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A Functional Integral Representation for Many
Boson Systems
I: The Partition Function

Tadeusz Balaban, Joel Feldman, Horst Knorrer, and
Eugene Trubowitz

Abstract. We derive a functional integral representation for the partition
function of a many Boson system for which the configuration space consists
of finitely many points.

1. Introduction

We are developing a set of tools and techniques for analyzing the large dis-
tance/infrared behaviour of a system of identical bosons, as the temperature tends
to zero.

The total energy of the many boson systems considered in this paper has two
sources. First, each particle in the system has a kinetic energy. We shall denote the
corresponding quantum mechanical observable by h. The most common is —ﬁA,
but, in this paper, we allow any positive operator. Second, the particles interact
with each other through a two-body potential, v(x,y). For stability, v is required
to be repulsive. We assume that the system is in thermodynamic equilibrium and
that expectations of observables are given by the grand canonical ensemble at
temperature 7' = % > 0 and chemical potential p.

Functional integrals are an important source of intuition about the behaviour
of quantum mechanical systems. They are also an important rigorous technical tool
in the analysis of, for example, Euclidean quantum field theories. In this paper
and its companion [2], we derive rigorous functional integral representations for
the partition function and thermodynamic correlation functions of a many boson
system.

There are many possible applications of our functional integral representa-
tions. However, we are motivated by the following potential specific application.
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One may speculate (in agreement with the standard picture of condensed matter
physics) that, at temperature zero and infinite volume, a weakly coupled, three
dimensional many boson system will undergo a phase transition at some critical
chemical potential fi..

o For p < iy, the system is in a massive phase. That is, all correlation functions
decay exponentially fast at large separation. The expected value of the field
#(x) = (af(x)), where a'(x) is the particle creation operator at x, is zero.

o For y > p,, number symmetry is broken. In this phase, correlation functions
fail to decay exponentially due to the presence of extended, collective exci-
tations (the massless Goldstone bosons). The expected value of the field is
nonzero. The presence of such anomalous nonzero amplitudes is used as a
general criterion for a condensed quantum fluid.

The intuition behind this phase transition is easily obtained by using a formal co-
herent state functional integral [6, (2.66)] to express the grand canonical partition

function as ( %)
g7 (x) dor A(6,9)
/ / 11 o e (1.1)

3
¢p = do 0<Tﬂi,3
where

B ) 9 B
* _ 3 * e o *
Awt0) = [dr [ dx 0160 50,00 = [ ar K(or.0.)

and
0) = [[ dxdy a0 hx.3)6(y) [ dx alx) o0
45 [ dxdy alals)oxy) 6600).

Here h(x,y) is the kernel of the kinetic energy operator.
In the mean field approximation, that is, when ¢,(x) is independent of 7
and x, the action A(¢*, ¢) is minus the integral over 7 and x of the

1
“naive effective potential” = 56(0)|¢|4 — ulg?

where ©(0) = [dyv(x,y). We have assumed that v(x,y) is translation invariant
and that h annihilates constants. The minimum of the naive effective potential is

o nondegenerate at the point ¢ =0 when u <0
and
o degenerate along the circle |¢| = 1}(0 when g > 0.

It is therefore reasonable that an attempt to rigorously justify the phase tran-
sition in the chemical potential discussed above would begin with the derivation
of rigorous functional integral representations of the thermodynamic correlation
functions in which the effective potential appears explicitly. We do so in this paper
and the companion paper [2].
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It is common practice in condensed matter physics, to discretize space, be-
cause the overall energy scale is low. On physical grounds, this does not affect the
long range behaviour of the system. For this paper, space is an arbitrary, but fixed,
finite set X, that we may imagine is a subset of a lattice. The second quantized
Hamiltonian H and the number operator N act on the infinite dimensional Fock
space

F= @)
n=0

The long distance behavior of the system is revealed in the thermodynamic limits of
grand canonical correlation functions, such as derivatives of the partition function

7 = Tr pe PH-1N)

To implement the thermodynamic limit, one would take the usual family of finite
spaces

r={zeZ® | |z <L,i=1,23}
and send L to infinity. We shall not do so in this paper.

Our first result (Theorem 3.13), stated somewhat informally, is the represen-
tation

Tre PH-#N) — 1imy / I dere (65, 07) 5009 (1.2)
p—00
T€T,

for the finite volume grand canonical partition function. Similar representations
for general correlation functions are derived in [2]. Here, for each natural number p,
the discrete time interval 7, is given by

p
%:{T:q|q:1,...,p .
p

For each point (x,7) in the discrete space-time X x 7, we have introduced the
complex variable ¢(7,x) = ¢,(x). For each r > 0, the measure

dne(6,0) =TT [“ELLID (1o

2m
xeX

where, x, is the characteristic function of the closed interval [0,r]. The sequence
R(p) > 0 in (1.2) tends to infinity at an appropriate rate as p — oo. The “action”
F(e, ", @), with e = é, is given by

Fle 6, 0) = //deX¢> (0 ) (x //dnlm ) (ho,) (x)
[ drax 00970, (x)

—5///d7dxdy b7 (%) b7 (x) v(x,¥) &7 (¥) 0+ (¥)
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where

// drdx v(r,x)=c > > ¥(1,x)

Te€T, x€X

[ drixdy vrxy) =2 ¥ Y wirxy)

Te€T, x€X yeX

and the difference operator 0° acts by

¥ o(r,x) =t ((;5(7' +e,x) — ¢(T, x)) )

In (1.2), fields ¢, with 7 ¢ 7, are determined by the periodicity condition ¢, =
¢-—p. It is easy to check that the representation (1.2) generates the usual formal
graphical perturbation series.

In the physics literature, coherent states' | ¢), ¢ € C~, the formal resolution
of the identity

1= [ [T [5G0 o] 15y (o) (1.3

21
xeX - -

and the formal trace formula

= [ ][R oot (518 ) (1)

2m
xeX - -

are used to justify (1.1) as follows. Formally,
Tr e~ BH—1N)

— lim Tr e s @M o= 5 E=uN)q =5 (H-pN)

p—0Q0
_ lim /H [dqu(x)d@(x) e_|¢7(x)|2}
p—00 21,
xeX
T€T,\{B}

x T | [ e 7™ 6,) (6, || e 7D

€T, \ (8}
o d¢7(x) dpr(X) _jp, ()12 ‘ —Q(H—um‘
e [ ] 1 (o 10 )
x€7)§' T€T,
TE Y

(1.5)

1We are using coherent states normalized so that {(a|v) = el & a(¥) () We systematically use
the convention that [ dx f(x) =, cyx f(x).
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Then, one argues [6, (2.59)] that

(a

o (H-uN) ‘ ¢> _ <a ‘ <= (H=uN) . ‘ ¢> +0(2) (1.6)
= exp{ /dy a(y) o(y) — eK(a*,¢) + O(e?) }

where : - : denotes Wick ordering. If € = £, one observes that there are O(p) error

terms of order O(g?) = O(p—). “Off the cuff”, the error terms do not contribute
when p — oo and consequently,

—B(H-pN) _ d¢r(x) dor(x)
Tre ' plinolo H [/ 2m

xeX
TE’T

« H o Y 0 (V) [br15/p(¥)~br(9)] = SK(87.0r45/0)

TET,

It is the purpose of this paper, and its companion, to make this all precise.

In §II, we review the basic formalism of bosonic quantum statistical mechan-
ics and the formalism of coherent states in the context of a finite configuration
space X. In particular, we prove, in Theorem 2.26, a rigorous version of the formal
resolution of the identity (1.3) and we prove, in Proposition 2.28, that the trace
formula (1.4) applies rigorously to a certain class of operators. In this way, we
obtain a rigorous variant of (1.5). See Theorem 3.1.

It is by no means clear that dropping, “off the cuft”, the O(p) error terms of
order O(g?) is justified, because the error terms are unbounded functions of the
fields ¢,. We circumvent this part of the formal argument by directly constructing
the logarithm F(e,a*,¢) = In(a|e <% |¢), at least for a and ¢ not too large.
See Proposition 3.6. To this end, we derive and then solve an evolution equation
in € for F(e,a*, ¢). It follows that

F(e,a™,0) = /X dx a(x)*p(x) — eK(a*, ¢) + O(e?) .

We then show, in Theorem 3.13, that the “matrix element” <a ’ e—c (H—pN) ‘ ¢>

can be replaced by e/ @ @¥)"é(y) = eK(a".9) in the formula for Tr e AH=1N) of

Theorem 3.1, provided the integration radius R(p) of (1.2) is chosen appropriately.
In the physics literature, one simply “evaluates” the limit

ph_fﬁlo/HdMR (¢%.0r) 75 ’¢):/ / 11 d¢7(x 27:54157() Ax(87.9)

xeX

T€Tp (bﬁ = ¢0 0<r<p
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where

Axtor,0)= [ar [[x {60056, ~ 63000~ 16}

B
- %/0 dT/deXdy ¢T(X)*¢T(Y)*U(X, y) ¢T(X)¢T(y)-

The first impulse of a mathematical physicist determined to ascribe a rigorous
meaning to this formal functional integral representation for the partition function,
would be to construct a “complex Gaussian measure” duc , with covariance

C= (—27_+(h—u))1

out of the formal measure

exp{/O@T/de {¢i<x>§7¢>¢<x>—¢:<x><h—u>¢7<x>}} [ % do-x)

xeX 27TZ

0<r<p
Normally, one starts by defining the integral of any polynomial in the complex fields
PE(x), 9-(x), T €10,0), x € X, against duc as cumulants of “matrix elements”
of the covariance C. Then one constructs the characteristic function of duc, as
a limit of integrals of polynomials, and the corresponding measure. However, the
explicit calculations in Appendix A, modelled on those of Cameron [3], show that
the purely imaginary term

/ ar [ dx 610 5-0.x)

in the exponential generates oscillations that are so severe that there is no complex
Gaussian measure.
To work with the ultraviolet limit

. . B y4*
lim / H dpr(p) (05, ¢r) 7 979)

p—00
T€T,

to, for example, construct the thermodynamic limit and justify the phase transi-
tion in the chemical potential, one must exploit the cancellations arising from the
oscillations generated by the purely imaginary term in the action.

One methodology for the explicit control of cancellations of this kind, when
the coupling constant A = ©(0) is small, is known as “multiscale analysis”. In
the present case “scales” refer to blocks of frequencies in space x and inverse
temperature 7. There are infinitely many scales. Cancellations are implemented at
each scale.

Typically, the total contribution of “large fields”, for example field configura-
tions with ¢,(x) or appropriate derivatives large, is smaller than any power of A,
reminiscent of large deviations in probability theory. This can be proven without
attention to cancellations. On the other hand, oscillations are fully exploited in
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the complementary “small field regions” by high dimensional steepest descent cal-
culations around the complex critical points of the effective actions. In the end the
functional integral becomes an infinite sum over small and large field regions. The
physicists formal functional integral is morally “the dominant term”.

2. Finite systems of bosons

In this section we carefully review the basic formalism of bosonic quantum statis-
tical mechanics and introduce the notation that we will systematically use.

Fock space
Fix a finite set X.

Definition 2.1. (i) Let n € INU {0}. The action - f of a permutation m € S,
on fin L?(X™) is given by
7T-f(X17 e ,Xn) = f(Xﬂ.—l(l)7 e ,Xﬂ,—l(n)) .

The bosonic n-particle space
B (X) = {f e L2(X™) ’7r~f — fforallme Sn}

is the ("Jr |$f |*1) dimensional complex Hilbert space of all symmetric func-
tions on X" with inner product

(fy9)B, = dxy ... dx, f(xX1,...,%X2)g(X1, .-, Xp) -
X"L

In particular, By(X) = C and B;(X) = L*(X).

(ii) The bosonic Fock space B(X) over X is the orthogonal direct sum B(X) =
D, Bn(X). It is an infinite dimensional complex Hilbert space. The inner
product between f and g in B(X) is

(£.8)5 = > (Fu 9n)5, -

n>0

Definition 2.2. (i) Let h be a (single particle) operator on L?(X), with kernel
h(x,y). Assume that h(y,x) = h(x,y)* so that h is self-adjoint. The corre-
sponding independent particle operator on B, (X) is

n

Ho(h,n, X) =) hl.

i=1
The superscript on h(?,i = 1,...,n, indicates that the single particle oper-
ator h acts on the variable x; appearing in a function g(xi,...,x,). That

is,

(h(i)g)(xl,...,xn) :/ dx; h(x;, x5) g(X1, ..y Xhy ooy X))
X
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By convention, Hy(h, 0, X) = 0. The kernel of Hy(h,n, X) is

Ho(h,n, X)(X1,.. - Xpn, ¥Y15---Yn)

_Z 5x1 Y1 xl 1 (yz 1) h(Xi7 yi) 5xi+1 (yi+1) cee 5xn (Yn) .

Here dx(y) = = { (1] 2; x iy } is the delta function on X concentrated at
the point x.
The second quantization of A is the direct sum
Ho(h, X) @HO (h,n, X)
n>0

acting on the domain { f € B(X) | 2 n>0 H Ho(h,n, X)f, HB < oo}

(i) Let v(x,y) be a real valued (two body) potential on X2 satisfying v(x,y) =
v(y,x) for all x,y € X. Multiplication by v determines a (two particle)
operator on By (X). Its kernel is v(x1,X2) 0x, (¥1)dx, (¥2). The corresponding
2 particle interaction operator on B, (X) is

V(v,n, X) E pii2)
i1 <ig

Here, for each pair of indices 1 < i; < ip < n, the superscript on v(?1:%2)
indicates that the operator v acts on the variables x;,,x;, appearing in a
function g(x1,...,x,). That is,

(v(“’h)g)(xl,...,xn) = 0(Xiy, Xiy) G(X1ye ey Kigy ooy Kigy oo vy Xn) -

By convention, V(v,n, X) =0 for n =0, 1.
The second quantization of the two particle interaction v is the direct

sum
X) =PV X)
n>0
acting on the domain { f € B(X) | 2 n>0 HV (v,n, X)f, HB 0o }.

Ezample 2.3. Let lx be the identity operator on L?(X). Then,
Ho(]lX,n, X) = nIan

where, Ty~ is the identity operator on L*(X™). By definition, the number opera-
tor N is Ho(ﬂx,X).

Proposition 2.4. For any single particle operator h on X, any two particle poten-
tialv on X and any p € IR, the operator Hy(h, X)+V (v, X)—uN is essentially self
adjoint on (fn)n>0fn € Bn(X), for alln >0, f, =0 for all but finitely many n. It
commutes with the number operator N.

Proof. The proof is routine. O
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Creation and annihilation operators

Let u € B, (X) and let v € B,(X) and write u ® v(x1, ..., Xmtn) for the tensor
product

WK1,y ooy X)) V(X 1y -+ o s Xt -
The symmetric tensor product u ®, v of u and v is defined by
1
URgV = Z (u®wv)

m!(m + n)!n! nCSmen

and belongs to By, 4, (X). The symmetric tensor product extends by linearity to
a commutative, associative and distributive multiplication on B(X). If u € B1(X)
and v € B,,_1(X), then

1 o ~
URs (X1, .., Xp) = %Zu(xi)v(xl,...,xi,...,xn).
i=1

Successively multiplying u,..., u, € B1(X) , one obtains by induction the ele-
ment
u1®3-~-®sun(x1,...,xn)

1
— U (Xp(1)) « - - Un(Xp(n)) = —— perm(u;(x;)
\ﬁ 7%; M (m) = = perm(ui(x;))
of B, (X). Here perm(u;(x;)) denotes the permanent of the matrix [u;(x;)]1<i j<n-
By direct calculation,

<U1 Rs +++ Qs Up, V1 Qg +++ Qg vn>5n = perm(<ui7vj>51)
for all uy,...,u, and v1,...,v, in By (X).

Remark 2.5. It is common to deﬁne the symmetric tensor product with the al-

ternative combinatorial factors @ +n) W rather than ——L— We make
m!(m+n)In!

the present choice because the annihilation operators become derivations on the
algebra B(X). See, Lemma 2.11.

7 O

Proposition 2.6. Suppose u;,i = 1,...,|X|, is an orthonormal basis for By (X).
Then, the family of functions

1 «

R

— u®s
{ Va!

€ (lNU{O})‘X‘, lal =n }

where
%X

o5 ® C Qs u ‘ d (X1, Xp)

(X1, Xp) =

u®s
Uy
is an orthonormal basis for Bp(X) .
Y

If Y is a subset of X, then B

u

) can be identified with the subalgebra
{ f = (fo,fl e ) € B(X) ‘ fn(x1,...,%,) is supported in Y for each n >0 }
of B(X). Furthermore,
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Lemma 2.7. Let Y and Z be disjoint subsets of X. For all u,u’ € B(Y) and
v,v' € B(Z)

(u®sv,u' @0 >B(X) = (u,v >B(Y) (0,9 >B(Z) '

Remark 2.8. For each x € X, the bosonic Fock space B({x}) is canonically isomor-
phic to a subalgebra of B(X). The abstract tensor product of all these subalgebras
is isomorphic to B(X). By the last lemma, the global inner product completely
factors.

Definition 2.9. For each x € X the annihilation operator ¥ (x) acts on B(X) by
(w(x)u) (X1, -y Xn1) = V1 u(X, X1, ..., Xp_1)

for all u € B,,(X),n > 0. The adjoint 1 (x) of 1(x) is the creation operator on
B(X) that acts by

(vﬂ(x)u) (X1, Xpg1) = (5x Qs u) (X1, Xnt1)
1 n+1

= \/mZ(Sx(xi)u(xl,...,)Q,...,xn_H)
i=1

for all uw € B, (X), n > 0. The utility of these operators is due to the commutation
relations

W(X)a q/}T(X/)] = 5x(xl)
[¥(x),(x)] =0 (2.1)
[$1(x), T (x)] =0

for all x,x’ € X.

Remark 2.10. It is easy to see that

(VF (x)(x)u) (x1, ..., xn) = Zéx(xi) WXy, .. X, Xn)

= (Z(SX(Xi)) WKLy eo oy Xiye v oy Xp) -

In other words, the restriction of the product 1 (x)1(x) to B,,(X) is multiplication
by the function )., dx(x;). By definition the density operator n(x) at x € X
acts by

n(x) = 1 (x)P(x).
Lemma 2.11. For allx € X, u € B, (X) and v € B,(X),
Y(x) (u@sv) = (V) u) @ v+uds (¥(x)v).
Proof. The proof is by induction on m. O
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Definition 2.12. Fix a natural number n > 0. For each Y in the quotient space
X"/S, set

dy = cy Oy, @5 - @5 Oy,

where (y1,...,yn) in X™ is a representative for Y. The constant

where py (x) = Z Ox.y;
i=1

1
O Maex Vi 0!

is the multiplicity of x in Y. By construction, dy, y € X, is an orthonormal basis
for L?(X). By Proposition 2.6, the family dy,Y € X"/S,, is an orthonormal basis
for B,,.

Lemma 2.13. Fix the point x € X and the setY € X™/S,,. Then,

bo) By = 1Y NIy if xEY
0 ifx¢Y

DT(x) oy = ey ¢yl Svum
n(x) oy = py (x) oy .
Here, the ‘disjoint union’ Y LU {x} is the element of X"T1/S, 1 with

Lyl (y) — N“Y(y) Zf y 7é X
& wy(y)+1 if y=x.

Proposition 2.14. For any single particle operator h and any 2 particle potential v,

Ho(h, X) = [ dxdy /() hix.y) w(y)

V(o) = 5 [ i 1)l () vir,x) i) xa)

=5 [ dxadxe vl xuaa) o, ) () e)
5 [ dx G0 v v,
Remark 2.15. We have
N =Hy(1,X) = /dx DT (x)Y(x) = /dx n(x)
and
V() = 5 [ dxadsa n) v x) nx) - 5 [ dx ot x) ).

To ensure that the Hamiltonian Hy(h, X)+V (v, X) is stable, we shall assume
that the interaction potential v is repulsive in the sense of the following definition.
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Definition 2.16. Define, for any real, symmetric, 2 particle potential v(x,y),

Ao(v) = inf { /dxdy p(x)v(x,y)p(y) ’ /dx p(x)? =1, p(x) > 0 for all xe X } :

We call the potential v repulsive if \g(v) > 0.

If v(x,y) is the kernel of a strictly positive definite operator acting on L?(X),
then v is repulsive with A\g(v) at least as large as the smallest eigenvalue of the
operator. If v(x,y) > 0 for all x,y € X and v(x,x) > 0 for all x € X, then v is
repulsive with Ag(v) > minge x v(x, X).

Proposition 2.17. Let h be a single particle operator and v(x1,X2) be a real, sym-

metric, pair potential. Assume that the self adjoint operator v acting on L*(X)
with kernel v(x,y) is strictly positive definite. Then

1] < 3 (%o s — o) N < V(wX) £ JAN - 2N

AN < Hp(h,X) <A'N

on the domain D(V) = D(N?). Here, \g = A\o(v), A is the largest eigenvalues of
the operator v, Ny and A’ are the smallest and largest eigenvalues of the operator h
and vy = maxxex v(x,x). The leftmost bound on V is called the ‘linear lower
bound’.

Proof. We have

(o [ s nlxaputs xopnte) b ) = [ dsada oy Gxa)otxs, xo ()

> [ dx it )
X

>|§(0| (/)(dXMY(X))Z

Ao o
=-—n
X

where Schwarz’s inequality was used in the third line. Similarly,

<5y , / dx1dxs n(x1)v(x1,x2)n(X2) 5y> < An?.
X2
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Let u =} y¢cxn/g, ¥y Oy be an arbitrary element of B, (X). We have
<u , /X2 dx1dxs n(x1)v(x1,X2)n(X2) u>
= Z Oy, Y, <5y1 , /X2 dx1dxs n(x1)v(x1,x2)n(X2) §y2>

Y1,Yo€Xn /S,

I
5
b<
T

—

QL

%
i

Sy

%
]
=
b<

ol
-
=

%
oy

%
=
=
>~<

%
N

YeXn/S,

I
_‘y
e

3

()
3

S

~<

o

In the same way,

<u , / dx1dxs n(x1)v(x1,x2)n(X2) u> < A n? ||u||123n .
X2

Since a < v(z,z) < b, a similar, but simpler, argument gives

Aon ||u||21,3W < <u , / dx v(x,x)n(x) u> <wvpn ||u||%W .
X
The bound on Hy(h, X) follows directly from Definition 2.2.i. O

Coherent states

We now review the formalism of coherent states [6, §1.5].

Definition 2.18. (i) The family | zdx ), z € C, of coherent states concentrated at
x € X is given by

1 1 n

n .7 n n (O

|z§x>—g 7 w(x)l—g 7 Ox
n>0 n>0

where 1 is the ‘vacuum’ 1 € € = By(X). That | z0x ) € B(X) is a consequence
of Proposition 2.22, below.
(ii) If ¢(y) € L*(X), the coherent state | ¢) € B(X) is

16) = @), 6(y)dy) = el oW1,

yeX

Lemma 2.19. For all ¢ in L?(X),

16)=>" > o(YV)evdy.

n>0 YeXxn/S,

Here, ¢(Y) = [ ex o ) (y) for each Y in the quotient space X™/S,,.
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Proof.

_ ®S Z % (bn(y)é?? _ Z H - 'qsny ® 5®3

yeX n>0 nye%(o yex Y° yex
y
"y
=S Y= | (T | @55
n
n>0 ny>0 yeEX yex Y- yeX
yeX
)
— Ly (v) 2 ® Y
=2 2 (II"Y )4 K.
n>0 YeXxXn/S, \yeX yeX

=3 > (V)eydy. 0

n>0 YeEXn/S,

Coherent states have been defined to give

Proposition 2.20. For allx € X and ¢ € L*(X),

P(x)[¢) = o(x)[¢)

0
Vi) [6) = ()|¢>

Convention 2.21. For any ¢ in L*(X) and any state f in the Fock space B(X),
abusing notation, the inner product between the coherent state | ¢ ) and f is written
as (¢ ‘ £). That is, (¢ ’ £)=(1l¢), f>B Simalarly, the inner product between the
coherent states | ¢) and ‘ @' ) is written (¢|¢’ ).

Proposition 2.22. For all a and vy in L*(X), we have HP(’") o) HB = lell
(a|y) =l a(y)(y)

where P(™) s the orthogonal projection from B(X) onto the m particle subspace
B (X).

Lemma 2.23. For any single particle operator h and any ¢ in L*(X),

ef‘rHo(h,X) |¢> _ |67Th¢> )

Proof. By Proposition 2.14,

Tre 6 =~ [ dxide v xa) i xe) wlx) T | 0)
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and, by Definition 2.18.ii,

d | - eldy (o)) v (y)
— 1
dr ’ ¢>
= /dy (—he ™ o) (y)vi(y) e/ ("™ O) ) v () 1
- [ay i) e o)) e o)
—/dxlde YT (x1) h(xy, %a) () | e_Th¢>.
As —e‘THU &) and | e~ ™" ¢ ) satisfy the same first order ordinary differential
equatlon and initial condltlon they coincide. O

Lemma 2.24. Suppose both £ and N2 XIf belong to the Fock space B. Then,

[(o]£)] < (H W) X119 ||V 4 a2 ]

yeX

Proof. Fix P in X™/S,,. Then,

P)(o|f) =" Cyo(P)o(Y) (v, )
Y

:ZCPuY¢(P|—|Y)< Cy 6y,f>
Y B

Cpuy

X
MPuY )| 1 Sy | f>
xeX B

pp(x)
_Zcpuyqspuy <H H 5y7f>
B

_ZCPuYQbPUY <

Y

xeX k=1

pnp(x) L
=> Cpuy ¢(PUY) <5y,H H 2f> :
Y B

xeX k=1
It follows from Schwarz’s inequality and Parseval’s identity that

P (x)

o021 (91| < (S I ¢<Pw>12) NI

xeX k=1

m\»—-
—h

B
wp(x)

<(S 1o o) T o'

Y xeX k=1

N
.

B
<el |\¢|I2H(N + ”)%fHB'
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Adding,

(ol £)] TT (1 +lo@)I) < 2X1e 19| (v + 4] x])2 X1 £, 0
yeX

An approximate resolution of the identity

In the physics literature, the formal resolution of the identity

1= / 1T [d¢*(x)d¢<x)

} e Sy 16O 1 4) (4|
xeX

2m

is often used. See, for example [6, (1.123)]. However, for each ¢ € L*(T), the opera-
tor norm of e~/ ¥ 1#®)I” | ) (@] is exactly one. So the nature of the convergence
of the integral in the above formal resolution of the identity is not clear. We now
investigate the convergence more carefully.

Definition 2.25. For each r > 0, the measure du,.(¢*, ) on L?(X) is given by
do* (x)d
dnr(6,0) = T |“ G2 s, 1ot

211
xeX

where . is the characteristic function of the interval [0, r]. The measure du(¢*, ¢)
on L?(X) is given by

du(e™,¢) = []

xeX

Theorem 2.26. For each r > 0, let 1. be the operator that acts on £ in B(X) by

(a) Forallm >0 and allY € X™/S,,
L.dy = A\.(Y) 0y

2m

40760460

where
2

I, "
A (Y) = H L(}T)) with  T'y(s) :/ dt e 't5, forall s> —1.
<X pry (x)! 0
In particular, 0 < \.(Y) < 1.
(b) L. commutes with N.
(¢) The operator norm of 1, is bounded by one for all r and 1, converges strongly
to the identity operator as r — oc.
(d) For all n and r, the operator norm

[(1—L) P, < [Xx|2m+te /2,

Here, P, is the orthogonal projection from B(X) onto the direct sum

D Bu(X).

0<m<n
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(e) Suppose that N2IXIf belongs to the Fock space B. Then,

£ [du(o".0) 1 6) (o)1)
with the integral converging absolutely.

Proof. (a,b) To veritfy (a), let Y € X™/S,, and observe that
iy = [ dun6r,6) T 190 63 (g5 )
=X > dvevey / dpn(9%,9) =1 W 1P 4(v7) (1),

n>0 Y’'eXn/S,

We have

/dur(aﬁ*ﬁ) e/ 1O g (v) g(v7)

- H /MM(W(X)D e~ o0 ¢*(X)uy(x) (b(x)uy/(X)}
xeX - m
r rr 2w
- 11 / dp / B =0 gy G4y () ezewy/<x>uy<x>>}
xex /o o T
=11 5#Y(X)»Hy/(x)/ dp 2p e"’sz’*Y(x)]
xex b 0
=dy,y H / dt ety )
xex /0
= 6y,yl H FT (,uy(X>) .
xeX
Consequently,
Ly (py (%))
_ 2 _ Iy (py (x))
L0y =0y cy H Ly (py(x)) = 0y H ()

xeX xeX
Thus I, is a diagonal operator in the orthonormal basis {dy }. Each diagonal entry
2
1 T
A (Y) = — / dt e~y ()
®) xle_‘!( [MY(X)! 0

is between 0 and 1. Since {0y } is a basis of eigenvectors for both I, and N, they
commute, which proves parts (a) and (b).

(¢) Each
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approaches 1 in the limit r — oo. By the Lebesgue dominated convergence
theorem, if f =3, >y cxn /g, fydy is any vector in B(X), then

Jim (|7 =T = Tm 37 D0 (1= A() AP =0,

n Yexn/S,

The operator norm of I, is bounded by 1 for all » > 0, because all of the
eigenvalues of I, are between 0 and 1. This completes the proof of part (c).
We bound

01 P = e (1= A1)

Fix any Y with |Y| <n and set, for each x € X,
Be= —— / Tt et g (9,
MY(X)! r?
By (2.2)
LA () =1 [T 50 < Y B < |X|max .
xeX xeX

The claim now follows from

X [e] 14 (x) [e}e]
Bx = 2MY()/ di et <;) " < QMY(X)/ dt e~ t/? = 2HY(X)+1€*T2/2

()

2 2

oy (x)!
< 2n+1€77‘2/2 )

By definition

If= / du(e™,0) T] xr (o)) e 197 [6) (o] £).

xeX

By part (c) the left hand side converges to f as r — oo. By Lemma 2.24, the
norm of the integrand of the right hand side is bounded by

1
H | 2|V + 4 X )2 g
gex 1t lp(y)[* 5

which is integrable with respect to du(¢*,¢). Hence, as r — oo, the right
hand side converges to [ du(¢*, ¢) elisl® |¢) (o ‘ f). O

The trace formula

Another commonly used formal property of coherent states is the trace formula
(1.4). We now develop a rigorous, but limited, version of this formula that is
adequate for our purposes.

Remark 2.27. We use the approximate identity I, to prove a “cutoff” trace for
any bounded operator that computes with N. By (2.2), for each fixed Y € X"/S,,,
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lim, oo A+ (Y) = 1. On the other hand, for each fixed r, there is a constant C, x =
72| X| such that

1
MY)< —Cny .
pomaxs (Y) = 5Crx

Thus the operator norm of I, restricted to B,,(X), is bounded by %Cﬁ,x The
dimension of B,,(X) is bounded by |X|™. Therefore, for any bounded operator B
that commutes with N, BI, is trace class and

Tr BI,, = lim Tr BL.P,, .

n—oo

Proposition 2.28. (a) Let B be a bounded operator on B(X) that commutes
with N . Then, for all » >0, Bl, is trace class and

Tr BI, = /dur(¢*, ¢) e /WIS (4B o) .
(b) Let B be any operator on B(X) that commutes with N and obeys
|[P™ B, < const(1+n)~2XI,
Then B is trace class and
5= [du(or, 0) 1Y O (6|8 o).
Proof. (a) We have

Tr BL.P, = Z (dy | BL.| &y)

degY <n
= Y [t o) e YW Gy B 6) (6] 6v)
degY <n
:/dﬂr(¢*a¢) o= ]y 16()I? Z (¢|6y)(6y | B| ¢)

degY <n

:/durw*,@ e @ 16 (¢ |P,B| ¢) .

Since B is a bounded operator, e~/ & ‘¢(Y)|2| (¢ |PnB| ¢) | is bounded uni-
formly in n and ¢ and the dominated convergence theorem provides the limit
of the right hand side as n — co. By Remark 2.27, the left hand side converges
to Tr Bl as n — oo.

(b) As in part (a), but using part (e) of Theorem 2.26,

Tr BP, — /du(¢*7¢) e 16O (5 1P B| 6) .
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By Lemma 2.24,

L) gixibiel® 2/x|
(0 1PaB1 9} < | TT g | 2490 v+ P.B|o)||,
< llell” L) x| v axn2xigl
< | L rggop ) 2+ axnis

By the Lebesgue dominated convergence theorem
tin [ du(o",6) ) 907 (6 [P, 6)
— [dute ) T 9O (6 | B 9)

_ _pylxi-
Since the dimension of B,,(X) is (:!J(r“))((ltll))!l < ("H(‘)g}‘ji‘)),( " and the operator
norm of the restriction of B to B,,(X) is bounded by a constant times (1 +
n)~2X! B is trace class and

lim Tr BP, =Tr B. (]

n—oo

3. An integral representation of the partition function

Let h be a single particle operator on X and v(x1,X2) a real, symmetric, pair
potential which is repulsive in the sense of Definition 2.16. For the rest of this
paper, except where otherwise stated, we write

K =K(h,v,X,u) =Hy(h,X)+ V(v,X) — uN.

Recall that Ho(h, X') and V(v, X) were defined in Definition 2.2.

The first step in the formal derivation of the functional integral representa-
tion (1.1) is the application of the resolution of the identity (1.3) and the trace
formula (1.4) to give the intermediate representation (1.5). Theorem 3.1, below, is
a rigorous version of (1.5).

Theorem 3.1. Suppose that the sequence R(p) obeys

lim p e R@* =,

pP— 00
Then,
Tr e #X = lim / H {dﬂR(p)(¢ia¢T) ey |¢*(y)‘2} H (pr—c |675K| ér )
b= leT, T€T,
where T, = { T =qe ’ qg=1,...,p } and we use the conventions that € = % and

bo = ¢pe = b3 -
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In Proposition 3.2, below, we prove that the grand canonical partition func-
tion Tr e~#K is well-defined. Then we prove Lemma 3.4, which provides a rigorous
multiple insertion of the approximate resolution of the identity in our context. The
proof of Theorem 3.1 then follows Remark 3.5.

Proposition 3.2. For any > 0, the trace
Tr efﬁ(HO(h,X)+zV(v,X)7uN)

on the Fock space B(X) is a holomorphic function of (z, 1) on { ze€C | Rez >
0} xC.

Proof. Suppressing h, v and X,
Tr e B(Ho+2V—puN) _ Z Tr,, e~ BHo+zV—uN) _ Z P ' e~ B(Ho+zV) (3.1)
n>0 n>0

where Tr,, denotes the trace on the n particle space B,,. When restricted to B,,
the Hamiltonian Hy + zV is an operator on a finite dimensional vector space.
Therefore, each term Tr,, e #(H0+2V) is an entire function of (2, ) on €. For each
n >0,

’eﬁun Tr,, e—ﬁ(Ho+zV)‘ < eﬁlReum dlmB He
where || - ||, is the operator norm on B,,(X). By the Trotter product formula,
He = lim H(e—%(Ho+RezV) —z—Isz) ‘
roomTmee B,
< Jim [l B eV
— B (Ho+RezV)
B Trlgnoo He ’ o ||B

By Proposition 2.17,

He o 67,8[)\671+%Rcz(‘);(—0‘n27v0n)]

with the A\g = Ao(v) of Definition 2.16. Since dim B,,(X) < |X|™, the sum in (3.1) is
absolutely convergent, uniformly for (z, x) in compact subsets of { ze€C | Rez >
0 } x €. This gives the desired analyticity. O

Remark 3.3. Observe that
Tr e~ BHo (0, X)+2V(0,X)=pN) _

when z = 0 and p is strictly bigger than the smallest eigenvalue of h. This indicates
that the “free” limit z \, 0 is extremely singular.

Lemma 3.4. Let 5 > 0 and let K be any self adjoint operator on B(X) that com-

mutes with N and obeys
N
K>a ( — u) N
| X
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for some constants a > 0 and v. Also, let R be any map from IN to (0,00) such
that
lim p e 2R =

p—00
Then,
_ . _8 =1 5
Tre K = lim Tr(e »%1 e r K
R(p)
p—o0
_EK
p exponentials e P
. _Bkg _BKg _BK
= lim Tre »" 1 e r 1 | e »

oo R(p) R(p) R(p)

and

(6] ¢y = tm (o] (7 ¥Ingy)" e E] )

for all ¢,¢' € L*(X). Furthermore, for each 0 < n < 1, there is a constant Cy,
depending onn, (3, a and v, but independent of ¢,¢’' € L*(X), p € N and X such
that

’< ¢’ (ef%KIr)”*lef%K ‘ &' >’ < RGN +16'1%) (Cnl X
Proof. Introduce the local notation
A — e~ # % if i is odd o e~ #% if i is odd
’ Irpy if i iseven ‘ 1 if 7 is even
P p—1 4 2p—1 2p—1
(67;KIR(ID)) eiFK = H Ai and e_ﬁK = H Bi .
i=1 i=1

For any n € IN,

2p—1
Tr (H A,L — €_ﬁK>|
i=1

so that

2p—1 2p—1

< |Tr (H A — eﬂK> P+ |Tr J] Ai(1=Pp)| + |Tr e PX(1-P,)|
i=1 =1
2p—1 2p—1

= |Tr (H A — H Bi> P, (3.2)
=1 1=1
2p—1

+|Tr JJ A@—Py)| +|Tx e #X(@-P,)). (3.3)

i=1

Consider the first line, (3.2). Since ||Ig,)|| < 1, by part (c) of Theorem 2.26,
and

a a
K> —(N—-v|X|)N > —|X|V? = -K
> OV VXD = 71X = —Ko
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we have
Bk, PR
er % if 7 is odd

1 if 71is even.

Al 1Bill < {

Since Ay — By = Ig(p) — L for i =2, 4,...,2p — 2 and is zero otherwise, we have,
forall n, pe IN,

2p—1 2p—1 2p—1 ||g—1 2p—1
||<HA¢ HBZ)PH SZ HA,- (A4, — B, HBiPn
i=1 i=1 q=1 |li=1 i=q+1

< (p = 1)e™7 | (Ing — 1)Pu]|
< peKoB | x| gntl ¢~R®)*/2

Consequently,

p—1
()Y g e,

(n + | X])!
nl|X|!

< peKoB | x| gn+1 o~ R((@)?/2
Hence, for any fixed n € N,

p—1
lim ‘Tr((e_%KIR(p)) e_%K—e*BK)Pn’:O.

p—0o0

Now we consider the second line, (3.3). For all m > 1, K|Bm > a(% - u)m
and
2p—1
IT 4 , He‘ﬁK < e Palixr—rIm (3.4)
s, By

and it follows that

2p—1
_ _ Baf-m _ + X = 1)!
Tr A , Tre BK <e Ba( 1z ”)m(Tn—
‘ U s, 5. ml([X] - 1)!
If we impose the stronger condition m > n with ﬁ > 2v, the last inequality
becomes
2p—1
_ __a .2 (Mm+ ‘X| — 1)'
Tr A; , Tre PKl . <e gy ms (M4 1X]
E ils, 5., ml(|X| - 1)!
and

(m+|X] =1 (m+ X=X (em)lXI=1
m!(|X]-1)! — (1x1=nt - (X[ =1

(3.5)
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where, ¢ = i + 1. Now, we have, if n > 2|X|v,

2p—1
T[] A@-P,)| . Tre? 1-P,)
i=1
[X|—1
< o m?s (cm) T
2 [CE
e __a_ t)'Xlil
< dt e 71X t25(07
/n (1x]=1!

a

2 o0
”5/ dt e~ TXT
0

t23

Ann. Henri Poincaré

(ct)lXI=1
(X =1

for some positive constant C, depending only on 3, a, v and |X|. The first claim
now follows from the observation that this converges to zero as n — oo, uniformly
in R(p) and p. In fact this proves convergence in trace norm and hence convergence
in operator norm and also weak convergence, so that this also proves the second

claim.
Finally, we prove the bound. By (3.4) and Proposition 2.

(o] (75 1)

23

M0 1

IN
o

3
I

where ¢t = £ ([|¢]|? + [|¢/[|?). Observe that, for any v > 0,
2

Sg| o Iol™ — pa(z —vym
e X e

99,
m
vm!

- Ba(%—u) m

m af3 vy )

o8 (P —vm =) = 2 (m =5 21x1) Lot 71
(|X | X 4
af
= _Z(V+7)2\X|-
Thus
‘<¢‘ (6_%KIR):D7 e—%K ’ ¢/>‘ < Z L'efaﬁ'ymefaﬁ(‘"%fumf'ym)
:om
< Z e—aBym Y (v+7)?|X|
m= 0

e*aﬁwe%(uﬂ)?m .

It now suffices to choose v so that 7 = e~**7 and then set C, =

Remark 3.5. If R(p) > ¢|Inp|zT, then limpHoope_R(p)Z =
¢|Inp|? with ¢ > 1, then lim,_ pe R®® =

%(V—i-w)? O

0. Also if R(p) >



Vol. 9 (2008) Bosonic Integral I 1253

Proof of Theorem 3.1. By (3.6), the strong convergence of I, to 1, and Proposi-
tion 2.28.a

Tr e #K = lim Tr e_ﬁKIR(p)

p—0o0

:pllfgc/dﬂmm(%%)e_f B ( gy [P | gy ) .

It follows from Lemma 3.4 and the dominated convergence theorem that
T =t [T [dingo(@3,00) 1 2 OF] T (6r [ 6,)
p—00
T€T, €T,

as desired. 0
The logarithm of < « ’ e ek | ¢>

Theorem 3.1 is a rigorous version of the intermediate representation (1.5). As dis-
cussed in the introduction, it now remains to show that one may replace
<a | ek ‘ ¢> by el dya)"¢(y) — eK(a".9) in the formula for Tr e %X of Theo-
rem 3.1. In Theorem 3.13, below, we show that this is indeed the case, provided

R(p) is chosen appropriately. To prepare for that, we explicitly find the logarithm
F(e,a*, ¢) = 1n<a ‘ e K | gb> at least for o and ¢ not too large, and show that

Fe,a%,6) = [ dxalx)"0(x) - K(a",6) + O(),
X
This expression is the same, to order ¢, as

Fle.a0) = [[ axdy a0 i(exy)ol)
— 3¢ ] dxay ot o) ot y) 6x)6(y) + O(E2)

provided j(g) = 1 — e(h — u) + O(e?). For application of renormalization group
methods, the latter form is more convenient. So we show it too. We typically use
the supremum norm

Bl = max o)
to measure the size of the field ¢ and the norm
bl = mags [ dy oG,y
to measure the size of (symmetric) integral operators on L?(X).
Proposition 3.6. For each £ > 0, there is an analytic function F(e,a*, ¢) such that

<Oé |€75K| ¢> _ eF(E,a*,(b)

on the domain |a|x, |¢|x < C- where Ce = [ 8=l .cctntvo) EH’UHLOO]_I/? with

Vg = MaxXxex V(X,X).
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Let ¢; > 0 and j(g;x,y) be the kernel of an operator obeying
li(e) = e o < o5

Define the function Fi (e, ™, ¢) by

F(e,a",0) = // dxdy a(x)*j(e;x,y)b(y)
- 5//)(2 dxdy a(x)"a(y)" v(x,y) o(x)o(y) + Fi(e,a", ¢).

For every eg > 0 there is a constant const (depending only on &g, |
and ) such that for all 0 < e < gg
[Fie, ", ¢)| < conste?(R* + [[v]ff o R°) |X]

for all |a|x, |¢p|x <R < %Cg.

v, Cj

An immediate consequence is
Corollary 3.7. We use the notation of Proposition 3.6. Define the function
fo(saa*7¢) by
Feia,0) = [ dx a()"o(x) =K (0", 6) + Fale,a”0)
X

where

//XQ dxdy a(x)"h(x,y)(y) — u/X dx a(x)*p(x)
* 5//)(2 dxdy a(x)"a(y)" v(x,y) d(x)o(y) -

For every eg > 0 there is a constant const (depending only on €o, ||h|/1,00, v and )
such that for all 0 < e < gq

[Fole, ", ¢)| < conste?(R? + [[v]ff o R°) |X]
for all |o|x, |¢|x <R < 3C..

We now prove a number of lemmas leading up to the proof of Proposition 3.6,
following Lemma 3.11.

Lemma 3.8. Let € > 0. There exists a function F(e,a*,®), analytic in o and ¢
in a neighbourhood of the origin, such that

< |67€K| ¢> F(ea ,¢>)
F satisfies the differential equation

Ermmr (a5 )r—g ] sty atoraty) oy Gt St

with the initial condition

F(0,a",¢) = /X dx a(x)*¢(x) .
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Here,

. (a*7 ga*) B /X dxdy ox)"h(x,) g"(y)* _g/x dxaa(X)*ga(x)*

+ % /X dxdy a(x)"aly)" v(x.¥) 5ors Gaty)

Proof. Set A\g = Ag(v) as in Definition 2.16. Since, by Propositions 2.22 and 2.17,

| <a |675K ’ ¢> } < i o™ ”|6—5K lol™
o — vm! B /!
oo
[all™ —edom xr o w1
< [XTT7%0 i
o mz:o vm! ‘ o i vm!
1

(”O‘H2 + ||¢||2)me_ e BN R - m

M8

<
- Min
0

3
I

the Taylor series expansion of < Q@ | e K ’ 10) > converges for all o, ¢ € L?(X) so that
<a | e K ’ ¢> is an entire function of o™ and ¢. Since <a ’ qb) = e " (e(x)dx £ (.
the matrix element has the representation

<Oé |€7€K| ¢> _ eF(s,a*,qﬁ)

in a neighbourhood of 0, with F'(g, a*, ¢) is analytic in a*, ¢. We have

NG, 0 . 0
(et TR = TP = B ([ 9) = (o | KK o)

_ _< a
+ % //X dxdy 1 ()¢ (y) v(x,y) WXW(Y)] e ‘ ¢> ‘

By Proposition 2.20, the first term

(a

[ sy w0ty v [ ax v

] axay vt oneey) v o)
- //X dxdy h(x,y) (o [T (x)p(y)e "] )
- //X dxdy a(x)h(x,y) (@ [¢(y)e "] ¢)

— b a(x)*h(x o (% esz
= [ axdy a0 ey G (a7 | 0)

0 .
_ dxd “h(x, F(e,a”,¢)
J[. ixay atornexn G ¢
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Treating the other two terms similarly,

oHer G = | [ty a0 ) G f 0
w3 [ty aoray)otx )ga( . ga( . }ens,a*,@.

The differential equation for F' follows. O

Lemma 3.9. The function F(e,a*,¢) of Lemma 3.8 has an expansion

n

F(e,a*,¢) = Z d"%d"y " Fy(e,%,3) [ [ atx)6(v:)

Xz i=1
where )f (X17' 7Xn)
Yy (y17 ayn)
in powers of the fields o and ¢. Furthermore
Fi(e,x1,y1) = € " (x1,51)
n—1
Fo(e,%,5) = —7/ dT/ A" (em T (R,%) Y Sxy

m=1

X Z Z m(T X[<m] Y[<m]) n— m(T X[>m] Y[>m])

j=1k=m+1

where Sg,y denotes independent symmetrization in the x variables and the y vari-
ables,

n

=S ntexh) TT o) 45 30 vlxxe) TT o))
k=1 J

1<e<n jok=1 1<t<n
1<k £k =r=
and
it} ! ! it i
X' =(x],..,%X,) Xi<m] = (X1, Xm)  and X = (Xmg1, -5 Xn) -

Proof. Expand F' in the power series

F(e,a", ¢) = i /d"f{ "M, (e,%, 0) ﬁa(xi)*
n=1 i=1

in a* with coefficients F,(g,X,¢) that are symmetric under permutation of the
xi’s. The constant term is zero because <a ‘ e K | ¢>|a:¢:0 = 1. Each
F,(e,%,¢) has degree n in ¢ because the fact that e =¥ preserves particle number
implies that F(e,e"?a*, e?¢) = F(e,a*, ¢) for all real . Observe that

10 0

n! dov(x1)* o Oa(xy)* Fle.a",¢)

ens,an (67 5(3 ¢) =

a=0
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and
10 0 0
il *h — F *
e ékAXnﬁt/quxdycwx> ) agy Flean9)|
"1 / 0 5}
= — dyhX,y F57O[*a¢
; n! Jx (xk )‘904(}’)* g dau(xg)* ( ) a=0
= l'/ dxj, h(xg, X)) e" M Fy (e, X1, o, X1, Xy X 15 - - - X, B)
el n! D'
and
10 0

*mz::OS l”“e_HlWG(a )] [(n—m)!z_l;l+1 gy @)

where S denotes the symmetrization operator in the variables xj. Thus Lemma 3.8
gives the system of equations

%Fl(s,xl,qb) = f/dxll h(x1,x])Fi(e,x],¢) and for n>1

a0 = - [@'% H, &R (e K. 0) -
X Fn(&,X1, ooy Xony @) Frn (€, X1+« + 3 Xy @) (3.7)
with the initial condition
Fi(0,x1,0) = ¢(x1), Fn(0,x,0)=0 for n>1.

The “integral” form of these equations is

Fi(e,x1,0) = (¢77"¢) (x1)
Fn(E,}E, d)) = —;/{;E dr /df(/ (ei(ff‘r)Hn)(fgil) S Z Z ’U(X;»,X%)

Foo (7, X5, X0, 0) Frn (T, X 15 X0, ©)

We remark that the fact that F, (e, X, ¢) is of degree n in ¢ also follows by induction
on n from these equations. Writing

n

Fn(‘??iaqb):/dy Fn(‘e?iay)HQS(Yz)

=1

for each n > 1, with the F,(g,%,y)’s symmetric under permutations of the yz’s
too, defines the functions of the lemma. O
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We now estimate the norm of the operator e "7 of Lemma 3.9, acting on

functions F': X™ x X™ — €. The space of functions is equipped with the norm

F = max max F(x1,...,x H dx; .
1Pl = g e [ PG ) I
i

Lemma 3.10. Write

where

k=1 1<e<n
£k
1 n
Vn<)~(a)~cl> = 9 Z U(Xj7xk) H 6X£(X2)
Jrk=1 1<t<n

For all F: X™ x X™ — C, we have
(@) [lem=F |, o, < el F|,
(b) He*EV"FHLoo < e%"E”OHFHLOo where vg = Maxxex V(X,X)
() [le=t F|, o, < enctitlhatzeol] P,
@) [[HaFl, o < n(lhlhe + 500 = Dlvlx) |||, -

Proof. (a) The kernel of e~<» is

n

e (%, %) = [ e (xn. x3)-

k=1
So we may view e P» F as
n factors n factors n k—1 factors n—k factors
—— — —
—eh —eh . —eh
e Rle - ol=[[leolee " ele -l
k=1

acting of F, viewed as an element of L?(X?"). The bounds
sup /dx'/dzl ...dzy, |L(x,x')’ |G(x/,z1, .. ,zm)|

:sup/dx’ }L(x,x’)| /dzl...dzm |G(X’,z1,...,zm)|
< IzhsliGl
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and

sup/dxdx'/dzl...dzm,l ‘L(x,x’)| |G(x’7z1,...,zm)’

Zm

:sup/dxldzl...dzm,l {/dX}L(x,X’)‘] |G(x’7z1,...,zm)|

Zm

< 2l oe |Gl

imply that
k—1 factors n—k factors
Hﬂ®-~®ﬂ®L®ﬂ®-~®ﬂFﬂl < |ILl|1 00| Fl; o - (3.8)
00 ’

Part (a) now follows by repeated application of (3.8) in conjunction with

/dx/ ’€_Eh(X/,X)| = /dx/ ‘e_gh(x,x')‘ < Z/dx’ %en‘h"(x,x')‘
n=0 :

o0
1 n n
SEZEfnmhw:eﬂwwa (3.9)
n=0

Since v(x,y) is the kernel of a positive definite operator

n

Z v(x;,xp) = Z v(x;,Xk) — Zv(xj,xj) > —von (3.10)

n n
di k=1 Gk=1 j=1

so that
™ F(x,9)| < 2" |F(%,3)] -
follows from the Trotter product formula

. _Eth, _=£
e *HnF = lim (e phne PV")pF
p—00

and repeated application of parts (a) and (b).
By (3.8),

(S I T T

Since

n

Z v(xj,xk)| < n(n—1)v[x

we also have
1
[VaF[l, o, < 5nln=Dlolx||F]],

and the claim follows. O
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Lemma 3.11. The functions F,(e,X,y) of Lemma 3.9 obey

-1 1
1Ea(e, -5 llee < (8eflvllee)™ e —
where K1 = ||h||1,0c + 5. Furthermore there is a constant const, depending only

on ||h

oo and ||v]|1,00, Such that

1
Fy(e,x1,%2,y1,y2) = _EEU(Xla X3) [5x1 (¥1)0x, (y2) + 9x, (¥2)dx, (Y1)]

+ F2+(57X1»X27Y1a}’2)
with

[Fay(e, -, - 1o < conste?[[v]l0e® 5.

Proof. We first prove the bound on ||F, (¢, -, - )|l1,00 by induction on n. The
case n = 1 follows immediately from (3.9). So assume that the bound has been
proven for all m < n. In general, if

F(xi,...,Xptm) = /dY1dYQ G(x1,.. s Xn, Y1) w(y1,¥2) H(Y2: Xn+15 - - Xnm)

then
|F Loolwll1,00 [ ]]1,00 -
This is proven by repeated application of

/mWWf@thmm>s/ﬁyuwhwh/MQmem

Loo = ||G

S/WU@JWMWD

< flheellglliee -
Hence, by the inductive hypothesis, Lemma 3.9 and part (c¢) of Lemma 3.10,

>

1 k=m+1

£ (e, %, 3]

n—1 m

1 IS5y
Loo < QH/O dr /di’ (em (=) (%, %) Sz

m=1 g

v(X;, X%)Fm(Ta i{gm]a y[gm]) Fom (T, i{>m] ) 5’[>m})

1,00

n—1 m n

€
3 eSS

m=1j=1 k=m-+1
XN (T o0 1 En—m(7s - )lleo

IN

1,00

n—1 m

1 n—2 c —
25 (8llu]1.00) /0 ar 2y

m=1j=1

IN

§n ||U||1 oS ! !
m3 (n—m)3
k=m+1
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n—1

1 ek, ao1 1 11
= —e" 8 _—
o€ (8e|v]1,00) ”_17;’”2 CITE
1 n—1 1 8
< nekKq 8 -~
< e¢ T Bellvlie)
. 1
< (8ellvfl1o0) " e

n3

The equation for n = 2 in Lemma 3.9 yields
e ’ 3! —(e—7)H2 ro ]
Fy(e,x1,%X2,¥1,¥2) = ) . dr [ dxidx; (6 )(X1,X2,X1aX2) v(x],%3)

1
i[e_Th(X’l,yﬁ e M (xh,y2) + e TN (%), y2) e TN (xb, y1)]

1
= —ZEU(Xh X2) [5x1 (¥1)0x, (¥2) + 0x, (¥2)0x, (Y1)]
+F2+(€7X1,X27Y1J’2)

where the second order Taylor remainder

€ 62
Foy(e,x1,%X2,¥1,¥2) :/ dr’ (e - 7'/) @F2(7/7X1,X27Y1,Y2)~ (3.11)
0
y (3.7)
0
§F2(5 X1,X2,¥1,Y2) dx’dxy Ha(x1,Xo, X, X5) Fa(e,X], X5, y1,¥2)
1
25 wyV(X1,%X2) Fi(e,x1,y1) Fi(e,X2,y2)
and hence
82 A ! ! / a ! A
@Fz(E,XhX%YMW) = — [ dx}dx} H2(x1,x2,x1,x2)%F2(5,x17x2,y1,y2)
— Sxyv(x1,%x2) Fi(e,%1,¥1) &Fl(EaX%YZ)'

Using part (d) of Lemma 3.10 and the bounds on F; and F, already proven, we
have

0
&FZ(g, Ty ) -
1
O | 1 LI AICUR] e
1 1
<2<||h||1700+2|v|x> ||F2(5’ T )||1,oo+§‘|v”170°||F1(57 o )Hi,oo

! 1
< 2ol [1 e (Hh”lm . 2|,UX)] .
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Using the bound

9 —¢h K1
5ne - )Hm — [lhe=], . < bl ooet
we similarly get
32
Y R C
H852 2(65 ’ ) L
<2 me | FhelAeE | e )
- Oe oo ’ Loo |l Oe oo
1 1 26K1
< | fliee + 5lvlx ) llvlleo |1+ 4e { [hll1oc + Slvlx | | e
+[[vll1,00 [[B]]1,00 €255
1 1 2 2e Ky
< | ollee | 210 + Slolx ) +4ellvlloo { [hllieo + Slolx ) e
< const [|v]|1,00€? .
Hence, by (3.11)
1Fartes -yl < conste? ol soe®:
as desired. 0
Proof of Proposition 3.6. We routinely write X for (x1,...,%,) and y for

(¥1,---,¥Yn)- The value of n should be clear from the context. By Lemma 3.11,

i / dxdy
n=3

enean(&_’ X, S’) H a(xi)*¢(yi)

=1
<SOX| e[ Fales ) lalklol%
n=3
< IXIY (8elullioe) " e E it g% (3.12)
n=3

This gives us the desired domain of analyticity. Since <a | ek | gz5> and ef'(&:a7.¢)
are both analytic on this domain and since they agree for all sufficiently small «,
¢, they coincide on the full domain.
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Set

File,o*,¢) = / dxdy [“Fi(e,%,y) — (6%, ¥)] ()" $(y)
+ / PPxd?y [e*H 1] Fy(e, X, y)Ha(Xi)*¢(yi)

2
+ / PEAY Fo (e, %,9) [ [ o) 6(ys)
=1

+ Z:S / d"xd"y " F(e, %, ) [ [ e(xi)*é(yi)

=1

so that
Flea o) =[] dxdy ot jex.y)ot)
9

_ § /X2 dXdy a(x)*a(y)* U(X,y) ¢(X)¢(y) +]:1(57Oé*7¢) )

If |a|x, |¢|x < R, then, by (3.12),

n

> [asay oo p x5 [[ab) o)
n=3

=1

IN

|X| Z (85HUHLOC)"_lenE(KlJ,_H)RQ”

n=3
B4 X2 o 0
1 — 8e||v|1,00esE1 1) R2

128 2RO | X| ||v])3 o e® i)

IN

Similarly, by Lemma 3.11,

2
’/inde F2+(€aivy)Ha(Xi)*¢(Yi) S |X| HF2+(53 Ty T )||1,ooR4

i=1

< const e R* | X| [|v]|1 00 F1 11D

and
2
‘ / P*xd’y [*F — 1| Fy(e,%,9) [ [ exi) b (y:)
=1
<2l [X] [|Bale, -, )], o REF

< 2ule® R X] [[oly eeFrH 1D
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and

‘/dxdy [eg”Fl(s,X, y) —j(e;xy)]a(x)*d)(y)

< X[ [lem=® ) — ()], R
< cje®R?|X|.
Since
RYvll1,00 = R (R*[vll1,00) <

the desired bound on F; follows.

DO | =

(R? + [lvl} o R%)

Ann. Henri Poincaré

O

Ezxample 3.12. Here is a simple example that shows that <a | e~k | ¢> can have
zeroes so that the logarithm of (a|e % |¢) need not be defined for all a,¢ €
L?(X). If the finite set X, which plays the role of space here, consists of just a
single point, then each n-particle space B,, with n > 1 has dimension exactly one.
So any operator that commutes with the number operator must be a function of
the number operator. In particular, K = Hy + V — NV, which is of degree two
in the annihilation operators and of degree two in the creation operators, is a
polynomial in N of degree two. As a simple example, we take i = N2 — N. Then

(o o—e(N?—N) |6) = Z Me—an(n—l) .

= n!
Set
= z" —en(n—1)
f(z) = Z e .
n=0

Observe that f fulfills the functional equation
f'(z) = fle™*2)

since
X _n
f(e—2sz) _ § ie—Qane—an(n—l)

|
"0 n!

2 d N Zntt
— E 76—8”(”-"-1) _ 2 E 7e—en(n+1)
— n! dz = (n+ 1)!

n=

T dz

d o= 2" d
~ _—en(n—1) -2
> e ().

n!
n=1
We claim that f necessarily has a zero on the negative real axis, somewhere between
N |
0 and — 1—e=2¢ = 2e+0(e2)"

Proof. Set k = e~ < 1, so that f’(z) = f(kz). By inspection, f(z) > 0 for all

x > 0. Now assume that f has no zero on the negative real axis. Then

h(z) = —log f(—x)
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is well defined for all real x and fulfills the equation

_ [(x) _ f(—ra)
f2) ~ i)

_ eh(w)fh(n x) )

h'(x)

In particular A/(x) > 0 for all € IR and h is monotonically increasing. The second
derivative

h'(x) = (h'(z) — kh' (k) H)—h(x2)

(eh(w)—h(nw) o ﬁeh(nx)—h(nz w)) eh(m)—h(nw) )

As k <1 and h(0) = 0, we have h”(0) =1 — k > 0. Next we show that h”(z) > 0
for all > 0. If this were not the case we would have a smallest positive zero z(
of . Then b’ would be monotonically increasing in [0, 2¢]. By the formula for h”
above

6h(xo)7h(m o) K/eh(kmg)fh(/{2 z0) =0

so that
h(xo) — h(k o) < h(kzo) — h(k? 20) .

By the mean value theorem there exist &; € [k 20, 20] and & € [k% 0, £ 20] such
that

h(zo) — h(kxzo) = h'(&1) (1 — k) 2
hkxg) — h(k* ) = B (&) (1 — K) K ag -
Then
h'(&1) (1 —k)zo < B (&) (1 — k) Ko
and

W (&) <h (&) k.
As & <& < xp and k < 1 this contradicts the monotonicity of A’ on [0, zg].

Since h(0) = 0 and h”(x) > 0 for all x > 0 we have h(kz) < kh(z) for all
x > 0 and therefore h(x) — h(kxz) > (1 — k) h(x). In particular

h/(I) — eh(z)fh(nz) > 6(17n) h(z) = 67(1711) h(z)h/(x) >1

1 d
_ C o—=rm)h(=) 5 1
1—k dme -
Integrating both sides and using the initial condition h(0) = 0 gives
1

- [e_(l_“’)h(:”) - 1] >z o= e (ITRh@E) < (1—kK)x
— K

for all z > 0. Thus h(z) must have a pole at some 0 < z < 1= and f(z) must
have a zero at some —— < z < 0. g
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A functional integral representation of Tre 2%

Let h be a single particle operator on X and v(x1,X2) a real, symmetric, pair
potential which is repulsive in the sense of Definition 2.16. One of our precise
formulations of the standard physics representation (1.1) for the partition function
Tr e P K where K = Hy(h, X)+V(v, X)—uN is the second quantized Hamiltonian
of a boson gas, is

Theorem 3.13. Suppose that the sequence R(p) obeys
lim p e 2R’ =0 and R(p) < p24|1X| .

p—00

Then

Tr e B% = lim / H [dﬂR(p)(¢:>¢r) o=y (02 (y)=67 (M- (¥) e—sK(qﬁLE@T)}
p—00

T€T,

with the conventions that € = % and ¢o = ¢pe . The function K (o, ¢) was defined
in Corollary 3.7.

This theorem will be proven after Example 3.17. During the course of the
proof, we will modify the factors <¢T_8 | ek ‘ ¢>T> of the integrand in Theo-
rem 3.1, using the representation of these factors in Corollary 3.7. In Proposi-
tion 3.16, below, we develop some machinery to assist in proving that such modi-
fications do not change the limit.

Definition 3.14. Let r > 0. Define, for 7 : (DELE N C, the seminorm
IZll, = sup_ |Z(e, 9)].

a,peCX
el x ol x <7

The “r-product” of Z,.7 : €¥1 — €, with | Z]]. |7 |, < oo is defined to be

(T T)ry) = / T(0, )T (67) dpio (67 0)

which is just the convolution with respect to the measure dy,.. The ¢*" power with
respect to this product is denoted

q factors
Ezample 3.15. For each ¢ > 0, set
I (o, 9) = o= Sllall? =311 F(e.0%,6) — o= Llal?~1lol? <a ‘e—EK ’ ¢> .

Theorem 3.1 states that, for R(p) obeying lim, o pe~2R®)" = 0,
—BK _ 3 * D
Tre - pEHC}O dur(¢ ?¢) IE (¢7 (Vb) ,E==lz(/p; .

The operator K is bounded below. Suppose that K > —Ky1. Then

(o e )| < lallesHo] = 2ol +21oI" Ko
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implies that
I1Zc)| < e
for all » > 0. Furthermore

I a, ¢) = e~ 2llol’=slloll® <a ‘ G S ’ ¢> _

Thus, by part (¢) of Theorem 2.26,
IZ2 9]l < etk
for all » > 0.
Proposition 3.16. Let Kg,e,{ >0 and 0 <k <1 and r,Cg > 1 obey
Cs (7r1"2)3|X|C1*" <e.
Let 7,7 : €2 — ¢ obey
IZ-TZ|,<¢ %9, <e®Xo forall qeIN.
. c
Then, for all ¢ € IN with ¢ < =2,
[T, < eretiore)

7%~ 7], < ¢reas(Kirt<)

/dﬂr(¢*,¢)) ‘f*”q(¢7¢) T4, ¢)| < (Rets Ko+

Proof. For notational convenience, we suppress the subscript r» on *,.. We first
prove, by induction on ¢, that

IZ9) < (A+ B) [T T, < qB(A+ B)"" (3.13)

where A = %0 and B = (7r7“2)2|X‘C. The case ¢ = 1 is obvious. So assume that

these bounds hold when ¢ is replaced by ¢ < ¢. Then

Fra — QZIIM « (T —T)« T =1 4 779
£=0
Since
[ st ) < (mrt)
we have

q—
7, < Sl (1) MNZ -2, (ret) N 2+ )
=0
1

r

_Q N
|

IN

"B(A+ BT 4 Al

~
I
o
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and
qg—1
’j*q_z*q TSZAZ B (A—i—B)q_e_l.
=0
Then (3.13) follows from
q—1 q—1
(A+ B)fl = AK(A-|-B)‘1_‘5 _ ZA€+1(A+ B)q_e_l v

&~

£=0

= O

Q

A'B(A+ B)T 1 4 A1

~
Il
o

and
1
(A+ B)1 — A1 = / dt %(A +tB)1 < qB(A+ B)1!.
0

To complete the proof, we observe that
A4 B = e o 4 (7r7"2)2|X‘C < e (1 + (7rr2)2‘X|C> < e o (14e¢”)
< £ (Ko+C")

and

qB, qB(wrZ)‘Xl < %(wrQ)?"Xl( <" O

Ezxample 3.17. Let
I (a,0) = e~ slal?=$lI8l? JF(s.a,0) — p—}llall®—4el> <a |e—5K ’ ¢>
be as in Example 3.15 and set
T.(a, ¢) = e~ 3l0lP =3 1191% F (0" 6) = Fo(ea" )
— o sllal’=5lel? <a |6—5K | ¢>6,f0(6’a*7¢)

where F( was defined in Corollary 3.7. Observe that
~ 1 1 N .
7.(av0) = exp { ol = 1ol + [ dx 0" (o) - ekt o)}

Let r satisfy r < £ [8e=(Ihll1.ctptv0) <€||v||1,oo]_l/2. Then, by Corollary 3.7,
|Fo(e, a*, ¢)| < conste®(r® + Hv||ioor6)|X| for all |a|x,|¢|x <7.

Consequently (assuming that » > 1 and allowing the constant to depend on ||v]|1,00
t00)

1Ze _iEHT = sup

lalx,|élx <r

2.6
< esKO COHSt827‘6|X| econste™r |X|-

em3IoP=31017 (o | ==K | ¢ ) [1 - e—fo(e,a*,qs)]‘
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Proof of Theorem 3.13. We apply Proposition 3.16 Wlth I = IE, 7 =17., as in
Examples 3.15 and 3.17, ¢ = %2, r = R(p), p = 6, k=15 and Cg = 3. If ¢
is sufficiently small, the three hypotheses of the Proposfcion are satisfied because
then

3[X| -k : 3(1—L 3 33
Cs (mﬁ) | ‘Cl = BrdlXIR(p)S1Xle3(1=132) < gr3IX] <f> g21 < ¢

and, by Example 3.17,

1
1

~ x|
17 -2, < consee? (2) ™ xjeso o NI < 872 ¢

and, by Example 3.15,
|z, < es=ko.

By the last conclusion of Proposition 3.16,

. * T T -
Plglc}o dp(a*, a) |I€ P, @) 1; (@) 7::1:;(/;;’) -
Recall, from Example 3.15, that
’I‘re = hm /leﬂr (b ¢ I*"p(¢ ¢) r= Ri(/:D)
e=B/p
so that
Tre? hm /dur (6%, ¢) I77 (0, 9)|,_ R(p)
e=p/p
= lim /H dump) (6%, ¢r) e~ Flor—clP=Fl6-1P+] dy ¢7_. (1)< ()
p—00
T€T,

efeKwT_s,qu)}

- hm /H d,u’R(p) gb d)T) Hq&"’” +f dy ¢r e(y d’f()’)

pA)OO
TET,

x e—sK<¢>T,E,¢T)}

= lim /H dMR(p)(¢T,¢T) e~ Jdy [67(¥)—¢7_.(¥)]é-(y)

p—0o0
T€T,

oK) -

Appendix A. A Cameron style model computation

We consider the formal infinite dimensional complex Gaussian measure
1 Aoz dpr  jdar 91 (0+m)e,
v 1 = elo 7 450t

il
0<r<1
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where p < 0,

. 1
8¢‘r = EE%:» g [QST—&-E - (br}

and the normalization constant N is chosen so that the integral of the function 1
with respect to this measure is one. This is the formal Gaussian measure of (1.1)
when = 1, IR? is replace by a single point and h = v = 0. Suppose one attempts
to construct this measure as the limit

p—oo N,

P rer, TET,

dor do « *
tim < [T 2% expd T S (63 p(6raryp —60) +ubior] { - (AD)
T

of finite dimensional complex Gaussian measures. Here, T), = { % | q=0,...,p—
1 } and we use the convention that ¢; = ¢g. The normalization constant

N, = [ dn(6.0)
where

d¢r do- 1 « "
(6", 9) = T %% expd 25 (65 plorrnsp — 60) + o]
TeT, TeT,

The following proposition shows that (A.1) cannot be a well-defined complex
measure.

Proposition A.1. Let 4 < 0. Then

Howewver, if p is a multiple of 8 and is large enough, then

/\dup(¢*7¢)| > 107/8.

Proof. Think of T, as the discrete torus %Z /Z. Denote by L*(T,) the p complex

dimensional Hilbert space of functions on T, with the usual inner product (z/J, (b) =
> rer, ¥i¢r. Define the operator 9, on L*(T,) by

(3p¢)7_ = p(¢7+1/p - d)'r) .
Set, foreach 0 <n<p-1

2nme T

en(17)=¢€
Then {en(7)}, _, L1 is an (orthogonal) basis for L?(T,) and each e, (7) is an
eigenvector for any translation invariant operator on L?(T),). Since
Open(T) = p(e%%l —1)en(7)
the eigenvalues of 0, are

An)p:p(e%%l_n, n=0,1,....,p—1.
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The 2p real dimensional Gaussian integral

-1 1
dgt dp, =y
N,ﬁ/ [T 2% cheiommd T [y 4|
T€T, n=0 p
We have
pl 1 pl 1 n
lim ——(Anp+ 1 ] = lim {1 - = - 62”171}
oo I [0 o] = T 1=
p
= lim (1—“) T
p—oo P
since

p—1
H (z—elszn):zp—l.
n=0

On the other hand, assuming that p is divisible by &,

p—1

dgr do, | 1 .
/‘d,,p (6°.9)| _/ 11 ¢2m¢ B6.009| Z T

T7€T, n=0

1 —1
——Re (A, +
[ ? (Anp + 1)

and

T[] oo o)

where C, =1— L

p

[SI§S)

1

= (€, =G+ 1) ]T [0 = cos (2”2)]2

1
since  cos (2 p—) = cos (271'”)
p p
n\12
{ — cos? <27r>}
p
9 _
since cos <27Tp/n) = —cos <27Tn)
p p
h n\1? n\1?
[C’; — cos? (2#)} {C’g — sin? (27r>}
i p p
4 —
since cos (27Tp/n> = sin (27Tn> .
p p

n

=(Cp = 1)C2(Cp +1

i ::]M»d

P
8

= (C, —1)C)(Cy + 1)(03 B ;>2

n
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Now

2 2 2
{C’g — cos? (27rn>} [Cg — sin? (27rn>} = {Oﬁ — Cz + sin® (27rn) cos? <2ﬂn)]
p p p p
2 po, w L. o n\]”

1
<
— 10

if p is large enough, since lim, .o C, = 1 and lim,_. ( — 2% + Z—z) =0.Ifpis
large enough, we also have

N\  u 1\ 1
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