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Abstract. We consider operators of Kramers—Fokker—Planck type in the semi-
classical limit such that the exponent of the associated Maxwellian is a Morse
function with two local minima and a saddle point. Under suitable additional
assumptions we establish the complete asymptotics of the exponentially small
splitting between the first two eigenvalues.

Résumé. On considere des opérateurs du type de Kramers—Fokker—Planck
dans la limite semi-classique tels que I'exposant du maxwellien associé soit
une fonction de Morse avec deux minima et un point selle. Sous des hy-
potheses supplémentaires convenables on établit un développement asymp-
totique complet de I’écart exponentiellement petit entre les deux premieéres
valeurs propres.

1. Introduction

This paper is a natural continuation of the work [14], investigating the low lying
eigenvalues of the Kramers—Fokker—Planck operator

P:y-h&x—V'(a:)~h8y+g(—h8y+y)-(h8y+y), syeR”, (L1

where v > 0. Physically the semiclassical limit h — 0 corresponds to the low
temperature limit. As explained in [14], the original motivation for that work
was to give more explicit versions of some results in [13] and later in [8], giving
estimates on the time of return to equilibrium, or more or less equivalently, on
the gap between the first eigenvalue 0 (when the potential V' tends to plus infinity
sufficiently fast at infinity) and the second eigenvalue. See also [25] for further
developments in that direction. The methods of those works as well as the one
of Eckmann and Hairer [5] are inspired by those of hypoellipticity for Hormander
type operators. We will not repeat here all the motivations of [14], coming also
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from the works [4,16] and others, including recent developments in pseudospectral
theory.

In [14] it was assumed that V in (1.1) is a smooth real Morse function with
finitely many critical points, U;, j = 1,..., N, that 0*V(z) is bounded for all
multiindices « of length |o| > 2 and that |[VV (z)| > 1/C for |z| > C for some
C > 0. Under these assumptions it was shown that the eigenvalues in any disc
D(0,Ch) are of the form

)\Jyk(h) ~ h(uj,k + hl/Nj‘k,uj?k,l + hz/Nj’k,uj,k,z +-4), h—0 (1.2)

where the index j labels the critical points and the leading coefficients p;, can
be given explicitly in terms of the Hessian of V at the corresponding critical
point. The values (i are confined to a sector {|arg(z — pj0)| < 6;} for some
0; € [0, 5[, and \jp is the eigenvalue with the smallest real part of all the A; .
(This comes formally from a harmonic oscillator approximation.) Further ;5 #
o0 for k # 0 and the asymptotic expansion (1.2) for A;o contains only integer
powers of h. See [14] for more details. Using this result, as well as control over
the resolvent along suitable contours in the right half plane, the authors were able
to give asymptotic expansions for large times of exp (—tP/h), that emphasize the
role of the eigenvalues close to 0 given in (1.2). Indeed, there are no others in a
certain parabolic neighborhood of the imaginary axis.

Moreover, we have p;0 > 0 with equality precisely when Uj; is a local mini-
mum of the potential, and in the case of such a minimum it follows from the above
results that \; o is actually exponentially small.

In this paper we address the question of determining more precisely the size
of these exponentially small eigenvalues. In the case when V' has precisely one local
minimum, say Uy, and tends to +o00, when x — oo, we know that the correspond-
ing eigenvalue ;¢ is equal to zero (with the Maxwellian exp (—(y?/2 + V (x))/h)
as the corresponding eigenfunction) and that this eigenvalue is separated from the
other ones by a gap of size h. This means that we have return to equilibrium with
a speed that is roughly 1. The situation becomes more complicated when there is
more than one local minimum. We are then in the presence of a tunneling problem
which is much more complicated than the corresponding ones for the semiclas-
sical Schrodinger operators since our operators are non-elliptic. In principle one
should be able to follow the general approach of earlier works in the Schrédinger
case as [9]. However it seems that one necessarily runs into a tunneling problem
where the wave functions have to be studied also in a neighborhood of some in-
termediate saddle points of V', and as known from [10] that can indeed be done
in the Schrodinger case with techniques that are very useful in a variety of prob-
lems. To carry out such an approach in the case of Kramers—Fokker—Planck would
require one to accumulate the difficulties of non-resonant wells with the ones com-
ing from the lack of ellipticity. This seems to lead to considerations of degenerate
non-symmetric Finsler distances (see for instance [1,18]).

For the Witten Laplacian (see [11]) we are also in the presence of a tunneling
problem with intermediate non-resonant wells and in that case one could avoid
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the detailed study near the non-resonant wells by studying directly the Witten
complex as a tunneling problem between critical points of neighboring indices.
More recently M. Klein, B. Helffer, and F. Nier [7] have used that approach to study
the exponentially small non-vanishing eigenvalues of the Witten Laplacian. Also
in [13], explicit estimates relating such small eigenvalues for the Witten Laplacian
and the Kramers—Fokker—Planck operator were established.

This relation with the Witten complex was strengthened further in the works
of J. Tailleur, S. Tanase-Nicola, J. Kurchan [24] and J. M. Bismut [2], who showed
using respectively the languages of supersymmetry and differential forms, that the
Kramers—Fokker—Planck operator can be viewed as a Witten Laplacian in degree 0
associated to a certain non-semidefinite scalar product in the spaces of differential
forms. See also [17] for a quick introduction to the differential form version of
Bismut and [3].

In the present paper, we use this supersymmetric approach. Our main re-
sult, valid also for a class of more general operators, is that if a certain weight
function ¢ (which in the KFP-case is the function y*/2 + V/(x)) has precisely two
local minima UL and an intermediate saddle point Uy then we can get a com-
plete asymptotic expansion for the second eigenvalue of the corresponding Witten
Laplacian (reducing to the KFP operator in the special case). The logarithm of
this eigenvalue is equal to —2h ! (min(¢(Up) — ¢(U1), ¢(Upy) — d(U—1)) +o(1)), but
actually we do have a complete asymptotic expansion. See Theorem 11.1 for a
complete statement. It seems clear that this result can be somewhat generalized
but a more complete result might require exponential estimates and asymptotics
for eigenfunctions also far from the critical points. In our present approach we are
able to get such information for the eigenfunctions of the degree 0 operator in the
basin of attraction of each minimum and for the degree 1 Laplacian in a small
neighborhood of the saddle point.

In most of the paper we work with a scalar real second order non-elliptic
operator, which is also non-selfadjoint, and we were led to reconsider some steps
n [14]. The plan of the paper is the following:

In Section 2 we do some very simple and elementary exponential estimates
mainly designed to get the appropriate control near infinity.

In Section 3 we establish the m-accretivity for our operators so that the step
from a priori estimates to spectral information becomes possible.

In Section 4 we study certain auxiliary weights, somehow related to escape
functions in resonance theory (see [12] and a large number of more recent works)
in connection with some dynamical conditions.

In Section 5 we use those weights together with a machinery of Fourier inte-
gral operators with complex phase in order to get phase space a priori estimates
away from the critical points. This section is perhaps technically the most compli-
cated one, but the underlying ideas are now quite standard. Alternative methods
are certainly possible and we might return to this step in future works. This section
and the subsequent one are quite technical and should not be studied in detail in
the first reading.
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In Section 6 we study the conjugation of our original operator under the
Fourier integral operators of the preceding section and in Section 7 we finally
obtain the a priori estimates that we need.

In Section 8 it is now quite easy to get detailed asymptotic results by adapting
the methods of [14].

In Section 9 we show that the eigenfunction associated to A; o for each (non-
degenerate) critical point U; has the form a(z;h)e=?®)/" in a neighborhood of
that point, where a(z; h) has an asymptotic expansion in integer powers of h with
coefficients in C*°(neigh (U;)) and ¢ = ¢; is a smooth function of the order of mag-
nitude |z — U. j|2. It would be very interesting to extend such descriptions further
away “beyond caustics”.

In Section 10 we review the supersymmetric approach of [2,24] (see also [17])
and establish various interesting links between the dynamical conditions of Sec-
tion 4 and old results for non-selfadjoint operators with double characteristics [22].
This sheds additional light on some related computations in [14].

Finally in Section 11, we can put the various results together and establish
the precise exponential asymptotics of the spectral gap between the first and the
second eigenvalue (both real and the first one being zero.)

We expect that the spectral results of the present paper will give rise to
precise asymptotics for the associated heat-evolution problem in the limit of large
times and we plan to treat that problem in a separate paper.

2. A priori estimates

In this section we establish some simple a priori estimates which will be important
in Section 6 and at other places. They illustrate the technique of gaining ellipticity
by means of exponential weights that we shall later employ also in a micro-local
setting.

Let M denote either the space R”, or a smooth compact n-dimensional man-
ifold equipped with a strictly positive smooth density of integration dz. On M we
consider a second order differential operator

n 1 n
2 j;l hDx, 0 bjk(x) © hDay + ; (¢;(x)hdy, + hdy, o ¢;(x)) + po(z)

19

=P +iPi+F, D = (2.1)

) aﬁj ’
where the coefficients b; 1, ¢;, po are assumed to be smooth and real, with b; , =

by,;. In the manifold case, we use local coordinates such that dx = dx; ...dz,.
To P we associate the symbol in the semiclassical sense,

p(xaf) :p2($a€)+ip1($a€)+p0($)v (22)

n

pa(,8) = D bin(@)&& . pi(,8) =D ci(@)§ (2.3)

j,k=1 Jj=1
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so that p;(x, ) is a real-valued polynomial in &, positively homogeneous of degree j.
(It is well-defined on T*M and coincides with the Weyl symbol mod O(h?) locally
uniformly.) We assume that

p2(z,€) >0, po(z)>0. (2.4)

In the case M = R", we impose the following growth conditions at infinity:

09b; k() =0(1), |al >0, (2.5)
d2¢;(x) = 0(1), o 21, (2.6)
9po(a) = O(1), o] > 2. (2.7)

When discussing P in the Operator theoretical sense we will assume that
it is the closure of P : (M) — S(M) as an unbounded Operator in L?(M).
(When M is compact, we identify the Schwartz space S(M) with C*°(M).) Let
D(P) C L?*(M) be the domain.

Lemma 2.1. We have

/po(x)|u(x)|2dﬂc + /Z bjk(x)(hDy,u)(hDg, u)dz = Re (Pulu) , (2.8)
j.k

for all uw € S(M).

Proof. Immediate by integration by parts. 0

In the manifold case, we view B(x) = (bjr(z)) as a positive semi-definite
matrix T;M — T,M and if we choose some smooth Riemannian metric on M,
we can view B(z) as a map T M — T*M and define B(z)2 similarly. (2.8) then
becomes

Ipo(@) 2 ull® + || B(x) 2 hDu|* = Re (Pulu), (2.9)
implying
lpg ull + | B2 hDul| < Co(|Pull + ul]) (2.10)
In particular, u € D(P) = HpéuH + ||B2hDu|| < oo.

Using the anti-selfadjoint part ¢P; we shall obtain a similar estimate where
the averages of py along the trajectories of

n

v(x,0p) =Y c;(2)0n, (2.11)

1

will play a role.
In general, if ¥(z) is a smooth real-valued function, the Operator

Py :=e¥/hopPoe ¥/t (2.12)



214 F. Hérau, M. Hitrik, and J. Sjostrand Ann. Henri Poincaré

is of the same form as (2.1) with new coefficients ¢;, po and the new symbol
pu(,8) = p2(2,§ + i)' (2)) +ip1 (2, + i (x)) + po(x) (2.13)
= pale, ) +i(pr(@,€) + Oepa (. /(@) -
+po(x) = p1(z, ¢ (2)) — p2(2,9'(2))
=t p2(2, &) +ip1,p (2, §) + po,y(2) -

In this section we choose 1 very small and treat ps(x, v’ (z)) as a perturbation.
Notice that

p1(z, ¢ (2) = vz, 0,)0. (2.14)

Let f(t) € C*(]0,00]; [0

;10,3/2]) be an increasing function with f(¢t) = ¢ on
[0,1], f(t) = 3/2 on [2,00], f(t)

<t. Put fc(t) = ef(t/e) and consider for Ty > 0

fixed,
t
e = /k (T ) feopooexp (tv)dt, (2.15)
0
where
0, [t]=1/2,
k(t)=qt+45, —3<t<O0,
—k(—t), 0<t<l.
Then
V(we) - f(-: o po — <.fe OpO>To 5 (216)
where
1 Tg/2
(feopo), = T / feopooexp (tv)dt (2.17)
0J-To/2
is the time T average of f. o py along the integral curves of v. Clearly,
To 3 3Th
< = . .
el <7 pe="g € (2.18)

From (2.6) it is easy to see that ®;(z) := exp (tv)(z) is well-defined for all
te R, x € M and that

|09, ()| < C(a)elelltl a e N |a| >1. (2.19)

In particular, |09®(x)] < Cums || < To. On the other hand, since pg > 0,

py = O(1) (by (2.7)), we know that |pj| < O(l)pé and this quantity is O(¢'/2) in
the region where 0 < py < 2e. It follows that 9%(f. o pg) = O(e!~1o1/2) o € N
and together with (2.19), we get

e = O(eX191/2) - vo e N7, (2.20)

for every fixed Tj.
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Then from (2.13), (2.14), (2.16), (2.20) and the uniform boundedness of the
bj.x, we get

Po,6p. = Po(x) — 0 fc 0 po + 6(fe 0 po)T, — 6%p2(w, L) (2.21)
= pO(CC) —0fcopo+ 5<f6 Op0>To - 0(526) )

uniformly on R" for 0 < § < 1. Using the properties of f, we notice that po(z) —
6feopo = (1 —0d)po, so

o5, > (1= 0)po + 8(fe 0 po)m, — O(6%). (2.22)

Since the coefficients of Ps,_ grow at most polynomially, Lemma 2.1 can be
applied and gives

/ (po.sw. () — Re z)|u|’dx < Re ((Psy, — 2)ulu), 2€C, Rez< ; , (2.23)

where Z > 1 is independent of e. (For Lemma 2.1 we do not need that py > 0.)
Let p > 0 and rewrite (2.23) as

[ (g, lufds < Re (((Po = 2) + (s = Fo)sJulu)
= Re (max(ﬁo7w, u)*; (Py— =

~ ~ 1
(1 = Fop)+ ) ul max(Fop, 1) 1)

Here we write 1 for 4. and pg,y = po,y» — Rez.
Then using Cauchy—Schwarz,

_ ~07 . 1
(1 =Poy)+ max (Po,p, (1) u

| max(Bo,pn )bl < | max@o,w,u>%<Pw—z>u||+H ,
leading to
|| max(Fo,y, 12) > ul| < || max(Fo,yp, 1)~ 2 (Py — 2)ul
+ {1150 <y max (P, 1) 2 ] (2.24)

Notice that 15, , <.} max(po,y, ,u)% = Lo,y SN}H% :
We have

Do,y = po(x) — 8fc 0opo + &(fe o)1, — O(6%€) — Re 2
> po(x) — 8f. 0 po + 6(fe 0 p)r, — O(8%€) — ; .
Choose Z = 62, so that
Do,y > po(x) — 8fe o po + 6(fe o)1, — O(6%€).

Choose § > 0 small enough (but independent of €) so that O(§2%¢) < de/Cp, where
we shall fix Cy sufficiently large. Then

o = (1= (e +6 (Wfeomin, — 5 ).
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When (fe o po)1, > %, we get

po.y = (1 —0)po(x) + g .
When (f. opo)q, < 236 we have pg .y > (1 — 8)po — (612
Choose
e
h= Gy
Then
(1 =08)po+ p < oy +2p < 3max(po,y, 1) - (2.25)

Moreover, if o,y < p, then §{feopo)m, — gi < g;, 50 (feopo)t, < éz From (2.24)
and (2.25) we then infer that

} 1

de \ 2
1-96
<( )p0+00> u
for Re z < 7

Here we can take e = Mh with M > 1. Then by (2.18) we have
so there is a constant C' independent of h (but depending on M, §) such that

<3 ((1 — 8)po + 22)2 (Py— 2)u (2.26)

de
3y O Ml ramom= )

Loemcc :
From the discussion above, in particular (2.26), we get

Proposition 2.2. Let P be of the form (2.1), where bj i, cj,po are smooth and real
and satisfy (2.2)—(2.7). Define {fc opo)m, as in (2.17) with f. defined after (2.14).
Then for every C' > 0, there exists C' > 0 such that

1 ~ _1 1
[(po + h)2ul| < c(||<po+h> 2<P—z>u||+h2||u||{<f@€o,,omgah}), (2.27)
forue S, Rez < Ch.
Notice that (2.8) implies that
IB2hDull* < [[(po + k)2 (P — 2)ul||(po + h)2ul| + C||h2ul?. (2.28)

3. From injectivity to the resolvent

Let P = P, +iP, + Py with symbol p = ps + ip1 + pp be as in Section 2, so that
we have (2.8)

/po(a:)|u(a:)|2da: + (Pyuju) = Re (Pulu), uweSM),
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leading to
IRe 2| Jull® + lpg ull® + (Pyulu) = Re (P - 2)ulu) < [[(P — 2)ull[lull, Rez <0.
We get
I(IRe 2| + po) 2ull® < | ([Re 2] + po) ™2 (P — 2)ull[[([Re 2| + po) 2 ull
I(IRe 2| + po) 2 ul| < |(|Re 2| +po)~2 (P — 2)ull,

(
(

Re 2|2 [|(|Re 2| + po) 2 ull < [|(P

Re 2| |[ul| < (P

= 2)ull,
— 2)ul|.-

From this we get

1
(Poulu) < (P = 2l < |, 1P =2l
and putting some of the estimates together,
1
Re 2[*[|ull® + [Re z[[lpg ull* + [Re 2| (Paulu) < 2[|(P — 2)ull*. (3.1)

By P we also denote the graph closure of P : § — S. From the estimates
above we see that the range R(P — z) is closed in L? when Re z < 0.

Proposition 3.1.
R(P—2)=L% Rez<0.

Proof. Tt suffices to prove that R(P — z) = L? for some z with Re z < 0, because
the a priori estimate then implies that ||(P—z)~!|| < |Re z|~! and this fact extends
by standard arguments to the whole left half plane. For the same z it suffices to
show that if u € L? and (P* — 2)u = 0 in the sense of distributions, then u = 0.
Now the formal adjoint P* = P, — iP; + Py has the same properties as P, so in
order to simplify the notations, we may just as well prove the corresponding fact
for P — z instead of P* — z: There exists a z with Re z < 0 such that if u € L?
and (P — z)u = 0 in the sense of distributions, then v = 0.

When M = R", let Op,(¢q) denote the Weyl quantization of ¢(z, h§) and put

Ac = Op, ((e@,€) ")

where N > 2 is fixed and € > 0 is small and fixed. (When M is a compact manifold,
choose a Riemannian metric and put A. = (1—eh2A)~N/2.) Consider the equation

(P—2u=v, uvelL?.
Then A (P — 2)u= A, so
(P —z)Acu = Aev + [P AJu. (3.2)

Since N > 2, we can find a sequence u; € S such that Acu; — Acu, pé Acuj —
1
péAeu, A(P — 2)u; — A, [P AJu; — [P,Adu in L?, (PyAcuj|Acu;) —
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(PyAcu|Acu). This means that (3.1) is applicable to (3.2), and we get

[Re =2 Acul + [Re 2| [pg Acull® + Re 2| (PoAulA )
< A([IAcw]|® + (I[P, Aul?) . (3.3)
Consider [P, A Ju = ([P, AJA71)Acu. We study the Operator [P, AJA;! and
assume that M = R™ in order to fix the ideas. If p = (x, &), we have
95 (p)~N = 0(1)(p) Ve,

SO

lev]
ogten ™ =0en™ (%)) =0k Vi),
uniformly with respect to e. From this we deduce that the symbol of [P, A] is
"{p, A} + Og(h%A.), using the same letters for Operators and their symbols (ex-
cept for P, P; where we already introduced a distinction by using lower case let-
ters for the symbols), and using the notation Oy(h%A.) for a symbol ¢ satisfying
9%q = Oa(h?A.), uniformly in e. Here

{p, Ae} = 0o (Ag(p)<p>) )
so the symbol of [A., P]JA- ! is

h{p, A.
. {pAE } +Oo(h2) .
Recall that p(z,£) = po(z) + ip1(2, §) + p2(z, ). We get
{p07A6} _ <x> _
L =0 (()) —eun.
{p1, A} <<x>> <<£>>
=0 @ =0
o T T ) T
{p27Ae}
L = Qo).
Vel B Ly
iy -Vup2 = 0o ((p}) Vapa(p) -
From these computations, we retain that
I[P, AJA w]) < O(h)|[wl] + O(R) | Qul| - (34)
The symbol Q is real and 92Q = Oo((€)271*!/(p)), so
1Qul* = (Q*wlw),

where @Q o @ has the symbol Q2 + Og(h?).
Since py > 0, 82py = O(£?) we know that

|0up2| < O(1)€]pa(z, )2
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and we conclude that on the symbol level
Q> < Cps.
Hence by the semi-classical Fefferman—Phong inequality for operators with symbols
in the Hormander class Sf, (see for example Subsection 7.2 in [14] for a short
review of the Weyl-Hérmander calculus):
IQull* < C(Pywlw) + O(h*)[Jw]]*.

Using this in (3.4), we get

1P AJAT w2 < CR2(Pawlw) + w?). (35)
we use this in (3.3) with [P, AJu = [P, A JAZ Acu and get

IRe 2[[p§ Acull® + (Re 2[2 — Ch)||Acul]® + (Re 2| — Ch?)(PaAculAcu)
<A[[A(P = z)ul®. (3.6)
Soif Rez < —v/Ch and (P — z)u =0, u € L?, we have u = 0. O

Corollary 3.2. The mazximal closed extension Ppax of P (with domain given by {u €
L?; Pu € L?}) coincides with the graph closure (the minimal closed extension),
already introduced.

Proof. Let z be fixed with Rez < —V/Ch. Let u,v € L? with (Prax — 2)u = v.
Denote by Pyin the graph closure. Since R(Ppin—2) = L?, there exists i € D(Puin)
such that (Ppin — 2)@ = v. Hence (P — z)(u — @) = 0 in the sense of distributions.
We saw in the proof of the proposition that this implies that © —u = 0. 1

This result can be extended to the following auxiliary problem: Let R_ :
CN — L% R, : L? — C" be bounded Operators and assume that

P(z)z(P_z R_)ID(P)XCNHIPXCN,
Ry 0
is injective with

ull + [u—| < CR)(lv]l + vt ]) ;2 € Q(h), (3.7)

af2)- ()

Here we assume that Q(h) is open and connected, intersecting the resolvent set
p(P) of P.

From (3.7), we see that P(z) is injective and has closed range for every
z € Q(h). When z is also in the resolvent set of P, we can rewrite (3.8) as

(2T (@) () e

and the matrix appearing here is injective. On the other hand it is a finite rank
perturbation of the identity in L? x CV and the injectivity implies the bijectivity.

whenever
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It follows that P(z) is bijective for z € Q(h)Np(P). Combining this with (3.7) and
recalling that € is connected we see by a standard argument that P(z) is bijective
for all z € Q and that [|P(z)~!| < C(h).

4. Geometric preparations

In this section we construct a special bounded weight that we shall implement in
Section 5 with the help of Fourier integral operators with complex phase.

Let P be the Operator introduced in the beginning of Section 2, satisfying
(2.1)—(2.7). The symbol

p2($7 5)

p(x, &) = po(x) + 4.1
(2,6) =pof@) + 0, (4.1)
is non-negative and satisfies

(0, (06) 5= 0(1), o] =2, (4.2)
locally uniformly with respect to x. It follows that

(02, (€)2) P = 0(F>), o] =1. (4.3)

We now introduce a critical set associated to p.
Hypothesis 4.1. Assume
The set {z € M; po(z) =0, v(z,d,) =0} is finite = {z1,...,zn}. (4.4)
Let p; = (2;,0) and put
C={p1,....pn}. (4.5)

Notice that pi,po,p2,p vanish to second order at each p;. Our weight will be of
the form

we:_/k<;>5€OeXP(th1)dtv 0<exl, (4'6)
0

where p. will be specified below and k is the same function as in Section 2. Notice
that

Hp1¢e = <§E>Tg _55; (47)
where we now write in general,
1 [To/?
(@)1, = T / qoexp (tHp, )dt.
0.J-Ty/2
Let g(t) € C*° ([0, 400]; [0,1]) be a smooth decreasing function with

1, 0<t<L1
pn=dJb Ustsl 4.8
0 {t Ly (43)

Notice that ¢ (t) = O((t)~'=*). In a domain 0 < |p — p;| < 1/C, C > 1, we put

P(p) =g ("’"’”2) 7, (4.9)

€
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(so that pe(p) = p(p) for |p — p;j| < V/e). It is easy to show the symbol estimates
€
0%pe =0
=0 (s pif)lel?
Away from any fixed neighborhood of C, we simply get
0“pe = O(e) .

Let x; € C§°(R?") be equal to 1 near p; and have its support close to C. To define
pe further out from C, we put

L e =i\ ~ B )~
pe(p)—ZxJ(p)g< 6 )p+e(1 Sw@)s @

so that (4.10) remains valid in a neighborhood of C, while

), 0<|p—pj|<1/C. (4.10)

030 pe = O(e()™17) = O(e(€) ™) (412)
outside any such region where |z| is bounded. We also have
070 (& - 0cpe) = O(e(€) > ) (4.13)

in the same region. In fact, (4.13) follows if we write for |£| > 1:
~ P2 P2 1 P2 1
- Ogpe = €€+ 0 :E'a|: (1— >:|:—6 8< >
§0pe =8 O gge =0 [jep \1 T o2 g2* % \ge)2
From (4.11) we see that p.(p) = ep when dist (p,C) > 1/C and in particular

for p = (z,&) with |z — z;| > 1/C, Vj. Further away from {z1,...,zx} we want
to make p.(z,£) independent of &, so we replace p = po(x) +pa2(z,£)/(€)? in (4.11)

by
ﬁnew(xa 5) = PO(SU) + ?5(?2)]92(% 5) } (414)

where x € C§°(M;[0,1]) is equal to 1 near {z1,...,zn}.

Even further out (in the case when M = R™) we want to avoid problems
caused by pg being large, so when |z| > 1 we want to replace p. = epy there by
fe(po), where fe(t) = ef(t/€) is the function introduced in Section 2. Thus with a
new cutoff function xpew € C5°(M; [0, 1]) being equal to 1 in a large neighborhood
of supp x, we get the final choice of pe:

o o lp—pil*\ ~ B )~
Pe(p) = Xnew(@) (ng(p)g( . )p+e(1 ng(p))pnew>

+ (1 - XHOW(x))fe(pO) . (4.15)

Notice that by construction
Pe<P=po+p2. (4.16)
We also get
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Proposition 4.2. We have (4.10) near C and (4.12), (4.13) in any closed subset of
T*M disjoint from C and supp (1 — Xnew) X R™, where Xnew is the wider cutoff
in (4.15). Over supp (1 — Xnew) (where pe only depends on x) we have 0%p. =
O(e'~1el/2),

From the definition (4.6), we see that 1. satisfies the same estimates as p.
and will only depend on x for x outside a neighborhood 7, (C) (that we can choose
as small as we like) and that the region where we only have 021 (x) = O(e*~121/2)
can be any neighborhood of infinity. This follows from the fact that our various
symbol estimates (as well as the {-independence) are conserved by the flow of Hp,,
as for (4.13), we here also use that H,, commutes with dilations in .

It also follows from the construction that

pe(p) = p(p) . when  |p—p;| < Ve, (4.17)
_ €
De(p) « |p—p4|2p’ when  Ve<|p—p;| <1/C, (4.18)
j
De(p) « €Dnew when  dist(p,C) > 1/C, |p.| <C, (4.19)
pe(p) = efe(po) , when  |p.| > C. (4.20)
We introduce the following dynamical conditions where Ty > 0 is fixed:
Hypothesis 4.3.
1
Near each p; we have (D)7, > O|p —pl%, (4.21)
1
In any set |z| < C', dist (p,C) > o
1 ~

we have (p)r,(p) > ~ , C(C)>0. 4.22
(P (p) (o) (@) (4.22)

When M = R"™ we also need a modified dynamical assumption

V neighborhood U of 7,C, and Vx € R"\ U, 3C >0,

meas <{t € [—7;0, ZO};po(eXptu(a:)) > é}) > é (4.23)

When M is compact, we just assume (4.21), (4.22), where it is understood that
the estimate in (4.22) should hold for all p € T*M of distance > 1/C from C.
Notice that in the region dist (z,7,(C)) > 1/C, |z < C, (4.22) is equivalent
(up to a change of C(C)) to
1 ~
pOT,VxZ~ , cc >0, 4.24
{Po) 7o (%) &(0) (©) (4.24)

where

1 [To/2
(D100 = T / q oexp (tv)dt.
0J-Ty/2
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This follows from the fact that 7, cexptH,, = exp (tv)om,, where m,((z,€)) ===
and the fact that {€ = 0} is invariant under the H,, flow.

Actually, if we only assume (4.21), then we see that (p2)7, (z,£) «~ &2, and if
we also assume (4.24), we recover (4.22), first over a neighborhood of each z; and
then again by (4.24) over any bounded set in M.

Assuming the dynamical conditions (4.21), (4.22), ((4.24), (4.23)), we see
that

(Pe)T, » dist (p, C)?, dist (p,C) < Ve, (4.25)
(De)T, €, dist (p,C) > Ve. (4.26)

From the estimates on 1. in the various regions that we mentioned after
Proposition 4.2 we shall often only retain that

02000 (x,€) = O(et 1o/ (£)~1A1) (4.27)

and we write this for short as

Pe = 6(6) :
Similarly, we have in view of (4.13), and (4.10) also valid for 1., that
€ Ogthe = O(e(€)7?). (4.28)

From [20] let us recall that if f is a C* function locally defined on complexified
phase space, then at every point where 0f = 0, we have

Hy=HEG = HIM?, Hy=JHp = HYS, = HI" 7, (4.29)

where

1= (e, 00, = oy 06,)
j L 3 985
is the complex (1,0) Hamilton field of f with respect to the complex symplectic
form ¢ = )" d§; A dx; and ﬁf = Hjy + Hy is the real vector field which acts as
Hy on holomorphic functions. HIINT}’ denotes the real Hamilton field of Im f with
respect to the real symplectic form Im o, and similarly for the other Hamilton fields
appearing in (4.29). As usual, J denotes the action on tangent vectors induced by
multiplication by 7. (When M is compact we may assume without loss of generality
that M is real-analytic.)

Assume first that M = R™ and put Ao = T*R" = R?",

As={p+isHy (p); p€ Ao}, 0<s<1. (4.30)
If we extend 1. to be a function on the complexified phase space C?", by setting
Ye(p) = ve(Rep), (4.31)

then we have the equivalent description of Ay as
As = exp (SH'LIZ;TU)(AO) . (4.32)

It follows that Ay is an I-Lagrangian manifold, i.e., a manifold which is Lagrangian
for Imo.
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Now we would like to parametrize As by means of a canonical transformation
k(s) : Ag — A for the symplectic form Reo (implying that A like Ag is an IR-
manifold, i.e., a manifold which is Lagrangian for Im ¢ and symplectic for the
restriction of Re o). For 0 < s < 1, let 1Z673 = @(s, p) be the unique function which
is affine in Im p and satisfies

Ophes =0 on Ay, Pes=1. on A,. (4.33)
Recalling that ¢(p) = 1e(Re p), we get with the notation (1e); = ap?efwea (e)y =

BRewwE to indicate derivatives in the real directions,

1/)6,5(33,5) = Ye(z,§) +iay (Re (33;5)) : (Imx - 8(1/%)2)

+ iag(Re (2,€)) - (Im& + s(ve)l,) (4.34)
where
(1 —is'Fy. (Re (z, f))) (Zg) = <E%j:> (4.35)
and
R (S0 05 40

is the fundamental matrix of .. It also follows from the construction that
a; = O(e2), ag=0(e2()71). (4.37)

Since 12573 e on Ay, we know that Hlmg H}pm” is tangent to Ag for

Ree,s

every s. We can therefore define x(s) : Ag — A, by

d Imo
SR = IS (s(5)(0) 0 € o, (1.39)
The second relation in (4.29) implies that Hg:g = H§f£$ on A, (given that

BKZE,S = 0 there) and hence £(s) is symplectic for Re o: k(s)*(Re o) = Reo. Notice
that (4.38) again shows that A is an I-Lagrangian manifold.

A priori, k(s)(p) is well-defined only for s > 0 small enough depending on p,
but we shall next derive symbol estimates for 125,5 and x(s) that will imply that
k(s)(p) is indeed well-defined for s small enough independently of p. Assume that
we work near a point (zg,7¢), 1o € R™, & € S"~ 1, r > 0 and replace (z,¢) by
(%,€), where

T =x0+ex, &=rt + (r)VeE. (4.39)
Define {[; = @Ze)ww,go by te(z,€) = aZ(E, 5)7 so that
)(F,6) = 1@&6 (20 + V&, r€o + (r)V/e€) , (4.40)

agagizc’)(l), Va, 3, for |(Z,€)] < Const. (4.41)
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In the new coordinates A, takes the form
~ S ~

Im (7, €) = oy 1o (Re (7,€)) . (4.42)

The scaling and the construction of 125,5 commute so if we put

Dew = L Bes (0 + Vel + {rIVeD),

then (4.41) still holds. In particular 1Z673 satisfies the same estimates on A; as 1)
n (4.27), now with 9, 35 replaced by (8R@z, Otm, I), (8365, Otm 5).

The transformation k(s) can be scaled similarly and the scaling commutes
with (4.38) up to a factor (r): If we put

K(s)(p) = (2(s),€(5)) = (w0 + Vei(s), €0 + (r)Ve(s)) ,
then from (4.38), (4.29) we get

0.5(s) = Ot (7(3). (). (1.43)
0.8(s) = = 1) oo ((5). £(9)).
We conclude that with (z(0),£(0)) = (y,n) = (zo + ey, réo + (r)\/€n),
050502 (%,€) = 0((r)™"), (4.44)

and hence for (z,¢) = k(s)(y,n):
o998z = O (e%* 3 <n>+lﬁ\) , (4.45)

sTyon

R0 = O (ed="H" (1Al

s Yy U
when k + |a + 3] > 1.

Notice that the right hand sides in (4.43) reduce to i(r) =91 and —i(r) 10z
when s = 0, where the derivatives are taken in the real directions. The flow in (4.45)
is therefore tangent to the one in (4.32) at s = 0 and we get

&(s)(y,n) = (y,n) +isHy (y;n) + (2,¢)

1_latBl o

0505z =0 (b= "4 2y 2 101),
050c = 0 (eb= " 2y 1101,

From (4.45) and the subsequent remark, we have for x(d)(z, &) = (0, x, ).

K(6,2,€) = (2,€) + i6Hy, (x,6) + €362 ((5 (<€1>2) 0 <<2>>> L (4.46)

Recalling how k(d) was constructed we conclude that

K(8,,€) = (T,€) + i6Hy, (Z,€) (4.47)
where (%, ) is real and (%, &) — (2, €) = €20%(O( §2), O( 1))- Put as(w, €) = (F,€).



226 F. Hérau, M. Hitrik, and J. Sjostrand Ann. Henri Poincaré

The essential part of the discussion above took part near the points of C. In
that region the discussion is the same in the case when M is compact.

5. Quantization of weights

We will follow [12,23] with one modification; instead of analyticity we will use
that our weights are “moderate” allowing us to use almost holomorphic extensions.
Another minor difference is that we shall not use FBI-transforms explicitly, but
rather rely on certain Fourier integral operators with complex phase. We will
assume that M = R" for simplicity, but as in the preceding section the essential
part of the work will take place near C and here there is no difference between the
case M = R"™ and the case when M is compact.

As a first step towards introducing some Fourier integral operators we shall
study the function h(y,n) on T*R™, given by

K(6)*(&-dx) —n-dy = dh. (5.1)

Recall here that
d

ds
where 1Z673 is given by (4.34), satisfying (4.33). Of course, (5.2) remains unchanged

K(s)p = Hy (k(s)p), peNg=TR", (5.2)

if we replace @ZE)S by an almost holomorphic extension from Ay = Agy_. Now using
Cartan’s formula, we get

zgﬁ(s)*(f dx) = ﬁ(s)*EiH@,s (& -dx)
= ik(s)" (H@E’sjd(f -dx) + d(H@E’sjﬁ ~dz))

= ik(s)* (HA lo +d<§-aggs>>
e ~
b))

— idn(s)" ( -%w ¢>

Thus, we can take
)
h= z/ (€ 000€D..s — Do.s) o K(s)ds . (5.3)
0

On A; we have aggs = gﬁ:; and we recall that ¢.(z,&) = ¥.(Re(x,§)). Us-

ing (4.34), we get on Ag:

a9 ~ 0 . "
€ Vs =€ pro Vel ) —is{ac (Re (. 0) | )e€)

+is(ag (Re (2, €) [(0e)et ) (5.4)
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where again we use the notation (-)g, (-)7, etc to indicate derivatives in the real
directions.
We now estimate the terms in the right hand side of (5.4). On A we have

Im € = s(te)}, 50

0
g 6Re§¢€ =Re¢- (weyg —i5(e)y - (77[’6)/5 .
Hence by (4.27), (4.28),
0 ~ _
€ aRewa =0(e(9)™). (5.5)

Next, look at
<az|(¢e)§g€> = <am|(¢e)é’gR€€> - i3<az|(¢e)g§ (¢6);> .
The last term is O(e(€)~2) by (4.27), (4.37). The first term is equal to

0
<az|(¢e)ZgR6€> = Ay - ORe & ((d’e)/g -Ref) - (1/15)/5 F Qg
From (4.28), (4.27), (4.37) this is O(e(€)™1), so
(az](e)fe€) = O(e(Re &)™) . (5.6)
Similarly,
(agl(®e)ie€) = (agl(be)yeRe &) — isag| (Ye)je(ve))
= (ag|(Ve)peRe &) + O(e(Re ) )
0 0. ~ _
=ag g <3Ri£ -Reﬁ) + O(e(Re&)™?) ,
SO
(ag|(e)fe€) = O(e(Re &) ?). (5.7)
Returning to (5.4), we get
9 ~ ~
¢ (%we’s = O(e(Ref)‘l) on A,. (5.8)
Also recall that @ZE)S =1, on Ag, so
. (;951;5,5 s =0(c) on A,. (5.9)
Combining this with (4.45), we get
(6 s = s o) =00, (5.10)

and finally from (5.3) we obtain

Lemma 5.1.

h = O(€). (5.11)
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Following [12] we shall now quantize x(§) by means of a Fourier integral
operator

Au(z; h) = // ei¢(w7y7a)a(x,y7a;h)X(x7y,a1)u(y)dyda, (5.12)
(y,0)ER™ XT* M

witha € §% +m.3+k and where x is a standard cutoff to a neighborhood of the
diagonal: |x — ayl, |y — az| < 1/C, equal to 1 on a smaller neighborhood of the
same type. Here we take with 5 = (0, o) = k(9)(«):

Dz, y,a) = (x = Bo) B + (2w — y) - ae +p(x — o,y — @z @) + h(a), (5.13)

where on the real domain,

b= oy —ae0) = O((ag) (@ = B + (y—aa)?)) . (5.19)
in the symbol sense:

aka@am 855 (z,y,a) = O <<a£>1—\p\(|x| + |y|)(2—|k+e\)+) 7

Yy oy

and we take almost holomorphic extensions satisfying the same estimates in the
complex domain. Further, a € §% +™ 5% means that a = O(h~% ~"(ag) 2 +F)
. Y/ . _ _3n _ ny e

in the symbol sense, 9, ,0% 04 a(z,y,a;h) = O(h™ 2 "™ (ag) 2 +h—laly,

We also assume that
Im -~ <a§>(($ - 5w)2 + (y - aw)2) . (5'15)
Viewing h as a function on the graph of x(8), we have dh = B¢ - df3, — o - dovy,
so for
r=r(0,0)z, Y=ay, (5.16)
we have d,¢ = 0. Moreover, in a neighborhood of that set, we have with ¢ =
V(z,y, o),
dot = (z = K(a)s) - da (K(a)e) + (0w — y) - dog (5.17)
o o o
= o (2= K(a)e,y — g, ) - do (K(a)) — oy 9

So ¢ is a non-degenerate phase function in the sense of Héormander (a part from
the homogeneity condition in the fiber variables) with a critical set (5.16), the
associated canonical transformation is k = k(9).

Similarly, to x(6)~! we can associate

Bu(x;h) = // en @V Dp(z,y, ;b x (2, y,7)o(y)dydy,  (5.18)
(y,7)ER"XT*M

~dog + ~do .

be S itk i ke R, where with 3 = k(8)(7):

and 12)\ satisfies (5.14). Again this is a non-degenerate phase and the critical set is
given by
r=9, y=PF, (B=r0)), (5.20)
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and the associated canonical transformation is #(8) 1.
For z,y € R", |z — ayl, |y — 8] < 1/C, we have with § = k() = k(J, @):
Tm ¢(z,y,a) = (z — Re B,) - Tm e — Im B, - Re f

+Imy(r — Beyy — g, B, ) + Imh(a) .

Here
Im 3, = 60 (6§<Rea5>*l) , Imﬂfzééj (eé) ’
awe ~( 66 >
e el = IR gre e~ O \ime o2
and

Im h(a) = O(8¢),

_ 2
Imy(x — B,y — g, ) > (ag) <|9C Re 3.°C 1

O L= aul = cim )

SO

Imé(z,y,0) > (e = Re B2 + Iy — aal?)

C
- Cé2€<a5> —Clz — Reﬂm|5€é — Cde,
(og)?
o> "0 (o~ Re Pt ly—acP) - Goe. (52)
Recalling that e = Ah, A> 1, we get
e ¢@v:2)| < exp <— éogfi(m —Re B+ |y — ax?) + 6’5/1) . (5.22)

A similar estimate holds for $ It follows that A, B are well-defined Operators: S —
S with semi-norm estimates that are uniform in powers of h. Also for every s € R,
there is an s’ € R such that A, B : H® — H*" with norms bounded by some power
of h. Moreover, our Operators are independent of the choice of almost holomorphic
extensions of the phase and amplitude modulo Operators whose integral kernels are
O(h) with all their derivatives and supported in a domain of the form |z —y| <

o(1).

Proposition 5.2. If m,k, i,k = 0, then A,B = O(expO(1)§A) : L*(R") —
L*(R™)

The proof will be given later.

Proposition 5.3. We have BA = Opy(c), where ¢ = 6(h*m’m<a5>k+2)
Proof. We have

Bau(@) = //// e Bamm) -0 p(z, 2. 7 W)a(z, y, o hYu(y)dydadzdy,
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where the cutoffs x, X have been incorporated in a, b. Here
O, 2,7) + 32,9, 0) = (= 72) - Ye + (K1) — 2) - £(7)e (5.23)
+ (z — k(a)s) - w(a)e
+ (o =) ae + (2 = Yar 2 = K(V)2, )
+ (2 = K(Q)g, Yy — g, @) + h(a) — h(7).
The contribution to the distribution kernel from a region with |ye —co|/{a¢) >

C~1 is O(h®), as can be seen by integration by parts with respect to z. More
precisely the distribution kernel of BA is

(BA)(z,y) = / / / eh @) pay (Wi; >O‘f|) dadzdy + R(z,y: 1) |
3
where x € C§°([0, o0[) is equal to 1 near 0, and 950, R = O(h*). Here (5.22) and
the analogous estimate for en? are essential of course.

Next using (5.21) and the similar estimate for Im a, we get a localization in
|7z — al, leading to
L 2
(BA)(z,y) = ///emw)bax <(% et (75< >0<25) )dadzdv
Qg
+ R(z,y; h), (5.24)
where @ljafﬁ = O(h®). Here x € C5°([0,€0[), x = 1 near 0, and ¢ can be any
fixed number.
In the integral (5.24), we may assume that |z —v;|, |[y—asl, |z—k(a)z| < 1/C,
where C' is as large as we like, since the integral in the complementary region is
exponentially small. We now want to eliminate integration variables by means of

the method of stationary phase, and we start by carrying out the z-integration, so
we first look for the critical point of

2 92, 2,7) + d(2, 9, @) (5.25)

where ¢, $ also denote almost holomorphic extensions. Let Fs(x,7,y,«) denote
the corresponding critical value.

In order to understand this function, we first treat ¥ = k(vy), @ = k(«a) as
independent variables (writing x(«) instead of x(0, ) for short). Let

G(2,7.7,y,0,8) = vez [(2 = 72) Ve + (Fo — 2) - Fe + (2 = Q) -G + (2 —y) ¢
+¢(x_7172_ﬁwal\/)—’—w(z_&way_awaaﬂ .

Here the critical point z = z.(x,v, 7, y, o, @) satisfies

Ze = aw + @) (&w - :)717 O‘i;;f 5 ({E - 71)27 (y - aw)Q)
3

in the natural symbol sense. Notice that

G(’Yﬂca’)/?%?awaa?:/i) =0.
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Moreover,
~ o~ e
¢ ("ve)

in the same symbol sense, with the convention that the remainder term is ex-
pressed as linear combination of the “normalized” forms dz, dy, dog, Qg, dve, Ve,

<’y§>*1da§, e

Now,

B =Glsi, T h(a) = h(v),

a=r(w)
and we get
dFs = e -dx — ag - dy
- - Je—a
e | 3=r(v)

a=r(a)

Moreover, Fg(yz,v;%,v)~: 0. From (4.45), we know that &, = «a, + 10)
(662 {ae)™1), e = ag + O(6¢'/?) when & = r(a), so

%r_ar:'}/r_ar+6< 5 > <Vz_ar;75_a£)
(7e) (ve)

and similarly for 75 5¢.

Hence,

—
dFs = e - dz — ag - dy + O((7¢)) (z St e 75<’rs> 5)

+0O(5) <’yw ~ag, 75<;€>O‘f> , (5.27)

and integrating this, we get

Fs(z, vy, ) = ve - (@ —v2) — e - (y — ag)
+ (O((e)) + O(5)) (x e — e — . ”ﬁw‘jﬁ) . (528)

where the loss of €'/2 for each differentiation appears in the variables «,~ only.
When § = 0, we have on the real domain

I Fs - (o) (@: ) 4 (= a0 + (e — )+ (”i;jf) ) . (5.29)

and in view of (5.28) this persists for 0 < § <« 1.



232 F. Hérau, M. Hitrik, and J. Sjostrand Ann. Henri Poincaré

When applying stationary phase to (5.24) we also have to make a deformation
of the integration contour in order to pass through the critical point z.. Here we
recall from [19] and (5.21) and its analogue for ¢ that

1 1 Cée
Im Fs5 > Im z.)? — ,
(ag) ™2 oI ()

so the error from 0, of the almost holomorphic extension, appearing in Stokes’
formula, is O((de + Im F5)/{a¢))*°). Since ¢ = O(h), we conclude that

(BA)(z,y) = //e”“(z’”’y’a)d(ﬂs,%y,a;h)x<(vz —a,)?

+ (7?;;’5)2 ) dady + R, (5.30)

where R has the same properties as R in (5.24) and

F o d=0O (h—m—m—3n+;} <a£>k+2+3—\p\€—‘e§p‘) , (5.31)

T,Y "V, Qa Ve, O

We now compute the Weyl symbol ¢ of BA by means of the formula

c(x, & h) = /(BA) (x + ;Ux - 2;) e~ e/ hayy (5.32)

The contribution from R in (5.30) is O(h>(£)~>°) with all its derivatives. The
contribution from the integral in (5.30) is

R R S R D N AR,

+ <7£<075>0% ) i ) dwdady .

The contribution from a region {|¢ — ae| > [ {ag)} is O(h(€)~>°) with all its
derivatives and the remaining region can be treated with the method of stationary
phase by working in the dilated tilde variables given by 7, = xo + v/€7z, - . . as in
the addendum below. The proposition follows. O

Addendum. Stationary phase with 6-symb0l5, Assume
pe C*(R"), Im¢p=>0, ¢(0)=0,
¢/ ()| |z, ¢ =a-O(1), det¢”(0)# 0 uniformly in .

Let a = O(1). We shall establish a stationary phase development for
I(h)y=h"% /ei‘z’(m)a(aj)da}

in powers of h = h/e. (Assume h < € < 1.)
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Put z = 659?,
I(h) = (h) ’ /e%@)a(z)da (5.33)
where ¢(e27) = €b(T), 3(7) T ep(e27), a(T) = ale 7).
Then @ = O(1) in the symbol sense; 0%a = O(1), and

1
Vv

and ¢”(0) = ¢”(0). The contribution to I(h) from |Z| > 1 is O(h™) by repeated
integrations by parts, and the contribution from |Z] < 1 can be handled in the

1¢'(@)] = O (Vew)| - 2], ¢ @ =7-0(1)

usual way since ¢ = O(1) here. Thus
(271_)11/2

= elisene” () (5.34)
\/det ¢ (0)

I(h) ~ ZCj?Lj 5 Co
0
O

It follows from the proof that the proposition remains valid if we relax the
symbol condition in y and only assume

Qg Y~

999 o a=0 (h* 3n ,m<a6>’5+k7\P\6*§(\Q\+IPI)) , (5.35)

i.e., we also allow for a loss of €!/2 for each y-derivation. Similarly for B (cf. (5.18))
we can content ourselves with
9ol P b=0 (h, e *’%<a5> Z+@*\p\€*§(\ﬂ+lpl)) . (5.36)

Y~ Ve, T7Ye

Moreover, if b and a are elliptic, then c is elliptic.
We get by standard arguments,

Proposition 5.4. Let A be an elliptic Fourier integral operator of order (m, k) with
symbol as in (5.35). Then there exists an elliptic Fourier integral operator B of
order (—m, —k) with symbol as in (5.36), such that

BA=1+R, (5.37)

where R is 1-negligible in the sense that its symbol R is (5((}2)0"(5}_0‘)) In par-
ticular A has the left inverse (14 R)™1B when ¢/h > 1.

We notice that when § = 0, then A, B are elliptic pseudodifferential operators
and hence (1+R) !B is also a left inverse. (By the Beals lemma we also know that
(1 + R)~! is an h-pseudodifferential operator with symbol 1 + (5((6{1@)0")) For
general small §, R(As) is closed. Using suitable deformations of A we can produce
a continuous deformation of closed subspaces in L? from L? to R(As). All the
deformed subspaces then have to be equal to L? and R(As) = L%, so (1+ Rs) "' Bs
is also a left inverse of As.
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We next turn to Egorov’s theorem and start with some preparations. Recall
that by (4.45)

k(a)y = az + 5(565 <a5>*1) , kla)e = ae + 6(565) ) (5.38)
It follows that
~ ~( 6
do (K(@)e) = doe + O(8)doy + O (<a§>> dag (5.39)

~( 0 ~ 5
da (/i(a)w) =da, +0O <<oz§>> doy, + O <<a£>2) dove .
Substituting this into (5.17), we get
doop = ((a: —k(a)s) — (y — ozm)) ~dag (5.40)

- (a¢+a¢

O 8y) (x—/i(a)w,y—aw,ag) ~doy

+ (z — w(a)s,y — az) - ((5(5)51% +0 (<O‘L>) d%)

8¢(

+80¢

x—n(a)w,y—aw,a) ~da,

which we can write

(a%as/ ag>>_< (o = (50 +90)) /{ae) )

9acd ) (@ —rk(a)a) = (v — o) + 5%

0 () (5 50) oy

Here we write a(z,y, ) = O(m) if 9y 4Ok Oh.a = O(me_é(|“|+‘p‘)<a§>_‘p‘). The
differential of this vector at a point of the critical set is given by the matrix

_ —1 (0 " _ —1 (0 " -
1 -1 {ag)
If ({7) is in the kernel of the first term, we get t, = t, and ({2, + ¢!, + ¢, +

)tz = 0. Here we recognize the Hessian of z — (2, 2, a) which is invertible

because of the assumption on the imaginary part. More precisely, the matrix (5.42)
has a uniformly bounded inverse. From (5.41), we get

<x - K:(Oé)r> = M;(z,y, ) <8agbﬁi§ﬁag>> ’

Y — Oy
|z — K(a)z], |y—a.| <1/0(1), (5.43)
where 5
Ms(x,y, ) = My(z,y, ) + O <<a§>> , (5.44)
and 0 agsMg = O({ag)~ ).

w;y)am
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Lemma 5.5. Let ®(x,y,a) = 5(<a5>ﬁ‘) in the sense that
ot P d—0O (6 (1el+1pD) (¢, £>m—\p\) .

Ty, 0 Yo

Similarly, let a = (’)((aE)") be elliptic. Then
// Dz, y, @)a(w, y, a; h)x(@, y, @)u(y)dyda (5.45)
— [[ @ (@) aza)aley, i (o y. )uly)dyda

+ [[eivo (’gam—l) (9, @ W (@, v, 0u(y)dyda,

where X is a similar cutoff.

Proof. We have

B(@,y, @) = B (k(a)a, @z, @) + O(c 2 (ag)™) (w - m(oor)

Y — oy
= ®(k()g, Az, @) + 6(6_% <a§>m_l) < Oa, ® + (ﬂ’)v(e_é <a§>m) “Oac® -

The contribution from the remainders to the left hand side in (5.45) is therefore

h// 30@ (e 2<a5> Yaxudyda
+h// 5045 (e 2(045) )axudyda,

and it suffices to integrate by parts. O

Actually, we shall not use the lemma directly, only its proof. The next result
is closely related and could probably be obtained from Lemma 5.5. We will give a
different proof however.

Lemma 5.6. Under the same assumptions as in the preceding lemma, we have

//e’i‘i’@axu(y)dyda = AQ, (5.46)
where @ is an h-pseudodifferential operator with symbol
AP w1
Q= (k(z,8)s,2,2,8) + O . 3 . (5.47)

Here

_ / / et Paxu(y)dyda (5.48)

Proof. In order to harmonlze with Proposition 5.3, we may change the assumption
onatoa= O(<a5>m+ 5h~ %) and assume that a is elliptic in this class. Here O
indicates a loss of €'/2 for each differentiation in a,y. Let B be of the form (5.18)
with b = 5(<a5>_m+gh_ ') where the €!/2 loss is now for each differentiation
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in (z,a). We also assume that b is elliptic. Then from Proposition 5.3 and the

remark following its proof, we know that BA = Op,,(c), where ¢ = O(1) is elliptic.
Recalling that the proof was by stationary phase, we see that if A is the Operator
given by the left hand side of (5.46), then BA = Op,,(¢), where

¢=®(k(x,6),z,2,8)c+ O <i‘<g>ﬁ%—1) .

By pseudodifferential calculus, we get BA = BAQ, with @ as in the lemma.
Moreover, B is invertible. O

Remark 5.7. Later on, we shall meet the special situation when ® = ®(a) =

O({ag)™ )P(c) =: RP, P(a) = O((£)™?). In this case we have
h mi+mo—1
Je 3) ) . (5.49)

In fact (anticipating on a part of the proof of Proposition 5.9), let

Bu = //e’i‘z’Raxu(y)dyda.

Then (with Op = Op,, when nothing else is specified)
Bo0p(P)u = [[ P(y.hD,)(et* Raxuly)dyde

= P(y, —¢,)Rax + 6(h2<a§>m1+m2_2) enPu(y)dydo .
I/ )

As we shall see in the proof of Proposition 5.9,

// P(y, —qSé,)RaxeMu(y)dyda = //ei‘ﬁ@axu(y)dyda

+ [[eico < h <a5>m1+m21) u(y)dydar

Applying Lemma 5.6 to B and the various remainder terms, we get (5.49).

Q=0(({&™)#P+0 <

Proposition 5.8. Let As be a Fourier integral operator quantizing k(s) as in Propo-
sition 5.3. Also, assume that a = as is elliptic and depends smoothly on s in the
sense that

a, =0 (h’m*?’?n (ag>k+3) ,

where O indicates a loss of €/?

hDgAs +iAghs =0, 0<s<dy, 0<d <1, (5.50)

for differentiations in «,y. Then

where Dy = i'8, and ¥ is an h-pseudodifferential operator with symbol
s = O(h+ (&)™) + s 0 (s) (5:51)

The term “h” in the remainder can be dropped if as is independent of s.
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Proof. Assume for simplicity that as is independent of s. Then,

hDsAsu(x) = //e’i‘i’aﬁs(budyda. (5.52)
Recalling that,
ds(z,y,0) = (z — K(s,0)z) - K(s, a)e + (o — y) - ae
+ 1/)(3: — K(8,Q) 0,y — Qg, o<) + hs(a),

we get

Osbs(m,y, ) = (x — K(s,@)z) - Osk(s, )¢ — Oskil(s, )y - K(5, )¢ (5.53)

— (029) (2 — K(s,0) 2,y — @z, ) - Osti(s, )y + Oshs(ax) .

The restriction to the critical set (5.16) is

(050s) (K(5, @)z, A, @) = (Oshs) () — Oshi(s, ) - (s, )¢ (5.54)
= @:n)(0) =i ( gy Ten €) o k(o
= —ithe,s 0 h(5)()
=0(e),
where we used (5.3). More generally, from (5.53) we get
Osps = —MZW o k(s)(a) + 6(65) Az — k(s a)p,y — az) . (5.55)

As in the proof of Lemma (5.5) we can make integrations by parts and see that
the contribution from the remainder to (5.52) becomes

//ew@ (h_m_ e <a§>k+gh<a§>_l) u(y)dydo .

Combining this with (5.55) and Lemma 5.6, we get the proposition. O
We can now prove Proposition 5.2.

Proof. We only consider A and we may assume that A = A(§) where A(s) is a
smooth family as in the preceding proposition. The result for B will be the same
since B is like the adjoint of A. From (5.50) we get

hdsAX = )rA*.
If ueS, then A¥u € S and we get
hs|| Aull® = (3 Aju| Afu) + (Afuld Afu)
SO
] hos || Azul® < 2195 || Azul®.
But [|¢7[| = O(e), so
[Azull < @M ju] = 2D ANyl (e = AR).
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Then [|Az|| < e®M4 and the proposition follows since As and A% have the same
norm. O

Let P = O((¢)M) in the symbol sense: 838?P = O((&)M-181). We study
PA, — A P where A, is as in Proposition 5.8, d‘a, bounded in S™+ 5kt (so
no /e-loss in the symbol for simplicity). Working with the Weyl quantization we
know that

P(x,hDy; h) (ei¢<z’y’°‘>a(x, Y, h)) = 1%+ O(h™(ag) ™)
'P(y, hD,; h) (eM%W)a(x, Y, h)) = e+ O(h™(ag) ™),
where
b= Pz, 0, (x,y.a); h)alw,y,aih) + O (= F =" (ag) " i+ MR ag) 2),

c=P(y,—¢,(x.y,a);h)a(z,y,a:h) + O (h—32" ‘m<a5>’“+3+Mh2<a§>—2) ’

and the O refers to Ve-loss only with respect to differentiations in a. (Recall
the general fact that the Weyl symbol of e=*/" o p¥(z, hD,) o €*/" is equal to
p(z, &+ ) + O(h?).) ~ N
We conclude that PA; — AsP = Ay + As 0 Op (O(h?{ag)~2)), where
A = //efizd’(P(x, ¢l (z,y,a);h) — Py, — by h))au(y)dyda. (5.56)
On the critical set (5.16), we have
Pz, ¢ h) — Py, —¢,; h) = P(r(s)(@)) — Pa),
and more generally,
P(z,¢}) — Py, —¢,) = P(k(s)(a)) — P(a)
+ (z — K(s, @)z) - (O(<OZ§>M) + (’3(865 (ag)M’1)>
+ (= an)- (O((ag)™) + O(set (ag) ™)) .
Using (5.43), (5.44), we get
P(x,¢),) — Py, —¢,) = P(k(s,a)) — P(a) (5.57)
+ (B fa) 100, ) - (O(fa)™) + O(se? (ag)~)) .
The contribution from P(x(s)(«)) — P(a) in (5.56) is of the form

4,0 0p <P(m<s><a>> ~ Pla)+0 ( W <°‘5>M_2>)

in general, and the remainder estimate improves to O(sh{ag)™~2) if P(k(s,a)) —
P(a) = O(se{a)M~1). By integration by parts in «, we see that the contribution
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from the two remainder terms in (5.57) is

h / / ¢h90,, ((9((045>M) 1 O(set (ag) M) + Ba, < <a1£> (idem)) a> u(y)dyda
= h//e’w((’)((a@M_l) + 6(s<a5>M_2))au(y)dyda.

In conclusion,

Proposition 5.9. We have

where
(062 + B(hlae) )

in the general case, when P(k(s)(a)) — P(a) = O(se2 (ag)M=1).

In the special case when P(k(s, o)) —P(o) = (’3(se<a5>M’l) the first remain-

der term improves to 6(8h<0zg>M_2) so in that case,

Qs(a) = P(H(S, a)) — Pla) + 5(h<ag>M71) .

In order to treat certain conjugations, we need a more precise description
of @), in the general case in the last proposition. The proof above shows that

AQuu = / / e (P(s(s,0)) ~ P(a) ) au(y)dyda-+ A,0p (O(h(©)" ™)) , (5.58)

and we need to take a closer look at the oscillatory integral.
By Taylor’s formula and (4.45),

P(k(a)) — P(a) = O(sv/e) - (Pés (o), P (a)) + 5(826<a5>M*2) .

1
(ag)
When passing to Weyl composition of symbols, we notice that if r = 6(5\/ €), then

1 1 ~
r# (P, Pé)zr-(Pc’y, P(;,)—i-(’) shiog)M=2) .
( ©{ag) ™ R CT (shiag)™ ™)
Lemma 5.6 and Remark 5.7 then show that on the symbol level

Qs = O(R(EM™Y) + O(s%e(&)M72) + O(sv/e)# (Pg, <2> p;) . (5.59)

Here the first term to the right is too large; we would like to have h(¢)M =2 so we
take a closer look at Q4 using Proposition 5.8, where we now add the assumption

m=k=0, Ag=1, asisindependent of s. (5.60)

Then as noticed, (5.51) improves to

by =Py 0 ki(s) + O <<Z>) = O(e). (5.61)
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We get on the symbol level, writing [A, B] = A#B — B#A:
hast = [PSJLS] = [P, &s] + [QSJLS]

:VWM+6@KW”%@>+5G%@M41@)

~ h , 1, = x M-1y D

+0 (S\/€€e<§>) # <P£, () Pw> + O(sv/e)#O (e(€) )\/€<€>

= [P+ O(hEM?) + O(s*eh() )

~ (s\/eh PR . A(seh(e)M—2

0 (") # (rt g 72) ot .

On the other hand,
. h y ~ h3
[Pv 1ps] = i {Pv 1ps]’ +0 <<§>M€ <§>363/2>
— ih{ds o k(s), P} +h (Pg, f;) 0 (<g>§1/2> +0(e 2R3 (M)

ot 100 o (55) 0 (10%),

SO
L - h2 861/2h , Pw/
100.=in{G om0 Ph+0 (g + ") # (7 )
+ O(R2(EM=2 4 seh(€)M2).

Since k(s) is obtained from integrating ¢ H ;.» We obtain, using also that Qo =0,

om0 (4 ) o 1 )

+ O(hS(E)M2 4 §2e(e)M2) (5.62)
under the assumption (5.60). (Recall that here M is the order of P.)

6. The conjugated pseudodifferential operator

Let P be the Operator introduced in the beginning of Section 2 satisfying the
assumptions (2.1)—(2.7). To start with, we assume Hypothesis 4.1 and define C, .
as in (4.5), (4.6). Later, we shall also use the dynamical Hypothesis 4.3 (imply-
ing (4.24)).

The function 1. satisfies 1. = O(e), & Ot = O(e(€)2) in the sense
of (4.27), (4.28), but we also know that these bounds improve considerably away
from C.

Let A = As be an elliptic Fourier integral operator of order 0,0 quantizing
k(8) as in Section 5, and let Bs be a corresponding Operator quantizing #(5) 1.
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Then we can apply Proposition 5.3 to see that BA = Opy,,(c), where ¢ = O(1) is
elliptic. Now restrict the attention to the intermediate region, where 1. = e (x),
Y(x) € C*°. Using that ¢ = Ah with A large but fixed, we find here that

e=e/h o A = Op,(c)

where ¢ = O(1) in the standard symbol sense, 838?(3 = O((&)~181) and ¢ is elliptic
in this class. Let ¢ = O(1) be an elliptic symbol which is equal to 1 in the interior
region and which changes from 1 to ¢ when going outwards in the intermediate
region. We now replace A by AoOp,,(¢)~t. (Here we assume that Ay = 1, to avoid
a topological difficulty.) Then we have achieved that Au = e®¥</M for u supported
in the exterior region including a shell where ¥, = e, ¥ = () € C* as above
and the region further out where ¥, = () = O(e).

Next, we consider P° defined as in Proposition 5.9 by PAs = AsP°. Recall
that P = P, +iPy + Py and write PjAs = AsP?, P° = P+ Q°, P! = P; + Q°.

For P;, j = 0,2, we apply (5.62) and get on the symbol level over any bounded
set in x-space

[ 82 She 2 Oupi
Qg:pjm(a)—pj+0< Ve, ohe )#(agpj, pﬂ)

63 63 63
+ O(hS(E)T72 + 6%e(€)72)
— O(5+/e , 02p; A 20)(£)i—2
= BV (agpj, " ) +O((hd + Be)(€)2) (6.1)

For p; we need the more precise information about . given in (4.10), (4.12),
(4.13), satisfied also by 1., as well as the fact that ¢.(p) is independent of € in
lp — p;l < Ve (actually in [p — p;| < \/e/C for some C' > 0, but we can always
dilate in €). From these estimates it follows that

Oz ~
< <£1 , 55]?1) ® (aﬂbe, <§>351b6) = O(e) (6.2)
over a neighborhood of the set where 1. also depends on &. It also follows that
p1(r(6)(2,€)) = pr(x,€) = O(6c) . (6.3)
From Proposition 5.9, we deduce that
@} = p1(r(6)(2,) — pr(2,6) + O(h). (6.4)
By construction of x(d), especially (4.47), we see that
p1(k(8)(x,€)) — pi(e,€) = i0Hy pi1(x, &) + O(ed?). (6.5)

In fact, this is quite obvious in the intermediate and far out regions, and near a
point p; € C, we choose canonical coordinates so that p; = (0,0) and put p = /ep.
Then if 1he(p) = etbe(p), we get Hy, = ﬁﬂze’ where the tilde on the H indicates
that we take the Hamilton field with respect to the p-variables. The manifold
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As : Imp = §Hy,_(Re p) now becomes Im p = 5]?@6 (Re p) while p; = O(ep?) and

since 1, satisfies (4.10),
- 1
5 =0 :
5920 ()

Then 1(6)(p) becomes #(5)(7) = p-+i6H; (7)+O(5(7)2), 50 p1 (R(6)F) = p1 () +
i0Hj (p1) + 0O(€6?), leading to (6.5).
It follows that

Q% = —idH, b + O(8%c + h) = O(de + h). (6.6)
Away from any neighborhood C we have the improved estimates
Q% = —idHy, e + O(6%¢ + h)

in the usual symbol sense, as long as we stay away from the outer region where
Ve = Y (z) only satisfies . = O(e), and where we can apply the analysis of
Section 2, so

Q) = —i0Hp, b = —idv(1)) (6.7)
there.

7. Estimates for the conjugated pseudodifferential operator and
localization of the spectrum

Let P? be the conjugated Operator of Section 6. We shall study lower bounds for
Re (P’ulu) = Re ((Pg + Pz‘s)u|u) —Im (Plulu), ueSM). (7.1)

v ((90:%7) )
> (Pyulu) -

enfor (oo 7)) |

— Cy(hé + 6%6)|Jul?,
where C7 can be chosen arbitrarily large and Cs depends on C. Here

1 1 Oup2 \ 2
P2 — (35192, p2> >0,

2
2 2
- (o (=, () ) )

+ O(h?)||ul|?

Using (6.1), we get

Re (Pdulu) > (Pyulu) — Cov/e|ul| — C(hd + 6%€)||ul?

if Cy is large enough, so

)= g oo ({007 )

1
> (Poulu) — OR?)]jull
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where the estimate follows from the Fefferman—Phong inequality in the semi-
classical setting (see [14]). It follows that

1
Re (Pdulu) > 2(P2u|u) — C(h® 4 hé + 6%€)||ul|?. (7.2)
For Py we have the same conclusion,
1
Re (PJulu) > o (Poulu) - C(h* + hé + &6%€)|Jul)?, (7.3)

since the same analysis applies for z in a bounded region and further out, we just
have P{ = Py > 0.
Combining this with (6.6), we get

Re (P°ulu) > 6(Op (Hp, te)ulu) + ; ((Po+ P2)ulu) — C(h+hd+ %) ||ul|?. (7.4)

Here we recall that Hy, Y. = (Pe)1, — De by (4.7), that (pe)r, satisfies (4.25), (4.26)
and that p. < p < pg + p2 by (4.16). Write,

1 - - 1
OHp, e + 2(]90 +p2) = 0(Pe) 1, — 0P + 2(1?0 +p2)
= 6<5€>TO + 5(5_ ﬁe) + 5(p0 + p2 _ﬁ)

+ <; - 5) (po + p2) - (7.5)

Here we want a lower bound for Op (p — p.). This is quite straight forward away
from C, so we concentrate on a neighborhood of a point p; € C. Assume p; = 0 for
simplicity. Then near 0 we have by (4.15)

oo ("5 5-m= (-0 (")) -0
()00 )

and we may assume that g has been chosen so that 1 —g = (1 —¢)? with £ smooth.
Here

where

(L= Le)#p#(1 — Le) = p — Lc#D — pH#le + LHDH#L
= (1= £(p)’ P+ O(h).
From this we conclude that
(Op (7 — pe)ulu) = =Chllulf?. (7.6)

Similarly,
(Op (po + p2 — P)ulu) > —Ch?||ul?, (7.7)
by the Fefferman—Phong inequality or by a direct argument.
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Let 0 < k. = O(e) be equal to € in C + B(0, \/e) and have its support in C +
B(0,v/2¢). Let K.=O0p (k). By (4.25), (4.26) we have (p.)7, ~ min (e, dist (-, C)?),
SO
€ ke + (Fe)m, = Oe). (7.8)
Hence,

<(K +Op (<§E>T0))u|u> ~elul?. (7.9)
Combining (7.4)—(7.9), we get
Proposition 7.1. We have

de

Re (P° + K )ulu) > o

ol + (5 =8 ((Pe-+ Pula) — Chlul?,
weS(M). (7.10)

Here we recall that § > 0 should be small enough, ¢ = Ah with A arbitrarily
large and fixed, and C' in (7.10) is independent of ¢, A while h is small enough
depending on these two parameters. From (7.10) we get the a priori estimate

@ﬁ_m_mammmw+m—mwtw&m, (7.11)

when Rez < 6Ah/C — Ch.
From Section 3 we know that P has no spectrum in the open left half-plane.
We shall next prove

Proposition 7.2. For every constant B > 0 there is a constant D > 0 such that P
has no spectrum in

{z € C; Rez < Bh, |Imz| > Dh} (7.12)
when h > 0 is small enough. Moreover ||(P — 2)7t|| = Op(h™!) for z in the
set (7.12).

Proof. Choose 6 > 0 small, then A large enough, so that ééh — Ch —Rez >
¢/Const. when Re z < Bh. Then (7.11) gives

Cf Jul| < |[(P° + K. — 2)u||, ueSM). (7.13)
0

Take z in the set (7.12). When Rez < 0, we already know that z ¢ o(P), so we
may assume that 0 < Rez < Bh. N
Now recall that the symbol of K is O(e) and supported in C + B(0, V2€).

On that set we have p® = O(¢) = O(Ah) and hence
+ |2
OO ’
and D is large enough, assuming still that 0 < Re z < Bh.

It follows that we can find E = O(e/(e + |2|)) such that

Kc=Eo(P°—2)+F, F=0(h),

P’ — 2| > ‘ when |Imz| > Dh,
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where E, F' also denote the corresponding h-pseudodifferential operators. In par-
ticular,

[Keull < O)(P° = 2)ull + O(h) Ju], (7.14)
where the Os are uniform in e. Combining this with (7.13) with € > h, we get
elul < OWI(P° = 2)ul, ueSM), (7.15)

for 0 < Rez < Bh, 0 < Imz < Dh. Now recall that P° = A;'PAs, where
As, Azt S — S, L? — L? and have L? norm O4(1). Then (7.15) gives

hjull < OpW)I(P = 2)ull, weS(M), (7.16)
for z in the set (7.12). From Section 3 we then know that z ¢ o(P) and that
(P = 2)7! < Op(1)/h. O

8. Asymptotics of eigenvalues

Let pj € C and let F,, be the matrix of the linearization of H, at p; (the so called
fundamental matrix of p at the doubly characteristic point p;). Thanks to the fact
that the quadratic approximation of p? = p o x(8) at p; is elliptic on T,,(As) and
takes its values in a closed angle contained in the union of {0} and the open right
half plane, we know from [22] that the eigenvalues of F),, are of the form £\,
1 <k < n, when repeated with their multiplicity, with Im A; > 0. Let

~ 1
tr (p,py) = > Ak (8.1)
k

In our case the subprincipal symbol of P at p; is zero and will not enter into the
description of the eigenvalues.
Put

q(7,&) = —p(x,i€) = p2 +p1 — po -

Let Fy, F, be the fundamental matrices of ¢, p at one of the critical points p; € C.
Since

1 0 0 ) )
Hy(z,6) = (p’g(w,n)- P —pé(x,n)-an), with 7 =i,

we see that F, and 1Fp have the same eigenvalues; ii/\k, kE=1,...,n (j being
fixed) where Re(%)\k) > 0. Now ¢ is real-valued and we can apply the stable
manifold theorem as in [9] (and at many other places) to see that the H,-flow has
a stable outgoing manifold Ay passing through p; such that 7}, Af is spanned by
the generalized eigenvectors corresponding to +1)\k, k=1,...,n. We also know
that A is a Lagrangian manifold and that ¢ vanishes on A.

Lemma 8.1. Assume for simplicity that p; = (0,0). Then T, Ay is transversal
both to {x = 0} and to {£ = 0}.
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Proof. Since we consider the linearized situation we may assume right away that g
is a quadratic form (the second order Taylor polynomial at p;), so that p; are
quadratic forms as well. The dynamical condition (4.21) implies that

{po + p2)1, >0 as a quadratic form. (8.2)

Let L = Ay Nn{x = 0}. Since pg = 0, p1 = 0 on {z = 0}, we know that
p2 = 0 on L and hence H, = H,, on L. Now H, is tangent to Ay and H), is
tangent to {x = 0}, so H; = H,, is tangent to L. Thus L is an H,- and Hp,
invariant subspace on which ps + pg = 0, and since (ps + po)7, > 0 away from 0,
we necessarily have L = 0.

The proof of the fact that A, N {€ =0} = 0 is the same after permuting the
roles of pg and po. O

It follows from the lemma that
Ay E=¢/ (), x€neigh(0), (8.3)
where ¢ € C*(neigh (0); M), ¢4 (0) =0, ¢/ (0) =0, det ¢’/ (0) # 0.
Let A_ be the stable incoming H,-invariant manifold such that 7, A€ is
spanned by the generalized eigenvectors of Fj, corresponding to — 1 ey, 1 <k <n.

The lemma is valid also for A_ and (8.3) has an obvious analogue for A_ where
we let ¢_ denote the corresponding generating function.

Proposition 8.2. We have ¢//(0) > 0, ¢” (0) < 0.

Proof. Again we can consider the linearized quadratic case. If we make a smooth
deformation of ¢, then A, A_, ¢ (0), ¢” (0) vary smoothly with the deformation
parameter and det ¢/ (0) # 0, provided of course that we maintain the condi-
tion (8.2). Consider the deformation from ¢ = qo to to &2 — 2% = ¢;:

gr(w,€) = (1 = t)g(,€) +1(6* — 2%) = ph + pi —pp,
with
p2(8) = (1= t)p2(§) +1€%,  phlz) = (1 — t)po(x) + ta®.
ph and pfy are positive definite for ¢ > 0, so (8.2) is maintained. For ¢ = 1 we have
®h () = £22/2 so +¢/ (0) is positive definite. Since the signatures of ¢/{(0) are
independent of ¢, we get the lemma. O

From Section 6 we recall that the conjugated operator Ps = Pj. has the
symbol
- Oup: -
p St Y O6va (o, T ) +O(h+ 6%
j=0,2
and that we have the a priori estimate (7.10) expressing that the real part of P°

is > ‘éf — Ch outside C + B(0,+/¢). In the set C + B(0,/¢) the symbol P° is

independent of € modulo O(e(")>°) and is of the form Ps ~ p® +hry +h2rg +- -+,
where [p?| « dist (-,C)2, Rep® « dist (-,C)2. In the following we shall assume for
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a while (in order to simplify the notations) that C is reduced to a single point
PO = (0, 0).

We fix B > 0 and restrict the spectral parameter z to the disc D(0, Bh).
We shall take ¢ = Ah with A > B sufficiently large. Assume that M = R"
for simplicity. Following basically [14] we recall the construction of a well-posed
Grushin problem, first for Ps — z and then for P; — z. Let A = (22 4 (hD,)?)"/2 so
that Ps is equipped with the natural domain D(Ps5) = {u € L% A%u € L%(R™)}.
In Section 11 of [14] the authors constructed operators

R_:CMNo 12 R,:L?—CM (8.4)
of the form
No
Rous =Y u ()el(a), Rou(s) = (ulfl(2), (8.5)
j=1
with the following properties:
h _n X h _n xX
o =nies (). o=t () 60
ej(w) = pj(w)e’™™) filw) = gj(z)e ) (8.7)

where pj, ¢; are polynomials and ®g, V¢ are quadratic forms with Im ®¢, Im ¥y >
0, 7 = ¢/ (0). If 6 > 0 is small and fixed, A sufficiently large, the problem

(Ps—2)u+Ru_ =, Riu=vy, (8.8)

for v € L2(R™), vy € CMo has a unique solution u € D(Fs), u_ € CNo, where
Ri = R As, R = Aé_lR,, Moreover, for the solution, we have the a priori
estimate

IA%ull + u—| < C(lloll + hlv+ ). (8.9)

Notice here that (h=Y/2A)NR_ = O(1) : CNo — L2 for every N € R and similarly
for R4, R‘Si. From this, it follows that R? = R depends weakly on € in the sense

that if € = Ah, A > A, then
1
c(cNo, 2y = O 1)
and similarly for Rﬁ_.

We shall derive an a priori estimate for the problem

IR — R

(Ps—2)u+ R u_=v, Riu=vy, (8.10)

when u € S. Let x € C5°(B(0,2)) be equal to one on B(0,1), and put x,/(z,§) =
x(e72(z,€)). We use the same notation for the corresponding h-quantization. We
may assume that Ps — Ps = O(e(h/€)>) on supp (x,/). From the first equation
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in (8.10), we get

(Ps — 2)xyeu + Ru_ = X v + xe(Ps — Py)u
+[P5,X\/€]U+ (1 _X\/E)R*ufv (811)
R xyeu=vy — RE(1 = x 0 )u.

Here

€

[Ps,xy =0 <h2)

11— xR u_|| = (1 = xy)(h 2 A) N (A 2 A)N R u_||

:o<(i‘)g>|u_|, (8.12)

hIRS(1 — xyoul = hIRS (h™2 M) (A2 A) "N (1 — x o)l

_0 <(i‘) : h||u||> . (8.13)

Thus, applying the a priori estimate (8.9) to (8.11), we get

h h
%ol + -l < (el + 0 (02 ) Jull+.0 () o 4 aloa) . (819
We next look for an a priori estimate for (1 —x /. )u. Apply 1 —x,/ to (8.10):

(P5 - Z)(l - X\/e)u = (1 - X\/e)v + [P57X\/e]u - (1 - X\/E)R_u_ . (815)
As before,

Xye#(Ps — P5) =0 <hh)

h

€

Poxyd = ooy + [Fs = Prxyd = 0
and using also (8.12), we get from (2.12), (8.15) that

€
ol =xyeull < NI =xy)vll + [Ke(l = xye)ull

+(’)(}2h) |u|+o(i‘) u_|, (8.16)

where we can take K.(z,§) = ex(B(\gj’j) ). Since

h N
KE#(l—x\/E):(’)(e(e) ):L2—>L2,
we get

M=l < 1= ol +0 (1 ) pd+ o (Ml @)

):L2—>L2,
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Let L, = O(min(h + dist (z,£;0,0)%,€)) be an elliptic symbol in the class
defined by the right hand side, so that
1A% el + €ll(1 = xye)ull = | Leu] -
Then summing (8.14), (8.17), we can absorb the various remainder terms to the

right, and obtain

1
o el + fu]) < lvfl + hlo4], (8.18)
when (8.10) holds.

Now recall that Py, Ri, R have been defined from P, R, R_ by conjugation
with As, and use also that

1
ol < [[Leull < CARJull,

to see that if u,v € S(M) and

P —_— . J—
{( DutBou-=v o, Bh). (8.19)
Riu=wvy
then
hlull + [u-| < C([lvll + hlvg]) - (8.20)
From the discussion after the proof of Corollary 3.2, we conclude that
P(z) = P-z R, D(P) x CNo — L2 x CMNo (8.21)
Ry 0
is bijective with a bounded inverse
_(ER) Ei(z)) . 2 an No
£ = <E(2) Bo(y) B x e = D(P)x O, (8.22)
for z € D(0, Bh), and (8.20) shows that
1
E =0 , E_ =0(1),
iE1=o0(,) 1B ()l = 00) .
1E+(2)[l = 0(1), I1E—+(2)|| = O(h).

In Section 11 of [14] the authors studied the action of P(z) on spaces of
functions of the form (a(x;h)e!®0®)/? 4 ), where a is a symbol, and deduced
that E_,(z;h) has an asymptotic expansion in half powers of h with a certain
additional structure. From that was obtained the asymptotic expansion of the
zeros of det E_ ., i.e., of the eigenvalues of P in D(0, Bh). That discussion goes
through without any changes in the present situation, so we get the asymptotics
for the eigenvalues in any disc D(0, Bh), when h — 0.
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Theorem 8.3. We make the assumptions (2.1)—(2.7), (4.4), (4.21), (4.22), and
recall the definition of C in (4.5). Let B > 0. Then there exists hg > 0 such that
for 0 < h < hg, the spectrum of P in D(0, Bh) is discrete and the eigenvalues are
of the form

Ajk(h) ~ b (g + BN g W g ) (8.24)
where the ;. are all the numbers in D(0, B) of the form
1 1~ ‘
Wik = . Zl/j7k7g)\jyg + _tr(p,p;), with vjree N, (8.25)
Ut 2

forsomej € {1,...,N}, N = #C. (Possibly after changing B, we may assume that
ltj k| # B, V4, k.) Recall here that £\, are the eigenvalues of Fy,. This description
also takes into account the multiplicities in the natural way. If the coefficients v .
in (8.25) are unique, then N;j, = 1 and we have only integer powers of h in the
asymptotic expansion (8.24).

Theorem 8.4. We make the same assumptions as in Theorem 8.3. For every B,
C > 0 there is a constant D > 0 such that
h

D
[(z—P)7}| < b for z€ D(0,Bh) with dist(z,0(P)) > o (8.26)
The last result follows from the formula
(2 = P)™ = —B(2) + By (2) By (=) B-(2),
(8.23) and the fact that | EZL(2)| = O(h~') when (8.26) holds.
Still with j = jo fixed, let
I 1~
p=, ;Vg)\g + 2tr (p,jo), weN (8.27)
be a value as in (8.25) and assume that p is simple in the sense that (vq,...,v,) €

N" is uniquely determined by pu. In particular, every Ay for which vy # 0 is a simple
eigenvalue of F,. Then as in [9] (see also Chapter 3 in [21]) we can construct

Ah) ~ h(p+ hpy + g +--) (8.28)
with uniquely determined coefficients 1, po, ... and
a(z;h) ~ap(z) + hai(z) +--- in  C*(neigh (z,)), (8.29)

where a;j(z) = O(|x — x;,|™=2)+), m = 3" vy and ag has a non-vanishing Taylor
polynomial of order m, such that
(P = A(h)) (a(w; h)e_m(z)/h) = O(h>®)e=?+@)/h (8.30)
in a neighborhood of x;,. Actually any neighborhood 2 CC R™ will do, provided
that
1) ¢4 is well-defined in a neighborhood of €.
2) Hy, #00m 0\ {z,).
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3) Q is star-shaped with respect to the point x;, and the integral curves of the
vector field vy = (my), (quA ), where m,((z,§)) = x.
+

We also know that A(h) is equal mod O(h*) to the corresponding value
in (8.24).

As in [9] we notice that if v C D(0, B) is a closed h-independent contour
avoiding all the values ;1 in (8.25), and

1
= - P)'d 8.31
N (8.31)
the corresponding spectral projection, then, using also Theorem 8.4,
170 (xae™ /") — xae™®+/"|| 2 = O(h*) (8.32)

if x € C§°(Q) is equal to one near z,. It follows that yae™#+/" is a linear combi-
nation of generalized eigenfunctions of P with eigenvalues inside A7y up to an error
O(h>) in L%-norm.

9. Exponentially weighted estimates

In this section we keep the general assumptions on P and assume for simplicity
that C is reduced to a single point:

¢ ={(0,0)}. (9.1)
If ¢ € C*°(neigh (0, M); R), we have
e/ oPoe /M = Py, (9.2)

with the symbol (cf. (2.13))
po(@,8) = p2(,€) = (w0 (2)) +(%q) (z,v'(2)) - €, (9:3)

where we recall that

Q(xaf) :p2($,§)+p1(3},€) —po(l’). (94)
Notice that £ — ¢(z,€) is a convex function for every .

Let ¢ = ¢4 (z) € C*(neigh (0;R)) be the function introduced in Section 8
so that Ay = Ay is the stable outgoing manifold through (0,0) for the H,-flow.
Recall that by Proposition 8.2

¢"(0)>0. (9.5)
We have the eikonal equation

q(z, ¢/ (z)) =0, (9.6)

s0 py(,8) = pa2(2,€) +i(9eq)(x, ¢’ (x)) - & The vector field (0¢q)(x, ¢ () 0y is
the x-space projection of quA , o its linearization at x = 0 has all its eigenvalues

with real part > 0. Consequently (as we shall see in more detail in the proof of
Lemma 10.1 below), there exists G € C*(neigh (0, M); R) such that

(0eq) (x, (b’(x)) 20,G wx?, G(x) - 2?. (9.7)
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Let Qg(r) = {z € neigh(0); G(z) < r} for 0 < r <« 1. Outside the set
Qa(Coe), we put

b =¢—eg(G), (9.8)

for a suitable function g and for 0 < ¢ < 1. (Eventually ¢ will be proportional
to h.) Using (9.6), we get

q(z, ' (2)) = —g (G)(0eq) (v, &' () - 2 G(x) + €29/ (G)?ps (2, G/ () . (9.9)
Choose ¢g(G) =InG for G > Cye, so that ¢'(G) = 1/G. Then
- 1 e p2(z,G'(2))

q(x,w’(x)) = _eG(x) (0eq) (x,¢’(x)) -0,G + 6G($) G(x) (9.10)
Here
L) o) -0.6-1, PO —o),
We conclude that
g(z,9/(z)) <— 5, @€ neigh (0, M)\ Q¢ (Coe), (9.11)

Co’
if Cp > 0 is large enough.
Outside a small fixed neighborhood of 0 we want to flatten out the weight.

Let f5(t) = 6f(%) be the function introduced in Section 2. For some small and
fixed 99 > 0, we put

¥ = fs, () = fs (6 — €9(G)) (9.12)

which is also well-defined as the constant 3dp/2 for large x. From (9.11), the fact
that g(x,0) < 0 and the convexity of ¢, we get

4w,/ () < - [ F5, (D). (9.13)

where we keep in mind that 0 < fgo < 1.
We extend the definition of ¢ to a full neighborhood of x = 0, by putting
1
006
Then in Qg (Coe), we have ¢/ = ' = ¢/ — G’ /Cy, so q(z, ') = O(e) by (9.9).
In the exterior region where ¢’ = f5_ (@Z)@Z’ is small, the conjugated Operator

9(G) = In(Cope) + (G — Cpe), for 0<G < Cpe. (9.14)

P= Py is close to the unperturbed Operator P and we can apply the method of
Section 2. Write

P =p2+ip1+ po (9.15)
for the symbol of P, so that by (9.3), we have

p1=(0eq)(2,¥'(2)) €, Do =—alz,¥), (9.16)
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to be compared with p; = (9¢q(x,0)) - &, po = —q(x,0). Let v(x,0,) = >~ ¢;(x)0x,,
where p1 = Y ¢;(x){; and define 1, as in (2.15), now for P instead of P and with
an additional cut-off:

D= (1— x() /k (z’io) F. 0 o o exp (t9)dt . (9.17)

Here x € C§°(M) is equal to 1 near x = 0 and has its support in a small neigh-
borhood of that point. -
Then for Py, = eVe/h o Poem%/h we get (cf. (2.22)),
Psp. = (1= 08)bo + 0(fe © o), — O(6%¢) outside supp ¥, (9.18)
where the time average in the second term to the right is taken along the trajec-

tories of v. In the region where y = 1, we get P&Z = P of course, and in the
intermediate region, supp (Vy), we have

Bosg. = Po + O(de). (9.19)

If 41 > 0 is small enough, we know that
~ ~ €
f(go (¢($)) < 51 = <f€ Op0>To ((E) > Ol ’

for some constant C; > 0. In fact, the v and v trajectories through a given point
with f3, (1h(z)) < 6 stay close for some fixed time > 0 , so the conditions (4.24),
(4.23) imply that the v-trajectory will encounter points with py > 1/Const during
a non-trivial interval of time.
Then
e In the region where f5 (12(3:)) < 01, we have py 55 > (1—0)po + gfl (and we
recall that pp > 0).
e In the region where ng(J(a:)) > 01, and G(z) > Cpe, we have p, ;7 =
Po + O(d¢) > & + O(6e), by (9.13).
e In Q¢(Coe), we have pj 52 = po = O(e).
Choosing first 6; > 0 small enough, then § > 0 small enough, we conclude
that

= O(e) in Qa(Coe) . (9.20)

Now ﬁ&l =eVe/l o Poe ¥/ = P, _, where
be =P + 59, (9.21)

and where we recall that i also depends on e. Combining Lemma 2.1 for P,
with (9.20), we get

/ ( ¢ _Re z) |u|?dx +/ (Pou)udx
M\Qe (Coe) \C M

< Re ((Py, — 2)ulu) —|—/Q . (O(e) + Re z) [ul*dz . (9.22)

o {z & outside Q(Coe)
Po,si.
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If Rez = O(h), we choose € = Ah with A so large that § — Rez > h and deduce
that

hllul® + (Poulu) < Re ((Py, — 2)ulu) + OR)|uld coe) (9.23)
leading to the a priori estimate
hllull < [[(Pyp, — 2)ull + O(h)llullog(coe) - (9.24)

Re-injecting this estimate in (9.23), we get
1
h?[[u)]? + [ B2 hDul® < (1 + a)[|(Py, — 2)ull® + Oa(h®)[ullgg(coey,  (9:25)
for every fixed o > 0.
Here (Py, — 2)u = e¥</"(P — 2)v, u = e¥</Mv, so from (9.25) we get the a
priori estimate for the original Operator
Blle/" o] + b |[BhD (e’ /o) < O1)[|e*/"(P — 2)]

+ O(h)HewE/thQG(Cge) ) (926)
uniformly, for |Re z| < Ch provided that e = Ah for A large enough depending
on C.

Now let A(h) = A1 x(h) be an eigenvalue of P as in (8.24), (8.28) and assume
that p is given by (8.27) and is simple, as explained after that equation. Then A(h)
is a simple eigenvalue of P and is the only eigenvalue in some disc D(A(h), h/Cp).

Let uwks(z;h) be the approximate solution given in (8.29), (8.30) and let v =
Thy(XuBkw) be the corresponding exact eigenfunction, where v = 0D(p, Zéo ).

Theorem 9.1. a) Outside any h-independent neighborhood of 0, we have
u, B2hDu = O(e~ V(M)

in L?-norm.
b) There exists a neighborhood Q of 0, where

u(w;h) = (a+r)e”t+ @M,
Irllzag) . |1 B2hDr||L2(@) = O(R>).
Proof. Apply (9.26) with v = u, z = A(h), e = Ah, A > 1, to get
hlle¥/"ul| + b2 | B2hD(e¥/Mu)| < O(A~N), N =N(4),

where we also used that e¥</" = O(h™) in Qg (Coe). Here, ¥ = fs5,(6—eg(G)) +
O(de) is larger than a positive constant outside any fixed neighborhood of 0, so
u = O(e~1/(€M) in L2-norm there. Moreover, since |[e?</"ul| = O(h~), we have

Oh=N) > h3 | BEhD(e%/*u)|| > b ||e¥/" BEhDu| — O(h)|||Vape|e? M ul| .

Here Vi), = O(1) (as we shall see more in detail below), so ||e¥</"B2hDul| =
O(h~N-2), s0 B2hDu = O(e~¢n) in L2-norm away from any given fixed neigh-
borhood of 0. The proof of a) is complete.

To prove b), we apply (9.26) to v = u—xuwks, 2 = A(h) withe = Ah, A> 1.
Since [lu— xuwxks| = O(h*) by (8.32), and ||e?</"(P - 2)xyuwks || = O(h>) if we

(9.27)
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arrange so that 1. < ¢ on supp V, we conclude that ||e?</" (u—xuwks) loc(Coe) =
O(h) and hence

hlle?/"(u — xuwxs)|| + b2 | B2hD (/" (u — xuwxs)) || < O(=).  (9.28)
In a small neighborhood of 0, we have

eg(G
ewe/h b _ g§1>

= eh 7A9(G) "

=e eh

where by (9.14)

e—A9(G) _ (’)(1)5“4 for G(z) < Coe,

e~ 49E) = Q(z)™* for G(x) > Cpe.
It then follows from (9.28), that u = (a+7)e~?+/" in a neighborhood €2 of 0, with
I7llz2(0) = O().

To get the corresponding bound on B> hDr, we just have to proceed as in
the proof of a) and use that Vi) = Vo — e¢'(G)VG, where

J(Q)VG =0(c2) for G(z) < Coe,
VG
G

Thus Vi = Vo + O(Ve) = O(1) and we conclude that ||B§hDrHLz(Q) =
O(h®). O

J(Q)VG = =0(e2) for G(z) > Cye.

Remark 9.2. If we drop the assumption (9.1) and allow N—1 more points pa, ..., pn
in C, then Theorem 9.1 is still valid, provided that all p;; in 8.24 with j > 2 are
different from the value u, associated to p; = (0,0).

10. Supersymmetric approach

The Witten approach has been independently extended to the case of non-elliptic
Operators like the Kramers—Fokker—Planck Operator in [24] (in supersymmetric
language) and in [2] (in terms of differential forms). See also [17].

We start by a quick review of that in the semiclassical case, then we establish
some basic facts about the principal and subprincipal symbols, especially at the
critical points of the given weight function.

10.1. Generalities
Let

Alx) : TyM - T,M, zeM, (10.1)
be an invertible map depending smoothly on x € M. Then we have the real non-
degenerate bilinear form

(u|v) a@y = (A" A(z)(u)|v), u,ve A"TIM . (10.2)
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If a: AFTM — AT M is a linear map, we define the “adjoint” a* : A*T M —
ARTM by

(aulv) a) = (ula™*v) aa) - (10.3)
(In the complexified case, we use the sesquilinear scalar product (u|v)a = (ulv) 4

and define a* the same way.)
If w is a one form and u and v are k — 1 and k forms respectively, we get at z:

(WA ulvya = (Aw A (AT A)ulo) = (AR Au|(Aw)JU> = <u|(Aw)Jv>A , (10.4)

SO
(WA = (Aw)! | (10.5)
where | denotes the usual Operator of contraction. Let u(dx) be a locally finite
measure with a smooth positive density. When M = R", u will be the Lebesgue
measure. Sometimes we also use the symbol p for the corresponding density.
If u,v are smooth k forms with suppu N suppv compact, we define

(wloa = [ (ul@)lo@) yulde), @o)a= [ (W@lo() 5, ulde)

and denote by a* the formal adjoint of an Operator a : C§°(M;AFT*M) —
D' (M;A‘T*M). If we fix some local coordinates x1,...,z, and write u(dz) =
w(x)dx (by slight abuse of notation), we can consider

Ou; O (M AFT* M) — CF°(M; AFT* M),
acting coefficient-wise, and a straightforward computation shows that
* —1
(82,)" = (AR A)) 7 (=04,) 0 (A" A))

O, (AR A4)) . (10.6)

__arj _ .,

o t(/\kA)flt(aw

J

We only retain that

(hdy, )M = —h0y, + O(h), (10.7)
where O(h) stands for multiplication by a smooth matrix, which is O(h) with all
its derivatives, uniformly on all of M when M = R", and which is = 0 when A(z),

wu(x) are constant.
Let ¢ € C°(M;R) and introduce the Witten (de Rham) complex

dy = e ®" o hdoe?/"
= hd + (d¢)" : C°(M; ANFT* M) — C3°(M; ANFFYT* M), (10.8)
with d2 = 0.
In local coordinates (always the canonical ones when M = R™) we have

n

dy = (hds, + 0n,¢) 0 da? (10.9)
1
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where hawj + 0y ¢ acts coefficient-wise and commutes with deA, SO
A" =" (= hda, + 0a, 0+ O(h)) 0 A(day)! (10.10)
1

where from now on, O(h) and O(h?) will have the same meaning as after (10.7).
The corresponding Witten—-Hodge Laplacian is given by

—Ap=dy dy + dyd (10.11)

Since
A x *
(@) = (@) =0,
we also have
A, x
—Ay = (d¢ —|—d¢ )2,
and —A 4 conserves the degree of differential forms.

Choose local coordinates 1, . . ., z, (to be the standard ones when M = R")
and write

Adag) = Aje()ds,,  Ajrlx) = (A(day)|day) .
J
Let Z; = hOy,; + Oz, ¢, Z,?’* = hO2* + Oy, 0. Notice that [Z;, dz}y] = 0, so
(2", A(dz;))] = 0.
Writing dy = Y71 Z; o da7, d?’* =0 Z4" o A(dwy)!), we get

—Aj = Z (ZI?* o A(dmk)Jd$§\Zj + Zjda:?A(dxk)JZ,?’*) :
7,k

Here, we use the general identity vl + plv” = (v, u)1 on the first term in the
parenthesis to get

~Ap=T+I1+1I,
1= 7" A;x2;,

7,k
I =— Z"da} A(dzi) Z;
7,k
1 =" da Z; 2 A(day)
7.k

where A;, = (dzj, A(dzy)). We have
[Z;, A(day)!] = h((0a, A)(da))’ .
Using the identity (U4*)4* = U (see Subsection 10.4), we see that

[Z{8 ) da] A = [(tA(da:j))J,Zk} = _h((arktA)(d%))J ;

J
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hence
A 1 A
(Z", dx}] = —h('A" 0., "A(dxy))" .

Using these commutator relations, we move dgcjA to the left and A(dzy)! to the
right in IT and combining with III, we finally obtain that

A=) ZMTAZ+ Y de (25, 20 Alda)] (10.12)
J.k J.k
+hy 23 def ((0x, A)(da) +hZ (A (00, ‘A)da;) Ald) 2,
7,k
+ 12y (‘A7 (0, " A)da;)" ((3ij)dxk) .
7,k

Modulo O(h)(hdy + 9:¢) + O(h)(—hdy + 0.0) + O(h?), we get
—AA = (~hOy, + 02, 0)Aj e (2) (hOz, + Or, ) (10.13)
gk

+> 200y, 00, ¢ 0 daf A(day)

Jsk

where the error terms vanish when A(x) and u(x) are constant (for the chosen
coordinates).

Now write
A(x) = B(z) + C(x), 'B(z)=B(z), 'C(z)=-C(z). (10.14)

Then (10.13) gives

~AA =) (~hO, + 02,0)Bjk(2) (hOa, + Ox, ) (10.15)
gk
+ 3 (02, 8)C5hs; + 7y, © Cj 0 (02, 0)) = > hday (Cjx)hds,
J.k J.k
+ Y 2h0y,00, ¢ 0 da) A(dxy,)! .
gk

Again, this becomes an equality when A, i are constant. Note that the last term
vanishes on O-forms, i.e., on scalar functions. To recover the Kramers—Fokker—
Planck Operator (cf. [24]), replace n by 2n, put M = R2"

T,y
1/0 1
A:
2(—1 7)’
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and let p = dxdy be the Lebesgue measure. Then (10.15) is an equality and we

get for 0-forms:

S

—AY = 737 (=hd,, + 8,,6)(hdy,; +0,6)

1

<
Il

+
[
-

v
2

NE

(=hdy, + 0y, ®)(h0y, + 0y, ¢) + hHy ,

1

<.
Il

where

(10.16)

[(8211‘ $)h0z; — (0z,;0) hdy, + hOy; © Oy, — hdy,; 0 Os, ¢]

is the Hamilton field of ¢ with respect to the standard symplectic form )" dy; Adz;.

If we choose

1
o,y) = yy* + V(@)
we get the Kramers—Fokker—Planck Operator
—AY =y hd, = V'(@)-hd, + ) (~hd, +y)- (hd, + ).

10.2. The principal symbol of the Hodge Laplacian

(10.17)

(10.18)

The principal symbol of —A 4 in the sense of h-differential operators is scalar and

given by
p(2,€) =D Aj(—ilk + 00, ) (i&; + Ou,0)

Jik

=D Biwl&ibn + 02,0 05,0) +2i y_ Cjnda, 6.

J.k g,k
The corresponding real symbol ¢(z, &) = —p(z, i) is given by
q(2,8) = > Ajn(Gr + 02,0)(&5 — 0, 0)

Jik

= Bjn(E&r — 00,0 00,0) + 2 Cj i, 0; -

gk g,k
It vanishes on the two Lagrangian manifolds A4g.
We define
V4 = HqIAi¢ .
Using 1, ..., 2z, as coordinates on A4y, we get
Vi =2 A0, ¢0s, = 2A(x) (¢ (2)) - Oa

Jik

v- = _2ZAj7kamj¢awk = _2tA(x) (¢I(x)) O -

Jik

(10.19)

(10.20)

(10.21)

(10.22)

(10.23)
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(Even more radically, we could say that vy = 2A(x)(d¢(x)), where A(x) is viewed
as amap 1M — T, M, and similarly for v_.)

Let 2o be a non-degenerate critical point of ¢, so that Ay and A_, intersect
transversally at (xo,0). The spectrum of the linearization Fy, of H, at (x0,0) is
equal to the union of the spectra of the linearizations

V] = (2A(20)¢" (z0)z) -9, and 10 = —(2'A(20)¢" (z0)z) - Ox (10.24)

of v and v_ respectively at xo. Thus we are interested in the eigenvalues of the
matrices A¢”, A¢”, where we write A = A(xg), and ¢"" = ¢" (o) for short. Here,
we notice that tA¢” = ¢” ' A¢”)¢" has the same eigenvalues as A¢” and similarly
¢" A, ¢'"*A are isospectral to A¢”. Thus

The eigenvalues of Fj, are given by =4 2\,
where Ap,...,\, are the eigenvalues of A¢”. (10.25)
From questions about hypoellipticity (see [22]) we would like to know when all
the eigenvalues of F), avoid the real axis, or equivalently, when all the eigenvalues

of F, (the linearization of H, at (x¢,0)) avoid the imaginary axis.
We assume from now on that

B(z)>0, zeM. (10.26)

Then, if ¢°(z) = éqﬁ”x -z is the Hessian quadratic form of ¢ at x(, we have
1) (¢°) = (2B¢"x,¢"z) > 0. (10.27)
Lemma 10.1. Let p(x, ;) = Mx -0, be a real linear vector field on R™. Let ny €

N, ny +n_ =n. Then the following two statements are equivalent:

(A) M has ny eigenvalues with real part > 0 and n_ eigenvalues with real part
< 0.

(B) There exists a quadratic form G : R" — R of signature (ny,n_) and a
constant C' > 0, such that

1z, 92)(G) > é|x|2, s ERT. (10.28)

Proof. Assume first that (ny,n_) = (n,0). If (A) holds, we know that

)

1
leMall? > e /lal?, t=0

for some constant C' > 0, and we can put (by a classical argument)

1

Gla) = Gr(a) = ,,

T
/HetMa;H?dt, T>1.
0
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Then
1t " 1 (Mad
Mz -0, (Gr(x)) = T/o Mz -0y |e™Ma||?dt = T/o dt”et x| ?dt

1 TM,.|2 2 1 1 T/C 2 1 2

if T is large enough. Thus we get (B).
Conversely, if (B) holds, we have with a new constant C' > 0, that

1
>
w(x,0,)G > OG,

and hence

d

tM Lo i
>
dtG(e x) > OG(e x),

S0
G(e™Mz) > CG(z), t>0.

Thus [[eMz| > C~1e!/C||z|| for some new positive constant C' and we conclude
that the eigenvalues of M all have positive real parts.

Now consider the case of general (n4,n_) and assume first that (A) holds.
Then we have the M-invariant decomposition, R™ = Ly & L where dim (L1) =
n4 and U(M|Li) belongs to the open right half plane in the 4+ case and to the

open left half plane in the — case. Hence we have positive definite quadratic forms
G4+ on L4 such that

1
tMax-0,(Gy) > C|x|2, xely.

Then G = G4 @ (—G_) (defined in the obvious way) has the required properties
in (B).

Conversely, assume that (B) holds. Let er be an ni-dimensional subspace
on which G is positive definite. By (10.28), we have for all z € R",

1
Wz, 0:)G(z) = G(z), C>0,

soif x € EJr, we get
G(e™Mz) > et/CG(z), t>0,

and hence with a new constant C > 0,
1
letMy| > " e/Clz|, t>0.
C
Similarly, if dim (E,) =n_ and G is negative definite on L_, we get
1 ~
letM | > Oe‘t|/c|x| , zel_, t<0.

Now we have the M-invariant decomposition

R"=L,®Lo®L_,



262 F. Hérau, M. Hitrik, and J. Sjostrand Ann. Henri Poincaré

where LE, L(():, LC are the sums of generalized eigenspaces of M corresponding
to the eigenvalues with real parts > 0, = 0 and < 0 respectively. We see that
necessarily, L1 N (Lo @® L_) =0, so

ny = dim E+ S dlmL+ .

Similarly,
n_ =dimL_ <dimL_,
sodim Ly =ny,dimL_ =n_, dim Ly =0, and (A) follows. O

If B > 0, then (10.27) with strict inequality for z # 0, and Lemma 10.1 imply
that v has ny eigenvalues with + real part > 0, where (n,n_) is the signature of
@' (o). It follows in that case that F), has no real eigenvalues. This last conclusion
also follows from [22]. Indeed, in that case the quadratic approximation p°(z,¢)
of p at (x9,0) is elliptic in the sense that [p°(z,&)| « |2|? +]£|? and takes its values
in an angle —7 +¢ < argp? < 5 — ¢ for some € > 0.

Now return to the general case, when we only assume (10.26) and ¢ = ¢ (xq)
is non-degenerate of signature (ny,n_).

We next make some remarks about the quadratic approximation p® of p at

(ZII(),O).

Proposition 10.2.  a) Assume that the matriz A¢" of 1/_?_ has m4 eigenvalues
with + real part > 0, my +m_ =n. Then there exists a real quadratic form
G(x,€) on R?™ such that

Rep®((z,&) +ieHg(x,€)) > g|(a:,£)|2, (z,) eR™, 0<e<1. (10.29)

b) Conversely, assume that there exists a quadratic form G such that (10.29)
holds. Then A¢"” has ny eigenvalues with + real part > 0, where (ny,n_) is
the signature of ¢"(0).

Recall that the condition (4.21) implies the existence of G as in a) of the
proposition. (The converse is not true however. It is easy to find examples of purely
imaginary quadratic forms p® for which there exist G as in a) of the proposition.)

Proof. a) Choose G(x,€) of the form G(x) + G(§), so that Hg(x,&) = (Gi,—G).
Recall that p¥ is the quadratic approximation of p at (z9, 0), obtained from (10.19)
by freezing A; ;. at z¢ and replacing 9,¢ by ¢"z = (¢°) (z), ¢" = ¢ (x0).

We get
Repl(2,6) = > Bj(&iék + 00,6°0:,6°)

Jik

+26 [ D Cir(05,8°)00,G =D Cin(¢"0:G)r&; | + O(*|(x,€)1%)

3k 3k
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so it suffices to have

C¢”x-8wG2é|x|2 on ¢ 'N(B), (10.30)

¢"cg-agézé|g|2 on N(B), (10.31)

where we also used the antisymmetry of C' in the last equation. This would follow
from

AG'e-0,G > L, ¢"AC-0G > LI, nEeR",

and in order to find such functions G and C:*, it suffices to apply Lemma 10.1 to
the isospectral matrices A¢” and ¢” A.
b) Let G be as in (10.29). The quadratic form

pe(x,€) = p’(expicHg(z,€)) = p°(x,€) +ieHgp” + O(?)
is elliptic on the real phase space and takes its values in an angle
elm3+&378l[0, 400,
so we know from [22] that Fy,o has no real eigenvalues.
On the other hand p? and p" are related by a canonical transformation, so
F,o and F),, are isospectral. Hence A¢’” has m4 eigenvalues with + real part > 0,

pe
where m+m_ = n. To see that my = ny, we just replace B by B+401,0 < § < 1,

to reduce ourselves to the elliptic case, and apply the observation after the proof
of Lemma 10.1. O

10.3. The subprincipal symbol
We next look at the subprincipal term in (10.13). Write

dxk ZAVkawy s A(diCk)J = ZAmkaiy )

so the second sum in (10.13) becomes

20 S ol Ay o dal0l, =203 (¢ 0 )5, 0 da D),

gk gV

which simplifies further to
1 /\ ]
2h E o 'A)(dz;) 0z, - (10.32)

Now we restrict the attention to a non-degenerate critical point xg of ¢ and
we shall compute the subprincipal symbol of —A 4 at the corresponding doubly
characteristic point (xo,0). At that point ¢” oA : T M — T M is invariantly
defined and it is easy to check that (10.32) is also invariantly defined: we get the
same quantity if we replace dz1,...,dzy, Oz, .., 0, , DY Wi,... Wy, Wi, ..., Wk,
where wi,...,w, is any basis in the complexified cotangent space and wy, ..., w}
is the dual basis of tangent vectors for the natural bilinear pairing.
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Assume that the equivalent conditions of Proposition 10.2 hold and denote
the corresponding eigenvalues (that are also the eigenvalues of ¢”o'A) by A1, ..., A\,
with ReA; > 0for 1 < j <ni and with ReA\; <Oforny +1<j<n=ny+n_.
The eigenvalues of F}, are then £2¢); (in view of (10.25) and the isospectrality of
F,, and iF, reviewed prior to Lemma 8.1), so

tr F), == Z Zm - Z (10.33)

uea(Fp) ny+1
Im pu>0

The subprincipal symbol of the first term in (10.13) (at (x0,0)) is equal to

1. . .
Z Aj o =ik + 0o, 6,16 + O, 0} = — Z Aj
7,k Jik
= —tr(A¢") == _\;. (10.34)

1

The eigenvalues of . (¢" o tA)(dxj)AagJUj on the space of m-forms are easily
calculated, if we replace dx1, ..., dz, by a basis of eigenvectors w, ..., w, of ¢""'A,
so that

(¢ 0 A)(w)) = \jw; ,
and 0, by the corresponding dual basis vectors wy. (Here we assume to start
with that there are no Jordan blocks. This can be achieved by an arbitrarily small

perturbation of A, and we can extend the end result of our calculation to the
general case by continuity.) We get

> (¢ o tA) (dxy) 0l = Z Nwhwsd . (10.35)
J
A basis of eigenforms of this Operator is given by wi N Awj s 1< g <o <
- < jm < n and the corresponding eigenvalues are A;, +--- 4+ ;.

Let Sp be the subprincipal symbol of (10.13) at (x,0). Then the eigenvalues
of

2t~er +Sp, acting on m forms

are

ny n n n
DN DN N2 N =2 [ A N D N
1

’I’L++1 1 n++1
1<ji < <jm<n. (10.36)
We conclude that if m # n_, then all the eigenvalues have a real part > 0 and if

m = n_, then precisely one eigenvalue is equal to 0, while the others have positive
real part.
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10.4. A symmetry for adjoints

Our last remark in this section concerns symmetry relations for the A, % adjoints.
If D: L2(Q; AFT*Q) — L2(; NVT*Q), then a simple calculation shows that

DA = (AR (14)) T DH (N (A)),

where D* denotes the adjoint with respect to the measure pu.
We also have

(u[v)a = (v[u)y

Playing with these relations we see that
D= (DA,*)tA7* .
This can be applied to —A 4 and we get
(AL = —Ay.

11. The double well case
In this section we assume that
M=R", A= A(x) isindependent of z, and invertible. (11.1)

We decompose A as in (10.14) and assume (10.26). Let ¢ € C*°(R™; R) be such
that

Iye(x) = O0(1), 03 ((BO:¢,0,¢)) = O(1), |a|>2. (11.2)
Consider P(@) = —A(q) which according to (10.15) becomes
q) = ZhD Bj thmk + Z 1_7 rkd)) htr (Bd)”)

_|_Z Ik¢ jkha +h8r o Jk( Ik¢))

+ 2hz O, 0, 0)da A(day)? . (11.3)
jok
Apart from the third and the last terms which are O(h) with all their deriva-
tives, this is of the form (2.1) with b; i = By, ¢;(z) = >, Cj 10,0, po(z) =
(BOy, 05 ¢). We define pa, p1,po as in Section 2 and see that (2.4)—(2.7) hold.
Assume that

¢ is a Morse function with critical points z1,...,2xy € R", (11.4)
|¢'(x)| = 1/C, || = C. (11.5)

Let C ={p;; j =1,...,N} where p; = (2;,0) € T*R". Then p; are critical points
with critical value 0 for P2, 1, po- Since A is invertible, N(B) N N(C) = 0, and
hence (4.4) holds. We adopt the dynamical assumptions (4.21), (4.22) (or equiva-
lently (4.21), (4.24)) and (4.23). Then we can apply the results of Sections 8, 9 to
P9 since neither the presence of the bounded subprincipal symbol in (11.3) nor
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the non-scalar nature of the Operators has any serious influence. In the preceding
section we saw that we are in the case when the conditions of Proposition 10.2 are
fulfilled. The only change in Theorem 8.3 is that the 1 in (8.24) are of the form

S (Folp) + 7 (11.6)

1 n
R oA
ik ; E Vj kAo + 9

1=1
where «; ;; is any eigenvalue of the subprincipal symbol Sp) at (z;,0). From the
calculations in Subsection 10.3 we notice that the y;, will be confined to a sector
{0}U{largz| < m/2—1/C} around [0, +oco[ and it is precisely when z; is of index ¢
(i.e., when the Hessian of ¢ at x; has precisely g negative eigenvalues) that one of
the pj, may be equal to 0.
We now add more specific conditions for the double well case. Assume that

¢ has precisely three critical points, two local

minima Uy, and a “saddle point” Uy of index one. (11.7)

Then ¢(x) — +oo with ¢(z) > }|z|, for [z] > C.

Put S; = ¢(Up) — ¢(U;), j = %1, so that S; > 0. The set ¢~ (] — 00, ¢(Up)|)
has precisely two connected components Dj, j = £1, determined by the condition
U; € Dj;. Under these assumptions we know that PO = —Aff) has precisely
two eigenvalues g, 1 = o(h) spanning a corresponding 2-dimensional spectral
subspace E(©). Actually one of these two eigenvalues, say ji, is equal to 0 with
e~?/" as the corresponding eigenfunction and since a truncation of this function
can be used as a quasimode near each of Uiy we also know that p; = O(h™>)
(cf. (11.13)). Moreover, —AS) has precisely one eigenvalue 13 = o(h) and —A(f)
has no eigenvalues = o(h) for k > 2. Since our Operators are real we know that
the spectra are symmetric around the real axis, hence pg, pt1, 11 are real. From the
intertwining relations

1 0 0) ;A,* A, x 1
—Ag)d¢ = d¢(_A54))7 _AEA)C%, = _d¢ ASA) )

we then also know that fq = .
In fact, when B > 0 it follows from the ellipticity and the estimates in Sec-
tion 2 that all eigenforms and generalized eigenforms corresponding to an eigen-

value in D(0, Ch) belong to S(R™), so if u3 # 0 and (—Af) —p)u=0,u€ L?
then v € S(R™) and 0 # dgu € S is an eigenform for —Afj) with the same eigen-
value. A priori we cannot exclude that p; = 0 and that —Aff)u = Conste /",

Then again, 0 # dgu € S is a corresponding eigenvector of —AS). In the general
case, we let 0 < B. — B =: By when € \ 0. (Take for instance B, = B + €l.)

On a small circle D(0,h/C) we know that (P? — 2)~! = O(;,) uniformly for
0<ex 1. 1If (Péq) —2)u = v, u,v € S (for ¢ = 0), then (Pe(q) —2)u = v+ 7
re — 0, so (Pe(q) —z) w=u-— (Pe(q) —2)" e — u, € — 0. Since (P@ — 2)(S) is
dense in L? we conclude that ( (D) _ 2)7t — (P — 2)~! strongly for |z| = h/C.
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We have then the corresponding fact for the finite rank spectral projections and
their compositions with Pe(q):
1 1
/ (z— P.)"'dz and / 2(z — P) tdz.
2mi Jyz1=n/c 2mi J)z1=n/c

These are finite rank Operators and converge therefore in norm. It follows that
o(P9YND(0,h/C) — o(P9)YND(0,h/C), when €—0, (11.8)
so we get 11 = pq also in the general case.
Let x; € C5°(Dj) be equal to 1 on D; N ¢~ (] — 00, p(Up) — €o]) for €9 > 0
fixed but arbitrarily small. Consider
£ = h" e (h)e™ n@@=0WUN () j =41, (11.9)

where ¢; ~ ¢jo + hej 1 +--- > 0 is a normalization constant with c; o > 0, such
that

Ifll=1. (11.10)
We also have
PO(f;) = [PO, y,](cje™ » @@ =90y — O(h~Nog=n(Si=0)y - (11.11)
for some Ny > 0.
If ,
1
o = / — pOy-1g =9D |0 11.12
omi ), PO o (11.12)

is the spectral projection of P(9) onto E(®) we know from Theorem 8.4 that I1(®) =
O(1). It follows from (11.11) that

e, =TOf = f; + O(h N n(Si=0)) in L2, (11.13)
In fact, we write (11.11) as P(O)fj =7,
(z = PO)(fj) =zf;— 15,
_ 1 4
@—ﬂwlﬁ:2ﬁ+@—P@)%lw

and integrate, using the bounds on the resolvent provided by Theorem 8.4.
From (11.13) we see that

e =1+ O(hNeemn(Sim<o)y, (11.14)
(erle—1) = O(h™ N2 h (Smin=co)y (11.15)

where
Smin = min(S_l, Sl) . (1116)

Let E™M be the one-dimensional eigenspace of P(!) corresponding to 1. From
an easy extension of Theorem 9.1 to the non-scalar case with the presence of other
non-resonant wells (Ux;) as in Remark 9.2, we know that E(!) is generated by an
eigenform

eo(z;h) = xo(x)e P+~ T ag(z; h) + O(e /M) (11.17)
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where xo € C§°(neigh (Up)) is equal to one near Uy, Sy > 0,
aop(x; h) ~ Zao,k(x)hk
0

is a symbol as in Theorem 9.1 with ag0(Up) # 0, and ¢4 € C°°(neigh (Up); [0, 0o[)
satisfies

¢+ (@) = o — Ul (11.18)
and solves the eikonal equation

q(z, ¢ () =0, (11.19)
with ¢ = p2 + p1 — po,
p2 = (B(@)&,€), pi(x,€) =2(C(x)¢'(x), &), po(x) = (B(x)¢'(x),¢'(x)) .

Ay, is the stable outgoing manifold through (Up,0) for the H,-flow and
recall that ¢/ (Up) > 0 by Proposition 8.2. (Similarly we have a stable incoming
manifold Ay_.) Let k+ be the number of eigenvalues of the linearization of Hy

at that point with =+ real part > 0, so that k; +k_ =n. Let K, K_ C Ay be thqé
corresponding stable outgoing and incoming submanifolds of dimension k. and k_
respectively. Then K C Ay, , K_ C Ay_ and ¢ — ¢(Uy) — ¢+ vanishes to the
second order on 7, (K4). Since ¢'(Up) has signature (n — 1, 1), we conclude that
dim Ky =n —1, dim K_ = 1. (This also follows from Proposition 10.2.) It is also
clear that Ay, Ay, intersect cleanly along K, so we get

2

¢+ — (¢ — ¢(Uo)) ~ dist (2, 1 (K1),

¢ — ¢(Up) — ¢ dist (z, m, (K_))°.

We next make some remarks about the adjoint Operator —Ay = (—A A)tA’*

(cf. Subsection 10.4). The principal symbol is ps — ip1 + po = p(z, —§) = p(x;, &)

and the corresponding real “¢”-symbol is ¢(z,§) = g(z, —¢). Since our dynamical

conditions are invariant under a change of sign of the H), -direction, all our as-

sumptions are equally valid for —A:,. This also holds for the geometric discussion

above, so if Ay=, Ay~ denote the outgoing and incoming Hg-invariant Lagrangian

manifolds through (Up,0) and Ki C A, the outgoing/incoming manifolds for
Hq|A¢ (noting that ¢ = 0 on Ay), then dim K} =n — 1, dim K* =1 and

(11.20)

0% — (¢ — 6(U0)) ~ dist (2, m,(K7))"
b — ¢(Up) — ¢*  dist (z, m (K*))”.

In view of the general relation
Ji(Hq) = —Hz, where J:(x,8)— (x,-€), (11.22)

we see that Ag» = J(Ag,), Agy = J(Ag_), or more simply
(bi = _¢+7 ¢i = _¢* ) (1123)

(11.21)
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giving in particular from (11.20), (11.21),

¢ — d(Up) + ¢ dist (2, 7o (K_))°,

11.24
o — o&(Up) + ¢4  dist (x77rw(Kf))2. ( )

Let pf = 0, p7 be the two eigenvalues of P = —Ag) that are o(h) and
let Hio) be the spectral projection onto the corresponding spectral subspace Eﬁo).
Then ¢t = " f;, j = =1, span E\”, and satisfy (11.13). Similarly for P!V =

_Agx) we have the generating eigenform
et (z;h) = xo(z)e »r @1k (zh) + O(e™ /M) in L2 (11.25)

for the one dimensional eigenspace ES) corresponding to p].
Now, using that our eigenvalues and Operators are real, we know by duality
that
py = pa s (11.26)

and that (E\”), E©) and (B, E®) are dual pairs for the scalar products (u[v) 2
and (ulv) 4 respectively. In fact, ((z — P\?)~1)4* = (z — P@)~L,

From Subsection 10.3 we know that ag o(Up) is an eigenvector corresponding
to the negative eigenvalue of ¢ o ‘A at Uy, and ag o(Up) is an eigenvector corre-
sponding to the negative eigenvalue of ¢” o A. Since (¢ 0 A)4* = ¢/ oA, we know
that the two eigenvalues are equal and that the A-product of the two eigenvectors

is # 0;

(ag,0(Uo)]ao,0(Uo)) , #0. (11.27)
It follows that (efjleg)a «~ 1 and after renormalization of e we may assume that
(eglen)a = 1. (11.28)
Similarly, using (11.10)
(eflex) =k +O(e™cn), j k=1 (11.29)

Let (A_1 A1) be the matrix of dg : E(® — E() with respect to the bases
(e—1, e1) and (ep). (Strictly speaking, we approximate our operators by elliptic
ones as in (11.8) and pass to the limit.) Let

AT,
A

be the matrix of d?’* for the same bases. The eigenvalue u; can be viewed as the
second eigenvalue of d27*d¢ : B — E© or equivalently as the scalar d¢d£’* :
E®M — EM (using also that P() has no eigenvalue = o(h)). Either way, we get

n1 = )‘tl)‘fl + )\I)\l . (1130)
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We get
Ak = (e5ldgen)a, k==£1, (11.31)
A = (g;ld) " e)a, j =1, (11.32)
where )
(9-1 1) = (e*1 e}) (14 O(e cn)) (11.33)

is the base in Eio) that is dual to (e,l el). Here the complex conjugate signs are
superfluous since we work with real Operators, eigenvalues and functions.

Let x € Cg°(neigh (Up); [0,1]) be equal to 1 near Up. Using that dge_1 =
A_1€e9, we get, dropping the bars from now on,

A1 = (egldge—1)a (11.34)
= (eplxdge—1)a+ A1 (5] (1 — x)eo) ,
= (ejlxdse_1)a + O(e™cn)A_y.
Here
(chlxdge-1)a = (egllx. doler) , + (5" cGlxe-1).a. (11.35)
Now the matrix of d;47* : E,El) — E,EO) with respect to the dual bases is the adjoint

of the one of dy : B — EW) g0 d;f’*e(’g = A_19-1 + Mgi1, and expressing g; as
linear combinations of the e} by means of (11.33) and using (11.13) for the e’ ; we
see that the last term in (11.24) is of the form

(A2 e5lxe—1)a = O(e™En)A_y + O(e™n)A;. (11.36)
Thus we have obtained
(1 +0(e” ch )))\,1 +O(e” cn A1 = (e§|[x, d¢]e,1)A
= —h(ejl(dx) Ne-1) ,, (11.37)

and we shall study the last expression. The contribution from the remainder
in (11.13) is O(h~N2)exp L (=S_1 + o — &) = O(1)e™ #5-1+20) if we choose €
small enough. A similar estimate holds for the contribution from the remainder
term in (11.25). As we shall see, the contribution from the leading terms in (11.13),
(11.25) will be larger. It is equal to

—c_1(R)h} 2 / X—1(2){ A(x)af (x; k) |dx (z) ye ™ h @ @Fe@=eU-0) gz (11.38)
Here by (11.24),
¢ (2) + ¢(x) — d(U-1) = ¢} + (¢(x) — 6(Uo)) + S-1
~ S_q +dist (z, WI(K_))Q, (11.39)

so we expect (11.38) to behave like some power of h times e~ n5-1 with the main
contribution coming from a neighborhood of supp (dy) N supp (x—1) N 7 (K_).
Now ¢(z) — ¢(Up) v~ —|z — Up|? on 7, (K_) while y_; has its support in D_; and
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equals 1 in the subset of D_; where ¢(z) — ¢(Up) < —ep with €y arbitrarily small.
Because of the presence of dx which has its support in an annular region around
Uy, we see that x_1(x) = 1 in neigh (D_; Nsupp (dx) N7 (K_)), so we can forget
about y_1 in (11.38) and just integrate over neigh (supp (dx) N7, (K_1), D_1).
Let us look at (A(x)ag o(x; h)|dx(21)) at a point x1 € supp (dx) N, (K_). At
Uo we know that ag  is an eigenvector of ¢" o A associated to the negative eigen-
value, so Aag  is a corresponding eigenvector for A¢” which is the linearization of
;Hq‘qu. Hence Aag o at Up is tangent to 7, (K ). This will remain approximately

true at a7 since the latter point is close to Uy. Choosing x to be a “circular”
standard cut-off, we see that (Aag o, dx) is non-vanishing of constant sign at every
point x1 € m,(K_) N D_; where dy # 0.

By stationary phase it is now clear that the integral (11.38) is equal to

h2l_y(h)e 151 0y~ l qg+hl qq+-, L10#0. (11.40)
Returning to (11.37) and modifying ¢_; by an exponentially small term, we get
(14+0(e™ ) Aq + O(e™cn )My = h2l_y(h)e w51, (11.41)
Similarly,

Oe™ )y + (1+O(e™en)) Ay = h2ly(h)e™ #51,

bho~lig+hbig+---, Lio#0. (11.42)
Inverting the system, we get
Aot Ca (hEloy(h)emn S
== ]. 1 1 . ].].4
(Al) (140 cw)( et (11.43)

Now turn to A} in (11.32). In view of (11.33), we have
)\*, _ 1 a_1
</\>1k1> =(14+0(e"cn)) (051 > ; (11.44)

aj = (dg€jleo)a = (eo|dgpe])u
which can be identified with the expression (11.31) after replacing A by ‘A and
making the corresponding substitutions, ej — eo, e; — €j. Hence we have the
analogue of (11.43),

A\ 1 (asr) _ 1 (hatr (h)e n S
</\T ) = (1407 en)) (Oél > = (1407 en)) ( h2li(h)e w51 )’
Gh) ~ g+ hlG 4+, Lo#0. (11.45)
We finally claim that £;of7 , > 0. Indeed, this number is real and different
from zero and if we deform our matrices to reach the selfadjoint case (with A > 0)

we see that we have a positive sign.
Combining this with (11.30) we get the main result of this work:

where
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Theorem 11.1. Let P = —Aff) where we assume (11.1), (11.2), (11.7). We also
assume that P satisfies the additional dynamical conditions (4.21), (4.22) (or equiv-
alently (4.21), (4.24)) and (4.23). Then for C > 0 large enough, P has precisely 2
eigenvalues, 0 and w1 in the disc D(0,h/C) when h > 0 is small enough. Here uq
is real and of the form

i =h (al(h)e_zsl/h + a,l(h)e—zs—l/h) : (11.46)
where a;(h) are real, aj(h) ~ ajo+ajih+---, ajo >0, 5; = ¢(Uy) — &(Uj;).
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