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Nondeterministic Dynamics and Turbulent Transport∗

A. Kupiainen

Abstract. Velocity fields occurring in fully developed turbulence are spatially rough
and give rise to the phenomenon of nonuniqueness of trajectories in the motion of
fluid particles even in the absence of noise. We review progress in understanding of
this phenomenon in the context of synthetic gaussian velocity ensembles.

1 Richardson law

The paradigmatic case of deterministic dynamics is given by the flow induced by
a smooth (possibly time dependent) vector field

dR
dt

= v(t,R) . (1)

Such flows often exhibit the phenomenon of deterministic chaos signaled by the
exponential separation of nearby trajectories:

ρ(t) ∼ eλtρ(0) . (2)

where ρ = R′ − R for two solutions R and R′ of (1) and the equation holds
for sufficiently small separations. The exponential separation leads to the lack of
predictability in the long time behavior of the flow. However, such dynamics is
still deterministic: in the limit of zero initial separation ρ(0) → 0 the trajectories
coincide: ρ(t) → 0.

A very different phenomenon seems to occur in the dynamics of small test
particles suspended in a turbulent fluid. Classical experiments on this phenomenon
were performed by L.F. Richardson [1] in the 1920’s. He was studying the motion
of balloons released in the atmosphere. Such motion is described by the equation
(1) where v(t,R) is the velocity field of the air.

The long time behavior of the trajectory of a single balloon once the mean
drift is subtracted tends to be diffusive

R(t)2 ∼ Dt . (3)

Diffusive asymptotics is observed in a variety of dynamical systems and its occur-
rence here is not a surprise.
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The surprising observation that Richardson made concerned the relative mo-
tion of two balloons. Richardson found this separation to behave as

ρ(t)2 ∼ At3 (4)

for a wide range of separations from the smallest scale to the scale where the dif-
fusive behavior (3) sets on. Thus the separation grows slower than exponentially
but faster than ballistically. Moreover, the constant A in (4) seems to be indepen-
dent on the initial separation ρ(0), seemingly having a nonzero limit as ρ(0) → 0!
The Richardson law (4) seems quite well confirmed by later experiments as well as
numerical simulations (for references see [2]) although the power 3 might only be
approximately correct in three dimensions. We conclude that the motion of test
particles in a turbulent fluid seems to exhibit properties that are very different
from those observed in smooth dynamical systems. To understand the source of
this discrepancy we need to digress on the properties of turbulent velocity fields.

2 Turbulent velocities

It is an experimental observation that the velocity field of a fluid in the regime
of homogeneous isotropic turbulence exhibits approximate scale invariance on a
wide range of length scales. Such fields are characterized by two length scales,
the dissipative scale η and the injection scale L. For atmospheric flows such as
considered by Richardson η can be of the order of a fraction of a millimeter whereas
L can be of the order of a kilometer. For spatial scales between η and L the
velocity field is approximately self similar: if we consider the difference ∆v(t, ρ) =
v(t, ρ) − v(t, 0) then for η << |ρ|, |�ρ| << L

∆v(t, ρ) ∼ �−α∆v(t, �ρ) . (5)

where ∼ means statistically, i.e. as a spatial, temporal or ensemble average and
α ∼ 1

3 . (5) holds only approximately for small moments

< (∆v(t, ρ) · ρ̂)n >∼ Cn|ρ|nα (6)

with significant corrections in the exponent for large n (so called intermittency).
The ratio L

η is proportional to R
3
4 where R is the Reynolds number of the flow (in

atmospheric flows R can easily be of the order 108). Hence η → 0 as R → ∞ and in
that limit the turbulent velocities loose their smoothness and become only Hölder
continuous in their spatial dependence, that is, the difference of the velocity at
two arbitrary nearby points scales as a sublinear power of the distance between
the points. Although R → ∞ is a mathematical limit it should be stressed that
smoothness of the velocity field is not the right assumption for scales larger than
a fraction of a millimeter in atmospheric flows. For such scales the right model is
one of Hölder continuous velocities.
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It is well known that the differential equation (1) need not have a unique
solution if v is only Hölder continuous. Indeed, the standard textbook example
v = xα, α ∈ (0, 1), in one dimension has two solutions x = 0 and x = ((1 −
α)t)

1
1−α starting from the origin. It is therefore natural to expect non-uniqueness

of trajectories in the turbulent fluid and seek an understanding of Richardson’s
observations from this phenomenon.

There is also a natural timescale related to the spatial scale r fluctuations
(“eddies”) in the velocity field. This is the so-called eddy turnover time τ(r) =

r
|∆v(r)| ∼ r1−2α ≡ r2β . For turbulent velocities β ∼ 1

3 . Thus it would be natural
to expect decorrelation of velocity differences in such time scales:

< ∆v(t, ρ)∆v(0, ρ) >= |ρ|2αf(
t

τ(|ρ|) ) (7)

with f falling off at infinity. There seems to be, however, scant experimental data
on (7), in particular on whether it might be true only in the Lagrangian frame.

3 Synthetic velocity ensembles

To gain further understanding how Richardson’s observations might be explained
in terms of the roughness of the turbulent velocities we will consider the equation
(1) with a velocity field with explicitly given gaussian statistics mimicking the
properties of real turbulent velocities described in the preceding section. It should
be noted however that high Reynolds number solutions to the Navier-Stokes equa-
tions are far from gaussian so gaussianity is a simplifying assumption.

Thus we assume v(x, t) is gaussian with zero mean and covariance satisfying
(7). Concretely, we take
〈
vi(t, r) vj(t′, r′)

〉
= A

∫

L−1<|k|<η−1
e−|t−t′|B k2β e i k·(r−r′)

kd+2α
P ij(k, ℘)

dk
(2π)d

. (8)

Let us discuss the various parameters in (8).

1. L is the largest length scale in the problem, modeling the injection scale of
turbulent velocities. It dominates the mean square velocity field:

〈
v(t, r)2

〉
= const

∫

L−1<|k|<η−1
|k|−2α−d dk

(2π)d
∼ L2α

Therefore we expect strong L dependence in the one particle motion.

2. η is the smallest length scale in the problem, modeling the dissipative scale of
turbulent velocities. For η �= 0 the velocities are smooth, but as η → 0 they loose
their smoothness and become only Hölder:

〈
∆v(t, r)2

〉
= const

∫

L−1<|k|<η−1
(1 − cos(k · r))|k|−2α−d dk

(2π)d
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which, as η → 0 is proportional to |r|2α for |r| << L. Note that this velocity
difference has both the η → 0 and the �L → ∞ limits. In those limits our velocity
ensemble becomes scale invariant:

∆v(t, r) ∼ λ−α∆v(λ2β t, λr) (9)

where ∼ means in law. It is believed that real turbulent velocities, i.e. solutions
of the Navier-Stokes equations, have the η → 0 limit but not the �L → ∞ limit.
Indeed, it is believed that

〈
(r̂ · ∆v(t, r))n

〉
= An(

L

|r| )
ζn |r|n3 (1 + o(

|r|
L

))

with ζn > 0 for n > 3. This aspect (intermittency) of turbulent velocities is thus
not modeled by our gaussian ensemble. Since the two particle motion (15) involves
velocity differences we expect it to be less sensitive to the large scales than the
one particle motion.

3. The factor

P ij(k, ℘) =
1 − ℘

d − 1
δij +

℘d − 1
d − 1

kikj

k2

involves the compressibility degree 0 ≤ ℘ ≤ 1 which can be used to interpolate
between incompressible velocities corresponding to ℘ = 0 and ones corresponding
to ℘ = 1 which are gradients of a potential (in one dimension necessarily ℘ = 1).

4. The two parameters A and B can be used to discuss limiting cases of the
ensemble. For B = 0 we have the frozen ensemble of time independent velocities

〈
vi(t, r) vj(t′, r′)

〉
= A

∫
e ik·(r−x′)

kd+2α
P ij(k, ℘)

dk
(2π)d

, (10)

whereas in the opposite limit A → ∞, B → ∞ with A
B held constant one obtains

the Kraichnan ensemble of delta correlated velocities

〈
vi(t, r) vj(t′, r′)

〉
=

C δ(t − t′)
∫

e ik·(r−r′)

kd+ξ
P ij(k, ℘)

dk
(2π)d

≡ δ(t − t′)Dij(r − r′) , (11)

which are Hölder continuous with any exponent smaller than 1
2 ξ with

ξ = 2(α + β).
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4 Kraichnan ensemble

The one and two particle motion can be analyzed completely explicitly in the
Kraichnan model. The first question we must face is the meaning of the equation
(1) when the velocity field is not smooth enough (Lipschitz) for the uniqueness
results of differential equations to be applicable. That is, we need to regularize (1).
There are two natural ways to do this. The first is to reintroduce the viscous scale
η and study the η → 0 limit. The second is to introduce molecular noise, i.e. to
replace (1) by the stochastic equation

dR
dt

= v(t,R) +
√

2κβ̇ . (12)

where β is Brownian motion. Both regularizations and their mixture are physically
relevant, the relative size of the viscosity and diffusivity is described by the Peclet
number. There are also some subtleties in the order of the limits, see [3]. Here we
content ourselves to study the equation (12).

The solution of (12) with a fixed realization of v defines a Markov process
x(t|v). (This was done rigorously in [4].) Let us denote by Pt(x,y|v) its transition
probability density. It satisfies the equation

∂tPt = (κ∆ − v · ∇)Pt. (13)

Due to the white noise nature of v one has to be a bit careful with the product
in (13): the right definition is in the Stratonowich sense. This means in particular
that the average of Pt over the velocity realizations satisfies the equation

∂t

〈
Pt

〉
= (κ∆ + 1

2
Dij(0)∂i∂j)

〈
Pt

〉
. (14)

Note how the drift term in (13) contributes a second order term involving the ve-
locity two point function. This leads to a renormalization of the molecular diffusion
coefficient κ by the “eddy diffusion constant”

κren = κ + κeddy

where as in (9) we get that κeddy is proportional to Lξ. Thus the single particle
motion is diffusive, given by eq. (3), and the diffusion persists even in the limit
of vanishing molecular diffusivity κ → 0 and is dominated by the large scale
fluctuations of the velocity field.

Let us next consider the motion of two particles in the velocity field picked
randomly from the Kraichnan ensemble. Denoting the position of the first particle
by R and the second by R + ρ where ρ is the separation vector of the particles
the latter satisfies the equation

dρ

dt
= v(t, ρ + R) − v(t,R) , (15)
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We may write this in terms of the velocity field in the frame of the first particle,
the so called quasi-Lagrangian velocity

vqL(t, r) = v(t, r + R(t)) , (16)

so that

dρ

dt
= ∆vqL(t, ρ) , (17)

In general, the probability law of the quasi-Lagrangian velocity field is a compli-
cated function of the law of v, in particular not gaussian. However, in the Kraich-
nan model due to the delta correlation in time, it is not hard to check that the
quasi-Lagrangian velocity field has the same law as the velocity itself. Therefore
ρ satisfies the single particle equation with the velocity v replaced by the velocity
difference ∆v. Since the spatial part of the covariance of the latter is

2(Dij(0) − Dij(ρ)) ≡ 2dij(ρ)

we conclude that in the limit of vanishing molecular diffusivity the transition
probability density for ρ averaged over the v, Pt(ρ, ρ′) satisfies

∂tPt = dij(ρ)∂i∂jPt (18)

i.e. a diffusion equation where the diffusion constant depends on the separation of
the particles. In the limit η → 0 and L → ∞ the function dij(ρ) is homogeneous
of degree ξ i.e.

dij(ρ) = |ρ|ξdij(ρ̂).

This leads to the scaling

Pt(ρ0, ρ) = λdPλ2−ξt(λρ0, λρ) (19)

which implies
〈
ρ(t, ρ0)2

〉
= t

2
2−ξ f(

|ρ0|
t

1
2−ξ

). (20)

The function f turns out to be sensitive to the compressibility degree of the velocity
field [5].

For incompressible velocities f(0) �= 0 and therefore

< ρ(t, ρ0)2 >= Bt
2

2−ξ

where
lim

ρ0→0
B > 0.

This fits to Richardson’s observations and yields the Richardson law provided
ξ = 4

3 which in turn follows from α = 1
3 = β, the Kolmogorov values.
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Since (20) represents the average over velocity realizations of the trajectory
separation we may conclude that with nonzero probability the trajectories in a
fixed incompressible velocity field are non unique. Thus for such velocities, the
limit of the Markov process x(t|v) as the molecular diffusivity κ → 0 remains a
stochastic process. The solution to the deterministic looking differential equation
(1) is not a single trajectory, but a probability measure on a set of trajectories!

If we reintroduce the viscous scale η below which the velocity field is smooth,
the equation (20) remains true for separations larger than η. For smaller separa-
tions the standard exponential separation (2) holds, with an explicitly calculable
Lyapunov exponent λ [10].

The Kraichnan model has served as a testing ground for many other ideas
in turbulence. Just to mention one, the study of the multi-particle motion leads
to understanding the problem of intermittency in the statistics of a tracer concen-
tration carried by the velocity field [6], [7], [8], [9]. However, the delta correlation
in time of the velocity field is certainly an unphysical idealization and therefore it
would be nice to be able to relax this assumption and test the robustness of the
mechanisms uncovered in the Kraichnan model. Thus we will turn to the study of
the time correlated self similar ensemble (8).

5 Beyond the Kraichnan ensemble

Let us now consider the equation for the trajectory separation (16) for more general
velocity fields [11]. If we wish to model this problem with velocities taken from the
self similar ensemble (8) we need to address the question of the difference of the
statistics of v and vqL. In general, these agree only in the delta correlated case.
We have two choices:

(a) Model the Eulerian velocity v by (8).

(b) Model the quasi-Lagrangian velocity vqL by (8).

We consider first the case (b). This means we replace (16) by the equation

dρ

dt
= ∆v(t, ρ) , (21)

where v has the statistics (8) which implies

〈
∆vi(t, r) ∆vj(t′, r′)

〉
=

2A

∫

|k|>L−1
e−|t−t′|B k2β 1 − cos(k · (r − r′))

kd+2α
P ij(k, ℘)

dk
(2π)d

(22)

where we took η = 0.
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In the Kraichnan model the separation process ρ is self similar as seen in
(19). Let us therefore define the rescaled separation

ρλ(t) = λ−σρ(λt) (23)

and study its dynamics. We obtain

dρλ

dt
= ∆vλ(t, ρλ) , (24)

where

∆vλ(t, ρ) = λ1−σ∆v(λt, λσρ). (25)

Now ∆vλ is distributed again as in (22) with the parameters

A(λ) = λ2(1−(1−α)σ)A

B(λ) = λ1−2βσB

L(λ) = λ−σL.

We can now ask when is this rescaled velocity field ∆vλ identical in law to ∆v.
This happens when

L = ∞
and either

(1) α + 2β = 1 , σ = 1
1−α

or

(2) B = 0 , σ = 1
1−α

or

(3) A → ∞ B → ∞ with A
B fixed, σ = 1

2(1−α−β)

In all these cases we conclude that ρ(t, ρ0) and ρλ(t, λ−σρ0) should be iden-
tically distributed and therefore

〈ρ(t, ρ0)2〉 = t2σg(
ρ0

tσ
) (26)

where the scaling function g would again presumably depend on the compressibility
and possibly also the exponents α and β.

The case (1) consists of a line of fixed points under the scaling (25), whereas
the case(2) is the frozen ensemble and case (3) the Kraichnan ensemble. Note that
the Kolmogorov value (1

3 , 1
3 ) lies on the line (1) and gives rise to the Richardson

value σ = 3
2 in case g(0) > 0.

Let us finally ask the question of what can be said of the behavior of the pair
separation when the parameters don’t correspond to the fixed point values above
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i.e. let α+2β �= 1 and A, B finite, nonzero. As usual in such contexts we expect the
short and long time behavior to be controlled by appropriate fixed points. Indeed,
since λ → 0 behavior of ρλ gives the short time asymptotics and λ → ∞ behavior
the long time asymptotics we need to study what happens to the velocity ∆vλ of
(25) in these limits. It will be convenient to distinguish various regions in the α, β
plane as depicted in Figure 1.
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Let us consider first λ → ∞ at L = ∞. Taking σ = 1
2(1−α−β) fixes the ratio

A(λ)
B(λ) with A(λ), B(λ) → ∞ if α + β > 1 (domain A in Fig. 1) or if α + 2β < 1
(domain C in Fig. 1). The latter case leads to a non-singular Kraichnan ensemble
of velocity differences with ξ = 2(α + β) whereas the former one does not (it
would correspond to ξ > 2, L = ∞). We may then expect that

lim
λ→∞

λdσ P(λσρ0, λ
σρ; λt) = PKr(ρ0, ρ; t)

for σ = 1

2(1−α−β)
and α + 2β < 1 (27)

where PKr pertains to the Kraichnan model with ξ = 2(α + β) . This is indeed
consistent with the scaling properties of the Kraichnan model dispersion.

Taking σ = 1
1−α keeps A(λ) constant while B(λ) → 0 if α+2β > 1 (domains

A and B in Fig.1). We then expect that

lim
λ→∞

λσP(λσρ0, λ
σρ; λt) = P fr(ρ0, ρ; t) , for σ = 1

1−α
and α + 2β > 1, (28)

where P fr stands for the PDF of the frozen velocity model with Hölder exponent α.

Inquiring about the short-time asymptotics of the trajectory dispersion re-
verses the asymptotics. We should then have

lim
λ→0

λσ P(λσρ0, λ
σρ; λt) = P fr(ρ0, ρ; t) for σ = 1

1−α
and α + 2β < 1 (29)
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(i.e. in domain C in Fig. 1) with the same value of the Hölder exponent α, and

lim
λ→0

λσ P(λσρ0, λ
σρ; λt) = PKr(ρ0, ρ; t)

for σ =
1

2(1 − α − β)
and

{
α + β < 1,

α + 2β > 1
(30)

(i.e. in domain B in Fig. 1) with ξ = 2(α + β) for the Kraichnan model. Again,
this is consistent with the scaling of the limiting PDF’s.

To summarize, the scale invariance of the statistics of the pair dispersion
although broken away from the α + 2β = 1 line, should be restored at long and
short times. In the regions B and C the long (short) time asymptotics of the
separation is controlled by the frozen (Kraichnan) and Kraichnan (frozen) fixed
points respectively. In the region A, although the velocities there possess equal
time statistics that is only Hölder continuous, the trajectories seem to be unique
due to the rapid decrease of time correlations in short scales.

It is worth stressing, that the relations (27) to (30) are conjectural. The PDF
P is a complicated nonlinear functional of the velocity statistics and the conjec-
tured relations assume their continuity in an appropriate topology, which is not
obvious. In particular, since the convergence of the rescaled velocity covariances to
the one of the Kraichnan model is very slow at long distances, there is a potential
threat for the corresponding convergence of the rescaled PDF P(ρ0, ρ; t) coming
from the contribution of trajectories that venture far apart, if such contributions
are important. Similarly, the slow convergence to the frozen model at long dis-
tances could create problems for the corresponding convergence of the rescaled
pair dispersion PDF. Whether such effects invalidate some of the conclusions (27)
to (30) could be, in principle, studied in perturbation theory around the Kraichnan
or frozen model.

Let us finally note that the regions B and C have a simple interpretation
in terms of the so called eddy turnover time. This is the typical timescale of
length scale r fluctuations in the velocity field τeddy(r) = r

|∆v(r)| ∼ r1−2α. The
correlation time for such fluctuations in our ensemble is τc(r) = r2β . Thus on the
line α + 2β = 1 these times coincide, whereas e.g. in the region B τeddy(r) > τc(r)
for small separations i.e. such fluctuations are decorrelated, in accordance with the
picture that this region in small times should be governed by the Kraichnan fixed
point.

Let us now turn to the case (a) above i.e. modeling the Eulerian velocity
field by the gaussian self similar ensemble. The quasi-Lagrangian velocity field
governing the evolution of the pair separation is defined as the Eulerian v relative
to the frame of reference of one of the particles. The motion of this particle, as we
saw before, is dominated by the large scale fluctuations in v that have variance of
the order L2α. Indeed, for short times this motion is ballistic as can be seen by
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rewriting the trajectory equation (1) as

R(t) =

t∫

0

v(s, 0) ds +

t∫

0

[v(s,R(s)) − v(s, 0)] ds . (31)

Since the r.m.s. value of velocity v(s, 0) in the ensemble (8) is proportional to
Lα, we may expect that, for fixed t, the first integral is of the order Lα . On
the other hand, the r.m.s. equal-time velocity differences on scales much smaller
than L are of the order distanceα. In particular, on the scales ∼ Lα they are of
the order Lα2

and the second integral is of the order Lα2  Lα. More precisely,
let us observe that the Gaussian process with the components L−αv(t, 0) and
L−α2

[v(t, Lαr) − v(t, 0)] converges in law when L → ∞ to the t-independent
Gaussian process (v0, w(r)) with the 2-point functions

〈v0 v0 〉 = A

∫
1

kd+2α
1

dk
(2π)d

,

〈w(r) w(r′) 〉 = A

∫
(1 − eik·r)(1 − e−ik·r′)

kd+2α

dk
(2π)d

,

〈v0 w(r) 〉 = 0 . (32)

Note the independence of v0 and w(r). It is then natural to conjecture that the
following convergences in law take place, describing the leading terms in the single
trajectory statistics for large L :

L−αr(t) −→
L→∞

v0t , (33)

L−α2
[R(t) − Lαv0t] −→

L→∞

t∫

0

w(v0s) ds . (34)

Turning next to the pair separation, we expect it to show L dependence in
its statistics due to the strong L dependence of the trajectory of the reference
particle which we dent expect to decouple as in the Kraichnan case. It appears
quite difficult to study this L dependence in the general gaussian ensemble above
and particularly for long times. Here we will consider just a simple case of (8),
namely the frozen model in one dimension.

We shall consider two particle trajectories x(t) and x(t)+ρ0 staring at time
zero at origin and ρ0 > 0, respectively, and we shall try to estimate the behavior
of their separation ρ(t). First notice that ρ(t) ≥ 0, i.e. the order of the particles
on the line will never change. For large L, the dominant events are when the
velocities of the particles and at the intermediate points are all of the order Lα

and of the same sign during the time interval (0, t). Let us suppose that they are
positive (the case of negative velocities can be treated in a symmetric way).
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The crucial fact resulting from the one-dimensional geometry is the identity

ρ0∫

0

dρ

v(ρ)
=

x(t)+ρ(t)∫

x(t)

dρ

v(ρ)
. (35)

The left hand side is the time ∆t that the first particle takes to reach the initial
position of the second one. The best way to understand the above identity is
by releasing the second particle after the delay ∆t so that both particles move
subsequently together. The delay changes nothing in the movement of the second
particle since the velocity field is frozen. The delayed particle will then arrive at
position x(t) at time t (together with the first particle) and at position x(t)+ρ(t)
at time t + ∆t. But the right hand side of Eq. (35) is the time that the second
particle takes to move from x(t) to x(t) + ρ(t). Hence the identity which may be
also proven more formally by noticing that the time derivative of its right hand
side vanishes.

Writing for large L

x(t) = Lαv0t + O(Lα2
) , v(x(t)) = Lαv0 + Lα2

w(v0t) + O(Lα3
) , (36)

see relations (33) and (34), and anticipating that ρ(t) = O(1), Eq. (35) may be
approximated as

ρ0

Lαv0
=

ρ(t)
Lαv0 + Lα2w(v0t)

+ O(Lα3−2α) (37)

from which we infer that

ρ(t) − ρ0 = Lα2−αρ0 v−1
0 w(v0t) + O(Lα3−α) . (38)

The process w(x) is the two-sided fractional Brownian motion, i.e. the Gaussian
process with mean zero and 2-point function

〈w(x) w(y)〉 = 1

2
(x2α + y2α − |x − y|2α) ≡ G(x, y) (39)

for x, y ≥ 0. Note the scale invariance under w(x) �→ µ−αw(µx) . The precise
conjecture would then assert the convergence in law

Lα(1−α) [ρ(t) − ρ0] −→
L→∞

ρ0 vα−1
0 w(t) . (40)

Note that the above calculations indicate that not only a single particle motion,
but also the separation of trajectories in the Eulerian frozen one-dimensional ve-
locity ensemble are dominated by the scale L velocities, i.e. by the large eddy
sweeping, but the effect on the separation is inverse to that on the single particle
motion. Whereas the latter one becomes very fast for large L, the trajectory sep-
aration becomes essentially frozen to the initial value in a localization-type effect.
It would be interesting to know if the localizing tendency persists in the more
general Eulerian Gaussian ensembles (8).
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6 Outlook

The Richardson law for pair dispersion seems to be intimately connected to the
irregularity of turbulent velocity fields. The framework of classical chaos is not
applicable in such situations, being restricted to the viscosity dominated scales
where the velocity field presumably is smooth.

The simple gaussian ensemble of velocities that are delta correlated in time
(the Kraichnan model) reproduces this law and so does the model where quasi-
Lagrangian velocities are modeled by a more general scale invariant gaussian en-
semble with time correlations. Such gaussian models with time correlations how-
ever lead to strong sweeping effects by the large scale velocity fields and might not
be good models for turbulent velocities where the sweeping effects should be less
pronounced. It is still a major open problem how to quantitatively understand the
Richardson law in real turbulent velocity fields.
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