. Weyl and Anti-Wick quantization

Our extension of the Weyl and Anti-Wick pseudodifferential calculus to the infinite
dimensional case is based on a separation of variables approach within a projective
setting. This is slightly different than the one developed by B. Lascar in [35] where
the inductive approach leads to a natural Hilbert–Schmidt condition and restricts
the exploration of the infinite dimensional phase-space Z .

3.1. Cylindrical functions and Weyl quantization

Let P denote the set of all finite rank orthogonal projections on Z and for a given
p ∈ P let Lp(dz) denote the Lebesgue measure on the finite dimensional subspace
pZ . A function f : Z → C is said cylindrical if there exists p ∈ P and a function g
on pZ such that f(z) = g(pz), for all z ∈ Z . In this case we say that f is based
on the subspace pZ . We set Scyl(Z ) to be the cylindrical Schwartz space:

(
f ∈ Scyl(Z )

)
⇔

(
∃p ∈ P,∃g ∈ S (pZ ), f(z) = g(pz)

)
.

It is well known that the Fourier–Wigner transform defined by the expression

z → V [φ, ψ](z) =
〈
ψ,W (

√
2πz)φ

〉
,
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for any φ, ψ ∈H , belongs to L2(pZ , Lp(dz))∩C0(pZ ) for every p ∈ P. Introduce
the Fourier transform of a function f ∈ Scyl(Z ) based on the subspace pZ as

F [f ](z) =
∫

pZ

f(ξ) e−2πi S(z,ξ) Lp(dξ)

and its inverse Fourier transform is

f(z) =
∫

pZ

F [f ](z) e2πi S(z,ξ) Lp(dz) .

Therefore the so-called Wigner transform can be written as W [φ, ψ]=F−1[V [φ, ψ]].
With any symbol b ∈ Scyl(Z ) based on pZ , a Weyl observable can be associated
according to

bWeyl =
∫

pZ

F [b](z) W (
√

2πz) Lp(dz) . (23)

It can be expressed as a quadratic form in the following way

〈ψ, bWeylφ〉H =
∫

pZ

F [b](z) V [φ, ψ](z) Lp(dz)

=
∫

pZ

b(z) W [φ, ψ](z) Lp(dz) .

Note that bWeyl is a well defined bounded operator on H for all b ∈ Scyl(Z ) since
V [φ, ψ](z) is a bounded function and F [b](z) is in L1(pZ , Lp(dz)). Remember also
that this quantization of cylindrical symbols depends on the parameter ε like the
Weyl operators W (

√
2πz) .

The next estimate will be useful. A similar inequality can be found in [15].

Lemma 3.1. For any δ ∈ [0, 1] there exists a constant Cδ > 0 such that the estimate
∣∣∣
[
W (z1)−W (z2)

]
(N + 1)−δ/2

∣∣∣ ≤ Cδ |z1 − z2|δ
[
min(ε|z1|, ε|z2|)δ + max(1, ε)δ

]
,

holds for all ε > 0, and all z1, z2 ∈ Z .

Proof. We have by Weyl’s relation
∣∣∣
[
W (z1)−W (z2)

]
(N + 1)−δ/2

∣∣∣

≤
∣∣∣
[
W (z1 − z2)− I

]
(N + 1)−δ/2

∣∣∣ +
∣∣∣eiεσ(z1,z2) − 1

∣∣∣ . (24)

The estimate |eis − 1| ≤ Cδ |s|δ, leads to
∣∣∣eiεσ(z1,z2) − 1

∣∣∣ =
∣∣∣eiεσ(z1−z2,z2) − 1

∣∣∣

=
∣∣∣eiεσ(z1,z2−z1) − 1

∣∣∣ ≤ Cδ εδ |z1 − z2|δ min(|z1|, |z2|)δ .

The first part of the r.h.s. in (24) is estimated via a complex interpolation ar-
gument. Indeed, for δ = 0 notice that |W (z1 − z2)− I| ≤ 2 and for δ = 1 the
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estimate
∣∣eis − 1

∣∣ ≤ C1|s| combined with the spectral theorem yields
∣∣∣
[
W (z1 − z2)− I

]
(N + 1)−1/2ψ

∣∣∣ ≤ C1

∣∣∣|Φ(z1 − z2)|(N + 1)−1/2ψ
∣∣∣

≤ C1

∣∣∣Φ(z1 − z2)(N + 1)−1/2ψ
∣∣∣ .

Now by the number estimate (12) we obtain
∣∣∣
[
W (z1 − z2)− I

]
(N + 1)−1/2

∣∣∣ ≤ C max(1, ε) |z1 − z2| . �

3.2. Finite dimensional Weyl quantization

The finite dimensional Weyl calculus provides us a collection of results on the
Weyl quantization. We specify here the relation between the Weyl quantization
defined on Z via (23) and the usual semiclassical Weyl quantization within the
Schrödinger representation on R

d.
For p ∈ P the orthogonal projector I−p is denoted by p⊥. Let Γs(pZ ) denotes

the symmetric Fock space over pZ . The separation of variables in finite dimensions
extends to general symmetric Fock spaces owing to the canonical isomorphism of
Fock spaces

Tp : H = Γs(Z ) → Γs(pZ )⊗ Γs(p⊥Z ) , (25)

for any finite dimensional projector p ∈ P, with TpΩ = ΩpZ ⊗ Ωp⊥Z when ΩpZ

and Ωp⊥Z are the vacuum vectors of the corresponding Fock spaces. We will omit
the notation Tp and identify directly the tensor products.

Fix p ∈ P. The tensor decomposition of the Weyl quantization comes from
the Weyl relation which implies

W (ξ + ξ′) = W (ξ)W (ξ′) = Wp(ξ)⊗Wp⊥(ξ′)

for any (ξ, ξ′) ∈ pZ ×p⊥Z . The symbols Wp stands for the Weyl operator defined
on the Fock space Γs(pZ ) and the Weyl quantization of b ∈ S (F ), for any finite
dimensional complex subspace F of Z , is denoted by bWeyl

F . Hence the Weyl
quantization of b ∈ Scyl(Z ) based on pZ equals

bWeyl =
∫

pZ

F [b](z)W (
√

2πz) Lp(dz) = bWeyl
pZ ⊗ IΓs(p⊥Z ) .

In order to apply directly the finite dimensional results on Weyl quantization,
we need to specify the correspondence of representations.

On R
d the Weyl quantization is often introduced as

bWeyl(x, hDx)u(x) =
∫

Rd

ei
(x−y).ξ

h b

(
x + y

2
, ξ

)
u(y)

dξdy

(2πh)d
.

By a simple conjugation with a dilatation, it becomes aWeyl(
√

hx,
√

hDx) where
the position (x) and frequency (ξ) variables play the same role. An equivalent
definition can be given with the help of the phase translations :

τ(x0,ξ0) = ei(ξ0x−x0Dx) =
(
ei(ξ0x−x0ξ)

)Weyl
, [τx0,ξ0u](x) = eiξ0(2x−x0)/2u(x−x0) .
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It reads

bWeyl(
√

hx,
√

hDx) =
∫

T∗Rd

F [b](y, η)e2iπ(y.(
√

hx)+η.
√

hDx) dydη

=
∫

T∗Rd

F [b](y, η)τ(−2π
√

hη,2π
√

hy) dydη .

The symplectic form [[ , ]] and the scalar product ( , ) on T ∗
R

d are defined according
to

[[
(x, ξ), (y, η)

]]
= ξ.y − x.η = −Im 〈x + iξ , y + iη〉 = −σ(x + iξ, y + iη)

(
(x, ξ), (y, η)

)
= x.y + ξ.η = Re 〈x + iξ , y + iη〉 = S(x + iξ, y + iη) .

After noting [√
hx +

√
h∂x,

√
hx−

√
h∂x

]
= 2h ,

the correspondence with the definition (23) is summarized in the next table

pZ ∼ C
d T ∗

R
d

Γs(pZ ) ∼ Γs(Cd) , L2(Rd)
〈z1, z2〉 = S(z1, z2) + iσ(z1, z2) z=eiθ(x+iξ)(

(x1, ξ1) , (x2, ξ2)
)

= ξ1.ξ2 + x1.x2 = S(z1, z2)[[
(x1, ξ1), (x2, ξ2)

]]
= ξ1.x2 − x1.ξ2 = −σ(z1, z2)

a(z) = a

⎛

⎝
d∑

j=1

αjej

⎞

⎠ a(z)=
d∑

j=1

αj(
√

h∂xj
+
√

hxj)

a∗(z) = a∗

⎛

⎝
d∑

j=1

αjej

⎞

⎠ a∗(z)=
d∑

j=1

αj(−
√

h∂xj
+
√

hxj)

[
a(z1), a∗(z2)

]
= ε 〈z1 , z2〉 ε = 2h

[
a(z1), a∗(z2)

]
= 2h 〈z1 , z2〉

Φ(z0) =
1√
2

(
a(z0) + a∗(z0)

)
z0 =x0+iξ0

√
2h(x0.x + ξ0.Dx)

W (z0) = eiΦ(z0) θ = 0 τ(−
√

2hξ0,
√

2hx0)

E(z0) = W

(√
2

iε
z0

)
Ω z0

i =ξ0−ix0 τ
(

x0√
h

,
ξ0√

h
)
(π−d/4e−

x2
2 )

z⊗n
0 , |z0| = 1 Hermite function

(n!)−1/2
[
z0.(−∂x + x)

]n(
π−d/4e−

x2
2

)

∩
k∈N

D
(
〈NpZ 〉k

)
, ∪

k∈N

D
(
〈NpZ 〉k

)∗
S (Rd) , S ′(Rd)

Once this is fixed, the general results on the semiclassical Weyl–Hörmander
pseudodifferential calculus (see for example [8, 33] for the general introduction
and [37,39,41] for the small parameter version) can be applied for any fixed p ∈ P.
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The notion of slow and temperate metric and weight depend only on the symplectic
structure which is given by σ(z1, z2) = Im〈z1 , z2〉. With such a metric the gain
function λ is given on pZ by

λ(z)2 = inf
T∈pZ \{0}

gσ
z (T )

gz(T )
with

gσ
z (T ) = sup

S∈pZ \{0}

|[[T, S]]|2

g(S)
= sup

S∈pZ \{0}

|σ(T, S)|2

g(S)
.

With a slow and temperate metric g and a slow and temperate weight m, is
associated a symbol class usually denoted S(m, g).

After writing X = (x, ξ) ∈ T ∗
R

d for the complete phase-space variable, the
differential operator DX is (Dx,Dξ) = (i−1∂x, i−1∂ξ). In the composition formula
of symbols, the differential operator ih

2 [[DX1 ,DX2 ]] appears. After recalling

∂z =
1
2
(∇x + i∇ξ) and ∂z =

1
2
(∇x − i∇ξ)

it equals

ih

2
[[DX1 ,DX2 ]] =

ε

2
(∂z1 .∂z2 − ∂z1 .∂z2) .

We refer to [39] for an explicit semiclassical writing of the Weyl–Hörmander cal-
culus within the Bony–Lerner presentation [8] and with a general version of the
Beals criterion following Bony–Chemin [7].

Proposition 3.2. Let g be a slow and temperate metric on pZ , dimC(pZ ) =
d and let m1 and m2 be two slow and temperate weights for g. For b� ∈
SpZ (m�, g),	 = 1, 2, the operator bWeyl

�,pZ acts continuously on ∩k∈N D(〈NpZ 〉k)
and on ∪k∈N D(〈NpZ 〉k)∗.

The symbol b1#ε/2b2 of bWeyl
1,pZ ◦ bWeyl

2,pZ satisfies

b1#ε/2b2(z) = e
ε
2 (∂z1 .∂z2−∂z1 .∂z2)b1(z1)b2(z2)

∣∣∣
z1=z2=z

=
∑

0≤j<ν

1
j!

(ε

2
(∂z1 .∂z2 − ∂z1 .∂z2)

)j

b1(z1)b2(z2)
∣∣∣
z1=z2=z

+ ενRν(b1, b2; ε)

where Rν(b1, b2; ε) is uniformly bounded w.r.t ε in the Fréchet space SpZ (m1m2
λν , g) .

The Calderon–Vaillancourt theorem
∣∣∣bWeyl

pZ

∣∣∣
L (Γs(pZ ))

≤ Cpkd
(b)

and the G̊arding inequality

(b ≥ 0) ⇒
(
bWeyl
pZ ≥ −C ′p′kd

(b)ε
)
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respectively for b ∈ SpZ (1, g) and b ∈ SpZ (λ, g) . The index kd for the seminorms
pkd

and p′kd
recalls the dimension dependent number of derivatives required in the

estimates.

The typical example Hörmander metrics, which will be used here, are |dz|2 =
dx2 + dξ2 (λ(z) = 1) and |dz|2

〈z〉2 = dx2

〈(x,ξ)〉2 + dξ2

〈(x,ξ)〉2 (λ(z) = 1 + |z|2) . Both of
them split up in the (x, ξ) coordinates and the Beals criterion of Bony–Chemin [7]
translated in the semiclassical case in [39]-Appendix-A can be applied. Following
the method recalled in [30]-Chapter-4, this allows to check that functions of fully
elliptic self-adjoint pseudodifferential operators are pseudodifferential operators,
with an explicit knowledge of their principal symbol. In particular, this can be
applied with 1+ εdimp

2 +NpZ = (1+ |z|2)Weyl
pZ while noticing that 1+ εdimp

2 +NpZ

is a fully elliptic operator in S(〈z〉2 , |dz|2
〈z〉2 ) (such a result with ε = 1 can be found

also in [27]).

Proposition 3.3. Fix p ∈ P, fix the exponent s ∈ R and let NpZ = dΓ(IpZ ) be the
number operator on Γs(pZ ). For any s ∈ R, (1 + εdimp

2 + NpZ )s/2 can be written

(b(s, ε))Weyl
pZ with ε−1(b(z; s, ε)− 〈z〉s) uniformly bounded in S(〈z〉s−2

, |dz|2
〈z〉2 ) .

3.3. Weyl quantization and Laguerre connection

In this paragraph, the relationship between the Wick and Weyl calculus is checked
in the infinite dimensional setting. It specifies the relation between the representa-
tion of the Weyl algebra, generated by the W (ξ), and the number representation
which puts the stress on Wick symbols or Hermite states z⊗k. This relies on the
introduction of Hermite and Laguerre polynomials, recalled below.

Let hn(x) denote, for any n ∈ N, the n-th Hermite polynomial in C:

hn(x) = (−1)nex2 dn

dxn
(e−x2

) =
[n/2]∑

r=0

(−1)r n!
r!(n− 2r)!

(2x)n−2r . (26)

Those classical polynomials are also given by the generating function

∞∑

n=0

tn

n!
hn(x) = ex2

[ ∞∑

n=0

(−t∂x)n

n!
e−x2

]
= ex2

e−t∂x [e−x2
] = e2tx−t2 . (27)

Lemma 3.4.

(i) For any ξ ∈ Z , the following identity holds in Hfin:

W (ξ) =
∞∑

n=0

|√εξ|n
2nn!

hn

(
i
√

2S(ξ, z)
|√εξ|

)Wick

.
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(ii) For any n, j, k ∈ N the estimate
∣∣∣∣1{jε}(N) ◦ hn

(
i
√

2S(ξ, z)
)Wick

◦ 1{kε}(N)
∣∣∣∣
L (

∨k Z ,
∨j Z )

≤
(
1 + 2

√
2(k + j)ε |ξ|

)n n!
[n/2]!

,

holds for any ξ ∈ Z .

Proof. Using the generating function (27) with t =
√

ε|ξ|
2 and x = i

√
2S(ξ,z)√
|εξ|

implies

the equality of the Wick symbols

ei
√

2S(ξ,z)e−
ε|ξ|2

4 = e
i
2
√

2S(ξ,z)√
ε|ξ|

√
ε|ξ|
2 e−

ε|ξ|2
4 =

∞∑

n=0

(
√

ε|ξ|)n

2nn!
hn

(
i
√

2S(ξ, z)
|√εξ|

)
.

Nevertheless the equality of the the series of Wick quantized operators has to be
checked.

Recall that elements of Hfin are analytic vectors with infinite radius of con-
vergence for the field operators. Hence the sum

W (ξ)ψ =
∞∑

n=0

in

n!
Φ(ξ)nψ , ψ ∈ Hfin ,

is absolutely convergent for all ξ ∈ Z . Therefore to prove (i) it is enough to
compute the Wick symbol of Φ(ξ)n for all n. Indeed using the Wick ordering
rules, we have

Φ(ξ)n =
[n/2]∑

r=0

n!√
2nr!(n− 2r)!

|ξ|2r

2r
εr

n−2r∑

s=0

Cs
n−2r a∗(ξ)s a(ξ)n−2r−s

=
|ξ|n
2n

[n/2]∑

r=0

n!
r!(n− 2r)!

εr

(√
2n−2r

|ξ|n−2r

n−2r∑

s=0

Cs
n−2r〈z, ξ〉s 〈ξ, z〉n−2r−s

)Wick

=
|ξ|n
2n

⎛

⎝
[n/2]∑

r=0

n!
r!(n− 2r)!

εr

(
2
√

2S(ξ, z)
|ξ|

)n−2r
⎞

⎠
Wick

.

To prove the second statement (ii), take ψk ∈
∨k Z and ψj ∈

∨j Z and write

〈
ψj , hn

(
i
√

2S(ξ, z)
)Wick

ψk

〉

=
[n/2]∑

r=0

n!
(n− 2r)!r!

〈
ψj ,

((
2i
√

2S(ξ, z)
)n−2r

)Wick

ψk

〉
.
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Using Lemma 2.5 one obtains
∣∣∣∣

〈
ψj , hn

(
i
√

2S(ξ, z)
)Wick

ψk

〉∣∣∣∣

≤ |ψj |∨j Z |ψk|∨k Z

[n/2]∑

r=0

n!
(n− 2r)!r!

(
2
√

2(k + j)ε |ξ|
)n−2r

≤ |ψj |∨j Z |ψk|∨k Z

n∑

s=0

n!
(n− s)!s!

(
2
√

2(k + j)ε |ξ|
)n−s s!

[s/2]!

≤ |ψj |∨j Z |ψk|∨k Z

(
1 + 2

√
2(k + j)ε |ξ|

)n n!
[n/2]!

. �

The Laguerre polynomials are defined by the formula

L
(j)
k (t) =

k∑

m=0

(−1)m (k + j)!
(k −m)!(j + m)!m!

tm , t ∈ C .

The following proposition gives the Laguerre connection (see [18], [40]).

Proposition 3.5. For z, ξ ∈ Z with |z| = 1, the next equalities hold according to
the ordering of j and k ∈ N,

V [z⊗k, z⊗j ]
(

ξ

π
√

2ε

)
=

⎧
⎨

⎩
(i)k−j

√
j!
k!L

(k−j)
j (|〈ξ, z〉|2)〈ξ, z〉k−j

e−|ξ|2/2 if k ≥ j ,

(i)j−k
√

k!
j! L

(j−k)
k (|〈ξ, z〉|2)〈z, ξ〉j−k

e−|ξ|2/2 if j ≥ k .

(28)

Proof. Let us establish the expression of V [z⊗k, z⊗j ] in the case k ≥ j. The case
j ≤ k is similar. Using Lemma 3.4 one obtains

V [z⊗k, z⊗j ]
(

ξ

π
√

2ε

)
=

〈
z⊗j ,W

(√
2
ε
ξ

)
z⊗k

〉

=
∞∑

n=0

|ξ|n√
2nn!

〈
z⊗j , hn

⎛

⎝
iS(

√
2
εξ, .)

|ξ|

⎞

⎠

Wick

z⊗k

〉
.

Now let use the explicit form of hn and Proposition 2.4. We obtain for |z| = 1,

V [z⊗k, z⊗j ]
(

ξ

π
√

2ε

)

=
∞∑

n=0

[n/2]∑

r=0

n−2r∑

s=0

in|ξ|2r

2rr!(n− 2r)!
Cs

n−2r εr−n
2

〈
z⊗j ,

(
〈ξ, .〉s〈., ξ〉n−2r−s

)Wick

z⊗k

〉
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=
∞∑

n=0

[n/2]∑

r=0

n−2r∑

s=0

in|ξ|2r

2rr!(k − j + s)!s!
|〈ξ, z〉|2s 〈ξ, z〉k−j

√
k!j!

(j − s)!
δ+
k−n+2r+s,j−s

= (i)k−j

√
j!
k!

j∑

s=0

∞∑

r=0

(−1)r|ξ|2r

2rr!
(−1)sk!

s!(k − j + s)!(j − s)!
|〈ξ, z〉|2s 〈ξ, z〉k−j

.

The last term gives the claimed identity. �

3.4. Anti-Wick operators

The Anti-Wick quantization is introduced by a separation of variables process like
the Weyl quantization. For a given p ∈ P, set p⊥ = 1 − p, and use the tensor
decomposition (25). The Weyl operators on pZ and p⊥Z are denoted by Wp(ξ1)
and Wp⊥(ξ2) with W (ξ1⊕⊥ξ2) = Wp(ξ1)⊗Wp⊥(ξ2) . For any ξ ∈ pZ , the coherent

state Ep(ξ) is defined by Ep(ξ) = Wp(
√

2ξ
iε )ΩpZ . Introduce the projector Pξ on

H after tensorization with IΓs(p⊥Z ):

pZ � ξ → P ε
ξ =

(
|Ep(ξ)〉〈Ep(ξ)|

)
⊗ IΓs(p⊥Z ) .

The Anti-Wick operator associated with a symbol b ∈ Scyl(Z ) based on pZ
is then defined by

bA−Wick =
∫

pZ

b(ξ) P ε
ξ

Lp(dξ)
(πε)dimpZ

= bA−Wick
pZ ⊗ IΓs(p⊥Z ) .

The above formula can be first considered in a weak sense or as a Bochner integral
when b ∈ S (pZ ) and the bounded projector P ε

ξ is continuous w.r.t. ξ. The finite

dimensional identification of the Weyl symbol of |Wp(
√

2ξ
iε )ΩpZ 〉〈Wp(

√
2ξ

iε )ΩpZ |,
can be deduced after completing the table of correspondences in Subsection 3.2:

pZ ∼ C
d z = x + iξ T ∗

R
d

Γs(pZ ) ∼ Γs(Cd) , ε = 2h L2(Rd)

Ep(z0)=Wp

(√
2

iε
z0

)
ΩpZ z0

i = ξ0 − ix0 τ
(

x0√
h

,
ξ0√

h
)
(π−d/4e−

x2
2 )

|ΩpZ 〉〈ΩpZ | = γWeyl (π)−d/2e−
x2
2 − y2

2 = gWeyl(
√

hx,
√

hDx)

γ(z) = 2de−
|z|2pZ

ε/2 ⇐ with g(x, ξ) = 2de−
x2+ξ2

h

From the conjugation

τ
(

x0√
h

,
ξ0√

h
)
aWeyl(

√
hx,

√
hDx)τ∗

(
x0√

h
,

ξ0√
h
)
= a(.− x0, .− ξ0)Weyl(

√
hx,

√
hDx)

the above correspondence gives

|Ep(ξ)〉〈Ep(ξ)| = γWeyl
ξ with γξ(z) = 2de−

|z−ξ|2pZ
ε/2 .
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Hence the usual finite dimensional relation between the Weyl and Anti-Wick quan-
tization now reads (after tensorization with IΓs(p⊥Z ))

bA−Wick =

⎛

⎜⎝b ∗
pZ

e−
|z|2pZ

ε/2

(πε/2)dimpZ

⎞

⎟⎠

Weyl

(29)

=
∫

pZ

F [b](ξ) W (
√

2πξ) e−
επ2
2 |ξ|2pZ Lp(dξ) , (30)

for any b ∈ S (pZ ) by setting

b ∗
pZ

γ(z) =
∫

pZ

b(z)γ(z − z′) Lp(dz′) .

From (29), the Anti-Wick quantization can be extended to symbols in S(1, |dz|2)
with the next properties (see [29]).

Proposition 3.6. Fix p ∈ P. Let b ∈ SpZ (1, |dz|2), the following statements hold
true:

(i) If b ≥ 0 then bA−Wick ≥ 0.
(ii)

∣∣bA−Wick
∣∣
L (H )

≤ |b|L∞(pZ ).
(iii) The comparison with the Weyl quantization is given by (29) with the estimate

∣∣bA−Wick − bWeyl
∣∣
L (H )

≤ Cdpkd
(b)ε

where the constant Cd > 0 and the seminorm pkd
depend essentially on the

dimension d = dimpZ .

A variation of it holds when b ∈ F−1 (Mb(pZ )), when Mb(pZ ) denotes the
set of bounded (Radon) measures on pZ and comes directly from (30).

Proposition 3.7. For any p ∈ P and any b ∈ F−1 (Mb(pZ )), the Anti-Wick and
Weyl observables are asymptotically the same:

lim
ε→0

∣∣bA−Wick − bWeyl
∣∣
L (H )

= 0 .

Proof. Recall that bWeyl can be defined for any b ∈ S ′(pZ ) as a continuous
operator from ∩k∈N D(Nk

pZ ) ∼ S (Rd) to ∪k∈N D(Nk
pZ )∗ ∼ S ′(Rd), with d =

dimpZ and (30) is still valid for such a symbol. Assume F b = ν ∈ Mb(pZ ). The
identity

〈
ψ , (bWeyl − bA−Wick)ϕ

〉
=

∫

pZ

〈
ψ , W (

√
2πξ)ϕ

〉 (
1− e−

επ2
2 |ξ|2

)
dν(ξ)

holds for any ϕ,ψ ∈ ∩k∈N D(Nk
pZ ). This implies

∣∣bWeyl − bA−Wick
∣∣
L (H )

≤
∫

pZ

(
1− e−

επ2
2 |ξ|2

)
d |ν| (ξ) ε→0→ 0 . �
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3.5. Weyl quantization and specific Wick observables

In finite dimension, that is for any fixed p ∈ P, polynomially bounded symbols can
be introduced after considering the class of symbols ∪s∈R SpZ (〈z〉s, gp) where gp is
either the metric |dz|2 or |dz|2

〈z〉2 on pZ . According to Proposition 3.2 it is an algebra
with the Moyal product, #ε/2, associated with the composition of Weyl quantized
observable with a complete asymptotic expansion of b1#ε/2b2. For any m, q ∈ N,
the finite dimensional space Pm,q(pZ ) of (m, q)-homogeneous polynomials on Z
is contained in SpZ (〈z〉m+q, gp). The comparison between the Weyl and Wick
quantizations is symmetric to (29) (see [6]):

∀b ∈ ⊕alg
m,qPm,q(pZ ) , bWeyl

pZ =

⎛

⎜⎝b ∗
pZ

e−
|z|2pZ

ε/2

(πε/2)dimpZ

⎞

⎟⎠

Wick

.

For polynomials the deconvolution is possible and we get for any m, q ∈ N and
any b ∈Pm,q(pZ )

ε−1(bWick
pZ − bWeyl

pZ ) = cpZ (ε)Weyl

where the symbol c(ε) equals

c(ε) = ε−1

⎡

⎢⎣

⎛

⎜⎝b ∗
pZ

e
|z|2pZ

ε/2

(πε/2)dimpZ

⎞

⎟⎠− b

⎤

⎥⎦

and is uniformly bounded in SpZ (〈z〉m+q−2, gp) w.r.t ε ∈ (0, ε).
The space Pm,q(pZ ) is identified with a subspace of Pm,q(Z ) and even of

any Pr
m,q(Z ) for any r ∈ [1,+∞] with

∀b ∈Pm,q(pZ ) , ∀z ∈ Z , b(z) = b(pz + p⊥z) = b(pz)

b̃ = p⊗q ◦ b̃ ◦ p⊗m = Γs(p)b̃Γs(p) .

After tensoring the finite dimensional comparison with IΓs(p⊥Z ), we have proved

Proposition 3.8. For any p ∈ P, any m, q ∈ N, the class of symbols Pm,q(pZ )
is contained in P1

m,q(Z ) ∩SpZ (〈z〉m+q, gp). Moreover the operator ε−1(bWick −
bWeyl) can be written cWeyl

ε with cε uniformly bounded in SpZ (〈z〉m+q−2, gp) w.r.t
ε ∈ (0, ε). (The metric gp can be either |dz|2 or |dz|2

〈z〉2 on pZ .)

4. Coherent and product states

We distinguish the coherent states E(z) = W (
√

2
iε z)Ω (resp. the projector

|E(z)〉〈E(z)|) from the product or Hermite state z⊗k (resp. the projector
|z⊗k〉〈z⊗k|). Although they are intimately related, the asymptotics of coherent
state E(z) tested on Wick, Weyl or Anti-Wick observables encoded exactly the
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geometry of the phase-space Z , while the asymptotics of the product states z⊗k,
kε → 0 keeps track of the gauge invariance

∀θ ∈ [0, 2π] , |(eiθz)⊗k〉〈(eiθz)⊗k| = |z⊗k〉〈z⊗k|
with variations according to the quantization.

Proposition 4.1. Fix z, ξ ∈ Z with |z| = 1.

(i) The convergence

lim
ε→0
kε→1

V [z⊗k, z⊗k−m](ξ) =
1
2π

∫ 2π

0

e2πiS(zθ,ξ)e−imθ dθ ,

holds for any fixed m ∈ N by setting zθ = eiθz .
(ii) The coherent state E(z) = W (

√
2

iε z)Ω satisfies

V
[
E(z), E(z)

]
(ξ) = e2πiS(ξ,z)e−

ε|ξ|2
2

ε→0→ e2πiS(ξ,z) .

Proof. i) Set j = k −m and compute V [z⊗k, z⊗j ](ξ) with ξ = ξ′
√

2π
according to

Proposition 3.5:

V [z⊗k, z⊗j ]
(

ξ′√
2π

)
= (i)m

√
j!
k!

L
(m)
j

(ε

2
|〈ξ′, z〉|2

) (ε

2

)m/2

〈ξ′, z〉me−ε|ξ′|2/4

= (i)m
∞∑

s=0

(−1)s

s!(s + m)!
1[0,j](s)

√
j!

(j − s)!ks

√
k!

(j − s)!km+s

(
εk

2

) 2s+m
2

|〈ξ′, z〉|2s〈ξ′, z〉me−ε|ξ′|2/4 .

The bounds (εk) ≤ C and
∑∞

s=0
Cs

s!(s+m)! < ∞ imply

lim
ε→0
kε→1

V [z⊗k, z⊗j ]
(

ξ′√
2π

)
= (i)m

∞∑

s=0

(−1)s

2
2s+m

2 s!(s + m)!
|〈ξ′, z〉|2s〈ξ′, z〉m ,

owing to Lebesgue’s theorem. A simple series expansion et =
∑∞

k=0
tk

k! for t =
i
√

2S(zθ, ξ′) gives

1
2π

∫ 2π

0

ei
√

2S(zθ,ξ′)e−imθ dθ = (i)m
∞∑

s=0

(−1)s

2
2s+m

2 s!(s + m)!
|〈ξ′, z〉|2s〈ξ′, z〉m.

ii) is a straightforward consequence of (22). �

The next result specifies the similarity and the differences between the prod-
uct states and the coherent states in the mean-field or semiclassical limit.

Theorem 4.2. Let z ∈ Z and m ∈ N be fixed with |z| = 1 and set zθ = eiθz for
θ ∈ [0, 2π]. The next limits exist as ε → 0, kε → 1.
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(i) For b ∈ Scyl(Z ),

lim
ε→0
kε→1

〈z⊗k−m, bWeyl z⊗k〉 = lim
ε→0
kε→1

〈z⊗k−m, bA−Wick z⊗k〉 =
1
2π

∫ 2π

0

b(zθ)e−imθdθ .

Meanwhile the coherent state E(z) satisfies

lim
ε→0

〈
E(z) , bWeylE(z)

〉
= lim

ε→0

〈
E(z) , bA−WickE(z)

〉
= b(z) .

(ii) For b ∈Pp,q(Z ), with p, q ∈ N fixed,

lim
ε→0
kε→1

〈z⊗k−m, bWick z⊗k〉 = δp−q,m b(z) =
1
2π

∫ 2π

0

b(zθ)e−imθdθ .

Meanwhile the coherent state E(z) satisfies

∀ε > 0 ,
〈
E(z) , bWickE(z)

〉
= b(z) .

Proof. Set j = k −m, with m ∈ N fixed.
For (i), fix b ∈ Scyl(Z ). The definition of bWeyl in (23), says

〈z⊗j , bWeyl z⊗k〉 =
∫

pZ

F [b](ξ)
〈
z⊗j ,W (

√
2πξ) z⊗k

〉
Lp(dξ)

=
∫

pZ

F [b](ξ) V [z⊗k, z⊗j ](ξ) Lp(dξ) .

Since F [b] ∈ S (pZ ) and V [z⊗k, z⊗j ](ξ) converges pointwise according to Propo-
sition 4.1, Lebesgue’s theorem yields

lim
ε→0
kε→1

〈z⊗j , bWeyl z⊗k〉 =
∫

pZ

F [b](ξ)
(

1
2π

∫ 2π

0

ei2πS(zθ,ξ)e−imθ dθ

)
Lp(dξ)

=
1
2π

∫ 2π

0

b(zθ)e−imθ dθ .

The limit with Anti-Wick observables is a consequence of the formula (30):

〈z⊗j , bA−Wick z⊗k〉 =
∫

pZ

F [b](ξ)
〈
z⊗j ,W (

√
2πξ)z⊗k

〉
e−

επ2
2 |ξ|2pZ Lp(dξ) .

The statement about the coherent state E(z) is even simpler by referring to Propo-
sition 4.1 (ii).

Let us prove (ii). The statement (ii) of Proposition 2.4 gives

〈z⊗j , bWick z⊗k〉 = δ+
k−p,j−q

√
k!j!

(k − p)!(j − q)!
ε

p+q
2 〈z⊗q, bz⊗p〉

= δm,p−q

√
k!

(k − p)!kp

√
j!

(j − q)!kq
(εk)p+q 〈z⊗q, bz⊗p〉 .

We conclude again with
√

k!
(k−p)!kp

√
j!

(j−q)!kq → 1 as k →∞. �
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5. An example of a dynamical mean-field limit

In order to illustrate the general presentation, the standard example of the mean
field derivation of the Hartree equation from the non relativistic Hamiltonian of
bosons with a quartic interaction is considered. Two standard methods are consid-
ered: The coherent state method (see [24,32] or [12] for a rapid presentation) also
known as Hepp method and the propagation of chaos approach with a truncated
Dyson expansion according to [16,17,19,20,45].

Consider Z = L2
C
(Rd, dx) and take V ∈ L∞

R
(Rd, dx) such that V (−x) =

V (x). The polynomial Q(z) = 〈z⊗2 , Q̃z⊗2〉 is associated with the operator Q̃ ∈
L (

⊗2 Z ) defined by

Q̃ : ⊗2Z → ⊗2Z ,

u(x1)w(x2) → 1
2
V (x1 − x2)u(x1)w(x2) .

The Hamiltonian is defined as

Hε = dΓ(−Δ) + QWick ,

where −Δ is the Laplacian of R
d, while H0

ε denotes the free Hamiltonian dΓ(−Δ).
It is well known that Hε is a self-adjoint operator on H (see [24]) and the quantum
time-evolution group is denoted by Uε(t) = e−i t

ε Hε while U0
ε (t) = e−i t

ε H0 =
Γ(eitΔ) stands for the free dynamics. Although the Wick quantization of non
continuous polynomials has not been introduced here, this Hamiltonian appears
as the Wick quantization of the energy functional

h(z) =
∫

Rd

|∇z|2 dx + Q(z) . (31)

It is also well known that the mean field limit is the nonlinear dynamics issued
from the Hartree equation

i∂tzt = −Δzt + V ∗ |zt|2zt = ∂zh(zt) (32)

with initial condition z0 = z ∈ Z .
An important property of the dynamical groups Uε(t) and U0

ε (t) is that they
preserve the number

Uε(t)∗NUε(t) = N , [Hε, N ] = [H0
ε , N ] = [QWick, N ] = 0 .

Remark 5.1. All the results of this section can be easily adapted with a self-
adjoint operator A on Z and a polynomial Q(z) ∈ ⊕alg

n∈N
Pn,n(Z ). Nevertheless

it is better to stick to this concrete presentation which fits better with a widely
studied problem.

5.1. Propagation of squeezed coherent states (Hepp method)

In finite dimension it is nothing but checking the propagation of gaussian wave
packets. Although it works only for some specific states it is a direct and very
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flexible method. Moreover it agrees very well with the phase-space geometric intu-
ition. Extensions with more singular potentials or about the long time behaviour
have been carried out in [24,32].

Proposition 5.2. For any z0 ∈ Z , the estimate
∣∣∣∣∣e

−i t
ε HεE(z0)− ei

ω(t)
ε W

(√
2

iε
zt

)
U2(t, 0)Ω

∣∣∣∣∣
H

≤ C eC|V |L∞ 〈z0〉2(|t|+1) ε1/2

holds with

i∂tzt = −Δzt + (V ∗ |zt|2)zt , zt=0 = z0 (33)

ω(t) =
∫ t

0

Q(zs) ds (34)

iε∂tU2(t, 0) =
[
dΓ(−Δ) + Q2(t)Wick

]
U2(t, 0) , U2(0, 0) = I , (35)

Q2(t, z) =
1
2

[〈
∂2

zQ(zt) , z⊗2
〉

+
〈
z⊗2 , ∂2

zQ(zt)
〉

+ 2
〈
z , ∂z∂zQ(zt)z

〉]
, (36)

〈
∂2

zQ(zt) , z⊗2
〉

= 2
〈
Q̃ z⊗2

t , z⊗2
〉
∈ P2,0(Z ) ,

〈
z , ∂z∂zQ(zt)z

〉
= 4

〈
z ∨ zt , Q̃ z ∨ zt

〉
∈ P1,1(Z ) .

Proof. This proposition says that the evolution of a coherent state is well described
after applying a time dependent (real) affine Bogoliubov transformation like the
ones considered in Proposition 2.12.

It is sufficient that

ei t
ε Hεei

ω(t)
ε W

(√
2

iε
zt

)
U2(t, 0)Ω

= ei t
ε HεΓ(eitΔ)ei

ω(t)
ε W

(√
2

iε
e−itΔzt

)
Γ(e−itΔ)U2(t, 0)Ω

remains close enough to E(z0) . The quantities Ûε(0, t) = ei t
ε HεΓ(eitΔ), Û2(t, 0) =

Γ(e−itΔ)U2(t, 0) and ẑt = e−itΔzt solve the differential equations

iε∂tÛε(0, t) = −Ûε(0, t)Γ(e−itΔ)QWickΓ(eitΔ) = −Ûε(t, 0)Q̂(t)Wick , (37)

iε∂tÛ2(t, 0) = Γ(e−itΔ)Q2(t)WickΓ(eitΔ)Û2(t, 0) = Q̂2(t)WickÛ2(t, 0) , (38)

i∂tẑt = e−itΔ(V ∗ |eitΔẑt|2)eitΔẑt = ∂zQ̂(t, ẑt) , ẑ0 = z0 , (39)

after setting

Q̂(t, z) = Q(eitΔz) and Q̂2(t, z) = Q2(t, eitΔz) . (40)
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The main properties of Û2(t, 0) are derived in [24, Proposition 4.1] and in particular
we know that Û2(t, 0)Ω belongs to the domain of the closure of any bWick with
b ∈ ⊕alg

p,q∈N
Pp,q(Z ).

The differentiation of the Weyl relation (3) on Hfin says

iε∂tW

(√
2

iε
ẑt

)
=

[
−Re〈ẑt , i∂tẑt〉+

√
2Φ(i∂tẑt)

]
W

(√
2

iε
ẑt

)

=
[
−Re

〈
ẑt , ∂zQ̂(t, ẑt)

〉
+ a∗(∂zQ̂t(ẑt)

)
+ a

(
∂zQ̂t(ẑt)

)]
W

(√
2

iε
ẑt

)

=
[
−Re

〈
ẑt , ∂zQ̂(t, ẑt)

〉
+ 2Re

〈
z , ∂zQ̂t(ẑt)

〉Wick
]
W

(√
2

iε
ẑt

)
.

The translation property (iii) of Proposition 2.10 then leads to

ei t
ε Hεei

ω(t)
ε W

(√
2

iε
zt

)
U2(t, 0)Ω− E(z0)

=
1
iε

∫ t

0

Ûε(0, s)ei
ω(s)

ε W

(√
2

iε
ẑs

)
A (s)WickÛ2(s, 0)Ω ds

after testing both sides on Hfin and setting

A (s, z) = −Q̂(s, z + ẑs)− ω′(s) + Re
〈
ẑs , ∂zQ̂(s, ẑs)

〉
+ 2Re

〈
z , ∂zQ̂s(ẑs)

〉

+ Q̂2(s, z)

= −Q̂(s, z + ẑs) + Q̂(ẑs) +
〈
z , ∂zQ̂s(ẑs)

〉
+

〈
∂zQ̂s(ẑs) , z

〉
+ Q̂2(s, z) .

The last equality is given by our choice of ω(t) in (34). It suffices to find a uniform
estimate w.r.t s ∈ [0, t] of the squared norm

∣∣∣ε−1A (s)WickÛ2(s, 0)Ω
∣∣∣
2

H

= ε−2
〈
Ω , Û2(0, s)A (s)Wick,∗A (s)WickÛ2(s, 0)Ω

〉
. (41)

The important point is that the symbol A (s) vanishes at the second order at
z = 0. More precisely it can be written

A (s) = A1,2(s) + A2,1(s) + A2,2(s) with

Ap,q(s) ∈ Pp,q(Z ) and
∣∣∣Ãp,q(s)

∣∣∣
L (

∨p Z ,
∨q Z )

≤ Cp,q |V |L∞ |z0|4−p−q
.
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Owing to Proposition 2.7 and Lemma 2.6 the operator A (s)Wick,∗A Wick(s) takes
the form

A (s)Wick,∗A (s)Wick =
2∑

k=0

εk
∑

6−2k≤p+q≤8

Bk,p,q(s)Wick with

∣∣∣B̃k,p,q(s)
∣∣∣
L (

∨p Z ,
∨q Z )

≤ Ck,p,q |V |2L∞ 〈z0〉2 .

The estimate of every term

εk−2
〈
Ω , Û2(0, s)Bk,p,q(s)WickÛ2(s, 0)Ω

〉
, p + q ≥ 6− 2k

is given by the Lemma 5.3 below and yields the result. �

Lemma 5.3. Consider the time dependent Wick operator Q̂2 defined by (36) (40)
and parametrized by z0 ∈ Z . Consider the associated unitary operator Û2(s, 0)
defined by (38). For any p, q ∈ N, there exists a constant Cp,q such that the estimate
∣∣∣
〈
Ω , Û2(0, s)bWickÛ2(s, 0)Ω

〉∣∣∣ ≤ Cp,q eCp,q|V |L∞ 〈z0〉2(|s|+1)
∣∣∣b̃

∣∣∣
L (

∨p Z ,
∨q Z )

ε
p+q
2

holds for any b ∈ Pp,q(Z ) and any s ∈ R .

Proof. By introducing an anti-unitary operator Jz = z, the R-linear operator
∂zQ̂2(t) can be written

∂zQ̂2(t)z = R(t)z + R2(t)z .

The definitions (36) (40) ensure that R(t) is a bounded operator strongly contin-
uous with respect to t ∈ R and that R2(t) is a Hilbert–Schmidt operator which
depends continuously on t ∈ R in the Hilbert–Schmidt norm. Moreover the follow-
ing uniform estimates hold

|R(t)|L (Z ) ≤ 2 |V |L∞ |z0|2 , |R2(t)|L 2(Z ) ≤ 2 |V |L∞ |z0|2 .

Hence the equation

i∂tΦ2 = ∂zQ̂2(t)Φ2 = R(t)Φ2 + R2(t)JΦ2

defines a dynamical system of bounded R-linear operators with the estimate

|Φ2(t2, t1)|LR(Z ) ≤ e4|t2−t1||V |L∞ |z0|2 .

More precisely the Duhamel formula

Φ2(t2, t1) = Te−i
∫ t2

t1
R(s) ds − i

∫ t2

t1

Te−i
∫ t2

t R(s) dsR2(t)JΦ2(t, t1) dt

implies that the R-linear operator Φ2(t2, t1) can be written

Φ2(t2, t1) = B(t2, t1) + B2(t2, t1)J with

|B(t2, t1)|L (Z )+|B2(t2, t1)|L 2(Z ) ≤ C |V |L∞ |z0|2 (|t2−t1|+1)eC|t2−t1||V |L∞ |z0|2 .
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According to Proposition 2.12, for any c ∈ ⊕p+q=mPp,q(Z ) and any t ∈ R, the
polynomial c(t, z) = c(Φ2(0, t)z) belongs to ⊕p+q=mPp,q(Z ) with

∑

p+q=m

|∂q
z∂p

z c(t, z)|L (
∨p Z ,

∨q Z )

≤ C1
meC1

m|V |L∞ 〈z0〉2(|t|+1)
∑

p+q=m

|∂q
z∂p

z c(z)|L (
∨p Z ,

∨q Z ) .

Applying the characteristic method, that is differentiating c(z) = c(t,Φ2(t, 0)z),
shows that c(z, t) solves the equation

i∂tc(t, z) + ∂zc(t, z).∂zQ̂2(t, z)− ∂zQ̂2(t, z)∂zc(t, z) = 0 .

Thanks to the Wick calculus in Proposition 2.7 and the fact that Û2(t, 0)Ω ∈
∩k∈ND(Nk) (see [24, Proposition 4.1]), this leads to

i∂tÛ2(0, t)c(t)WickÛ2(t, 0)Ω

= Û2(0, t)
(
ε−1

[
cWick(t), Q̂2(t)Wick

]
+ i∂tc(t)Wick

)
Û2(t, 0)Ω

= Û2(0, t)
ε

2

({
c(t), Q̂2(t)

}(2)
)Wick

Û2(t, 0)Ω .

Take b ∈ ⊕p+q=m0Pp,q(Z ) and apply this result with c defined by c(s, z) = b(z),
which means

c
(
Φ2(0, s)z

)
= c(s, z) = b(z) or

c(z) = b
(
Φ2(s, 0)z

)
∈ ⊕p+q=m0Pp,q(Z ) with

∑

p+q=m0

|∂q
z∂p

z c(z)|L (
∨p Z ,

∨q Z ) ≤ C1
m0

eC1
m0

|V |L∞ 〈z0〉2(|s|+1)

×
∑

p+q=m0

|∂q
z∂p

z b(z)|L (
∨p Z ,

∨q Z ) .

This leads to
〈
Ω , Û2(0, s)bWickÛ2(s, 0)Ω

〉

=
〈
Ω , cWickΩ

〉
+

∫ s

0

〈
Ω , ∂t

(
Û2(0, t)c(t)WickÛ2(t, 0)

)
Ω

〉
dt

= − iε

2

∫ s

0

〈
Ω , Û2(0, t)

({
c(t), Q̂2(t)

}(2)
)Wick

Û2(t, 0)Ω
〉

dt .
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By noticing that the symbol {c(t), Q̂2(t)} vanishes when m0 < 2 or belongs to
⊕p+q=m0−2Pp,q(Z ) with

∑

p+q=m0−2

∣∣∣∂q
z∂p

z

{
c(t), Q̂2(t)

}(2)
∣∣∣
L (

∨p Z ,
∨q Z )

≤ C |V |L∞ |z0|2
∑

p+q=m0

|∂q
z∂p

z c(t)|L (
∨p Z ,

∨q Z )

≤ C |V |L∞ |z0|2 C1
m0

eC1
m0

|V |L∞ 〈z0〉2(2|s|+1)
∑

p+q=m0

|∂q
z∂p

z b|L (
∨p Z ,

∨q Z )

the result is proved by induction on m0 and by using xn ≤ n!ex for x > 0. �

5.2. Truncated Dyson expansion

We focus now on the propagation of chaos point of view which has been considered
by several authors in [4,16,17,20]. In the bosonic setting Hermite states tested on
some Wick observable is exactly the BBGKY hierarchy. For example the reduced
one particle density matrix can be defined as Tr[�1A] = Tr[�dΓ(A)] = Tr[�A Wick]
with A (z) = 〈z , Az〉 . While reproducing the Dyson expansion analysis of [20], we
check here that a full asymptotic expansion can be written, when Wick observables
are tested after the suitable number truncation.

The strategy of the proof in [20] relies on an analysis of the Schwinger–Dyson
expansion of a time evolved observable Uε(t)∗O Uε(t) given by

Uε(t)∗O Uε(t)

= Ot +
∞∑

n=1

(
i

ε

)n ∫ t

0

dt1 · · ·
∫ tn−1

0

dtn
[
QWick

tn
, · · · [QWick

t1 ,Ot] · · ·
]

(42)

where Ot = U0
ε (t)∗O U0

ε (t), QWick
s = U0

ε (s)∗QWick U0
ε (s). The commutation

relation in Proposition 2.3 (iii) yields

QWick
s =

(〈
(eisΔz)⊗2, Q(eisΔz)⊗2

〉)Wick
,

or shortly Qs(z) = Q(eisΔz) and we shall set more generally for b ∈Pp,q(Z ) and
s ∈ R

bs ∈Pp,q(Z ) : ∀z ∈ Z , bs(z) = b(eisΔz) .

Although the convergence of the series can be proved as an operator acting on∨k Z , with k ∈ N fixed, the ε-asymptotic analysis is done with its truncated
version

Uε(t)∗OUε(t) = Ot +
�−1∑

n=1

(
i

ε

)n ∫ t

0

dt1 · · ·
∫ tn−1

0

dtn
[
QWick

tn
, · · · [QWick

t1 ,Ot] · · ·
]

+
(

i

ε

)� ∫ t

0

dt1 · · ·
∫ t�−1

0

dt� Uε(t�)∗U0
ε (t�)

[
QWick

t�
, · · ·

· · · [QWick
t1 ,Ot] · · ·

]
U0

ε (t�)∗Uε(t�) . (43)

The Poisson brackets analogue of the multicommutators will be necessary.
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Definition 5.4. For n, r ∈ N, r ≤ n and any fixed b ∈ Pp,q(Z ), the polynomial
C

(n)
r (t1, . . . , tn) is defined by

C(n)
r (tn, . . . , t1, t)

=
1
2r

∑

�{i: εi=2}=r

{
Qtn

, . . . , {Qt1 , bt }(ε1) · · ·
}(εn)

︸ ︷︷ ︸
εi∈{1,2}

∈ Pp−r+n,q−r+n(Z ) , (44)

and C
(n)
r (t1, . . . , tn, t, z) denotes its values at z ∈ Z while C̃

(n)
r (t1, . . . , tn, t) or

simply C̃
(n)
r denotes the associated operator according to Definition 2.1 .

We shall prove.

Theorem 5.5. Fix p, q ∈ N and assume b ∈ Pp,q(Z ). Then the asymptotic expan-
sion

Uε(t)∗bWickUε(t) =
�−1∑

r=0

εr
∞∑

n=0

in
∫ t

0

dt1 · · ·
∫ tn−1

0

dtn

[
C(n)

r (tn, . . . , t1, t)
]Wick

+ ε�R�(ε, t)

holds for any 	 ∈ N and any δ > 0 in L (
∨k Z ,

∨k−p+q Z ) with the uniform
estimate

|R�(ε, t)|L (
∨k Z ,

∨k−p+q Z ) ≤ C�,δ

when kε ≤ 1 + δ/2 and 4(1 + 2δ)|t| |V |L∞ ≤ 1 .

A particular case takes a more explicit form.

Theorem 5.6. Take b ∈ Pp,q(Z ). Let z ∈ Z be such that |z| = 1 and call zt the
solution to (32) with z0 = z.

(i) Then the expansion

〈
z⊗k−m, Uε(t)∗bWickUε(t) z⊗k

〉
= δp−q,m

[
�−1∑

r=0

εr β(r)(t, z, k, ε) + Ot(ε�)

]
, (45)

holds as ε → 0, kε → 1 by setting

β(0)(t, z, k, ε) = b(zt),

β(r)(t, z, k, ε) =
k−p+r∑

n=r

in
√

k!(k −m)! εp+q+2(n−r)

(k − (p + n− r))!

∫ t

0

dt1 · · ·

· · ·
∫ tn−1

0

dtn C(n)
r (tn, . . . , t1, t; z) , (46)

and as soon as 4|t| |V |L∞ < 1 .
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(ii) More generally the limit

lim
ε→0,
kε→1

〈
z⊗k−m, Uε(t)∗bWickUε(t) z⊗k

〉
= δp−q,m b(zt)

holds for all times t ∈ R.

Corollary 5.7. In the specific case m = 0, q = p, the expansion (45) takes the form

〈
z⊗k, Uε(t)∗bWickUε(t) z⊗k

〉
=

�−1∑

s=0

εs
∞∑

n=0

in
∫ t

0

dt1 · · ·
∫ tn−1

0

dtn

⎡

⎣
s∑

j=0

αs−j,n
j (kε)C(n)

s−j(tn, . . . , t1, t; z)

⎤

⎦ + O(ε�) ,

where the coefficients αr,n
j (κ) are polynomials in κ given by

p+n−r−1∑

j=0

αr,n
j (κ)εj = κ(κ− ε)(κ− 2ε) · · ·

(
κ− (p + n− r − 1)ε

)
,

and the convention that αr,n
j = 0 when j ≥ (p + n− r) or r > n.

Proof. We are considering the particular case p = q, m = 0. Setting κ = kε =
(k −m)ε gives:

k!εp+(n−r)

(k − (p + n− r))!
= κ(κ− ε)(κ− 2ε) · · ·

(
κ− (p + n− r − 1)ε

)
.

Putting together the terms of order εs, s less than 	−1 in Theorem 5.5 (ii), yields
the result. �

Before proving Theorem 5.5 and Theorem 5.6, let us collect some technical
preliminaries.

Lemma 5.8. For b ∈ Pp,q(Z ) the identity

1
εn

[
QWick

tn
, · · · , [QWick

t1 , bWick
t ]

]
=

n∑

r=0

εr
(
C(n)

r (tn, . . . , t1, t)
)Wick

,

holds with the symbols C
(n)
r (t1, . . . , tn, t) defined according to (44) in Definition 5.4.

Proof. Proposition 2.7 provides the induction formula

C(n)
r = {Qtn

, C(n−1)
r }+

1
2
{Qtn

, C
(n−1)
r−1 }(2) , (47)

with C
(l)
r = 0 if l < r or r < 0. In particular, we get

C
(n)
0 =

{
Qtn

, . . . , {Qt1 , bt}
}

.

A simple iteration of (47) yields the result. �
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Lemma 5.9. Let b belong to Pp,q(Z ).

(i) The estimate

∣∣∣Ξ̃1

∣∣∣
L (

∨p+1 Z ,
∨q+1 Z )

≤ (p + q) |V |L∞ |b|L (
∨p Z ,

∨q Z ) ,

holds by setting Ξ̃1 = 1
(p+1)!

1
(q+1)!∂

p+1
z ∂q+1

z̄ {Qs, bt}(1)∈L (
∨p+1 Z ,

∨q+1 Z ).
(ii) Similarly, the inequality

∣∣∣Ξ̃2

∣∣∣
L (

∨p Z ,
∨q Z )

≤
[
p(p− 1) + q(q − 1)

]
|V |L∞ |b|L (

∨p Z ,
∨q Z )

holds with Ξ̃2 = 1
p!

1
q!∂

p
z∂q

z̄{Qs, bt}(2) .

(iii) For any n ∈ N and r ∈ {0, 1, . . . , n}, the operator C̃
(n)
r associated with the

symbol C
(n)
r (tn, . . . , t1, t) ∈ Pp+n−r,q+n−r(Z ) according to Definition 5.4

satisfies

∣∣∣∣C̃
(n)
r

∣∣∣∣
L (

∨p+n−r Z ,
∨q+n−r Z )

≤ 2n−rCr
n (p + n− r)2r (p + n− r − 1)!

(p− 1)!
|V |nL∞ |b|L (

∨p Z ,
∨q Z ) ,

when p ≥ q with a similar expression when q ≥ p (replace (p + n − r, p − 1)
with (q + n− r, q − 1)) .

Proof. The statements (i) and (ii) are particular cases of Lemma 2.6. The estimate
in (iii) is a consequence of (i)(ii) and the definition (44). �

Proof of Theorem 5.5. Set j = k−p+q. Since Uε(t) and U0
ε (t) preserve the number

like QWick
t the equality

Uε(t)∗bWickUε(t)

=
�−1∑

n=0

(
i

ε

)n ∫ t

0

dt1 · · ·
∫ tn−1

0

dtn
[
QWick

tn
, · · · [QWick

t1 , bWick
t ] · · ·

]

+
(

i

ε

)� ∫ t

0

dt1 · · ·
∫ t�−1

0

dt� Uε(t�)∗U0
ε (t�)

[
QWick

t�
, · · ·

· · · [QWick
t1 , bWick

t ] · · ·
]
U0

ε (t�)∗Uε(t�) ,
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derived from (43) holds in L (
∨k Z ,

∨j Z ). Then Lemma 5.8 implies

Uε(t)∗bWickUε(t)

=
�−1∑

n=0

in
∫ t

0

dt1 · · ·
∫ tn−1

0

dtn

n∑

r=0

εr
[
C(n)

r (tn, . . . , t1, t)
]Wick

(48)

+ i�
∫ t

0

dt1 · · ·
∫ t�−1

0

dt� Uε(t�)∗U0
ε (t�)ε�

[
C

(�)
� (t�, . . . , t1, t)

]Wick

U0
ε (t�)∗Uε(t�)

(49)

+ i�
∫ t

0

dt1 · · ·
∫ t�−1

0

dt� Uε(t�)∗U0
ε (t�)

�−1∑

r=0

εr
[
C(�)

r (t�, . . . , t1, t)
]Wick

U0
ε (t�)∗Uε(t�) .

(50)

Keep untouched the part (48)–(49) and iterate the Dyson series on the third
term (50). While doing so, use the formula

[
QWick

tn+1

ε
,

�−1∑

r=0

εr
[
C(n)

r (tn, . . . , t1, t)
]Wick

]

=
�−1∑

r=0

εr
[
C(n+1)

r (tn+1, . . . , t1, t)
]Wick

+
ε�

2

[{
Qtn+1 , C

(n)
� (tn+1, . . . , t1, t)

}(2)
]Wick

, (51)

inductively for n = 	, 	 + 1, . . . , M − 1. After M − 	 steps, collecting the factors of
ε� yields

Uε(t)∗bWickUε(t)

=
M−1∑

n=0

in
∫ t

0

dt1 · · ·
∫ tn−1

0

dtn

min(�−1,n)∑

r=0

εr
[
C(n)

r (tn, . . . , t1, t)
]Wick

(52)

+
M∑

n=�

in
∫ t

0

dt1 · · ·
∫ tn−1

0

dtn Uε(tn)∗U0
ε (tn)

ε�

2
(53)

×
[{

Qtn
, C

(n−1)
�−1 (tn−1, . . . , t1, t)

}(2)
]Wick

U0
ε (tn)∗Uε(tn)

+ iM
∫ t

0

dt1 · · ·
∫ tM−1

0

dtM Uε(tM )∗U0
ε (tM ) (54)

×
�−1∑

r=0

εr
[
C(M)

r (tM , . . . , t1, t)
]Wick

U0
ε (tM )∗Uε(tM ) .
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Assume that for δ > 0 there exists a constant Cδ such that

∞∑

n=�

(1 + δ)n
�∑

r=0

∫ t

0

dt1 · · ·

· · ·
∫ tn−1

0

dtn

∣∣∣∣C̃
(n)
r (tn, . . . , t1, t)

∣∣∣∣
L (

∨p+n−r Z ,
∨q+n−r Z )

< Cδ . (55)

According to Lemma 2.5, the first term (52) of (52) (53) (54) provides in
Uε(t)∗bWickUε(t)

∣∣∨k Z
the partial sum of a convergent series in L (

∨k Z ,
∨k−p+q Z ) when kε ≤ 1 + δ

2 . With the same argument the remainder term (54)
vanishes as M → ∞ and kε ≤ 1 + δ

2 . By referring to Lemma 5.9 (ii) and again
to Lemma 2.5 the factor of ε� in (53) is associated with a series which converges
in L (

∨k Z ,
∨k−p+q Z ) as M →∞ uniformly w.r.t. (k, ε) when kε ≤ 1 + δ

2 . The
sum of the series is simply denoted by R�(t, ε). Let us prove (55) to finish the proof
of (ii). Lemma 2.5 and Lemma 5.9 say

∞∑

n=�

(1 + δ)n
�∑

r=0

∫ t

0

dt1 · · ·
∫ tn−1

0

dtn

∣∣∣∣C̃
(n)
r (tn, . . . , t1, t)

∣∣∣∣
L (

∨p+n−r Z ,
∨q+n−r Z )

≤
∞∑

n=�

(1 + δ)n
�∑

r=0

|tn|
n!

max
tn≤···≤t1≤t

∣∣∣∣C̃
(n)
r (tn, . . . , t1, t)

∣∣∣∣
L (

∨p+n−r Z ,
∨q+n−r Z )

≤
∞∑

n=�

(1 + δ)n
�∑

r=0

2n−r|tn|
n!

Cr
n

[
(p + n− r)(p + n− r − 1)

]r (p + n− r − 1)!
(p− 1)!

× |V |nL∞ |b̃|L (
∨p Z ,

∨q Z )

≤
∞∑

n=�

(1 + δ)n|t|n
�∑

r=0

2n−r

r!
(p + n)2rCp−1

n−r+p−1 |V |nL∞ |b̃|L (
∨p Z ,

∨q Z )

≤ 2p
∞∑

n=�

(1 + δ)n4n|t|n(n + p)2� |V |nL∞ |b̃|L (
∨p Z ,

∨q Z ) .

The last r.h.s. is finite whenever 4|t||V |L∞ < (1 + δ)−1. The condition (1 +
2δ)4|t||V |L∞ ≤ 1 is sufficient and provides the uniform bound Cδ in (55) . �

Proof of Theorem 5.6. Set j = k−m. By Theorem 5.5, the right-hand side of (45)
vanishes when m �= p−q and the convergence of the series in L (

∨k Z ,
∨k−p+q Z )
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combined with Proposition 2.4-ii) implies

〈
z⊗j ,Uε(t)∗bWickUε(t) z⊗k

〉

=
�−1∑

r=0

εr
∞∑

n=0

in

√
k!j! εp+q+2(n−r)

(k − (p + n− r))!(j − (q + n− r))!
δ+
k−(p+n−r), j−(q+n−r)

×
∫ t

0

dt1 · · ·
∫ tn−1

0

dtn C(n)
r (tn, . . . , t1, t; z) + Oδ(ε�) ,

when kε ≤ 1 + δ
2 , for any δ > 0. By considering the limit ε → 0, kε → 1 every

factor
√

k!j! εp+q+2(n−r)

(k − (p + n− r))!(j − (q + n− r))!

converges to 1. Therefore this proves (ii) for small times t such that 4|t||v|L∞ < 1
up to the identification of the first term as b(zt). From our definitions we know

b(zt) =
〈
z⊗q

t , b̃z⊗p
t

〉
= bt(e−isΔzs)

∣∣
s=t

.

By setting ws = e−isΔzs, the quantity b(zt) equals

b(zt) = bt(w0)+
∫ t

0

∂s

[
bt(ws)

]
ds = bt(w0)+

∫ t

0

∂sws.∂zbt(ws)+∂zbt(ws).∂sws ds .

Moreover the equation (32) has the equivalent form with the vector ws = e−isΔzs

and ws

i∂sws = e−isΔ∂zQ(zs) = ∂zQs(ws) − i∂sws = ∂zQs(ws) .

Hence we get

b(zt) = bt(w0) + i

∫ t

0

{Qt1 , bt} (wt1) dt1 .

An induction with w0 = z and the convergence of the series already checked yields

b(zt) =
∞∑

n=0

in
∫ t

0

dt1 · · ·
∫ tn−1

0

dtn C
(n)
0 (tn, . . . , t1, t; z) .

Now let us prove the limit (i) for all times by following the argument in [20,45].
Assume that the result is true for |t| ≤ K

4|V |L∞ . Let s be such that |s| < 1/4|V |L∞ .
The convergence of the series given in Theorem 5.5 and the fact that Uε(t) preserves
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the number gives
〈
z⊗j , Uε(t + s)∗bWickUε(t + s) z⊗k

〉

=
∞∑

n=0

in
n∑

r=0

εr

∫ s

0

ds1 · · ·
∫ sn−1

0

dsn

〈
z⊗j , Uε(t)∗

[
C(n)

r (sn, . . . , s1, s)
]Wick

Uε(t) z⊗k
〉

=
∞∑

n=0

in
∫ s

0

ds1 · · ·
∫ sn−1

0

dsn

〈
z⊗j , Uε(t)∗

[
C

(n)
0 (sn, . . . , s1, s)

]Wick
Uε(t) z⊗k

〉

+ Os(ε) (56)

with an absolutely and uniformly convergent series in the (56) when kε is close
to 1. Hence the limit ε → 0, εk → 1 and the sum

∑∞
n=0 in (56) can be interchanged

when 4|s||V |L∞ < 1. An induction on K = 0, 1, 2 . . . finishes the proof. �

5.3. Coherent states and Wick observables

We show here that information on the propagation of coherent states can be di-
rectly deduced from the results about Hermite states.

Proposition 5.10. For any z0 ∈ Z and any b ∈Pp,q(Z ), the limit

lim
ε→0

〈
Uε(t)E(z0) , bWickUε(t)E(z0)

〉
= b(zt)

holds for any t ∈ R when zt denotes the solution to the Hartree equation (32).

Proof. By symmetry, one can assume m = p − q ≥ 0. Recall that E(z0) =

e−
|z0|2
2ε

∑∞
n=0

ε−n/2
√

n!
z⊗n
0 and start first with |z0| = 1. Since Uε(t) preserves the

number, one gets

〈
Uε(t)E(z0) , bWickUε(t)E(z0)

〉
=

∞∑

n=m

e−ε−1 ε−n

n!
an

(
ε−1

)
with

an

(
ε−1

)
= εm/2

√
n(n− 1) . . . (n−m + 1)

〈
z⊗n−m
0 , Uε(t)∗bWickUε(t)z⊗n

0

〉
.

By Lemma 2.5 the quantity an

(
ε−1

)
satisfies

|an

(
ε−1

)
| ≤ (nε)

p+q+m
2

∣∣∣b̃
∣∣∣
L (

∨p Z ,
∨q Z )

≤ 〈nε〉p
∣∣∣b̃

∣∣∣
L (

∨p Z ,
∨q Z )

.

Hence Lemma A.1 applied here with λ = ε−1 and μ = p reduces the problem to
the proof of

lim
λ→∞

∫

R

a[
√

λs+λ](λ)
e−

s2
2

√
2π

ds .

The uniform estimate
∣∣∣a[

√
λs+λ](λ)

∣∣∣ ≤ Cp

〈
1 +

|s|√
λ

〉p

≤ C ′
p 〈s〉

p

and the pointwise convergence induced by Theorem 5.6 with z = z0, k = [
√

λs+λ]
and ε = λ−1 yields the result.
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For a general |z0| > 0, write

E(z0) = e−
1

2ε′

∞∑

n=0

(ε′)−n/2

√
n!

(z′0)
⊗n = E′(z′0)

with z′0 = z0
|z0| and ε′ = ε

|z0|2 . By replacing the ε-quantization by the ε′-quantiza-
tion, with

bWick,ε′
= |z0|−p−q

bWick for b ∈Pp,q(Z )

Hε = |z0|2dΓε′(−Δ) + |z0|4QWick,ε′
and

(iε∂tu = Hεu) ⇔
(
iε′∂tu = dΓε′(−Δ)u + |z0|2 QWick,ε′

u
)

.

Hence the previous result applied with E′(z′0), |z′0| = 1 and the ε′-quantization
implies

lim
ε→0

〈
Uε(t)E(z0) , bWickUε(t)E(z0)

〉
= |z0|p+q

b(z′t)

where z′t solves

i∂tz
′
t = −Δz′t + |z0|2 (V ∗ |z′t|

2)z′t , z′t=0 = z′0 =
z0

|z0|
.

Since this mean field equation preserves the norm |z′t| like (32) does for |zt|, this
implies

z′t = |z0|−1
zt = |zt|−1

zt and |z0|p+q
b(z′t) = b(zt) . �

Remark 5.11. Another proof can be obtained directly from Proposition 5.2 after
checking uniform number estimates for U2(t, 0)Ω. But working in this direction is
more efficient with the help of Wigner measures.

6. Wigner measures: Definition and first properties

The notion of Wigner (or semiclassical) measures is well established in the finite
dimensional case. We refer the reader to [10, 22, 23, 29, 36, 46] for details. The
extension that we propose here to the infinite dimensional case follows a projective
approach.

6.1. Wigner measures of normal states

Consider the algebra of cylindrical sets Bcyl(Z ) = {X(p,E) = p−1(E), p ∈ P, E ∈
B(pZ )} where B(pZ ) denotes for any p ∈ P the set of Borel subsets of pZ .
A cylindrical measure μ is a mapping defined on Bcyl(Z ) such that:
• μ(Z ) = 1,
• For any p ∈ P, μp(A) = μ(p−1(A)) for A ∈ B(pZ ) defines a probability

measure μp on B(pZ ).
The family of measures {μp}p∈P is often called a weak distribution.

This notion is often introduced within the framework of real Hilbert spaces
(or more generally real topological vector spaces). This makes no difference at this
level. The real structure on Z , namely the real scalar product S, is useful for the
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application of Bochner’s theorem. For any ξ ∈ Z the function z → e−2πi S(z,ξ) is a
cylindrical measurable function and the Fourier transform of μ is well defined by

F [μ](ξ) =
∫

Z

e−2πi S(z,ξ) dμ .

Bochner’s theorem characterizes the Fourier transform of a weak distribution. It
says (see for example [3]) that a function G is the Fourier transform of a weak
distribution if and only if
• G is normalized: G(0) = 1,
• G is of positive type:

∑N
i,j=1 λiλjG(ξi − ξj) ≥ 0,

• For any p ∈ P, the restricted function G|pZ is continuous.
An important point is that Z is a separable Hilbert space. Hence the σ-algebra
generated by the cylindrical sets, that is containing Bcyl(Z ), is nothing but the
Borel σ-algebra, B(Z ), associated with the norm topology on Z . A probability
measure well defined on B(Z ) will be shortly called a probability measure on
Z . The tightness Prokhorov’s criterion (see [42]) has within this setting the next
simple form.

Lemma 6.1 (See [44]). A cylindrical measure μ on Z extends to a probability
measure on Z if and only if for any η > 0 there exists Rη > 0 such that

∀p ∈ P, μ ({z ∈ Z , |pz| ≤ Rη}) ≥ 1− η .

By recalling that for any R > 0 the ball {z ∈ Z : |z| ≤ R} is weakly compact,
this can be reinterpreted by saying that a weak distribution μ extends as a Borel
probability measure if and only if its outer extension is a Radon measure on Z
endowed with the weak topology (see [42]).

Consider a family (ρε)ε∈(0,ε̄) of non negative trace class operators on H such
that Tr[ρε] = 1, or equivalently normal states O → Tr[ρεO] on the space of all
bounded operators L (H ) . An additional number estimate assumption allows to
associate with such a family, Wigner probability measures on Z .

Theorem 6.2. Let (�ε)ε∈(0,ε̄) be a family of normal states on L (H ) parametrized
by ε. Assume Tr[N δρε] ≤ Cδ uniformly w.r.t. ε ∈ (0, ε) for some fixed δ > 0 and
Cδ ∈ (0,+∞). Then for every sequence (εn)n∈N with limn→∞ εn = 0 the exists a
subsequence (εnk

)k∈N and a Borel probability measure μ on Z such that

lim
k→∞

Tr[ρεnk bWeyl] = lim
k→∞

Tr[ρεnk bA−Wick] =
∫

Z

b(z) dμ(z) ,

for all b ∈ ∪p∈P F−1 (Mb(pZ )).
Moreover this probability measure μ satisfies

∫
Z |z|2δ dμ(z) < ∞.

Remark 6.3.
a) By introducing the reduced density matrix �ε

p ∈ L 1(Γs(pZ )) defined for
p ∈ P as a partially traced operator Tr[�ε

pA] = Tr[�ε(A ⊗ IΓs(p⊥Z ))], one
could consider the Husimi function με

p of �ε
p which is its finite dimensional
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Wick symbol. It is known that this makes a weak probability distribution
which admits weak limits after extracting subsequences εnk

→∞. The num-
ber estimate implies in finite dimension that such a limit is a probability
measure. Our results say essentially two things: First after a proper extrac-
tion of subsequences, the family (μp)p∈P makes a weak distribution, i.e. the
convergence can hold simultaneously for all the non countable family p ∈ P.
Secondly the weak distribution is a Borel probability measure.

b) The estimate
∫

Z |z|
2δ

dμ(z) < +∞ will be proved in the more precise form
∫

Z

(
1 + |z|2

)δ
dμ(z) ≤ lim inf

εnk
→∞

Tr
[
�εnk (1 + N)δ

]
≤ C ′

δ < +∞ .

Contrary to the finite dimensional case, the first inequality is not an equality
even when the right-hand side converges. Examples are given in Section 7.4.

c) For a non negative trace-class operator �, the assumption

C ≥ Tr[N δ�] = sup
A ∈ L (H )
0 ≤ A ≤ N δ

Tr[A�] = sup
k∈N

Tr
[
N δ/21[0,k](N)�1[0,k](N)N δ/2

]

= sup
k∈N

Tr
[
�1/21[0,k](N)N δ�1/2

]

implies (1 + N)δ/2�(1 + N)δ/2 ∈ L 1(H ) with a norm estimate.

Reciprocally, assuming
∣∣(1+N)δ/2�(1+N)δ/2

∣∣
L 1 ≤ C implies that the quan-

tity Tr[N δ�] defined as the above supremum is bounded by C. Such an equivalence
is no more true when � ≥ 0 is not assumed and the second version has to be con-
sidered (see Proposition 6.4).

Proof. i) The Proposition 3.7 implies
∣∣Tr

[
�εbWeyl

]
− Tr

[
�εbA−Wick

]∣∣ ≤
∣∣bWeyl − bA−Wick

∣∣ ε→0→ 0 ,

for fixed b ∈ ∪p∈P F−1 (Mb(pZ )). Hence the result is true when it is proved after
considering simply the Anti-Wick observables.

ii) Consider for ε > 0 the function

Gε(ξ) = Tr
[
�εW (

√
2πξ)

]
e−

επ2
2 |ξ|2 = Tr

[
�ε(e2iπS(ξ,.))A−Wick

]
.

The positive type property and the normalization come from

Gε(0) = Tr [�ε] = 1

N∑

i,j=1

λiλjGε(ξi − ξj) = Tr

⎡

⎢⎣�ε

⎛

⎝
∣∣∣∣∣

N∑

k=1

λke2iπS(ξk,.)

∣∣∣∣∣

2
⎞

⎠
A−Wick

⎤

⎥⎦ ≥ 0 .

The continuity when ξ is restricted to any fixed finite dimensional pZ can be writ-
ten with uniform estimates w.r.t ε ∈ (0, ε̄). Consider the estimate Tr

[
�ε(1 + N)δ1

]
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≤ Cδ1 with δ1 ∈ (0,min(1, 2δ)). Write for any ξ, η ∈ Z

|Gε(η)−Gε(ξ)| =
∣∣∣∣Tr

[
ρε (N + 1)δ1/2

(N + 1)δ1/2

[
W (
√

2πη)−W (
√

2πξ)
] (N + 1)δ1/2

(N + 1)δ1/2

]∣∣∣∣

+
∣∣∣e−

επ2
2 |η|2 − e−

επ2
2 |ξ|2

∣∣∣

≤
∣∣∣
[
W (
√

2πη)−W (
√

2πξ)
]
(N + 1)−δ1/2

∣∣∣
L (H )

Tr
[
(N + 1)δ1ρε

]

+
∣∣∣e−

επ2
2 |η|2 − e−

επ2
2 |ξ|2

∣∣∣ .

We have found by Lemma 3.1 two constants δ1 ∈ (0, 1) and C ′
δ1

> 0 such that

∀ξ, η ∈ Z , |Gε(η)−Gε(ξ)| ≤ C ′
δ1
|η − ξ|δ1

[
(|η|2 + |ξ|2)δ1/2 + 1

]
, (57)

holds uniformly w.r.t. ε ∈ (0, ε) and we recall the uniform estimate |Gε(ξ)| ≤ 1.
Hence for any ε ∈ (0, ε), Gε is the Fourier transform of a weak distribution με

such that
Tr

[
�εbA−Wick

]
=

∫

Z

b(z) dμε(z)

holds for all b ∈ ∪p∈P F−1 (Mb(pZ )).
iii) Actually the uniform estimate (57) allows to apply an Ascoli type argu-

ment after considering sequence (εn)n∈N such that limn→∞ εn = 0:
• Since Z is separable, it admits a countable dense set N = {ξ�, 	 ∈ N}. For

any 	 ∈ N the sequence Gεn
(ξ�) remains in {σ ∈ C, |σ| ≤ 1}. Hence by a

diagonal extraction process there exists a subsequence (εnk
)k∈N such that for

all 	 ∈ N, Gεnk
(ξ�) converges in {σ ∈ C, |σ| ≤ 1} as k →∞. Set

G(ξ�) = lim
k→∞

Gεnk
(ξ�)

for all 	 ∈ N.
• The uniform estimate (57) implies that the limit G is uniformly continuous

on any set N ∩ {z ∈ Z : |z| ≤ R}. Hence it admits a continuous extension
still denoted G in (Z , | |Z ). An “epsilon/3”-argument shows that for any
ξ ∈ Z limk→∞ Gεnk

(ξ) exists and equals G(ξ).
• Finally G is a normalized function of positive type as a limit of such functions.

Finally the uniform estimates |Gε(ξ)| ≤ 1 and |G(ξ)| ≤ 1 allow to test the
convergence against any ν ∈ Mb(pZ ) and to apply the Parseval identity with
b = F−1(ν). From any sequence (εn)n∈N such that limn→∞ εn = 0, one can ex-
tract a subsequence (εnk

)k→∞ and find a weak distribution such that the limit

lim
nk→∞

Tr
[
�εnk bWeyl

]
= lim

nk→∞
Tr

[
�εnk bA−Wick

]
=

∫

Z

b(z) dμ(z)

holds for any b ∈ F
(
L1(pZ , Lp(dz))

)
and therefore for any b ∈ Scyl(Z ).

iv) The Prokhorov’s criterion for μ in the form stated in Lemma 6.1 is again
a consequence of the uniform number estimate Tr

[
N δ�ε

]
≤ Cδ. Fix any p ∈ P and

set d = dimp. The operators Np = NpZ ⊗ IΓs(p⊥Z ) =
(
dΓ(IpZ ) ⊗ IΓs(p⊥Z )

)
=
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dΓ(p), Np⊥ =
(
IpZ ⊗ dΓ(Ip⊥Z )

)
= dΓ(p⊥) and N = dΓ(I) make a commuting

family of non negative operators such that N = Np + Np⊥ . Thus the inequality
(

1 +
dε

2
+ N

)s

≥
(

1 +
dε

2
+ Np

)s

holds for any s ≥ 0. Hence the estimate Tr
[
�εN δ

]
≤ Cδ implies

Tr

[
�ε

(
1 +

dε

2
+ Np

)δ
]
≤ Tr

[
�ε

(
1 +

dε

2
+ N

)δ
]
≤ Tr

[
�ε(2 + N)δ

]
≤ C ′

δ ,

with C ′
δ > 0 independent of ε and p as soon as ε ≤ 1

d .
Let χ ∈ C∞(pZ ) be a non negative function on pZ , such that χ ≡ 0 in a

neighborhood of {|z| ≤ 1}. For any R ≥ 1 the estimates

(1 + R2)δ

(1 + |z|2)δ
χ(R−1z) ≤ 1

holds with uniform estimates of the left-hand side in SpZ (1, |dz|2
〈z〉2 ). The pseudodif-

ferential calculus in pZ with the metric |dz|2
〈z〉2 , provides the inequality of bounded

operators on Γs(pZ )

(1 + R2)δA ◦BR ◦A− Cε ≤
[

(1 + R2)δ

(1 + |z|2)δ
χ(R−1z)

]Weyl

≤ 1 + Cε

with A=
[
(1+|z|2)−δ/2

]Weyl

, BR =
[
χ(R−1z)

]Weyl and |BR|L (Γs(pZ ))≤C ,

with a constant C > 0 independent of ε ∈ (0, 1
d ) and R ≥ 1. By Proposition 3.3,

there exists a constant C ′ > 0 independent of ε ∈ (0, 1
d ) (and R ≥ 1) such that

∣∣∣∣∣A
2 ◦

(
1 +

dε

2
+ NpZ

)δ

− IΓs(pZ )

∣∣∣∣∣
L (Γs(pZ ))

≤ C ′ε .

Hence the inequality

(1 + R2)δχ(R−1pz)Weyl ≤ (1 + 2Cε)A−δ

after tensorization with IΓs(p⊥Z ) and testing on the normal state �ε yields

(1 + R2)δTr
[
�εχ(R−1pz)Weyl

]
≤ C ′′

δ

with a uniform constant C ′′
δ with respect to ε ∈ (0, 1

d ) and R ≥ 1. After taking the
limit nk →∞, εnk

→ 0, we get
∫

Z

1{|pz|≥R}(z) dμ(z) ≤
∫

Z

χ(R−1pz) dμ(z) = lim
nk→∞

Tr
[
�εnk χ(R−1pz)Weyl

]

≤ C ′′
δ (1 + R2)−δ .

This inequality is valid for any p ∈ P and the Prokhorov’s criterion of Lemma 6.1
is satisfied. The weak distribution μ is a probability measure on Z .
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v) First the function 〈z〉2δ is Borel measurable in Z . Take p ∈ P and R ≥ 1
and take now χ0 ∈ C∞

0 (pZ ), such that 0 ≤ χ0 ≤ 1 and χ0 ≡ 1 in a neighborhood
of 0. Consider the estimates

(1 + N)δ ≥ (1 + Np)δ ≥ (1 + Np)δ/2χ0(R−1pz)Weyl(1 + Np)δ/2 − Cpε(1 + Np)δ

≥
[(

(1 + |pz|2)
)δ

χ0(R−1pz)
]Weyl

− C ′
pε(1 + N)δ

where the two last inequalities are again derived from the finite dimensional Weyl
calculus (with a uniform control w.r.t. R ≥ 1). After taking the limit nk → ∞,
εnk

→ 0, this implies
∫

Z

(
1 + |pz|2

)δ
χ0(R−1pz) dμ(z) = lim

nk→∞
Tr

[
�εnk

[(
(1 + |pz|2)

)δ

χ0(R−1pz)
]Weyl

]

≤ lim inf
nk→∞

Tr
[
�εnk (1 + N)δ

]
≤ C ′

δ .

Taking the supremum w.r.t R ≥ 1 and then w.r.t a countable increasing sequence
(pn)n∈N, pn ∈ P, such that supn∈N

pn = IZ , yields
∫

Z

(1 + |z|2)δdμ(z) ≤ C ′
δ < +∞ . �

6.2. Complex Wigner measures, pure sequences

More general families of trace class operators can be considered by linear decom-
position

�ε = λε
R+�ε

R+ − λε
R−�ε

R− + iλε
I+�ε

I+ − iλε
I−�ε

I− , (58)
with

λε
R+�ε

R+ =
1
4
[
|�ε+(�ε)∗|+�ε+(�ε)∗

]
, λε

R−�ε
R− =

1
4
[
|�ε+(�ε)∗|−�ε−(�ε)∗

]

λε
I+�ε

I+ =
1
4
[
|�ε−(�ε)∗|−i�ε+i(�ε)∗

]
, λε

I−�ε
I− =

1
4
[
|ρε−(�ε)∗|+i�ε−i(�ε)∗

]
,

such that λε
• ≥ 0, �ε

• ≥ 0, Tr [�ε
•] = 1 and

λε
R+ + λε

R− + λε
I+ + λε

I− ≤ 4 |�ε|L 1(H ) .

Proposition 6.4. Let (�ε)ε∈(0,ε) be a family of trace class operators such that
∣∣∣(1 + N)δ/2�ε(1 + N)δ/2

∣∣∣
L 1(H )

≤ Cδ (59)

uniformly for some δ > 0 and some Cδ < +∞. Then for any sequence (εn)n∈N such
that limn→∞ εn = 0, one can extract a subsequence (εnk

)k∈N
and find a (complex)

Borel measure μ on Z such that

lim
k→∞

Tr[ρεnk bWeyl] = lim
k→∞

Tr[ρεnk bA−Wick] =
∫

Z

b(z) dμ(z) , (60)

for all b ∈ ∪p∈P F−1 (Mb(pZ )).
This measure satisfies

∫
Z 〈z〉

δ
d |μ| (z) < +∞ .
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After assuming additionally the stronger uniform estimate

Tr
[
(1 + N)δ|�ε + (�ε)∗|

]
+ Tr

[
(1 + N)δ|�ε − (�ε)∗|

]
≤ C ′

δ , (61)

this measure satisfies
∫

Z 〈z〉
2δ

d |μ| (z) < +∞ .

Proof. Owing to the estimate

λε
R+ + λε

R− + λε
I+ + λε

I− ≤ 4 |�ε|L 1(H ) ≤ 4Cδ ,

with all the λε
• non negative, the extraction of a subsequence allows to reduce the

analysis to the case when all the λεn
• converge: limn→∞ λεn

• = λ0
• ∈ [0,+∞) .

If one λ0
• equals 0 then |λεn• �εn• |L 1(H ) = λεn•

n→∞→ 0 and
limεn→0 Tr

[
bWeyl(λεn

• �εn
• )

]
= 0 , for all b ∈ Scyl(Z ), and the corresponding term

does not contribute to the asymptotic measure μ.
Hence the problem is now reduced to the case when all the λ0

• are positive,
and therefore for N0 > 0 large enough, all the (λεn• )n>N0 are uniformly positive.
Set in this case

c = min
{
λεn

R+, λεn

R−, λεn

I+, λεn

I−; n > N0

}
> 0

for N0 > 0 large enough. The decomposition (58) implies

(1 + N)δ/4�ε(1 + N)δ/4 = λε
R+rε

R+,ε − λε
R−rR−,δ + iλε

I+rε
I+,δ − iλI−rε

I−,δ

with rε
•,δ = (1 + N)δ/4�ε

•(1 + N)δ/4 ≥ 0 .

All the terms rεn

•,δ are estimated in the same way as follows. For k ∈ N, consider
the quantity:

Tr
[
1[0,k](N) rεn

R+,δ 1[0,k](N)
]

=
1

4λεn

R+

Tr
[(
|�εn + (�εn)∗|+ �εn + (�εn)∗

)
(1 + N)δ/21[0,k](N)

]

≤ 1
4c

∣∣∣|�εn + (�εn)∗|(1 + N)δ/21[0,k](N)
∣∣∣
L 1(H )

+
1
2c

∣∣∣(1 + N)δ/2�εn(1 + N)δ/2
∣∣∣
L 1(H )

.

The polar decomposition �εn +(�εn)∗ = Uεn
|�εn + (�εn)∗| provides the inequality

∣∣∣|�εn + (�εn)∗|(1 + N)δ/21[0,k](N)
∣∣∣
L 1(H )

≤ 2
∣∣∣U∗

εn
(1 + N)−δ/2

∣∣∣
L (H )

∣∣∣(1 + N)δ/2�εn(1 + N)δ/2
∣∣∣
L 1(H )

.

Therefore, this yields

Tr
[
rεn

•,δ

]
= sup

k∈N

Tr
[
1[0,k](N) rεn

•,δ 1[0,k](N)
]
≤ 1

c

∣∣∣(1+N)δ/2�εn(1+N)δ/2
∣∣∣
L 1(H )

.

Hence the four families of normal state (�εn
• )n>N0 fulfill the assumptions of Theo-

rem 6.2, with δ replaced with δ/2 and in the symmetric writing of Remark 6.3 c).
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Hence four Borel probability measures, μR+, μR−, μI+ and μI− exist and a sub-
sequence (εnk

)k∈N can be extracted so that

lim
k→∞

Tr
[
bWeyl�

εnk•
]

=
∫

Z

b dμ• ,

with the estimates
∫

Z 〈z〉2(δ/2) dμ• < +∞. We conclude by taking

μ = λ0
R+μR+ + λ0

R−μR− + iλ0
I+μI+ − iλ0

I−μI− .

Finally the last statement with the exponent 2δ comes from the operator inequal-
ities

(1 + N)δ/2�εn

R±(1 + N)δ/2 ≤ 1
2c

(1 + N)δ/2 |�εn + (�εn)∗| (1 + N)δ/2 , and

(1 + N)δ/2�εn

I±(1 + N)δ/2 ≤ 1
2c

(1 + N)δ/2 |�εn − (�εn)∗| (1 + N)δ/2 ,

while considering the case when all the λ0
• are positive. �

Definition 6.5. For a family (�ε)ε∈(0,ε), satisfying (59), the set of Borel measures
μ which satisfy (60) is denoted M (�ε, ε ∈ (0, ε)) or simply M (�ε).

Such a family (�ε)ε∈(0,ε) (resp. a sequence (�εn)n∈N) is said pure if M (�ε, ε ∈
(0, ε)) (resp. M (�εn , n ∈ N)) has a single element μ.

When the family (�ε)ε∈(0,ε) is pure the limit in (60) can be written with
limε→0 instead of limnk→∞. This provides a characterization of M (�ε) = {μ}.
For simplicity, we shall often assume that the family (�ε)ε∈(0,ε) is pure, when the
reduction to such a case can be done after extracting a suitable sequence.

6.3. Countably separating sets of observables

In order to identify a Wigner measure of μ ∈ M (�ε) it is sufficient to test on
a “dense set” of observables. The good notion is given by the Stone–Weierstrass
theorem for L1 spaces. It can be recovered from the standard Stone–Weierstrass
theorem for continuous functions in our case.

Lemma 6.6 (cf [14]). Let ν be a Borel probability measure on a separable Banach
space X and let {fn, n ∈ N} be a countable set of bounded ν-measurable functions
which separates the points

∀x, y ∈ X , ∃n ∈ N , fn(x) �= fn(y) .

Then for any p∈ [0,∞), the algebra generated by {fn, n∈N} is dense in Lp(X, dν).

Since “the” Wigner measure is not known a priori, the good notion of “dense
set” that we shall use is the following.

Definition 6.7. A subset D ⊂ ∪p∈P F−1(Mb(pZ )) is said countably separating
whenever it contains a countable subset, D ⊃ D0 ∼ N, which separates the point
of Z :

∀x, y ∈ Z , ∃f ∈ D0 , f(x) �= f(y) .
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Proposition 6.8. Let μ1 be a bounded Borel measure on Z and let (�ε)ε∈(0,ε) be a
family of operators which fulfills the assumptions of Definition 6.5. The two next
statements are equivalent:

1. M (�ε) = {μ1}.
2. There exists a countably separating subset D ⊂ ∪p∈P F−1(Mb(pZ )) such

that

∀b ∈ D , lim
ε→0

Tr
[
�εbWeyl

]
= lim

ε→0
Tr

[
�εbA−Wick

]
=

∫

Z

b(z) dμ1(z) .

Remark 6.9. A similar equivalence is obtained for μ1 ∈M (�ε) after a subsequence
extraction.

Proof. Assume μ ∈ M (�ε). There exists a sequence (εnk
)k∈N and a Borel measure

μ such that (60) holds for any b ∈ ∪p∈P F−1Mb(pZ ). In particular this holds for
any b ∈ D :

∫

Z

b(z) dμ(z) = lim
k→∞

Tr
[
�εnk bWeyl

]
=

∫

Z

b(z) dμ1(z) .

The set D is dense in L1(Z , d|μ1|) and in L1(Z , d|μ|) so that the above equality of
the extreme sides extend to any bounded Borel function. This implies μ = μ1. �

The next examples will be useful in the application and allow to reconsider
an inductive point of view.

Proposition 6.10. Let (p�)�∈N be an increasing sequence of projectors in P such that
sup� p� = IZ and let the family of operators (�ε)ε∈(0,ε) satisfy the assumptions of
Definition 6.5. Then the identity M (�ε) = {μ} is equivalent to any of the next
statement

1. For all b ∈ ∪�∈N S (p�Z ), the quantity Tr[�εbWeyl] converges to
∫

Z b(z) dμ(z)
as ε → 0.

2. For all b ∈ Scyl(Z ), the quantity Tr[�εbWeyl] converges to
∫

Z b(z) dμ(z) as
ε → 0.

Proof. It suffices to notice that ∪�∈N S (p�Z ), and therefore Scyl(Z ), is countably
separating because the weak topology separates the points. �

6.4. Orthogonality argument

Complex Wigner measures are especially interesting while considering the joint
measure associated with two families of vectors (uε)ε∈(0,ε) and (vε)ε∈(0,ε). Intro-
duce the notation

�ε
uv = |uε〉〈vε| .

Proposition 6.11. Assume that the family of vectors (uε)ε∈(0,ε) and (vε)ε∈(0,ε) sat-
isfy the uniform estimates

∣∣∣(1 + N)δ/2uε
∣∣∣
H

+
∣∣∣(1 + N)δ/2vε

∣∣∣
H
≤ C , |uε|H = |vε|H = 1
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for some fixed δ > 0 and C > 0. Assume further that any μ ∈ M (�ε
uu) and any

ν ∈ M (�ε
vv) are mutually orthogonal. Then the family (�ε

uv)ε∈(0,ε) is pure with

M
(
�ε

uv, ε ∈ (0, ε)
)

= {0}
i.e. lim

ε→0

〈
uε , bWeylvε

〉
= lim

ε→0

〈
uε , bA−Wickvε

〉
= 0

for any b ∈ F−1(Mb(pZ )) and any p ∈ P.

Proof. Assume M (�uu) = {μ} and M (�ε
vv) = {ν} with μ ⊥ ν. Take η > 0. There

exist two bounded closed subsets K1 and K2 such that

μ(K1) ≥ 1− η , ν(K2) ≥ 1− η , K1 ∩K2 = ∅ .

Since K1 and K2 are compact in the weak topology, K1 ⊂ �K2, �K2 open in the
weak topology, there exists a finite covering of K1 of the form

K1 ⊂
K
∪

k=1

{
|pk(z − zk)| ≤ rk

}
,

K
∪

k=1

{
|pk(z − zk)| ≤ 2rk

}
∩K2 = ∅

with pk ∈ P, zk ∈ Z and rk > 0 for all k ∈ {1, . . . , K}. By choosing for any k
a function χk ∈ C∞

0 (pkZ ) such that χk(pk(z)) ≡ 1 when |pk(z − zk)| ≤ rk and
χk(pkz) = 0 when |pk(z − zk)| ≥ 2rk the sum χ(z) =

∑N
k=1

χk(pkz)∑
k′ χk′ (pk′z) defines a

cylindrical function χ ∈ Scyl(Z ) such that χ ≡ 1 on K1 and χ ≡ 0 on K2.
Take now any b ∈ Scyl(Z ) and write

∣∣〈uε , bWeylvε
〉∣∣ =

∣∣〈uε , (bχ)Weylvε
〉∣∣ +

∣∣∣
〈
uε ,

(
b(1− χ)

)Weyl
vε

〉∣∣∣

≤
∣∣∣
(
b(1− χ)

)Weyl
uε

∣∣∣
H

+
∣∣(bχ)Weylvε

∣∣
H

.

From the Weyl pseudodifferential calculus we get
∣∣∣
(
b(1− χ)

)Weyl
uε

∣∣∣
2

H
≤ Tr

[
�ε

uu

(
(1− χ)2|b|2

)Weyl
]

+ Cbχ

where the right-hand side converges to
∫

Z |b|2(1 − χ)2(z) dμ(z) as ε → 0. The
property χ ≡ 1 on K1 with μ(K1) ≥ 1− η implies

lim sup
ε→0

∣∣∣
(
b(1− χ)

)Weyl
uε

∣∣∣
2

H
≤ η |b|2L∞

and with the symmetric argument lim supε→0

∣∣(bχ)Weylvε
∣∣2
H
≤ η |b|2L∞ . Hence we

get
∀η > 0 , lim sup

ε→0

∣∣〈uε , bWeylvε
〉∣∣ ≤ 2 |b|L∞

√
η

for any b ∈ Scyl(Z ). This implies M (�ε
uv, ε ∈ (0, ε)) = {0} . �

A straightforward consequence is the next proposition.

Proposition 6.12. Make the same assumptions as in Proposition 6.11 with the
additional condition M (�ε

uu) = {μu} and M (�ε
vv) = {μv}. Then the family of

trace class operators (�ε
u+v,u+v)ε∈(0,ε) satisfies

M (�ε
u+v,u+v) = {μu + μv} .
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Proof. Write simply
〈
uε + vε , bWeyl(uε + vε)

〉
=

〈
uε , bWeyluε

〉
+

〈
vε , bWeylvε

〉

+
〈
uε , bWeylvε

〉
+

〈
vε , bWeyluε

〉
,

and take the limit of every term as ε→ 0. �

6.5. Wigner measure and Wick observables

Up to some additional assumption on the state and by restricting the class of Wick
observables, we check in this subsection that testing with Weyl, (or Anti-Wick)
and Wick observables provides the same asymptotic information as ε → 0.

Fix once and for all p ∈ P, the choice of the metric gp = |dz|2 or gp = |dz|2
〈z〉2 .

From Proposition 3.8 we know that the class of symbols ∪p∈P,s∈R SpZ (〈z〉s, gp) and
⊕alg

m,q∈N
Pm,q(Z ) both contain all the classes Pm,q(pZ ), with a good comparison

of Weyl and Wick quantizations on these smaller sets. In the limit ε → 0, this
comparison can be carried out to any b ∈ ⊕alg

m,q∈N
P∞

m,q(Z ).

Theorem 6.13. Assume that the family of operators (�ε)ε∈(0,ε) satisfies
∣∣∣(1 + N)δ/2�ε(1 + N)δ/2

∣∣∣
L 1(H )

≤ Cδ

uniformly w.r.t ε ∈ (0, ε) for any δ > 0.

1. For any fixed β ∈ ∪p∈P,s∈R SpZ (〈z〉s , gp), the families (βWeyl�ε)ε∈(0,ε) and
(βA−Wick�ε)ε∈(0,ε) satisfy the assumptions of Definition 6.5 and

M (βWeyl�ε) = M (βA−Wick�ε) =
{
βμ , μ ∈ M (�ε)

}
(62)

2. For any fixed β ∈ ⊕alg
m,q∈N

P∞
m,q(Z ) the family (βWick�ε)ε∈(0,ε) satisfies the

assumptions of Definition 6.5 and

M (βWick�ε) =
{
βμ , μ ∈ M (�ε)

}
. (63)

A particular case holds when the measure is tested with b = 1.

Corollary 6.14. Assume the uniform estimate
∣∣(1 + N)δ/2�ε(1 + N)δ/2

∣∣
L 1(H )

≤
Cδ for all δ > 0 and further M (�ε) = {μ}.

1. The equality

lim
ε→0

Tr
[
βWeyl�ε

]
= lim

ε→0
Tr

[
βA−Wick�ε

]
=

∫

Z

β(z) dμ(z)

holds when β ∈ ∪p∈P,s∈R SpZ (〈z〉s, gp)
2. The limit

lim
ε→0

Tr
[
βWick�ε

]
=

∫

Z

β(z) dμ(z)

holds for any β ∈ ⊕alg
m,q∈N

P∞
m,q(Z ).
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Proof of Theorem 6.13. 1) The relation (29) extends to any b ∈ SpZ (〈z〉s, gp)
and implies ε−1(bWeyl − bA−Wick) = c(ε)Weyl with c(ε) uniformly bounded in
SpZ (〈z〉s−2, gp). The result for βA−Wick can be deduced from the one for βWeyl.

Take p ∈ P, s ≥ 0 (this contains the case s < 0) and β ∈ SpZ (〈z〉s, gp). Let
Np = NpZ ⊗ IΓs(p⊥Z ) and Np⊥ = IΓs(pZ )⊗Np⊥Z . Our assumption on (�ε)ε∈(0,ε)

and the commutations [Np⊥ , Np] = [Np⊥ , βWeyl] = 0 imply for any δ > 0

(1 + N)δ/2βWeyl�ε(1 + N)δ/2 = ABA′RC with

A = (1 + N)δ/2(1 + Np)−δ/2(1 + Np⊥)−δ/2

B = (1 + Np)δ/2βWeyl(1 + Np)−δ/2−s

A′ = (1 + Np)δ/2+s(1 + Np⊥)δ/2(1 + N)−δ−s

R = (1 + N)δ+s�ε(1 + N)δ+s and

C = (1 + N)−δ/2−s .

The factors A, A′ and C are uniformly bounded operators when δ > 0 (and s) is
fixed. The trace class norm of the factor R is uniformly bounded by Cδ+s. Finally
the Weyl pseudodifferential calculus on pZ implies that B = γWeyl with γ(ε)
uniformly bounded in SpZ (1, gp) and therefore |B|L (H ) ≤ C ′

δ,s uniformly w.r.t
ε ∈ (0, ε).

Hence the family (βWeyl�ε)ε∈(0,ε) satisfies the assumptions of Definition 6.5.
Let μ1 belong to M (βWeyl�ε). After extracting the proper sequence (εn)n∈N such
that limn→∞ εn = 0, one can assume

lim
n→∞

Tr
[
bWeylβWeyl�εn

]
=

∫

Z

b(z) dμ1(z) and

lim
n→∞

Tr
[
bWeyl�εn

]
=

∫

Z

b(z) dμ(z)

for any b ∈ Scyl(Z ). But the finite dimensional pseudodifferential calculus implies
bWeylβWeyl = (bβ)Weyl + OL (H )(εn) with bβ ∈ Scyl(Z ). This implies

∫

Z

b(z) dμ1(z) =
∫

Z

b(z)β(z) dμ(z)

for all b ∈ Scyl(Z ). According to Proposition 6.10 this implies μ1 = βμ.
2) Since the ∪p∈P,s∈R SpZ (〈z〉s, gp) contains ∪p∈P

(
⊕alg

m,q∈N
Pm,q(pZ )

)
, the

result is proved for any polynomial symbol b ∈P∞
m,q(Z ) such that b̃ = Γ(p)b̃Γ(p)

for some finite dimensional projector p ∈ P. Consider now a general b ∈P∞
m,q(Z )

with m, q ∈ N. By Lemma 2.5, the operator

(1 + N)δ/2bWick(1 + N)−δ/2−m/2−q/2

is uniformly bounded for any δ>0. Since the trace class norm of (1+N)
δ+m+q

2 �ε(1+
N)

δ+m+q
2 is uniformly bounded w.r.t ε ∈ (0, ε), the family (βWick�ε) satisfies the
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assumptions of Definition 6.5. Introduce now an increasing sequence (p�)�∈N of P

such that sup�∈N
p� = I and consider for 	 ∈ N

β�(z) = β(p�z) , β̃� = p⊗q
� ◦ β̃ ◦ p⊗m

� .

Since β̃ is a compact operator, the finite rank operator β̃� converges to β̃ in the
norm topology in L (

∨m Z ,
∨q Z ). The uniform estimates

∣∣∣(β − β�)Wick(1 + N)−m/2−q/2
∣∣∣
L (H )

≤ C
∣∣∣β̃ − 	̃

∣∣∣
L (

∨m Z ,
∨q Z )

,

(
1 + |z|2

)m/2+q/2( |β(z)|+ |β�(z)|
)
≤ C with lim

�→∞
β�(z) = β(z) ,

and the convergence

∀b ∈ Scyl(Z ) , lim
n→∞

Tr
[
bWeylβWick

� �εn
]

=
∫

Z

b(z)β�(z) dμ(z)

after extracting a sequence (εn)n∈N, limn→∞ εn = 0, with
∫

Z (1+|z|2)m/2+q/2 dμ(z)
< +∞, lead to

∀b ∈ Scyl(Z ) , lim
n→∞

Tr
[
bWeylβWick�εn

]
=

∫

Z

b(z)β(z) dμ(z) . �

The previous results provide the behaviour of limε→0 Tr
[
βWick�ε

]
for β ∈

⊕alg
m,q∈N

P∞
m,q(Z ) when M (�ε) = {μ}. The next result checks the other way.

Proposition 6.15. Assume that (ρε)ε∈(0,ε̄) is a family of normal states satisfying
for any C > 0 there exist KC > 0 such that

∞∑

k=0

Ck

[k/2]!
Tr[Nkρε] ≤ KC < ∞

holds uniformly w.r.t ε ∈ (0, ε). Assume that there exists a Borel measure μ such
that

lim
ε→0

Tr
[
bWick�ε

]
=

∫

Z

b(z) dμ(z)

holds for any b ∈ ⊕alg
m,qP

∞
m,q(Z ). This implies

M (�ε) = {μ} .

Remark 6.16. A similar result for non self-adjoint trace-class operators with com-
plex valued measure can be obtained by replacing the quantities Tr[Nk�ε] with
Tr[Nk|�ε + (�ε)∗|] + Tr[Nk|�ε − (�ε)∗|] like in (61).

Proof. It is enough to prove the following statement:

lim
ε→0

Tr
[
W (ξ)ρε

]
=

∫

Z

e
√

2iS(ξ,z)dμ .



1558 Z. Ammari and F. Nier Ann. Henri Poincaré

It is done when the right-hand side of

Tr
[
W (ξ)ρε

]
=

∞∑

n=0

|√εξ|n
2nn!

Tr

⎡

⎣ hn

(
i
√

2S(ξ, z)
|√εξ|

)Wick

ρε

⎤

⎦ (64)

is proved to be an absolutely convergent series, uniformly w.r.t. ε ∈ (0, ε̄). With

Tr
[
W (ξ)ρε

]
= lim

M→∞
Tr

[
W (ξ)1[0,M ](N) ρε

]

= lim
M→∞

∞∑

n=0

|√εξ|n
2nn!

Tr

⎡

⎣ hn

(
i
√

2S(ξ, z)
|√εξ|

)Wick

1[0,M ](N) ρε

⎤

⎦ (65)

and

∣∣∣∣∣∣
Tr

⎡

⎣hn

(
i
√

2S(ξ, z)
|√εξ|

)Wick

1[0,M ](N) ρε

⎤

⎦

∣∣∣∣∣∣

≤Mn

∣∣∣∣∣∣
(N + 1)−n/2 hn

(
i
√

2S(ξ, z)
|√εξ|

)Wick

(N + 1)−n/2

∣∣∣∣∣∣
L (H )

,

with Mn = Tr [(1 + N)n�ε], Lemma 3.4 implies

∣∣∣∣∣∣
(N + 1)−n/2 hn

(
i
√

2S(ξ, z)
|√εξ|

)Wick

(N + 1)−n/2

∣∣∣∣∣∣
L (H )

≤ sup
k,j∈N

(1 + 2
√

2(k + j)ε)n

(kε + 1)n/2(jε + 1)n/2

n!
[n/2]!

≤ 8n n!
[n/2]!

.

This leads to

∞∑

n=0

|√εξ|n
2nn!

∣∣∣∣∣∣
Tr

⎡

⎣hn

(
i
√

2S(ξ, z)
|√εξ|

)Wick

1[0,M ](N) ρε

⎤

⎦

∣∣∣∣∣∣
≤

∞∑

n=0

(4
√

ε|ξ|)n

[n/2]!
Mn

< ∞ (66)

uniformly w.r.t. ε ∈ (0, ε̄) and M > 0. Hence we can take the limit M →∞ inside
in all the terms of (65). This leads to (64) with a uniformly absolutely convergent
series in the right-hand side according to (66) and our initial assumption.
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Thus the sum and the limit as ε → 0 can be interchanged in (64):

lim
ε→0

Tr
[
W (ξ)ρε

]
=

∞∑

n=0

|ξ|n
2nn!

lim
ε→0

Tr

⎡

⎣√εn hn

(
i
√

2S(ξ, z)
|√εξ|

)Wick

ρε

⎤

⎦

=
∞∑

n=0

1
n!

∫

Z

(
i
√

2S(ξ, z)
)n

dμ

=
∫

Z

e
√

2iS(ξ,z)dμ .

The last equality follows owing to the dominated convergence theorem and
∫

Z

eδ|1pZ z|2dμ = lim
ε→0

∞∑

k=0

δk

k!
Tr

[
ρε dΓ(1pZ )k

]
< ∞ ,

for any δ > 0 and any p ∈ P. This completes the proof. �

7. Examples and applications of Wigner measures

7.1. Finite dimensional cases

The first examples are given by Theorem 4.2
1. For any z ∈ Z the family of operators �ε = |E(z)〉〈E(z)| has a unique Wigner

measure
M

(
|E(z)〉〈E(z)| , ε ∈ (0, ε)

)
= {δz} .

2. For any z ∈ Z and any m ∈ Z the family of operators �ε = |z⊗kε−m〉〈z⊗kε |
with |z| = 1 and limε→0 εkε = 1 has a unique Wigner measure

M
(
|z⊗kε−m〉〈z⊗kε | , ε ∈ (0, ε)

)
=

1
2π

∫ 2π

0

e−imθδeiθz dθ .

3. In case 1) and 2) the convergence can be tested with Weyl, Anti-Wick or
Wick observables according to Proposition 6.4 and Theorem 6.13.

Beside the explicit calculation of Theorem 4.2 these results can be considered
through an inductive approach since E(z) or z⊗n lie in Γs(Cz). The natural ex-
tension comes from Proposition 6.10-1) with a proper choice of the first term in
the increasing sequence (p�)�∈N.

Proposition 7.1. Assume that the family (�ε)ε∈(0,ε) satisfies the assumptions of
Definition 6.5. Assume further that there exists a finite dimensional space p0 ∈ P

such that
�ε = Γ(p0)�Γ(p0) = �ε

p0
⊗ |Ω〉〈Ω|

for all ε ∈ (0, ε) with �ε
p0
∈ L 1(Γs(p0Z )). Then the Wigner measures of (�ε)ε∈(0,ε)

are given by
M (�ε) =

{
μ1 ⊗ δ0,p⊥

0 Z , μ1 ∈ M (�ε
p0

)
}

.



1560 Z. Ammari and F. Nier Ann. Henri Poincaré

7.2. Superpositions

Two kinds of superpositions can be considered: 1) convex or linear combination of
trace class operators; 2) convex or linear combination of wave functions. The first
one is the simplest.

Proposition 7.2.

1. Let (M,π) be a probability space. Let (�ε(m))ε∈(0,ε),m∈M be a family of op-
erators such that

∣∣∣(1 + N)δ/2�ε(m)(1 + N)δ/2
∣∣∣
L 1(H )

≤ Cδ(m)

for π-almost every m ∈ M with Cδ ∈ L1(M,dπ) for some δ > 0. Assume
further M (�ε(m), ε ∈ (0, ε)) = {μ(m)} for π-almost every m ∈ M , then the
family (

∫
M

�ε(m) dπ(m))ε∈∈(0,ε) satisfies the assumptions of Definition 6.5
and

M

(∫

M

�ε(m) dπ(m) , ε ∈ (0, ε)
)

=
{∫

M

μ(m) dπ(m)
}

.

2. Any bounded Borel measure on Z can be achieved as a Wigner measure.

Proof. 1) Set �ε =
∫

M
�ε(m) dπ(m) and write

∣∣∣(1 + N)δ/2�ε(1 + N)δ/2
∣∣∣
L 1(H )

≤
∫

M

Cδ(m) dπ(m) .

Then apply Lebesgue’s convergence theorem to

Tr
[
bWeyl�ε

]
=

∫

M

Tr
[
bWeyl�ε(m)

]
dπ(m) .

2) After reducing the problem to the case when μ is a Borel probability
measure on Z , apply 1) with M = Z , π = μ, m = z and �ε(z) = |E(z)〉〈E(z)|. �

The second type of superposition requires an orthogonality property. It is
given by Proposition 6.12. Here are a few examples

1. Take uε
� =E(z�) for 	=1, . . . , L, with L∈N fixed, and set uε =L−1/2

∑L
�=1 uε

� .
When the z� are distinct, the family (|uε〉〈uε|)ε∈(0,ε) has a unique Wigner
measure

M (|uε〉〈uε|) =

{
L−1

L∑

�=1

δz�

}
.

2. Take for any 	 ∈ {1, . . . , L}, uε
� = z⊗kε

� with |z�| = 1 and limε→0 εkε = 1. The
family (|uε〉〈uε|)ε∈(0,ε) has a unique Wigner measure:

M (|uε〉〈uε|) =

{
(2πL)−1

L∑

�=1

∫ 2π

0

δeiθz�
dθ

}
.
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3. For z ∈ Z and uε = E(z)+|z⊗kε〉√
2

with |z| = 1 and limε→0 εkε = 1, the family
(|uε〉〈uε|)ε∈(0,ε) has a unique Wigner measure:

M (|uε〉〈uε|) =
{

1
2
δz +

1
4π

∫ 2π

0

δeiθz dθ

}
.

4. All this examples can be tested with Weyl, Anti-Wick or Wick observables
according to Proposition 6.4 and Theorem 6.13.

7.3. Propagation of chaos and propagation of (squeezed) coherent states

Let us go back to the example of Section 5 where Uε(t) = e−i t
ε Hε with Hε =

dΓ(−Δ)+QWick, Q̃ = 1
2V (x1−x2) and zt solution to i∂tzt = −Δz +(V ∗ |zt|2)zt.

Theorem 5.6, Proposition 5.10 and Proposition 6.15 imply:
1. For any z0 ∈ Z with |z0| = 1, the family (|Uε(t)z⊗kε

0 〉〈Uε(t)z⊗kε
0 |)ε∈(0,ε) with

limε→0 εkε = 1 is pure with

M
(
|Uε(t)z⊗kε

0 〉〈Uε(t)z⊗kε
0 |

)
=

{
1
2π

∫ 2π

0

δeiθzt
dθ

}
= M

(
|z⊗kε

t 〉〈z⊗kε
t |

)

2. For any z0 ∈ Z , the family (|Uε(t)E(z0)〉〈Uε(t)E(z0)|)ε∈(0,ε) is pure with

M
(
|Uε(t)E(z0)〉〈Uε(t)E(z0)|

)
= {δzt

} = M
(
|E(zt)〉〈E(zt)|

)
.

These results are derived from the results for product states after testing with
Wick observable (any b ∈ ⊕alg

m,qPm,q(Z )) . Actually it is possible to recover the
second one directly from the Hepp method. For any b ∈ Scyl(Z ), Proposition 5.2
implies

lim
ε→0

Tr

[
bWeyl

(
|Uε(t)E(z0)〉〈Uε(t)E(z0)|

−
∣∣∣∣∣W

(√
2

iε
zt

)
U2(t, 0)Ω

〉 〈
W

(√
2

iε
zt

)
U2(t, 0)Ω

∣∣∣∣∣

)]
= 0 .

By the finite dimensional Weyl quantization, the second term equals
〈
U2(t, 0)Ω , b(.− zt)WeylU2(t, 0)Ω

〉

and it suffices to check that the family (|U2(t, 0)Ω〉〈U2(t, 0)Ω|)ε∈(0,ε) admits the
unique Wigner measure δ0. This is a consequence of Lemma 5.3 which first says
|NkU2(t, 0)Ω|H ≤ Ck for any k ≥ 0 and then limε→0〈U2(t, 0)Ω , bWickU2(t, 0)Ω〉 =
0 when b(0) = 0 .

7.4. Dimensional defect of compactness

In the last example the mean field propagation of Wigner measure attached
with Uε(t)E(z0) can be proved directly without using the result on Wick ob-
servables. As a corollary, this provides the result for Wick observables bWick

when b ∈ ⊕alg
m,qP

∞
m,q(Z ) according to Theorem 6.13. The result for a general

b ∈ ⊕alg
m,qPm,q(Z ) is still true but comes from a direct proof or from Proposi-

tion 5.10.
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A natural question is whether the result of Theorem 6.13 can be extended
to any observable bWick with b ∈ ⊕alg

m,qPm,q(Z ). The answer is no, because in
the infinite dimensional case there can be some defect of compactness w.r.t to the
dimension variable.

Here is a typical example. Consider a family (zε)ε∈(0,ε) such that zε converges
weakly to 0. There exists a constant C > 0 such that |zε| ≤ C for all ε ∈ (0, ε) and
the family (E(zε))ε∈(0,ε) satisfies the assumptions of Proposition 6.15. The Wigner
measures μ ∈ M (|E(zε〉〈E(zε)|)) are determined by testing on any b ∈ P∞

m,q(Z ).
But Theorem 4.2 says

〈
E(zε) , bWickE(zε)

〉
= b(zε) = 〈z⊗q

ε , b̃z⊗m
ε 〉 .

When m + q ≥ 1 the operator b̃ is compact, the right-hand side converges to 0 as
ε → 0. According to Proposition 6.15 this implies

M
(
|E(zε)〉〈E(zε)|

)
= {δ0} .

Meanwhile testing with N = dΓ(I) =
(
|z|2

)Wick implies
〈
E(zε) , NE(zε)

〉
= |zε|2

where the right-hand side can reach any possible limit in [0, C].

7.5. Bose–Einstein condensates

The thermodynamic limit of the ideal Bose Gas presented within a local algebra
presentation in [9] can be reconsidered by introducing a small parameter ε → 0.
Namely, the large domain limit where bosonic particles are moving freely in a
domain Λ, with volume |Λ| → ∞, can be formulated with |Λ| = 1

ε and ε → 0. For
a fixed particle density the total number of particle is O(1

ε ) coherent with a mean
field approach. Before considering any dynamical problem, Wigner measures of ε-
dependent Gibbs states bring some interesting presentation of the Bose–Einstein
condensation.

Consider the Laplace operator H0 = −Δx on the ε-dependent torus
R

d/(ε−1/d
Z)d with spectrum σ(H0) =

{
ε2/d|2πn|, n ∈ Z

d
}
. The one particle space

is Z ε = L2(Rd/(ε−1/d
Z)d) and the bosonic Fock space is H ε = Γs(Z ε). For

the inverse temperature β = 1
kBT > 0 and a chemical potential μ, the Gibbs

grand canonical equilibrium state is associated with the operator e−βdΓ(H0−μI) =
Γ(e−β(H0−μI)), which is trace class if and only if μ < 0 (see [9, Proposition 5.2.27]).
This Gibbs state on L (H ε) is given by

ωε(A) = Tr [�εA] with �ε =
1

Tr[Γ(e−β(H0−μ))]
Γ(e−β(H0−μ)) , μ < 0 .

It is convenient to introduce the parameter z = eβμ and this Gibbs state re-
stricted to the CCR-algebra (the C∗-algebra generated by the Weyl operators
W1(f), f ∈ Z ε) is the gauge-invariant quasi-free state given by the two-point
function: ωε(a∗

1(f)a1(g)) =
〈
g , ze−βH0(1− ze−βH0)−1f

〉
. The index 1 means that
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the CCR are written at this level in their initial form: [a1(g), a∗
1(f)] = 〈g , f〉. This

is proved in [9, Proposition 5.2.28] with the straightforward rewriting

ωε

(
W1(f)

)
= exp

[
−

〈
f , (1 + ze−βH0)(1− ze−βH0)−1f

〉
/4

]
.

The mean field analysis consists here in introducing a(f) = ε1/2a1(f) and W (f) =
W1(ε1/2f):

ωε

(
a∗(f)a(g)

)
= ε

〈
g , ze−βH0(1− ze−βH0)−1f

〉

ωε

(
W (f)

)
= exp

[
− ε

〈
f , (1 + ze−βH0)(1− ze−βH0)−1f

〉
/4

]
.

Further a rescaling motivated by the observation of the phenomena on a large
scale, is implemented with f(x) = ε1/2ϕ(ε1/dx) = Dεϕ. After conjugating with the
unitary transform Γ(Dε) : H = Γs(Z ) → H ε = Γs(Z ε), with Z = L2(Rd/Z

d)
we are led to consider the asymptotic behaviour as ε → 0 of the normal state

�ε = Γ(Dε)∗�εΓ(Dε) =
1

Tr[Γ(e−β(−ε2/dΔ−μ))]
Γ(e−β(−ε2/dΔ−μ))

which satisfies

Tr
[
�εW (f)

]
= exp

[
−ε

4
〈
f , (1 + zeβε2/dΔ)(1− zeβε2/dΔ)−1f

〉
Z

]

= e−
ε
4 |f |

2
Z exp

[
−ε

2
〈
f , zeβε2/dΔ(1− zeβε2/dΔ)−1f

〉
Z

]

Tr
[
�εa∗(f)a(g)

]
= ε

〈
g , zeβε2/dΔ(1− zeβε2/dΔ)−1f

〉
Z

.

The above expressions are explicit after the decomposition in the Fourier basis
f =

∑
n∈Zd fne2iπn.z of any element f ∈ Z . For a given z < 1 and β > 0 the

rescaled particle density is given by

εz

1− z
+ ε

∑

n∈Zd\{0}

ze−βε2/d|2πn|2

(1− ze−βε2/d|2πn|2)
=

εz

1− z
+ νε(β, z) . (67)

One checks easily for ε′ ≥ ε and z′ ≤ z < 1

νε′(β, z) ≤ νε(β, z) ε→0→ ν0(β, z) =
∫

Rd

ze−β|2πu|2

1− ze−β|2πu|2 du

and ∀ε ∈ [0, 1) , νε(β, z) ≥ νε(β, z′) .

Here comes the discussion about the Bose–Einstein condensation. In dimension
d ≥ 3 (this restriction may change with an alternative Hamiltonian H0 = λ(Dx)),
the quantity

ν0(β, 1) =
∫

Rd

e−β|2πu|2

1− e−β|2πu|2 du < +∞ .

is well defined.
We focus on the case d ≥ 3.
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The previous discussion imply

∀ε > 0 , ∀z ∈ (0, 1) , νε(β, z) ≤ ν0(β, 1)

while any total density can be achieved by (67). The Bose–Einstein condensation
occurs while considering the limit ε → 0 with the constraint zεε

1−zε
+ νε(zε, β) = ν

with β > 0 and ν > 0 fixed. There are two possible cases:
• ν ≤ ν0(β, 1): Then limε→0 zε = z < 1 and limε→0

εzε

1−zε
= 0 .

• ν > ν0(β, 1): The inequality ν − ν0(β, 1) ≤ εzε

1−ε ≤ ν leads to zε = 1 −
ε

ν−ν0(β,1) + o(ε) . The proportion 1− ν0(β, 1)/ν of the gas lies in the ground
state n = 0 of the one-body Hamiltonian. This is the Bose–Einstein conden-
sation phenomenon.

It is interesting to reconsider this limit ε → 0 with β > 0 and ν > 0 fixed (d ≥ 3)
within the Wigner measure point of view. This is possible owing to the explicit
formula

Tr
[
�εW (

√
2πf)

]
= e−επ2|f |2Z exp

⎡

⎣−επ2
∑

n∈Zd

|fn|2
zεe

−βε2/d|2πn|2

(1− zεe−βε2/d|2πn|2)

⎤

⎦ , (68)

where f =
∑

n∈Zd fne2iπn.x. Remember that the characteristic function of Wigner
measures are determined after considering the limit ε → 0 of the above expression
for any fixed f ∈ Z . Hence the problem is reduced to the application of Lebesgue’s
theorem in the argument of the exponential.

For any n �= 0 the quantity zεe−βε2/d|2πn|2

(1−zεe−βε2/d|2πn|2 )
converges to 0 as ε→ 0 because

d/2 < 1 and zε ≤ 1. Hence we get

lim
ε→0

Tr
[
�εW (

√
2πf)

]
= lim

ε→0
exp

[
− επ2zε

1− zε
|f0|2

]
.

With the constraint εzε

1−zε
≤ ν < +∞, there are two possibilities

• First limε→0
εzε

1−zε
= 0 implies ν ≤ ν0(β, 1) and M (�ε) = {δ0}.

• The second case limε→0
εzε

1−zε
= ν − ν0(β, 1) > 0 implies

lim
ε→0

Tr
[
�εW (

√
2πf)

]
= e−π2(ν−ν0(β,1))|f0|2 = e−π2(ν−ν0(β,1))|〈f,1〉|2 .

Hence the Wigner measure of the family (�ε)ε>0 equals γν ⊗ δ0 on Z =
C1× {1}⊥ where γν is the gaussian measure

γν(z1) =
e
− |z1|2

ν−ν0(β,1)

(π(ν − ν0(β, 1))d/2
, z1 ∈ C .

Our scaled observables can measure asymptotically only the Bose–Einstein phase
in a non trivial way. The rest of the state provides the factor δ0. While testing
with the observable (|z|2)Wick = N , the dimensional defect of compactness phe-
nomenon already illustrated in Subsection 7.4 occurs again: only the density of
the condensate remains.
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Remark 7.3.

i) It is possible to consider various dispersion relations H0 = λ(Dx) and the
discussion about the dimension may change. Other boundary conditions (here
periodic boundary conditions are considered) and the discussion about the
convergence of limε→0 zε = 1 may change a little bit. We refer the reader
to [9] for the case of Dirichlet boundary conditions.

ii) From (68) it is possible to consider the limit for any fixed f ∈ Z as ε → 0 with
various behaviours of zε. This provides asymptotically a weak distribution.
But the uniform tightness assumption Tr

[
�ε(1 + N)δ

]
≤ C is not satisfied.

The scaling has to be adapted differently to the dimension d = 2 or d = 1
by taking care of the singularity at the momentum 0, in order to allow a non
trivial Wigner measure in the thermodynamic and mean field limit.

7.6. Application 1: From the propagation of coherent states to the propagation of
chaos via Wigner measures

In the previous sections we showed how the propagation of (squeezed) coherent
states can be derived from the propagation of Hermite states or directly via the
Hepp method. The Hepp method is very flexible (see [24] for example) and there-
fore it is interesting to know whether a result for coherent states provides an in-
formation for product states or more general states. Here is a simple and abstract
result which relies on some gauge invariance argument.

Theorem 7.4. Let Uε be a unitary operator on H possibly depending on ε ∈ (0, ε)
which commutes with the number operator [N,Uε] = 0. Assume that for a given
z ∈ Z such that |z| = 1, there exists zU ∈ Z such that

M
(
|UεE(z)〉〈UεE(z)|

)
= {δzU

} .

Then for any non negative function ϕ ∈ L1(R, ds) such that
∫

R
ϕ(s)(1+ |s|)δ ds <

∞ for some δ > 0 and
∫

R
ϕ(s) ds = 1, the state

�ε
ϕ =

∞∑

n=0

ε1/2ϕ
(
ε1/2(n− ε−1)

)
|Uεz

⊗n〉〈Uεz
⊗n|

satisfies the conditions of Definition 6.5 and

M
(
�ε

ϕ

)
=

1
2π

∫ 2π

0

δeiθzU
dθ .

Proof. Owing to the relation

Γ(e−iθ)bWeylΓ(eiθ) = e−iθNbWeyleiθN = b(e−iθ.)Weyl .

Our assumptions imply

M
(
Γ(eiθ)|UεE(z)〉〈UεE(z)|Γ(e−iθ)

)
= δeiθzU
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for any θ ∈ R. The assumptions of Definition 6.5 are satisfied because Uε preserves
the number. After taking the average w.r.t θ ∈ [0, 2π]:

σε =
1
2π

∫ 2π

0

Γ(eiθ)|UεE(z)〉〈UεE(z)|Γ(e−iθ) dθ

this implies

M (σε) =
1
2π

∫ 2π

0

δeiθzU
dθ

where the right-side is an extremal point of the convex set of Borel probability
measure which are invariant after the natural action of S1 on Z : S1 × Z �
(γ, z) → γz ∈ Z .

Again the commutation [Uε, N ] = 0 and the expression (4) for E(z) imply

σε = (2π)−1

∫ 2π

0

Uε|Γ(eiθ)E(z)〉〈Γ(eiθ)E(z)|U∗
ε dθ

= (2π)−1

∫ 2π

0

Uε|E(eiθz)〉〈E(eiθz)|U∗
ε dθ

=
∞∑

n=0

e−
1
ε

εnn!
|Uεz

⊗n〉〈Uεz
⊗n| .

For any b ∈ Scyl(Z ), the quantity
∞∑

n=0

e−
1
ε

εnn!
〈Uεz

⊗n , bWeylUεz
⊗〉 = Tr

[
bWeylσε

]

converges as ε → 0 to (2π)−1
∫ 2π

0
b(eiθzU ) dθ . By Lemma A.1 this implies

∀b ∈ Scyl(Z ) , lim
ε→0

∫

R

a[ε−1/2s+ε−1](ε
−1)

e−
s2
2

√
2π

ds = (2π)−1

∫ 2π

0

b(eiθzU ) dθ ,

where [t] is the integer part of t ∈ R and

an(ε−1) = 〈Uεz
⊗n , bWeylUεz

⊗n〉 .

Call γ the Gaussian measure e−
s2
2 ds√

2π
on R. For any finite subdivision I =

{I1 . . . , IL} of R = I1 " . . . " IL with intervals, the states

σε
I�

=
(
γ(I�)

)−1
∫

I�

|Uεz
⊗[ε−1/2s+ε−1]〉〈Uεz

⊗[ε−1/2s+ε−1]| dγ(s)

satisfy the assumptions of Definition 6.5 with the gauge invariance

Γ(eiθ)σε
I�

Γ(e−iθ) = σε
I�

.

Moreover the state

σε =
∫

R

|Uεz
⊗[ε−1/2s+ε−1]〉〈Uεz

⊗[ε−1/2s+ε−1]| dγ(s) =
L∑

�=1

γ(I�)σε
I�
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is a finite barycenter of the σε
I�

with a unique Wigner measure (2π)
∫ 2π

0
δeiθzU

dθ.
Since I is finite (or countable), from any sequence (σεn

I�
) with limn→∞ εn = 0,

one can extract a subsequence (εnk
)k∈N such that

M (σ
εnk

I�
, k ∈ N) = {ν�} .

Since the measure μU is an extremal point in the convex set of gauge invariant
probability measures, all the ν� have to be identical to μU . Since this holds for
any sequence (εn)n∈N, we have proved for any interval I = (α, β) with α < β,
M (σε

I , ε ∈ (0, ε)) = {μU}.
Now take ψ ∈ L1(R, γ) and consider the state

σε
ψ =

∫

R

|Uεz
⊗[ε−1/2s+ε−1]〉〈Uεz

⊗[ε−1/2s+ε−1]| dγ(s) =
L∑

�=1

γ(I�)σε
I�

.

If there exists δ > 0 such that
∫

R
(1+ |s|)δψ(s) dγ(s) < +∞, the family (σε

ψ)ε∈(0,ε)

satisfy the assumption of Definition 6.5. Let (εn)n∈N be a sequence such that
M (σεn

ψ , n ∈ N) = {ν}. Fix b ∈ Scyl(Z ). The function ψ can be approximated
in L1(R, dγ) by ψc ∈ C 0

c (R). After choosing a finite subdivision I such that the
diameter of any I� intersecting the support of ψc is bounded by Δ one gets
∣∣∣∣∣Tr

[
bWeylσεn

ψ

]
− Tr

[
bWeyl

L∑

�=0

∫
I�

ψc(t) dt

γ(I�)
σε

I�

]∣∣∣∣∣ ≤ Cb

[
ω(ψc)Δ + |ψ − ψc|L1(R,γ)

]

where ω(ψc) is the continuity modulus of ψc. Hence the right-hand side can be
made arbitrarily small, uniformly with respect to εn, while we know that the
second term of the left-hand side converges when ψc and I are fixed. We have
proved

∫

Z

b(z) dν(z) = lim
n→∞

Tr
[
bWeyl�εn

]
=

∫

Z

b(z) dμU (z)

for any b ∈ Scyl(Z ) and this proves ν = μU . Since this holds for any ν ∈M (σε
ψ),

we obtain

M (σε
ψ) = {μU} .

The result for �ε
ϕ comes from

∣∣�ε
ϕ − σε

ψ

∣∣
L 1(H )

≤
∣∣∣∣∣ϕ−

∑

k∈Z

ε−1/2

(∫

Iε
k

ϕ(t) dt

)
1Iε

k

∣∣∣∣∣
L1(R,ds)

ε→0→ 0

with Iε
k = [ε1/2k−ε−1/2, ε1/2(k+1)−ε−1/2] and ψ(s) = ϕ(s)

√
2πe

s2
2 . The condition∫

R
(1 + |s|)δ ϕ(s)ds < +∞ ensures that M (�ε

ϕ) is well defined. �
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7.7. Application 2: Propagation of correlated states

This a simple application of the orthogonality of Wigner measures combined with
the results of Subsection 7.3.

Let Hε = dΓ(−Δ) + QWick be the Hamiltonian studied in Section 5 and
let zt denote the solution to i∂tzt = −Δzt + (V ∗ |zt|2)zt. The family of integers
(kε)ε∈(0,ε) is assumed to satisfy limε→0 εkε = 1.

1. Let z0,� ∈ Z , 	 = 1, . . . , L, satisfy |z0,�| = 1 and set uε = L−1/2
∑L

�=1 z⊗kε

0,� ,
uε(t) = e−i t

ε Hεuε. At any time t ∈ R the identity

M
(
|uε(t)〉〈uε(t)|

)
=

{
(2πL)−1

L∑

�=1

∫ 2π

0

δeiθzt,�
dθ

}

as soon as z1,t, . . . , z�,t are linearly independent. In particular this holds for
any t ∈ R when L = 2 and z0,1 and z0,2 are linearly independent.

2. Let z0 ∈ Z satisfy |z0| = 1 and set uε = 2−1/2z⊗kε
0 + 2−1/2E(z0) and

uε(t) = e−i t
ε Hε

uε. Then

M
(
|uε(t)〉〈uε(t)|

)
=

{
1
2
δzt

+
1
4π

∫ 2π

0

δeiθzt
dθ

}
.

3. Moreover the convergence can be tested with Weyl, Anti-Wick and Wick
operators according to Theorem 6.2 and Theorem 6.13 .

Appendix A. Normal approximation

We prove a technical lemma which is a slight adaptation of the normal approxi-
mation to the Poisson distribution. Recall that for all −∞ ≤ α < β ≤ ∞ we have
the well known fact:

lim
λ→∞

∑

1+ α√
λ
≤n

λ ≤1+ β√
λ

λn

n!
e−λ =

∫ β

α

e−
s2
2

√
2π

ds . (69)

Lemma A.1. Let {an(λ)}n∈Z,λ>0 be a family of complex numbers with an(λ) = 0
if n < 0. Assume that there exist μ ∈ N and Cμ > 0 such that:

sup
n∈N,λ>0

|an(λ)|
〈n

λ

〉−μ

≤ Cμ .

Then the equality

lim
λ→∞

∞∑

n=0

λn

n!
e−λ an(λ) = lim

λ→∞

∫

R

a[
√

λs+λ](λ)
e−

s2
2

√
2π

ds (70)

holds whenever one of the two limits exists.
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Proof. Notice that both the series and the integral in (70) are absolutely convergent
for finite values of λ. By hypothesis ãn(λ) = an(λ)〈n

λ 〉
−μ are bounded and moreover

they satisfy

lim
λ→∞

∞∑

n=0

λn

n!
e−λãn(λ)

(
1−

〈n

λ

〉μ)
= 0 , (71)

lim
λ→∞

∫

R

ã[
√

λs+λ](λ)

(
1−

〈
[
√

λs + λ]
λ

〉μ)
e−

s2
2

√
2π

ds = 0 (72)

since we may bound uniformly for λ large each of the terms inside the sum and
the integral respectively by

C1
μ

∞∑

n=0

λn

n!
e−λ nμ < C0

μ , and C2
μ

∫

R

|s|μ e−
s2
2

√
2π

ds < C0
μ , ∀λ > 1 .

Therefore there is no restriction if we assume all an(λ) bounded by 1 since if we
prove (70) for ãn(λ) then it holds for an(λ) by the limits (71)–(72).

For all h > 0 there exists α < β such that

∫ ∞

β

e−
s2
2

√
2π

ds < h/7 ,

∫ α

−∞

e−
s2
2

√
2π

ds < h/7 .

Now by (69) we have

lim
λ→∞

∑

1+ β√
λ
≤n

λ

λn

n!
e−λ =

∫ ∞

β

e−
s2
2

√
2π

ds , lim
λ→∞

∑

n
λ ≤1+ α√

λ

λn

n!
e−λ =

∫ α

−∞

e−
s2
2

√
2π

ds

Therefore there exists λ1 such that for all λ > λ1 we have

∑

1+ β√
λ
≤n

λ

λn

n!
e−λ ≤ h/6 ,

∑

n
λ ≤1+ α√

λ

λn

n!
e−λ ≤ h/6 .

Let denote Iα,β(λ) =
∫ β

α
a[

√
λs+λ](λ) e− s2

2√
2π

ds. We obtain for all λ > λ1:

∣∣∣∣∣

∞∑

n=0

λn

n!
e−λan(λ)−

∫ ∞

−∞
a[

√
λs+λ](λ)

e−
s2
2

√
2π

ds

∣∣∣∣∣

≤

∣∣∣∣∣∣∣

∑

α< n−λ√
λ

<β

λn

n!
e−λan(λ)− Iα,β(λ)

∣∣∣∣∣∣∣
︸ ︷︷ ︸

Jα,β(λ)

+2h/3 . (73)
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Using the Stirling formula there exists λ2 such that for all λ > λ2 we have
∣∣∣∣∣∣∣

∑

α< n−λ√
λ

<β

λn

n!
e−λ

[
1− n!√

2πn(n/e)n

]
an(λ)

∣∣∣∣∣∣∣
≤ h/9 .

This yields the following estimate

Jα,β(λ) ≤

∣∣∣∣∣∣∣

∑

α< n−λ√
λ

<β

1√
2πn

[
eλϕ( n

λ ) − e
−( n−λ√

λ
)2/2

]
∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣

∑

α< n−λ√
λ

<β

e
−( n−λ√

λ
)2/2

√
2πn

an(λ)− Iα,β(λ)

∣∣∣∣∣∣∣
︸ ︷︷ ︸

Lα,β(λ)

+h/12 , (74)

where ϕ(x) = x − 1 − x ln(x). To complete the proof one needs to estimate in-
finitesimally the two terms in the r.h.s. of the above inequality. Notice that by
means of Riemann sums we have

lim
λ→∞

∑

α< n−λ√
λ

<β

e
−( n−λ√

λ
)2/2

√
2πn

= lim
λ→∞

∑

α< n−λ√
λ

<β

e
−( n−λ√

λ
)2/2

√
2πλ

=
∫ β

α

e−s2/2

√
2π

ds . (75)

We have

∑

α< n−λ√
λ

<β

1√
2πn

[
eλϕ( n

λ ) − e
−( n−λ√

λ
)2/2

]
=

∑

α< n−λ√
λ

<β

e
−( n−λ√

λ
)2/2

√
2πn

[
eλϕ̃( n

λ ) − 1
]
,

where ϕ̃(x) = x−1−x ln(x)+(x−1)2/2 which is an increasing function null at 1.
Therefore one obtains

∣∣∣∣∣∣∣

∑

α< n−λ√
λ

<β

1√
2πn

[
eλϕ( n

λ ) − e
−( n−λ√

λ
)2/2

]
∣∣∣∣∣∣∣

≤
∫ β

α

e−s2/2

√
2π

ds
[
e

λϕ̃( β√
λ

+1) − 1
]
, (76)

with a r.h.s. converging to 0 when λ →∞ since limλ→∞ e
λϕ̃( β√

λ
+1) = 1, which we

bound by h/12 for λ larger than a given λ3. One can obtain the estimate

Lα,β(λ) ≤

∣∣∣∣∣∣∣

∑

α< n−λ√
λ

<β

e
−( n−λ√

λ
)2/2

√
2πλ

an(λ)− Iα,β(λ)

∣∣∣∣∣∣∣
+ h/18 ,
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using the fact that

∑

α< n−λ√
λ

<β

e
−( n−λ√

λ
)2/2

√
2πλ

∣∣∣∣∣∣
1√

(n−λ√
λ

) 1√
λ

+ 1
− 1

∣∣∣∣∣∣
︸ ︷︷ ︸

(1)

≤ h/18 ,

since limλ→∞(1) = 0 and the sum is uniformly bounded by (Equ. 75). By splitting
the integral in Iα,β(λ) over the intervals [n−λ√

λ
, n+1−λ√

λ
) one can show that

∣∣∣∣∣∣∣
Iα,β(λ)−

∑

α< n−λ√
λ

<β

an(λ)
∫ n+1−λ√

λ

n−λ√
λ

e−s2/2

√
2π

ds

∣∣∣∣∣∣∣
≤ h/18 .

This yields

Lα,β(λ) ≤ h/9 +
∑

α< n−λ√
λ

<β

[
e
−( n−λ√

λ
)2/2

√
2πλ

−
∫ n+1−λ√

λ

n−λ√
λ

e−s2/2

√
2π

ds

]
(77)

with a r.h.s. converging to 0 when λ → ∞ which we bound by h/18 for λ larger
than λ4. Combining the estimates (74), (76) and (77) with (73) we obtain that for
all h > 0, there exists λ0 such that for all λ > λ0 we have

∣∣∣∣∣

∞∑

n=0

λn

n!
e−λan(λ)−

∫ ∞

−∞
a[

√
λs+λ](λ)

e−
s2
2

√
2π

ds

∣∣∣∣∣ ≤ h .

This gives the claimed result. �
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[11] I. Carusotto, Y. Castin, and J. Dalibard, The N-boson time dependent problem: An
exact approach with stochastic wave functions, Phys. Rev. A 63 (2001), 023606.

[12] Y. Castin, Bose–Einstein condensates in atomic gases: Simple theoretical results,
in ‘Coherent atomic matter waves’, Lecture Notes of Les Houches Summer School,
p. 1–136, EDP Sciences and Springer-Verlag (2001).

[13] M. Combescure, J. Ralston, D. Robert, A proof of the Gutzwiller semiclassical trace
formula using coherent states decomposition, Comm. Math. Phys. 202 (1999), no. 2,
463–480.

[14] Y. Coudène, Une version mesurable du théorème de Stone–Weierstrass, Gaz. Math.
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aux Dérivées Partielles, 1990–1991, Exp. No. XVI, 19 pp., École Polytech., Palaiseau,
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Inst. H. Poincaré Sect. A (N.S.) 28 (1978), no. 1, 4173.
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Birkhäuser Boston, 1987.

[42] L. Schwartz, Radon measures on arbitrary topological spaces and cylindrical mea-
sures, Tata Institute of Fundamental Research Studies in Mathematics, No. 6, Oxford
University Press, London, 1973.



1574 Z. Ammari and F. Nier Ann. Henri Poincaré
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Université de Cergy-Pontoise
UMR-CNRS 8088
2, avenue Adolphe Chauvin
F-95302 Cergy-Pontoise Cedex
France
e-mail: zied.ammari@u-cergy.fr

Francis Nier
IRMAR
UMR-CNRS 6625
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