
Ann. Henri Poincaré 6 (2005) 269 – 281
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A Nonlocal Diffusion Equation whose Solutions Develop
a Free Boundary

Carmen Cortazar, Manuel Elgueta and Julio D. Rossi∗

Abstract. Let J : R → R be a nonnegative, smooth compactly supported function
such that

∫
R

J(r)dr = 1. We consider the nonlocal diffusion problem

ut(x, t) =

∫

R

J

(
x − y

u(y, t)

)

dy − u(x, t) in R × [0,∞)

with a nonnegative initial condition. Under suitable hypotheses we prove existence,
uniqueness, as well as the validity of a comparison principle for solutions of this
problem. Moreover we show that if u(·, 0) is bounded and compactly supported, then
u(·, t) is compactly supported for all positive times t. This implies the existence of
a free boundary, analog to the corresponding one for the porous media equation,
for this model.

1 Introduction

Let J : R → R be a nonnegative, smooth function with
∫

R
J(r)dr = 1. Assume

also that J is supported in [−1, 1], is strictly increasing in [−1, 0] and strictly
decreasing in [0, 1].

Equations of the form

ut(x, t) = J ∗ u − u(x, t) =
∫

R

J(x − y)u(y, t)dy − u(x, t), (1.1)

and variations of it, have been recently widely used to model diffusion processes,
see [2], [4], [5], [6], [8]. As stated in [5] if u(x, t) is thought of as a density at the point
x at time t and J(x − y) is thought of as the probability distribution of jumping
from location y to location x, then (J ∗u)(x, t) is the rate at which individuals are
arriving to position x from all other places and −u(x, t) = − ∫

R
J(y − x)u(x, t)dy

is the rate at which they are leaving location x to travel to all other sites. This
consideration, in the absence of external sources, leads immediately to the fact
that the density u satisfies equation (1.1).

Equation (1.1), so-called nonlocal diffusion equation, shares many properties
with the classical heat equation

ut = ∆u
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such as: bounded stationary solutions are constant, a maximum principle holds for
both of them and, even if J is compactly supported, perturbations propagate with
infinite speed. By this we understand that if u is a nonnegative nontrivial solution,
then u(x, t) > 0 for all x ∈ R and all t > 0 no matter whether the nontrivial initial
condition u(x, 0) vanishes in some region.

Another classical equation that has been used to model diffusion is the well-
known porous medium equation,

ut = ∆um

with m > 1. This equation also shares several properties with the heat equation but
there is a fundamental difference, in this case if the initial data u(·, 0) is compactly
supported, then u(·, t) has compact support for all t > 0. In such a case, if the
support of the initial condition is a finite interval, one can define the right and left
free boundaries of the solution by

s+(t) = sup{x / u(x, t) > 0}

and
s−(t) = inf{x / u(x, t) > 0}

respectively. Properties and the behavior of the free boundary for the porous
medium equation have been largely studied over the past years. See for exam-
ple [1], [7] and the corresponding bibliography. It is worth mentioning that this
phenomena also arises in the context of the Stefan problem, see [3] and the refer-
ences therein.

The purpose of this note is to present a simple nonlocal model for diffusion
whose solutions, with compactly supported bounded initial data, develop a free
boundary. To do this we propose a model where the diffusion at a point depends
on the density. The simplest situation we can think of is when the probability
distribution of jumping from location y to location x is given by

J

(
x − y

u(y, t)

)
1

u(y, t)

when u(y, t) > 0 and 0 otherwise. In this case the rate at which individuals are
arriving to position x from all other places is

∫

R

J

(
x − y

u(y, t)

)

dy

and the rate at which they are leaving location x to travel to all other sites is

−u(x, t) = −
∫

R

J

(
y − x

u(x, t)

)

dy.
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As before this consideration, in the absence of external sources, leads immediately
to the fact that the density u has to satisfy

ut(x, t) =
∫

R

J

(
x − y

u(y, t)

)

dy − u(x, t).

As for the initial data, although we are mostly interested in functions u(·, 0) ∈
L1(R)∩L∞(R) it is more convenient, for technical reasons that will become clear
later, to consider a slightly more general set of initial conditions. So in this paper
we will deal with the problem

ut(x, t) =
∫

R

J

(
x − y

u(y, t)

)

dy − u(x, t) in R × [0,∞).

u(x, 0) = c + w0(x) on R,

(1.2)

where c ≥ 0, w0 ∈ L1(R) and w0 ≥ 0.
Most of the results contained in this note can be obtained in several dimen-

sions without many changes in the elementary arguments but, we have chosen to
treat the one-dimensional case for the sake of simplicity of the exposition.

We will address in this paper the questions of existence, uniqueness, com-
parison principles and some basic facts about the free boundary for solutions of
problem (1.2). Several further questions, such as the decay rate of solutions, the
speed at which the free boundary moves, the existence of the so-called waiting
times for the free boundary and many others, are left open. Also one can consider
equations involving a source term and to study, for example, the blow-up phenom-
ena. We hope such questions can be answered by us or by someone else in the near
future.

2 Existence and uniqueness

The existence and uniqueness result will be a consequence of Banach’s fixed point
theorem and it is convenient to give some preliminaries before giving its proof.

Fix t0 > 0 and consider the Banach space C([0, t0]; L1) with the norm

|‖w‖| = max
0≤t≤t0

‖w(·, t)‖L1 .

Let
Xt0 =

{
w ∈ C([0, t0]; L1) / w ≥ 0

}

which is a closed subset of C([0, t0]; L1).
We will obtain the solution in the form u(x, t) = w(x, t) + c where w is a

fixed point of the operator Tw0 : Xt0 → Xt0 defined by

Tw0(w)(x, t) =
∫ t

0

e−(t−s)

∫

R

J

(
x − y

w(y, s) + c

)

dy ds

+e−tw0(x) − c(1 − e−t).
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The following lemma is the main ingredient of our proof.

Lemma 2.1 Let z0, w0 be nonnegative functions such that w0, z0 ∈ L1(R) and
w, z ∈ Xt0 , then

|||Tw0(w) − Tz0(z)||| ≤ (1 − e−t0)|||w − z||| + ||w0 − z0||L1(R).

Proof. We have
∫

R

|Tw0(w)(x, t) − Tz0(z)(x, t)| dx

≤
∫ t

0

e−(t−s)

∫

R

∣
∣
∣
∣

∫

R

(

J

(
x − y

w(y, s) + c

)

− J

(
x − y

z(y, s) + c

))

dy

∣
∣
∣
∣ dx ds

+e−t

∫

R

|w0 − z0|(y) dy.

Now set
A+(s) = {y / w(y, s) ≥ z(y, s)}

and
A−(s) = {y / w(y, s) < z(y, s)}.

We have now
∫

R

∣
∣
∣
∣

∫

R

(

J

(
x − y

w(y, s) + c

)

− J

(
x − y

z(y, s) + c

))

dy

∣
∣
∣
∣ dx

≤
∫

R

∫

A+(s)

(

J

(
x − y

w(y, s) + c

)

− J

(
x − y

z(y, s) + c

))

dy dx

+
∫

R

∫

A−(s)

(

J

(
x − y

z(y, s) + c

)

− J

(
x − y

w(y, s) + c

))

dy dx.

Since the integrands are nonnegative we can apply Fubini’s theorem to get
∫

R

∫

A+(s)

(

J

(
x − y

w(y, s) + c

)

− J

(
x − y

z(y, s) + c

))

dy dx

=
∫

A+(s)

(w(y, s) − z(y, s))dy

and similarly for the integral over A−(s). Therefore we obtain
∫

R

∣
∣
∣
∣

∫

R

(

J

(
x − y

w(y, s) + c

)

− J

(
x − y

z(y, s) + c

))

dy

∣
∣
∣
∣ dx

≤
∫

R

|w(y, s) − z(y, s)| dy.
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Hence we get

‖|Tw0(w) − Tz0(z)|‖ ≤ (1 − e−t0)|‖w − z‖|+ ||w0 − z0||L1(R)

as desired. �

We can state now the main result of this section.

Theorem 2.1 For every nonnegative w0 ∈ L1 and every constant c ≥ 0, there
exists a unique solution u, such that (u− c) ∈ C([0,∞); L1), of 1.2. Moreover, the
solution verifies u(x, t) ≥ c and preserves the total mass above c, that is

∫

R

(u(y, t) − c) dy =
∫

R

w0(y) dy for all t ≥ 0. (2.1)

Proof. We check first that Tw0 maps Xt0 into Xt0 . Since w ≥ 0 we have

J

(
x − y

w(y, s) + c

)

≥ J

(
x − y

c

)

and hence

Tw0(w)(x, t) ≥
∫ t

0

e−(t−s)

∫

R

J

(
x − y

c

)

dy ds

+e−tw0(x) − c(1 − e−t) = e−tw0(x) ≥ 0.

(2.2)

Taking z0 ≡ 0, z ≡ 0 in Lemma 2.1 we get that Tw0(w) ∈ C([0, t0]; L1).
Now taking z0 ≡ w0 in Lemma 2.1 we get that Tw0 is a strict contraction in

Xt0 and the existence and uniqueness part of the theorem follows from Banach’s
fixed point theorem.

We finally prove that if u = w + c is the solution, then the integral in x of w
is preserved. Since

0 =
∫ t

0

e−(t−s)

∫

R

J

(
x − y

c

)

dy ds − c(1 − e−t),

we can write

w(x, t) =
∫ t

0

e−(t−s)

∫

R

(J
(

x − y

w(y, s) + c

)

− J

(
x − y

c

)

) dy ds + e−tw0(x).

The integrand in the above formula is nonnegative so we can integrate in x and
apply Fubini’s theorem to obtain

∫

R

w(x, t)dx =
∫ t

0

e−(t−s)

∫

R

w(y, s) dy ds + e−t

∫

R

w0(x)dx (2.3)
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from where it follows that
d

dt

∫

R

w(x, t)dx = 0

and the theorem is proved. �

We will need in what follows the following lemma which is a direct corollary
of the proof of Theorem 2.1 and is a first version of the comparison principle of
Section 3 below.

Lemma 2.2 With the above notation if 0 ≤ w(x, 0) ≤ M for all x ∈ R, then
w(x, t) ≤ M for all (x, t) ∈ R × [0,∞).

Proof. Under the given hypotheses one has that if w(x, t) ≤ M , then

Tw0(w)(x, t) =

∫ t

0

e−(t−s)

∫

R

J

(
x − y

w(y, s) + c

)

dy ds + e−tw0(x) − c(1 − e−t)

≤
∫ t

0

e−(t−s)

∫

R

J

(
x − y

M + c

)

dy ds + e−tM − c(1 − e−t) = M.

The lemma follows by the uniqueness of the fixed point for Tw0 . �
Lemma 2.1, Theorem 2.1, Lemma 2.2 and their proofs have several immediate

consequences that we state as a series of remarks for the sake of future references.

Remark 2.1 Solutions of 1.2 depend continuously on the initial condition in the
following sense. If u and v are solutions of 1.2, then

max
0≤t≤t0

‖u(·, t) − v(·, t)‖L1(R) ≤ et0 ||u(·, 0) − v(·, 0)||L1(R)

for all t0 ≥ 0.

Remark 2.2 The function u is a solution of 1.2 if and only if

u(x, t) =
∫ t

0

e−(t−s)

∫

R

J

(
x − y

u(y, s)

)

dy ds + e−tu(x, 0).

Remark 2.3 From the previous remark and Lemma 2.2 we get that if c > 0 and
u(·, 0) ∈ Ck(R) with 0 ≤ k ≤ ∞, then u(·, t) ∈ Ck(R) for all t ≥ 0. Moreover
if u(·, 0) is a compactly supported C1 function, then there exists a constant K
depending on c, J and w0 such that

|ut(x, t)| ,

∣
∣
∣
∣
∂u

∂x
(x, t)

∣
∣
∣
∣ ≤ K.
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Remark 2.4 A consequence of Remark 2.3 and of (2.1) is that if c > 0 and w0 is
a compactly supported C1 function, then

lim
|x|→∞

u(x, t) = c uniformly on compact intervals [0, T ].

Remark 2.5 It follows from inequality (2.2) that

w(x, t) ≥ e−tw(x, 0).

In particular, in the case that u(·, 0) ∈ L1(R), the support of u(·, t) does not shrink
as time increases. By this we understand that if u(x0, t0) > 0, then u(x0, t) > 0
for all t ≥ t0.

3 Comparison Principle

Comparison principles like the one below have proven to be a very useful tool in
studying diffusion problems.

Theorem 3.1 Let u and v be continuous solutions of 1.2. If

u(x, 0) ≤ v(x, 0) for all x ∈ R,

then
u(x, t) ≤ v(x, t) for all (x, t) ∈ R × [0,∞). (3.1)

Proof. We assume first that

u(x, 0) = c + w(x, 0) and v(x, 0) = d + z(x, 0)

with 0 < c < d and u(x, 0) < v(x, 0). Moreover we assume for a moment that
w(x, 0) and z(x, 0) are compactly supported C1 functions. In this case there ex-
ists δ > 0 such that u(x, 0) + δ < v(x, 0). Assume, for a contradiction that the
conclusion does not hold. In view of Remark 2.4 we have that there exists a time
t0 > 0 and a point x0 ∈ R such that u(x0, t0) = v(x0, t0) and u(x, t) ≤ v(x, t) for
all (x, t) ∈ R × [0, t0].

Let us consider the set B = {x ∈ R / u(x, t0) = v(x, t0)}. Clearly B is
nonempty and closed.

Let x1 ∈ B. We have then

0 ≤ (u − v)t(x1, t0) =
∫

R

(

J

(
x1 − y

u(y, t0)

)

− J

(
x1 − y

v(y, t0)

))

dy ≤ 0

which implies
u(y, t0) = v(y, t0) for all y ∈ (x1 − c, x1 + c).
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Hence B is open. It follows that B = R which is the desired contradiction since
(u(·, t0) − c) ∈ L1(R).

We now get rid of the extra hypothesis that w(x, 0) and z(x, 0) are compactly
supported C1 functions. In order to do this let wn(x, 0) and zn(x, 0) be sequences
of compactly supported C1 functions such that wn(x, 0) → w(x, 0) and zn(x, 0) →
z(x, 0) in L1(R) as n → ∞ and, moreover, un(x, 0) = c + wn(x, 0) < vn(x, 0) =
d + zn(x, 0). Let un and vn be the solutions with initial data un(x, 0) and vn(x, 0)
respectively. By the previous argument one has un ≤ vn an the result follows by
letting n → ∞ in view of Remark 2.1.

In order to prove the theorem in the general case pick strictly decreasing
sequences an and bn such that 0 < an < bn and bn → 0 as n → ∞. Let un and
vn be the solutions with initial conditions un(x, 0) = u(x, 0) + an and vn(x, 0) =
v(x, 0) + bn respectively. According to the previous argument one has un ≤ vn.
Moreover un+1 ≤ un and vn+1 ≤ vn. By Remark 2.2, after an application of the
monotone convergence theorem, it follows that un(x, t) → u(x, t) and vn(x, t) →
v(x, t) as n → ∞ and the theorem is proved. �

An immediate consequence of the comparison principle and Remark 2.4 is
the following corollary that extends Remark 2.4 to the case c = 0.

Corollary 3.1 If c = 0 and w0 is a compactly supported C1 function, then

lim
|x|→∞

u(x, t) = 0 uniformly on compact intervals [0, T ].

4 The free boundary

In this section we will prove that solutions of (1.2), with compactly supported
continuous initial data, do have a free boundary in the sense that

s+(t) = sup{x / u(x, t) > 0} < +∞

and
s−(t) = inf{x / u(x, t) > 0} > −∞

for all t ≥ 0. It follows from Remark 2.5 that s+ and s− are nondecreasing and
nonincreasing functions respectively. Moreover we will also prove in this section
that the supports of u(·, t) eventually fill at least half a ray of the space, in partic-
ular either lim

t→∞ s+(t) = ∞ or lim
t→∞ s−(t) = −∞. In the case that J is even, that is

the case of an isotropic media, the supports eventually cover the whole of R.

The following theorem implies the existence of free boundaries.

Theorem 4.1 If u(·, 0) is compactly supported and bounded then u(·, t) is also com-
pactly supported for all t ≥ 0.
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Proof. Due to the scaling invariance of the equation, namely if u(x, t) is a solution
then for any λ > 0 the function vλ(x, t) = λu(x

λ , t) is also a solution, we can
restrict ourselves to initial data supported in [−1, 1] and such that sup

x∈R

u(x, 0) ≤ 1.

We note first that

ut(x, t) ≤
∫

R

J

(
x − y

u(y, t)

)

dy. (4.1)

Therefore, since 0 ≤ u ≤ 1, we get by (4.1) that

u(x, t) ≤ 1
2

for all t ≤ 1
2

and all x such that |x| ≥ 1.

Now if |x| ≥ 2 and t ≤ 1
2 we have that |x − y| ≤ u(y, t) implies that |y| ≥ 1

and hence u(y, t) ≤ 1
2 . Therefore, again by (4.1), we have

u(x, t) ≤ 1
4

for all t ≤ 1
2

and all x such that |x| ≥ 2.

We look now at the case |x| ≥ 2 + 1
2 and t ≤ 1

2 . In this case |x − y| ≤ u(y, t)
implies that |y| ≥ 2 and hence u(y, t) ≤ 1

4 . Again by (4.1), we have

u(x, t) ≤ 1
8

for all t ≤ 1
2

and all x such that |x| ≥ 2 +
1
2
.

Repeating this procedure we obtain by induction that for any integer n ≥ 1
one has

u(x, t) ≤ 1
2n+2

for all t ≤ 1
2

and all x such that |x| ≥ 2 +
n∑

k=1

1
2k

.

It follows that the support of u(·, t) is contained in the interval [−3, 3] for all t ≤ 1
2

as we wanted to prove. �

In order to prove our next result we need a preliminary lemma.

Lemma 4.1 If u(x, 0) is continuous and not constant, then the function

M(t) = max
x∈R

u(x, t)

is strictly decreasing.

Proof. It is clear, by comparison with a constant, that M(t) decreases as t increases.
Moreover by Remark 2.5 one has M(t) > c for all t ≥ 0. Fix t0 ≥ 0 and let t1 > t0.
Let us consider the set

C = {x / u(x, t1) = M(t0)}.
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The set C is clearly closed. Since u(x, t) ≤ M(t0) for all t ≥ t0 we have that at
any point x0 ∈ C one must have

0 ≤ ut(x0, t1) =
∫

R

J

(
x0 − y

u(y, t1)

)

dy − u(x0, t1) ≤ 0.

This implies that u(x, t1) = M(t0) for all x in a neighborhood of x0 and hence
C is open. Consequently either C = R or C is empty. It is clear that C 
= R, so
C = ∅ and the lemma is proved. �

We are now in a position to prove that at least one of the free boundaries go
to infinity.

Theorem 4.2 Let u be the solution of problem 1.2 with c = 0 and w0 
= 0. Then
either

lim
t→∞ s+(t) = ∞ or lim

t→∞ s−(t) = −∞

and the supports of u(·, t) eventually cover an infinite half-ray of R. If J is an even
function the supports eventually cover the whole of R.

Proof. By comparison, and the invariance under translations of the equation, it is
enough to prove the theorem under the assumptions that w0 ∈ C1, its support is
the interval [−A, A] and it is symmetric with respect to the origin.

We claim first that the support of u(·, t) is not uniformly bounded. Assume
for a contradiction that there exists L > 0 such that u(x, t) = 0 for all x such that
|x| ≥ L and all t ≥ 0. Since

∫
R

u(x, t)dx =
∫

R
u(x, 0)dx > 0 there exists C > 0

such that
lim

t→∞ M(t) = C.

Let v(x, 0) be a smooth function supported in [−L − 1, L + 1] such that 0 ≤
v(x, 0) ≤ C and v(x, 0) ≡ C if x ∈ [−L, L]. Let us denote by v(x, t) the solution
of (1.2) with this initial condition. By Lemma 4.1 we have that

max
x∈R

v(x, 1) < C.

Now for any integer n > 0 let vn(x, 0) be a smooth compactly function
supported in [−L − 2, L + 2] such that 0 ≤ v(x, 0) ≤ C + 1

n and vn(x, 0) ≡ C + 1
n

if x ∈ [−L, L]. Assume further that

vn+1(x, 0) ≤ vn(x, 0)

and denote by vn(x, t) the solution of (1.2) with initial condition vn(x, 0). By
comparison it follows that

vn+1(x, t) ≤ vn(x, t).
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Using Remark 2.2 and the monotone convergence theorem one has

vn(x, 1) → v(x, 1) in [−L − 2, L + 2] as t → ∞.

Moreover, being the limit continuous the convergence is uniform by Dini’s theorem.
Consequently there exists n0 such that

max
x∈R

vn0(x, 1) < C.

On the other hand there exists t0 such that

u(x, t0) ≤ vn0(x, 0).

This implies, by comparison, that

max
x∈R

u(x, t0 + 1) < C

a contradiction that proves the claim.
We are ready now to prove the statement of the theorem.
We claim that if there exists x0 ≥ A such that u(x0, t) = 0 for all t ≥ 0, then

u(x, t) = 0 for all (x, t) ∈ [x0,∞) × [0,∞).

Indeed, let d > 0 and we will prove that

u(x, t) ≤ d for all x ≥ x0 and all t ≥ 0. (4.2)

Since u(x0, t) ≡ 0 one has

u(x, t) ≤ |x − x0| for all x ∈ R and all t ≥ 0.

Moreover u(x, 0) = 0 for all x ≥ x0. So if (4.2) does not hold, using Corollary
3.1, there exists a point x1 ∈ R with x1 ≥ x0 + d and a time t1 > 0 such that
u(x1, t1) = d and u(x, t) ≤ d for all (x, t) ∈ R× [0, t1]. As in the proof of Theorem
3.1 we consider the set

B = {x ≥ x0 + d / u(x, t1) = d}

which is clearly closed. Also at a point x2 ∈ B one has

0 ≤ (d − u)t(x2, t1) =
∫

R

(

J

(
x2 − y

d

)

− J

(
x2 − y

u(y, t0)

))

dy ≤ 0

which implies
u(y, t0) = d for all y ∈ (x2 − d, x2 + d).
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It follows that B is open and hence B = [x0,∞) which is a contradiction that
proves (4.2). Since d > 0 was chosen arbitrarily the claim follows. An analog of
the above claim holds for points −x1 < −A such that u(−x1, t) = 0 for all t ≥ 0.
Such a points x0 and x1 can not exist simultaneously because this contradicts the
fact that the supports of u(·, t) are not uniformly bounded. This, plus the fact
that if J and u(·, 0) are even functions then u(·, t) is even for all t ≥ 0, proves the
theorem. �

Finally we give an example of a nonsymmetric function J such that the
supports of solutions u(·, t), with compactly supported bounded initial data, do
not eventually cover the whole of R.

We will show that for a special choice of J the function

u(x) = x+ =
{

0 if x ≤ 0
x if x ≥ 0

satisfies

0 =
∫

R

J

(
x − y

u(y)

)

dy − u(x). (4.3)

It is immediate that if x ≤ 0, then
∫

R

J

(
x − y

u(y)

)

dy = 0

and hence (4.3) is satisfied.
As for the case x > 0 we have that |x−y|

y+
≤ 1 implies 0 < x ≤ 2y and hence

∫

R

J

(
x − y

u(y)

)

dy − u(x)

=
∫ ∞

x
2

J

(
x

y
− 1

)

dy − x

= x

(∫ 1

−1

J(r)
dr

(1 + r)2
− 1

)

.

Now we choose J such that, in addition to the hypotheses already made,
satisfies ∫ 1

−1

J(r)
dr

(1 + r)2
= 1

and (4.3) also holds.
The desired example follows now by a comparison argument, like the one of

the proof of Theorem 3.1, using the function x+, or a translation of it, as a barrier.
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