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Poisson Statistics of Eigenvalues in the
Hierarchical Anderson Model

Evgenij Kritchevski

Abstract. We study the eigenvalue statistics for the hieracharchial Anderson
model of Molchanov [21–23,27,28]. We prove Poisson fluctuations at arbitrary
disorder, when the the model has a spectral dimension d < 1. The proof is
based on Minami’s technique [25] and we give an elementary exposition of the
probabilistic arguments.

1. Introduction

The models discussed in this paper fall into the following general framework. We
are given a countable set X, a bounded self-adjoint operator H0 acting on the
Hilbert space l2(X) and a random potential Vω acting diagonally on l2(X):

(Vωψ)(x) = ω(x)ψ(x) , ψ ∈ l2(X) , x ∈ X .

We assume that {ω(x)}x∈X
are independent identically distributed (i.i.d.) random

variables with a bounded density γ. Hence the random parameter ω is an element
of the probability space (Ω,F ,P), where Ω = R

X, F is the product Borel σ-algebra
on Ω and P is the product probability measure P = ×x∈Xγ(t)dt. We consider the
random discrete Schrödinger operator

Hω = H0 + Vω .

The finite volume approximations to Hω are given by an increasing sequence
(Bk)k≥1 of finite subsets of X,

⋃
k≥1 Bk = X, and a corresponding sequence of

operators (Hω
k )k≥1 approximating Hω, such that the subspace l2(Bk) is invariant

for Hω
k . We are interested in the asymptotic behavior of the random eigenvalues

eω,k
1 ≤ eω,k

2 ≤ · · · ≤ eω,k
|Bk| ,

of Hω
k � l2(Bk) as k → ∞. Usually, the first step is to prove that there is a

nonrandom probability measure μav on R such that, with probability one, the
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random normalized eigenvalue counting measure

μω
k = |Bk|−1

|Bk|∑

j=1

δ(eω,k
j ) , (1.1)

converges μav in the weak-* topology as k → ∞. The measure μav is called the
density of states for Hω. For large k, the number of eigenvalues in a small interval
(e − ε, e+ ε) around a point e ∈ R is then typically of the order of |Bk|μav((e +
ε, e − ε)). The fine eigenvalue statistics near e are then captured by the rescaled
point measure

ξω,e
k =

|Bk|∑

i=1

δ
( |Bk| (eω,k

i − e)
)
. (1.2)

Minami’s technique [25] is a method allowing to prove that, in appropriate situa-
tions, ξω,e

k is asymptotically a Poisson point process as k → ∞. This means that
for disjoint Borel sets A1, A2, · · · , Am ⊂ R, the corresponding numbers of rescaled
eigenvalues in each of the sets,

ξω,e
k (A1), ξ

ω,e
k (A2), . . . , ξ

ω,e
k (Am) ,

are approximately independent Poisson random variables and hence the eigenval-
ues near e are uncorrelated.

Minami originally considered the Anderson tight-binding model on Z
d. In

this case X = Z
d and H0 is the discrete Laplacian:

(H0ψ)(x) =
∑

|y−x|=1

ψ(y), ψ ∈ l2(Zd) , x ∈ Z
d , (1.3)

where |x− y| =
∑d

j=1 |xj − yj |. He proved Poisson statistics of eigenvalues in the
localized regime [18,25]. Minami’s method has its origins in Molchanov’s paper [26],
where the first rigorous proof of the absence of energy level repulsion is given for a
continuous one-dimensional model. After Minami’s paper [25], the technique and
its variations have been used to prove Poisson statistics of eigenvalues for different
models [3,4,18,19,30]. In this paper, we combine existing and new results to prove
Poisson statistics of eigenvalues for the hierarchical Anderson model (the precise
definition of the model and the statement of our results are given in Section 3).

The probabilistic part of Minami’s technique shared by most models is based
on the theory of infinitely divisible point processes. As a result, one sometimes has
to go though a substantial body of material also concerned with other questions
e.g. [9,16] in order to extract the necessary results. One of our goals is to give a self-
contained elementary exposition of the probabilistic part, only assuming standard
material taught in a first graduate course on probability. The spectral part of the
technique is based on decoupling, i.e. on approximating Hk

ω by a direct sum of a
large number of statistically independent infinitesimal components. The analysis
is specific to each model and the decoupling is possible only in an appropriate
regime.
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In Section 2, we discuss the necessary probabilistic preliminaries on Poisson
point processes. In Section 3, we introduce the hierarchical Anderson model and we
provide a complete proof of Poisson statistics of eigenvalues in the regime where
the model has a spectral dimension d < 1. In the appendix, we outline, within
our framework, Minami’s original proof of Poisson statistics of eigenvalues for the
Anderson model on Z

d in the localized regime.

2. Probabilistic preliminaries

2.1. Why the Poisson distribution

The Poisson distribution with parameter λ is the discrete probability measure Pλ

on N = {0, 1, 2, . . .} given by

Pλ = e−λ
∑

r∈N

λr

r!
δ(r) .

The simplest example where the Poisson distribution appears naturally in con-
nection with the rescaled measure ξω,e

k is the trivial case of a random discrete
Schrödinger operator: X = {1, 2, . . .} , H0 = 0 and the finite volume approxima-
tions are Bk = {1, . . . , k}, Hω

k = Hω � l2(Bk). Then Hω
k � l2(Bk) has statistically

independent eigenvalues {ω(x)}x∈Bk
and it follows from Kolmogorov’s strong law

of large numbers that for every Borel set A ⊂ R,

lim
k→∞

μω
k (A) = μav(A) =

∫

A

γ(t)dt ,

for P-a.e. ω ∈ Ω.
We denote by L the Lebesgue measure on R. Let us assume that γ is con-

tinuous at a point e ∈ R and that γ(e) > 0. If A1, A2, . . . , Am ⊂ R are disjoint
bounded Borel sets, then the random vector

[
ξω,e
k (A1), ξ

ω,e
k (A2), . . . , ξ

ω,e
k (Am)

]
,

has a multinomial distribution

P
{
ξω,e
k (A1) = r1, ξ

ω,e
k (A2) = r2, . . . , ξ

ω,e
k (Am) = rm

}

=
k!

r1!r2! . . . rm+1!
qr1
k,1q

r2
k,2 · · · qrm+1

k,m+1 , rs = 0, . . . , k ,
m+1∑

s=1

rs = k ,

where

qk,s = P

{(
kω(1) − e

) ∈ As

}
=
∫

e+k−1As

γ(t)dt , s = 1, . . . ,m+ 1 ,

and Am+1 = R\(⋃m
s=1 As). Continuity of γ at e yields that

lim
k→∞

kqk,s = γ(e)L(As) ,
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and hence

lim
k→∞

P
{
ξω,e
k (A1) = r1, ξ

ω,e
k (A2) = r2, . . . , ξ

ω,e
k (Am) = rm

}
=

m∏

s=1

Pλs({rs}) ,

with λs = γ(e)L(As). Hence the random variables ξω,e
k (As), s = 1, . . . ,m, are

asymptotically independent and have Poisson distributions Pλs .
In nontrivial situations, the operator H0 �= 0 introduces statistical depen-

dence to the eigenvalues of Hω
k � l2(Bk) and therefore the analysis of the rescaled

measure ξω,e
k is more involved. If this dependence is not too big in a suitable sense,

then Minami’s method allows to show that ξω,e
k (As), s = 1, . . . ,m are still asymp-

totically independent Poisson random variables. In the next subsection, we discuss
a general limit theorem needed for Minami’s method.

2.2. The Poisson point process and Grigelionis’ limit theorem

Although ξω,e
k as well as the other measures of interest to us are on R, we discuss,

for sake of clarity, the general situation of random point measures on a metric
space S. We equip S with the Borel σ-algebra BS , i.e. the σ-algebra generated by
open sets. We denote by M the set of all nonnegative Borel measures μ on (S,BS)
such that μ(A) < ∞ for every bounded Borel set A ⊂ S. A measure μ ∈ M is
called a point measure if μ can be written in the form

μ =
∑

j∈J

δ(xj) , xj ∈ S ,

where J is a countable index set. We denote by Mp the set of all point measures
on (S,BS). A point process on S is map ω → μω from some probability space
(Ω,F ,P) to Mp such that for every bounded Borel set A ⊂ S, the map ω → μω(A)
is measurable. If μω is a point process, then the map

ν(B) = Eμω(B) , B ∈ BS ,

defines a measure on (S,BS). The measure ν is called the intensity measure of the
point process μω.

Definition 2.1. Let ν ∈ M. A Poisson point process on S with intensity ν is a
point process ξω with the following properties:

1. for every bounded Borel set A ⊂ S, the random variable ξω(A) has a Poisson
distribution with parameter ν(A).

2. given disjoint bounded Borel sets A1, A2, . . . , Am in S, the random variables
ξω(A1), ξω(A2), . . . , ξω(Am) are independent.

It can be shown [17] that given any ν ∈ M, there exists a Poisson process
on S with intensity ν, constructed on a suitable probability space. The Poisson
point process is an idealized model of noninteraction and the point process ξω,e

k in
the study of eigenvalue statistics never exactly verifies Conditions (1) and (2) of
Definition 2.1.
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Definition 2.2. A sequence ξω
k of point processes on S, defined on the same prob-

ability space, is said to converge to a Poisson point process on S with intensity
ν ∈ M if for any given disjoint bounded Borel sets A1, A2, . . . , Am in S, we have

lim
k→∞

P
{
ξω
k (A1) = r1, ξ

ω
k (A2) = r2, . . . , ξ

ω
k (Am) = rm

}
=

m∏

s=1

Pν(As)({rs}) , (2.1)

for all r1, r2, . . . , rm ∈ N.

Hence, in the previous subsection, the sequence of point processes ξω,e
k on R

converges to a Poisson process on R with intensity γ(e)L. In general, it can be
difficult to verify the Condition (2.1) directly and it is more convenient to verify
an equivalent condition in terms of the characteristic functions, namely

lim
k→∞

Eei
∑m

s=1 tsξω
k (As) =

m∏

s=1

exp
(
ν(As)(eits − 1)

)
, (2.2)

for all t1, t2, . . . , tm ∈ R. Both (2.1) and (2.2) are equivalent to the usual definition
of convergence in law for random vectors in N

m.
The basic limit theorem guaranteeing the convergence of a sequence of point

processes to a Poisson point processes is due to Griegelionis [13]. Originally formu-
lated for step processes on R, Grigelionis’ theorem remains valid in more general
settings and in our case it translates to:

Theorem 2.3 (Grigelionis, 1963). Let (nk)k≥1 be a natural subsequence, let for each
k ≥ 1, ξω

k,1, ξ
ω
k,2, . . . , ξ

ω
k,nk

be independent point processes on S and let

ξω
k =

nk∑

j=1

ξω
k,j .

Let ν ∈ M and assume that for every bounded Borel set A ⊂ S, we have

(1) lim
k→∞

max
1≤j≤nk

P
{
ξω
k,j(A) ≥ 1

}
= 0 ,

(2) lim
k→∞

nk∑

j=1

P
{
ξω
k,j(A) ≥ 1

}
= ν(A) ,

and

(3) lim
k→∞

nk∑

j=1

P
{
ξω
k,j(A) ≥ 2

}
= 0 .

Then ξω
k converges to a Poisson point process on S with intensity ν.

Theorem 2.3 is well known and can be found in the literature e.g. [9,16] as a
corollary of more general results on point processes. For completeness, we include
a self-contained proof here, following the original arguments of [13].
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Proof. We use the standard notation ab =
∑m

s=1 asbs, for a, b ∈ R
m and |α| =∑m

s=1 αs for α ∈ N
m. We denote by {es}m

s=1 the standard basis vectors of R
m. Let

A1, A2, . . . , Am be given disjoint bounded Borel sets in S. Let Xω
k be the random

vector
Xω

k =
[
ξω
k (A1), ξω

k (A2), . . . , ξω
k (Am)

]
,

and let φk : R
m → C be the corresponding characteristic function

φk(t) = EeitXω
k , t ∈ R

m .

According to (2.2), we have to show that for all t ∈ R
m,

lim
k→∞

φk(t) =
m∏

s=1

exp
(
ν(As)(eits − 1)

)
. (2.3)

We set

Xω
k,j =

[
ξω
k,j(A1), ξω

k,j(A2), . . . , ξω
k,j(Am)

]
,

φk,j(t) = EeitXω
k,j , t ∈ R

m ,

and

A =
m⋃

s=1

As .

By assumption (1), there is a k0 such that for k ≥ k0,

max
1≤j≤nk

P
{
ξω
k,j(A) ≥ 1

}
< 1/4 .

Hence for k ≥ k0 and 1 ≤ j ≤ nk,
∣
∣
∣
∣
∣
∣

∑

|α|≥1

P
{
Xω

k,j = α
}

(eiαt − 1)

∣
∣
∣
∣
∣
∣
≤ 2

∑

|α|≥1

P
{
Xω

k,j = α
}

= 2P
{
ξω
k,j(A) ≥ 1

}
< 1/2 ,

and we can write

φk,j(t) = 1 +
∑

|α|≥1

P
{
Xω

k,j = α
}

(eiαt − 1)

= exp

⎛

⎝
∑

|α|≥1

P
{
Xω

k,j = α
}

(eiαt − 1) + Ek,j

⎞

⎠ ,

(2.4)

where

Ek,j = f

⎛

⎝
∑

|α|≥1

P
{
Xω

k,j = α
}

(eiαt − 1)

⎞

⎠ ,

and f(z) = log(1 + z) − z. The function f is analytic in the open disk {|z| < 1}
and

|f(z)| ≤ C |z|2 for |z| < 1/2 , (2.5)
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where 0 < C <∞ is a numerical constant. Next, we write
∑

|α|≥1

P
{
Xω

k,j = α
}

(eiαt − 1) =
∑

|α|=1

P
{
Xω

k,j = α
}

(eiαt − 1) + Fk,j

=
m∑

s=1

P
{
Xω

k,j = es

}
(eits − 1) + Fk,j (2.6)

=
m∑

s=1

P
{
ξω
k,j(As) = 1

}
(eits − 1) +Gk,j + Fk,j ,

where
Fk,j =

∑

|α|≥2

P
{
Xω

k,j = α
}

(eiαt − 1) ,

and

Gk,j =
m∑

s=1

(
P{Xω

k,j = es} − P
{
ξω
k,j(As) = 1

})
(eits − 1) .

Hence,

φk,j(t) = exp

(
m∑

s=1

P
{
ξω
k,j(As) = 1

}
(eits − 1) +Hk,j

)

,

where
Hk,j = Ek,j + Fk,j +Gk,j .

We then have, by independence, that

φk(t) =
nk∏

j=1

φk,j(t)

= exp

⎛

⎝
m∑

s=1

⎛

⎝
nk∑

j=1

P
{
ξω
k,j(As) = 1

}
⎞

⎠ (eits − 1) +
nk∑

j=1

Hk,j

⎞

⎠

(2.7)

The assumptions (2) and (3) imply that

lim
k→∞

nk∑

j=1

P
{
ξω
k,j(As) = 1

}
= ν(As) . (2.8)

We claim that

lim
k→∞

nk∑

j=1

Hk,j = 0 . (2.9)

If (2.9) holds, then (2.8), (2.9) and (2.7) together yield the desired conclusion (2.3)
and we are done. We now prove (2.9). We have

|Fk,j | ≤ 2P
{
ξω
k,j(A) ≥ 2

}
, (2.10)
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and the bound (2.5) yields

|Ek,j | ≤ C

⎛

⎝2
∑

|α|≥1

P
{
Xω

k,j = α
}
⎞

⎠

2

= 4C
(

P
{
ξω
k,j(A) ≥ 1

})2

. (2.11)

To estimate |Gk,j |, note that
{
Xω

k,j = es

} ⊂ {
ξω
k,j(As) = 1

}
,

and
({

ξω
k,j(As) = 1

} \{Xω
k,j = es

}) ⊂ {
ξω
k,j(A) ≥ 2

}
.

Hence

|Gk,j | ≤ 2mP
{
ξω
k,j(A) ≥ 2

}
. (2.12)

We now combine the bounds (2.11), (2.10) and (2.12) to get
∣
∣
∣
∣
∣
∣

nk∑

j=1

Hk,j

∣
∣
∣
∣
∣
∣
≤ (2m+ 2)

nk∑

j=1

P
{
ξω
k,j(A) ≥ 2

}

+ 4C
(

max
1≤j≤nk

P
{
ξω
k,j(A) ≥ 1

}
) nk∑

j=1

P
{
ξω
k,j(A) ≥ 1

}
.

The assumptions (1), (2) and (3) imply that the right hand side of last inequality
converges to zero as k → ∞, completing the proof. �

2.3. Corollaries of Grigelionis’ limit theorem

For the point processes ξω on S = R arising in the study of eigenvalue statistics,
it is sometimes more natural to obtain information about the Poisson integrals∫

R
Im(t − z)−1dξω(t), Imz > 0, rather than about the events {ξω(A) ≥ 1} and

{ξω(A) ≥ 2}. In this subsection, we replace the Conditions (2) and (3) of The-
orem 2.3 by sufficient conditions in terms of the Poisson integrals. We refer the
reader to [15] for the general theory of Poisson integrals and their applications to
spectral theory.

For a positive Borel measure μ on S and a Borel function f : S → [0,∞), we
set

I(μ, f) =
∫

t�=t′
f(t)f(t′)dμ(t)dμ(t′) .

If μ =
∑

j δ(tj) is a point measure on S and f(t) = 1A(t) is the indicator function
of a bounded Borel set A ⊂ S, then we have

I(μ, 1A) =
∑

i�=j

1A(ti)1A(tj) = μ(A)
(
μ(A) − 1

)
,
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and therefore I(μ, 1A) �= 0 ⇔ μ(A) ≥ 2. If ξω is a point process on S, then
∑

l≥2

P
{
ξω(A) ≥ l

}
=
∑

l≥2

(l − 1)P
{
ξω(A) = l

}

≤
∑

l≥2

l(l − 1)P
{
ξω(A) = l

}

= EI(ξω , 1A) .

Since
P
{
ξω(A) ≥ 1

}
= Eξω(A) −

∑

l≥2

P
{
ξω(A) ≥ l

}
,

we conclude that the conditions

(2′) lim
k→∞

nk∑

j=1

Eξω
k,j(A) = ν(A) ,

and

(3′) lim
k→∞

nk∑

j=1

EI(ξω
k,j , 1A) = 0 ,

together imply Conditions (2) and (3) of Theorem 2.3. The next step is to replace,
in (2’) and (3’), the quantity Eξω

k,j(A) by E
∫
fdξω

k,j for f in a sufficiently rich
family F of functions.

Theorem 2.4. For each k ≥ 1, let ξω
k,1, ξ

ω
k,2, . . . , ξ

ω
k,nk

be point processes on S and
let ξav

k =
∑nk

j=1 Eξω
k,j . Let ν ∈ M. Suppose that there is a measure μ ∈ M s.t.

that ν and (ξav
k )k≥1 are absolutely continuous with respect to μ, with uniformly

bounded densities, i.e. there is a constant 0 < C < ∞ such that for all bounded
Borel sets A ⊂ S,

ν(A) ≤ Cμ(A) ,

and
ξav
k (A) ≤ Cμ(A) , k ≥ 1 .

Suppose that F ⊂ L1(S, μ) is a family of functions such that finite linear combi-
nations of functions in F are dense in L1(S, μ) and such that for every bounded
Borel set A ⊂ S, there exists f ∈ F with f ≥ 1A. Suppose that for all f ∈ F , we
have

(2′′) lim
k→∞

∫

fdξav
k =

∫

fdν ,

and

(3′′) lim
k→∞

nk∑

j=1

EI(ξω
k,j , f) = 0 .

Then (2’) and (3’) hold for all bounded Borel sets A ⊂ S.
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Proof. Let A be a bounded Borel set. Let ε > 0. There is a finite linear combination
g =

∑
i cifi, fi ∈ F , with

∫ |g − 1A| dμ < ε. Then
∣
∣
∫
gdν − ν(A)

∣
∣ < Cε and∣

∣
∫
gdξav

k − ξav
k (A)

∣
∣ < Cε. Since limk→∞

∫
gdξav

k =
∫
gdν, we have

ν(A) − 2Cε ≤ lim inf
k→∞

ξav
k (A) ≤ lim sup

k→∞
ξav
k (A) ≤ ν(A) + 2Cε ,

and (2’) is obtained after letting ε ↓ 0. Now let f ∈ F be such that f ≥ 1A. Since,
I(ξω

k,j , 1A) ≤ I(ξω
k,j , f), (3’) follows from (3”). �

The special case when S = R, μ = L is the Lebesgue measure on R, ν = λL
for a λ > 0 and F is the family of functions

{
Im(t− z)−1

}
Imz>0

yields

Theorem 2.5. Let (nk)k≥1 be a natural subsequence, let for each k ≥ 1, ξω
k,1, ξ

ω
k,2,

. . . , ξω
k,nk

be independent point processes on R and let

ξω
k =

nk∑

j=1

ξω
k,j .

We make the following four hypotheses:

(H0): there is a constant 0 < C < ∞ such that for all k ≥ 1 and every bounded
Borel set A ⊂ R,

nk∑

j=1

Eξω
k,j(A) ≤ CL(A) .

(H1): for every bounded Borel set A ⊂ R,

lim
k→∞

max
1≤j≤nk

P
{
ξω
k,j(A) ≥ 1

}
= 0 .

(H2): there is a constant 0 < λ <∞ such that for Imz > 0,

lim
k→∞

nk∑

j=1

E

∫

R

Im(t− z)−1dξω
k,j(t) = πλ .

(H3): for Imz > 0,

lim
k→∞

nk∑

j=1

E

∫

t�=t′
Im(t− z)−1Im(t′ − z)−1dξω

k,j(t)dξ
ω
k,j(t

′) = 0 .

Then ξω
k converges to a Poisson point process on R with intensity λL.

Theorem 2.5 is implicitly derived in [25] and is suitable for applications to
eigenvalue statistics of general random discrete Schrödinger operators.
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3. Poisson statistics of eigenvalues in the hierarchical Anderson
model

3.1. Definition of the model and its basic properties

In this subsection, we review the definition and the basic properties of the hier-
archical Anderson model. For additional information, we refer the reader to [21–
23, 27, 28]. Theorems 3.1 and 3.2 collect, for reference purposes, the main known
results on the hierarchical Anderson model and are stated without proof.

We consider the set X = {0, 1, 2, . . .}. Given an integer n ≥ 2, X has a metric
space structure with the distance d : X × X → [0,∞)

d(x, y) = min
{
r : q(x, nr) = q(y, nr)

}
,

where q(x, nr) denotes the quotient of the division of x by nr. The (closed) ball
with center x and radius r is denoted by

B(x, r) =
{
y ∈ X : d(x, y) ≤ r

}
.

The main property of d is that two balls of the same radius are either disjoint or
identical, and that each B(x, r + 1) is a disjoint union of n balls of radius r.

For x ∈ X, the unit vector δx ∈ l2(X) denotes the Kronecker delta function at
x: δx(x) = 1 and δx(y) = 0 for y �= x. For each integer r ≥ 1, we set Er : l2(X) →
l2(X),

(Erψ)(x) = n−r
∑

d(y,x)≤r

ψ(y) .

Thus Er is the orthogonal projection onto the subspace of l2(X) consisting of
functions that are constant on every ball of radius r. The hierarchical Laplacian
is then defined by the formula

Δ =
∞∑

r=1

prEr ,

where (pr)r≥1 is a given sequence such that pr > 0 and
∑∞

r=1 pr = 1. We assume
that

C1

ρr
≤ pr ≤ C2

ρr
,

for some fixed constants ρ > 1, C1 > 0, C2 > 0. The number

d = d(n, ρ) = 2
logn
log ρ

, (3.1)

is called the spectral dimension of Δ. The following theorem [21, 28] summarizes
some of the spectral features of Δ.

Theorem 3.1. Δ is a bounded self-adjoint operator on l2(X) and its spectrum con-
sists of infinitely degenerate isolated eigenvalues

λ0 = 0 , λ1 = p1 , λ2 = p1 + p2 , λ3 = p1 + p2 + p3 , . . .
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and of their accumulation point λ∞ = 1, which is not an eigenvalue. For each
x ∈ X, ∑

y∈X

〈δx|Δδy〉 = 1 ,

and hence Δ generates a random walk on X.The random walk is recurrent when
d ≤ 2 and transient when d > 2.

The hierarchical Anderson model is the random discrete Schrödinger operator

Hω = Δ + Vω ,

as in the framework of the introduction, with H0 = Δ. If the set {ω(x) : x ∈ X} is
unbounded, then Vω andHω are unbounded self-adjoint operators with the domain

Dω =

{

ψ :
∑

x∈X

|ψ(x)|2 (1 + |ω(x)|2 ) <∞
}

.

Theorem 3.2. Hω has the following generic spectral properties.
(1) [22, 23] If the support of γ is connected, supp(γ) = [a, b], then for P-a.e.

ω ∈ Ω, the spectrum of Hω is given by

Σ =
∞⋃

r=0

[λr + a, λr + b] .

(2) [22] If the model has a spectral dimension d < 4 then, for P-a.e. ω ∈ Ω, the
spectrum of Hω is dense pure-point in Σ.

(3) [28] For any spectral dimension d < ∞, the same conclusion as in (2) holds
provided the random variables ω(x) have a Cauchy distribution, i.e. the den-
sity γ(t) is of the special form:

γ(t) =
1
π

v

(u− t)2 + v2
, (3.2)

for some u ∈ R, v > 0.

3.2. The density of states

We denote by C0(R) the space of continuous functions f : R → C vanishing at
infinity, i.e. lim|t|→∞ |f(t)| = 0. If (νk)k≥1 and ν are Borel probability measures
on R, we say that νk converges to ν in the weak-* topology if for every f ∈ C0(R),

lim
k→∞

∫

f(t)dνk(t) =
∫

f(t)dν(t) .

The finite volume approximations to Hω are defined as follows. We fix x0 ∈ X and
we consider the increasing sequence of balls

Bk = B(x0, k) k ≥ 0 .

Each Bk has then size |Bk| = nk. We define Hω
k to be the truncated operator

Hω
k =

k∑

s=1

psEs + Vω .
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Note that the subspace

l2(Bk) =
{
ψ ∈ l2(X) : ψ(x) = 0 for x /∈ Bk

}
,

is invariant for Hω
k . The normalized eigenvalue counting measure μω

k is then given
by (1.1). The averaged spectral measure for Hω is the unique Borel probability
measure μav on R defined by

∫

f(t)dμav(t) = E
〈
δx0 |f(Hω)δx0

〉
, f ∈ C0(R) . (3.3)

By symmetry,
∫
f(t)dμav(t) = E〈δx|f(Hω)δx〉 for all x ∈ X. The content of the

following theorem is that the averaged spectral measure μav is naturally interpreted
as the density of states for Hω.

Theorem 3.3. For P-a.e. ω ∈ Ω, μω
k → μav in the weak-* topology as k → ∞, i.e.

there is a set Ω̃ ∈ F with P(Ω̃) = 1 such that for all ω ∈ Ω̃ and f ∈ C0(R) we have

lim
k→∞

∫

f(t)dμω
k (t) =

∫

f(t)dμav(t) .

We start the proof of Theorem 3.3 with resolvent bounds. Since Hω
r = Hω

r−1+
prEr, the resolvent identity yields

(Hω
r−1 − z)−1 − (Hω

r − z)−1 = pr(Hω
r−1 − z)−1Er(Hω

r − z)−1 ,

for z ∈ C\R. Therefore:
∥
∥(Hω

r−1 − z)−1 − (Hω
r − z)−1

∥
∥ ≤ |Imz|−2

pr , z ∈ C\R . (3.4)

Iterating (3.4) yields for r < k,

∥
∥(Hω

r − z)−1 − (Hω
k − z)−1

∥
∥ ≤ |Imz|−2

k∑

s=r+1

ps , z ∈ C\R . (3.5)

and letting k → ∞,

∥
∥(Hω

r − z)−1 − (Hω − z)−1
∥
∥ ≤ |Imz|−2

∞∑

s=r+1

ps , z ∈ C\R . (3.6)

Proposition 3.4. For every z ∈ C\R there is a set Ωz ∈ F , with P(Ωz) = 1 and
such that for all ω ∈ Ωz, the difference

Dk,ω =
∫

(t− z)−1dμω
k (t) −

∫

(t− z)−1dμav(t) ,

converges to 0 as k → ∞.

Proof. Let ε > 0 be given. We take r = r(ε, z) big enough so that

|Imz|−2
∞∑

s=r+1

ps < ε/2 . (3.7)
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Then for r < k,

Dk,ω = |Bk|−1
∑

x∈Bk

〈
δx|(Hω

k − z)−1δx
〉− E

〈
δx0 |(Hω − z)−1δx0

〉

=

{

|Bk|−1
∑

x∈Bk

〈
δx|

(
(Hω

k − z)−1 − (Hω
r − z)−1

)
δx
〉
}

+

{

|Bk|−1
∑

x∈Bk

〈
δx|(Hω

r − z)−1δx
〉− E

〈
δx0 |(Hω − z)−1δx0

〉
}

= Ik,ω + IIk,ω .

(3.8)

The bounds (3.5) and (3.7) yield |Ik,ω | < ε/2. We proceed with estimating |IIk,ω |.
Note that Bk is a disjoint union of nk−r balls of radius r,

Bk =
nk−r
⋃

j=1

Bk,j ,

and therefore

l2(Bk) =
nk−r
⊕

j=1

l2(Bk,j) .

Since each subspace l2(Bk,j) is invariant for Hω
r , we can write

|Bk|−1
∑

x∈Bk

〈
δx|(Hω

r − z)−1δx
〉

=
1

nk−r

nk−r
∑

j=1

n−r
∑

x∈Bk,j

〈
δx|(Hω

r − z)−1δx
〉
,

and recognize that the right hand side is an average of nk−r i.i.d. bounded random
variables. Hence, Kolmogorov’s strong law of large numbers yields that there is a
set Ωz,ε ∈ F with P(Ωz,ε) = 1 and such that for all ω ∈ Ωz,ε,

lim
k→∞

|Bk|−1
∑

x∈Bk

〈
δx|(Hω

r − z)−1δx
〉

= n−r
∑

x∈B̃

E
〈
δx|(Hω

r − z)−1δx
〉
, (3.9)

where B̃ is some fixed ball of radius r. The bounds (3.5) and (3.7) yield
∣
∣
〈
δx|(Hω

r − z)−1δx
〉− 〈

δx|(Hω − z)−1δx
〉∣
∣ < ε/2 ,

which combined with (3.9) yields

lim sup
k→∞

|IIk,ω | < ε/2 .

Hence for ω ∈ Ωz,ε, lim supk→∞ |Dk,ω| < ε, and the statement follows after taking
Ωz =

⋂∞
m=1 Ωz,1/m. �

Theorem 3.3 is a consequence of Proposition 3.4 and a density argument.
Let G be a countable dense set in C\R. Since any function f ∈ C0(R) can be
uniformly approximated by finite linear combinations of the functions t → (t −
z)−1, with z ranging through G, Theorem 3.3 follows after taking Ω̃ =

⋂
z∈G Ωz.



Vol. 9 (2008) Poisson Statistics of Eigenvalues 699

Remarks on Theorem 3.3. There is no restriction on the spectral dimension d.
Also, the theorem and the above proof remain valid without the assumption that
the random variables ω(x) have a density γ.

3.3. Fine eigenvalue statistics

For our study of fine eigenvalue statistics, we need the following two well-known
general estimates for random discrete Schrödinger operators. For both estimates,
the density γ plays a fundamental role.

Lemma 3.5 (Wegner estimate [31]). Let M0 be any self-adjoint operator on l2(X)
and let

Mω = M0 + Vω .

Then for every bounded Borel measurable function h : R → [0,∞) and x ∈ X,

E
〈
δx|h(Mω)δx

〉 ≤ ‖γ‖∞
∫

h(t)dt . (3.10)

Hence, if νω is the spectral measure for δx and Mω and νav = Eνω is the cor-
responding averaged measure, then νav is absolutely continuous with respect to
Lebesgue measure,

dνav(t) = υ(t)dt ,
and

‖υ‖∞ ≤ ‖γ‖∞ .

Lemma 3.6 (Minami’s estimate [4,12,25]). Let M0 be any self-adjoint operator on
l2(X) and let

Mω = M0 + Vω .

Then for every x, y ∈ X and Imz > 0

E det
( 〈

δx|Im(Mω − z)−1δx
〉 〈

δx|Im(Mω − z)−1δy
〉

〈
δy|Im(Mω − z)−1δx

〉 〈
δy|Im(Mω − z)−1δy

〉
)

≤ π2 ‖γ‖2
∞ . (3.11)

Wegner estimate yields that μav is absolutely continuous with respect to
Lebesgue measure,

dμav(t) = η(t)dt ,
and

‖η‖∞ ≤ ‖γ‖∞ .

If e ∈ ∑
and ε > 0 are given, then in view of Theorem 3.3 we expect the number

of eigenvalues of Hω
k � l2(Bk) in the interval (e− ε, e+ ε),

#
{
i : eω,k

i ∈ (e− ε, e+ ε)
}
,

to have typical size of order |Bk|μav(e−ε, e+ε) for large k. The precise statistical
behavior of the eigenvalues eω,k

j near e is captured by the rescaled measure ξω,e
k

given by (1.2). We make the following regularity assumption on e: for Imz > 0,

lim
ε↓0

∫

Im(t− e− εz)−1η(t)dt = πη(e) . (3.12)
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For example, if η is continuous at e, then (3.12) holds. However, it is in general a
difficult problem to establish the continuity of η for random discrete Schrödinger
operators. In the case of the Cauchy random potential (3.2), η is known to be
analytic [24]. If the Fourier transform of γ(t) decays exponentially, then it is possi-
ble [7] to prove analyticity of η after increasing the disorder, i.e. replacing Vω with
σVω for a sufficiently large σ. When continuity of η is not available, one appeals
to a classical theorem in harmonic analysis (see for example [20]), due to Fatou,
guaranteeing that (3.12) holds for Lebesgue almost all e ∈ R. We now state our
main result.

Theorem 3.7. Assume that the hierarchical model has a spectral dimension d < 1.
Assume that η(e) > 0 and that e verifies the regularity Condition (3.12). Then
ξω,e
k converges to a Poisson point process on R with intensity η(e)L.

Remarks on Theorem 3.7. Our theorem is the analogue of Minami’s result for the
localized Anderson model on Z

d (see the appendix). The proof of Poisson statistics
for the hierarchical model is technically simpler than the corresponding proofs for
the Anderson model on Z

d, because of the low spectral dimension assumption and
because of the high degree of self-similarity of the hierarchical model.

The rest of the section is devoted to the proof of Theorem 3.7. The main idea
is to approximate Hω

k with Hω
r for r < k, as in the proof of Theorem 3.3. This

time we choose r to depend on k, r = rk, such that

lim
k→∞

rk
k

= c , (3.13)

where
d < c < 1 . (3.14)

Let
ẽω,k
1 ≤ ẽω,k

2 ≤ · · · ≤ ẽω,k
|Bk| ,

denote the eigenvalues of Hω
rk

� l2(Bk) and let

ξ̃ω,e
k =

|Bk|∑

i=1

δ
( |Bk| (ẽω,k

i − e)
)
,

be the corresponding rescaled measure near e. Since Bk is a disjoint union of nk−rk

balls of radius rk,

Bk =
nk−rk⋃

j=1

Bk,j

we have the corresponding direct sum decomposition

Hω
rk

� l2(Bk) =
nk−rk⊕

j=1

Hω
rk

� l2(Bk,j) .
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Therefore the point process ξ̃ω,e
k is the sum of nk−rk independent point processes,

ξ̃ω,e
k =

nk−rk∑

j=1

ξ̃ω,e
k,j ,

where

ξ̃ω,e
k,j =

nrk∑

l=1

δ
( |Bk| (ẽω,k,j

l − e)
)
,

and ẽω,k,j
l , l = 1, . . . , nrk are the eigenvalues of Hω

rk
� l2(Bk,j).

The proof of Theorem 3.7 is organized as follows. We first establish that the
point processes ξω,e

k and ξ̃ω,e
k are asymptotically close in the following sense:

Proposition 3.8. For every f ∈ L1(R, dt),

lim
k→∞

E

∣
∣
∣
∣

∫

fdξ̃ω,e
k −

∫

fdξω,e
k

∣
∣
∣
∣ = 0 . (3.15)

Corollary 3.9. Let A1, A2, . . . , Am be given disjoint bounded Borel sets in R. Let
Xω

k and X̃ω
k be the random vectors

Xω
k =

[
ξω,e
k (A1), ξ

ω,e
k (A2), . . . , ξ

ω,e
k (Am)

]
,

X̃ω
k =

[
ξ̃ω,e
k (A1), ξ̃

ω,e
k (A2), . . . , ξ̃

ω,e
k (Am)

]
.

and let φk, φ̃k : R
m → C be the corresponding characteristic functions

φk(t) = EeitXω
k , φ̃k(t) = EeitX̃ω

k , t ∈ R
m .

Then for all t ∈ R
m,

lim
k→∞

∣
∣
∣φk(t) − φ̃k(t)

∣
∣
∣ = 0 .

Then we establish

Proposition 3.10. The point process ξ̃ω,e
k converges to a Poisson point process on

R with intensity η(e)L.

Proposition 3.10 and Corollary 3.9 together imply Theorem 3.7. The Weg-
ner estimate plays a crucial role in the proof of Propositions 3.8 and 3.10. For
every Borel set A ⊂ R, we have ξω,e

k (A) =
∑

x∈Bk
〈δx|f(Hω

k )δx〉, where f(t) =
1A(|Bk| (t− e)). Wegner estimate (3.10) yields that for all x ∈ Bk,

E
〈
δx|f(Hω

k )δx
〉 ≤ ‖γ‖∞

∫

f(t)dt = ‖γ‖∞ |Bk|−1 L(A). (3.16)

Summing (3.16) over all x ∈ Bk yields

Eξω,e
k (A) ≤ ‖γ‖∞ L(A) . (3.17)

Similarly
Eξ̃ω,e

k (A) ≤ ‖γ‖∞ L(A) . (3.18)
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Proof of Proposition 3.8. Step 1: We first prove (3.15) for the family of functions

gz(t) = Im(t− z)−1 , Imz > 0 .

Setting
zk = e+ |Bk|−1

z , (3.19)

we have
∫

gzdξ̃
ω,e
k −

∫

gzdξ
ω,e
k = |Bk|−1 Im

∑

x∈Bk

〈
δx
∣
∣
(
(Hω

rk
− zk)−1 − (Hω

k − zk)−1
)
δx

〉
.

Hence
∣
∣
∣
∣

∫

gzdξ̃
ω,e
k −

∫

gzdξ
ω,e
k

∣
∣
∣
∣ ≤ |Imzk|−2

∞∑

s=rk+1

ps = const |Imz|−2

(
n2k

ρrk

)

The formulas (3.13) and (3.14) imply that for large enough k, ρrk ≥ ρc′k where
d < c′ < c < 1. Therefore

n2k

ρrk
≤
(
n2

ρc′

)k

,

and n2

ρc′ < 1 because of the formula (3.1). This proves (3.15).
Step 2: To prove (3.15) for general f ∈ L1(R, dt), note that span {gz, Imz > 0}

is dense in L1(R, dt). Hence given ε > 0, there is a finite linear combination

g(t) =
p∑

j=1

ajIm(t− z(j))−1 , Imz(j) > 0 ,

with ∫

R

|f(t) − g(t)| dt ≤ ε .

The triangle inequality

E

∣
∣
∣
∣

∫

fdξω,e
k −

∫

fdξ̃ω,e
k (t)

∣
∣
∣
∣ ≤ E

∫

|f − g|dξω,e
k

+ E

∣
∣
∣
∣

∫

gdξk −
∫

gdξ̃ω,e
k

∣
∣
∣
∣+ E

∫

|g − f | dξ̃ω,e
k ,

together with Step 1 and the bounds (3.17) and (3.18) imply

lim sup
k→∞

E

∣
∣
∣
∣

∫

fdξω,e
k −

∫

fdξ̃ω,e
k (t)

∣
∣
∣
∣ ≤ 2 ‖γ‖∞ ε ,

and (3.15) follows after letting ε ↓ 0. �

Proof of Proposition 3.10. I suffices to show that ξ̃ω,e
k and the ξ̃ω,e

k,j verify the four
hypotheses of Theorem 2.5.
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(H0): holds because of the bound (3.18).
(H1): we need to to establish that for every bounded Borel set A ⊂ R,

lim
k→∞

max
1≤j≤nk−rk

P
(
ξ̃ω,e
k,j (A) ≥ 1

)
= 0 . (3.20)

Proof. Chebyshev’s inequality and the bound (3.16) yield

P
(
ξ̃ω,e
k,j (A) ≥ 1

) ≤ Eξ̃ω,e
k,j (A)

≤ |Bk,j |
|Bk| ‖γ‖∞ L(A)

= nrk−k ‖γ‖∞ L(A) ,

and (3.20) follows. �

(H2): We need to establish that for all Imz > 0,

lim
k→∞

E

∫

Im(t− z)−1dξ̃ω,e
k (t) = πη(e) .

Proof. We have

E

∫

Im(t− z)−1dξ̃ω,e
k (t) = |Bk|−1

EIm
∑

x∈Bk

〈
δx|(Hω

rk
− zk)−1δx

〉

= |Bk|−1
EIm

∑

x∈Bk

〈
δx
∣
∣
(
(Hω

rk
− zk)−1 − (Hω−zk)−1

)
δx

〉

+ EIm
〈
δx0 |(Hω − zk)−1δx0

〉

= Ik,ω + IIk,ω .

Now IIk,ω → πη(e) by 3.12 and Ik,ω → 0, as in the proof of Proposition 3.8. �

(H3): We need to establish that for every function gz(t) = Im(t− z)−1, Imz > 0,

lim
k→∞

nk−rk∑

j=1

EI(ξ̃ω,e
k,j , gz) = 0 . (3.21)

Proof. We have,

|Bk|2 I(ξ̃ω,e
k,j , gz) =

⎛

⎝
∑

x∈Bk,j

〈
δx|Im(Hω

rk
− zk)−1δx

〉
⎞

⎠

2

−
∑

x∈Bk,j

〈
δx
∣
∣
(
Im(Hω

rk
− zk)−1

)2
δx

〉

=
∑

x,y∈Bk,j

det
( 〈

δx|Im(Hω
rk
−zk)−1δx

〉 〈
δx|Im(Hω

rk
−zk)−1δy

〉
〈
δy|Im(Hω

rk
−zk)−1δx

〉 〈
δy|Im(Hω

rk
−zk)−1δy

〉
)

.
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Using Minami’s estimate (3.11) we get the bounds

|Bk|2 EI(ξ̃ω,e
k,j , gz) ≤ π2 ‖γ‖2

∞ |Bk,j |2 ,
and hence

nk−rk∑

j=1

EI(ξ̃ω,e
k,j , gz) ≤ π2 ‖γ‖2

∞ n−rk ,

which yields (3.21). �

�

Appendix A. Minami’s proof of Poisson statistics for the localized
Anderson model on Z

d

For a rectangle B ⊂ Z
d, we denote by Hω

B the restriction of Hω to l2(B) with
Dirichlet boundary conditions: i.e. 〈δx|Hω

Bδy〉 = 〈δx|Hωδy〉 if both x, y ∈ B, and
〈δx|Hω

Bδy〉 = 0 otherwise. For k ≥ 1, let Bk be the rectangle {x ∈ Z
d : maxi=1,...,d

|xi| ≤ k}, and let Hω
k = Hω

Bk
. As before, eω,k

1 ≤ eω,k
2 ≤ · · · ≤ eω,k

|Bk|, are the
eigenvalues of Hω

k � l2(Bk), μω
k is the corresponding normalized counting measure

given by (1.1) and ξω,e
k is the rescaled measure near e given by (1.2). We refer

the reader to [18] for a discussion of the regime where both space and energy are
rescaled. The averaged spectral measure for Hω is given by (3.3) and the Wegner
estimate yields that μav has a bounded density η(t) with respect to L. A basic
result for the Anderson model is that for P-a.e. ω ∈ Ω, the spectrum of Hω is
equal to [−2d, 2d] + supp(γ) = supp(μav) and μω

k converges to μav in the weak-*
topology as k → ∞ [6, 8, 29].

Theorem A.1 (Minami, 1996). Assume that there are constants 0 < C < ∞, 0 <
D <∞ and 0 < s < 1 such that

E
∣
∣
〈
δx|(Hω

B − z)−1δy
〉∣
∣s ≤ Ce−D|x−y| , x, y,∈ Z

d , (A.1)

for all z with e1 < Rez < e2, Imz �= 0 and for all rectangles B ⊂ Z
d. Assume that

e ∈ (e1, e2) verifies the regularity Condition (3.12) and that η(e) > 0. Then ξω,e
k

converges to a Poisson point process on R with intensity η(e)L.

We refer the reader to [14] for a discussion of the set of e for which η(e) > 0.
Condition (A.1) is called fractional-moments localization. It implies that within
(e1, e2), for P-a.e. ω ∈ Ω the spectrum of Hω, if any, is pure-point with expo-
nentially decaying eigenfunctions [1, 2]. For d = 1, Condition (A.1) holds for all
energy intervals (e1, e2) [25]. In dimensions d ≥ 2, condition (A.1) is obtained by
either moving the energy interval (e1, e2) to ±∞ or by increasing the disorder.
The two main techniques for proving that are the multiscale analysis [10, 11] and
the Aizenman–Molchanov theory [1].
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Proof of Theorem A.1. We fix α ∈ (0, 1) and for each k, we make a partition

Bk =
nk⋃

j=1

Bk,j ,

where Bk,j are disjoint rectangles with side ∼ (2k)α. Hence nk ∼ kd(1−α). Let
ẽω,k,j

l , l = 1, . . . , |Bk,j | denote the eigenvalues of Hω
Bk,j

� l2(Bk,j) and let

ξ̃ω,e
k,j =

|Bk,j |∑

l=1

δ
( |Bk| (ẽω,k,j

l − e)
)
,

ξ̃ω,e
k =

nk∑

j=1

ξ̃ω,e
k,j .

Hence the point process ξ̃ω,e
k is the sum of nk independent point processes ξ̃ω,e

k,j .
As in Section 3, Theorem A.1 follows from the following two propositions.

Proposition A.2. For every f ∈ L1(R, dt),

lim
k→∞

E

∣
∣
∣
∣

∫

fdξ̃ω,e
k −

∫

fdξω,e
k

∣
∣
∣
∣ = 0 . (A.2)

Proposition A.3. The point process ξ̃ω,e
k converges to a Poisson point process on R

with intensity η(e)L.

Proof of Theorem A.2. As in the proof of Proposition 3.8, it is enough to prove
(A.2) for the family of functions

gz(t) = Im(t− z)−1 , Imz > 0 .

We set
zk = e+ |Bk|−1

z . (A.3)
Then

∫

gzdξ̃
ω,e
k −

∫

gzdξ
ω,e
k

= |Bk|−1 Im
nk∑

j=1

∑

x∈Bk,j

〈
δx

∣
∣
∣
(
(Hω

Bk,j
− zk)−1 − (Hω

k − zk)−1
)
δx

〉
.

Let vk = β ln k, where β > 0 is a fixed big enough constant to be specified later.
We set

int(Bk,j) =
{
x ∈ Bk,j : dist(x, ∂Bk,j) ≥ vk

}
,

and
wall(Bk,j) =

{
x ∈ Bk,j : dist(x, ∂Bk,j) < vk

}
.

Then

E

∣
∣
∣
∣

∫

gzdξ̃
ω,e
k −

∫

gzdξ
ω,e
k

∣
∣
∣
∣ ≤ E |Ik,ω | + E |IIk,ω | ,
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where

Ik,ω = |Bk|−1 Im
nk∑

j=1

∑

x∈wall(Bk,j)

〈

δx

∣
∣
∣
(
(Hω

Bk,j
− zk)−1 − (Hω

k − zk)−1
)
δx

〉

,

IIk,ω = |Bk|−1 Im
nk∑

j=1

∑

x∈int(Bk,j)

〈

δx

∣
∣
∣
(
(Hω

Bk,j
− zk)−1 − (Hω

k − zk)−1
)
δx

〉

.

The Wegner estimate (3.18) yields that

E |Ik,ω | ≤ 2π ‖γ‖∞ |Bk|−1
nk∑

j=1

|wall(Bk,j)| ,

and the right hand side converges to zero as k → ∞.
To estimate E |IIk,ω |, we use the resolvent identity

〈

δx

∣
∣
∣
(
(Hω

Bk,j
− zk)−1 − (Hω

k − zk)−1
)
δx

〉

=
∑

(y,y′)

〈
δx|(Hω

Bk,j
− zk)−1δy

〉〈
δy′ |(Hω

k − zk)−1δx
〉
,

where the sum is over all pairs (y, y′), with y ∈ ∂Bk,j , y
′ /∈ Bk,j and |y − y′| = 1.

Hence,

E |IIk,ω |

≤ |Bk|−1
nk∑

j=1

∑

x∈int(Bk,j)

∑

(y,y′)

E

∣
∣
∣
〈
δx|(Hω

Bk,j
− zk)−1δy

〉〈
δy′ |(Hω

k − zk)−1δx
〉∣∣
∣ .

(A.4)

For k large enough so that e1 < Rezk < e2, we use the main assumption (A.1)
together with the bound

∣
∣
∣
〈
δx|(Hω

Bk,j
− zk)−1δy

〉〈
δy′ |(Hω

k − zk)−1δx
〉∣∣
∣ ≤ (Imzk)−2 = (|Bk| /Imz)2 ,

to obtain

E

∣
∣
∣
〈
δx|(Hω

Bk,j
− zk)−1δy

〉〈
δy′ |(Hω

k − zk)−1δx
〉∣∣
∣

≤ (|Bk| /Imz)2(1−s/2)
E

∣
∣
∣
〈
δx|(Hω

Bk,j
− zk)−1δy

〉〈
δy′ |(Hω

k − zk)−1δx
〉∣∣
∣
s/2

≤ (|Bk| /Imz)2(1−s/2)
(

E

∣
∣
∣
〈
δx|(Hω

Bk,j
− zk)−1δy

〉∣∣
∣
s)1/2

(
E
∣
∣
〈
δy′ |(Hω

k − zk)−1δx
〉∣
∣s
)1/2

≤ (|Bk| /Imz)2(1−s/2)Ce−Dvk . (A.5)
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Since, in (A.4), there are O(kα(d−1)) pairs (y, y′) for each Bk,j , the bounds (A.4)
and (A.5) yield

E |IIk,ω | ≤ O(kα(d−1) |Bk|2(1−s/2)
e−Dvk)

= O(kα(d−1)+2d(1−s/2)e−Dβ ln k)

Hence, if we choose β > D−1 (α(d − 1) + 2d(1 − s/2)), then E |IIk,ω | → 0 as
k → ∞. �

Proof of Proposition A.3. As in the proof of Propositon 3.10, it suffices to show
that ξ̃ω,e

k and the ξ̃ω,e
k,j verify the four hypotheses of Theorem 2.5. The proof of

(H0), (H1) and (H3) is the same as in Propositon 3.10. It remains to show that
(H2) holds, i.e. for Imz > 0,

lim
k→∞

E

∫

gzdξ̃
ω,e
k = πη(e) . (A.6)

The argument of the proof of Proposition A.2, with Hω
k replaced by Hω, yields

that

lim
k→∞

E

(∫

gzdξ̃
ω,e
k −

∫

gzdμ
av

)

= 0 , (A.7)

and then (A.6) follows from (A.7) and (3.12). �

�
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