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The State Space of Perturbative Quantum Field Theory
in Curved Spacetimes

S. Hollands and W. Ruan

Abstract. The space of continuous states of perturbative interacting quantum field
theories in globally hyperbolic curved spacetimes is determined. Following Brunetti
and Fredenhagen, we first define an abstract algebra of observables which contains
the Wick-polynomials of the free field as well as their time-ordered products, and
hence, by the well-known rules of perturbative quantum field theory, also the ob-
servables (up to finite order) of interest for the interacting quantum field theory.
We then determine the space of continuous states on this algebra. Our result is that
this space consists precisely of those states whose truncated n-point functions of
the free field are smooth for all n �= 2, and whose two-point function has the singu-
larity structure of a Hadamard fundamental form. A crucial role in our analysis is
played by the positivity property of states. On the technical side, our proof involves
functional analytic methods, in particular the methods of microlocal analysis.

I Introduction

The perturbative construction of self-interacting quantum field theories in Min-
kowski spacetime was put on a completely rigorous mathematical footing in the
works by Bogliubov, Parasiuk, Hepp, Zimmermann and other people [1] in the late
sixties and early seventies. The issue of generalizing these constructions to curved
spacetimes was first analyzed by Bunch and collaborators [2, 3]. These authors
showed, within the context of Euclidean quantum field theory on Riemannian
curved spaces, that if a theory is “perturbatively renormalizable” in flat space,
then it remains so in curved space. However, while the perturbative definition of a
quantum field theory on flat Euclidean space gives rise, via a “Wick rotation”, to
the definition of a corresponding theory on Minkowski space, no such connection
holds for curved Lorentzian spacetimes, which, apart from a few special classes
of spacetimes such as static ones, do not possess a corresponding real Rieman-
nian section. This means that Euclidean methods cannot directly be used for the
definition of interacting quantum field theories in most Lorentzian spacetimes.

Significant progress in perturbative construction of interacting quantum field
theories on an arbitrary globally hyperbolic Lorentzian spacetime has recently
been made by [4, 5, 6], using the mathematical tools of “microlocal analysis” [7].
In [4], the authors demonstrated that the formally infinite Wick-polynomials of a
free field can be given a well-defined sense as operator-valued distributions via a
normal ordering prescription. In [5], they then constructed time-ordered products
of these Wick-polynomials. As in Minkowski spacetime, some “renormalization
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ambiguities” necessarily arise in the definition of the time-ordered products in
curved spacetime, and moreover, unlike in Minkowski space, renormalization am-
biguities also arise in the definition of the Wick-polynomials in curved spacetime.
If one demands that these quantities be locally constructed from the metric in
a generally covariant way, have a certain scaling behavior under a rescalings of
the metric and have a suitable dependence under variations of the metric, then it
can be shown [6], that these renormalization ambiguities are reduced to a finite
number of free parameters.1 Moreover, a detailed analysis of the nature of these
renormalization ambiguities [6] leads to the conclusion that interacting quantum
field theories in globally hyperbolic spacetimes have the same classification into
ones that are perturbatively renormalizable and ones that are not as in Minkowski
space.

The (smeared) Wick-polynomials and their (smeared) time-ordered prod-
ucts may be regarded as members of some abstract *-algebra, W .2 The Wick-
polynomials and time-ordered products in W which satisfy the above additional
locality, covariance and scaling requirements can be used to define, via the usual
perturbation expansions familiar from Minkowski space, the quantities of interest
in the interacting theory. The infinite sums occurring in these perturbation expan-
sions do not by themselves define elements of the algebra W . However, if these
sums are truncated at some arbitrary finte order, then the so obtained truncated
expressions are elements of the algebra W . This algebra therefore contains all ob-
servables of interest in the interacting theory up to an arbitrary finite order in
perturbation theory.

In this work we investigate the space of quantum states on W , that is, the
space of states for the perturbatively defined interacting quantum field theory.
Here, by a state we mean a linear functional ψ : W → C which is normalized so
that ψ(I) = 1, where “I” denotes the identity element in W , and which is positive
in the sense that ψ(A∗A) ≥ 0 for any element A in W . The above algebraic notion
of state is related to the usual Hilbert space notion of state, but it is more general:
Given a representation of W on some Hilbert space, one can consider a vector or
density matrix state3 in this Hilbert space as defining a corresponding algebraic
state on W . However, it is well-known that not all algebraic states—and not even
all physically interesting ones—can be obtained in this manner from some specific
Hilbert space representation4.

1It turns out [6] that the normal ordered Wick-polynomials and their time-ordered products
defined in [4, 5] necessarily fail to be locally constructed out of the metric in a covariant manner.
A construction of Wick-polynomials that are locally defined in terms of the metric in a covariant
manner and have the above additional properties was given in [6]. Local covariant time-ordered
products were constructed in [8].

2While the construction of this algebra involves the choice of a quasi-free Hadamard of the
corresponding free field theory, it turns out [6] that different choices for this state give rise to
isomorphic algebras. Therefore, as an abstract *-algebra, W is independent of that choice.

3Actually, we must restrict ourselves here to the vector or density matrix states contained in
some common, dense invariant domain.

4For example, in Minkowski space, the standard thermal state at some finite temperature of
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It was conjectured in [6] that the space of states on W consists precisely of
those positive, normalized linear functionals ψ whose truncated n-point functions
of the free field are smooth for n �= 2 and whose two-point function of the free
field is of Hadamard form.

The main result of our paper (Thm. III.1) is that this conjecture is correct
with regard to the states ψ on W that are continuous with respect to some nat-
ural topology on the algebra W . In order to clarify the status of this continuity
requirement, we note that, if no restriction at all was placed on the state ψ, then
its n-point functions of the free field would be merely linear functionals on the
space of testfunctions, but would not even have to be distributions, which is al-
ways assumed even in such general frameworks as the Wightman-axioms. On the
other hand, the continuity requirement that we shall impose on the states under
consideration will automatically imply that these n-point functions are at least
distributions. In addition, since any element of W can be obtained as a limit of
elements in the subalgebra A spanned by finite products of (smeared) free fields, a
continuous state on W is uniquely determined by its restriction to the subalgebra
A, that is, by its n-point functions of the free field. This is in complete agreement
with the philosophy behind the so-called “point-splitting” prescription for renor-
malizing Wick-products such as the stress energy operator—which is an element
of W , but not of A—wherein one defines the action of a state on a Wick-product
as the limit of the expectation values of suitable “point-split” quantities, which
are elements of A. Clearly, such a prescription implicitly involves a continuity as-
sumption about the action of states on the algebra W , which, as one can show, is
a special case of the general continuity assumption considered in this paper.

An equivalent way to express our result is to say that only those states on the
algebraA of free fields have a continuous extension to the algebraW of observables
in perturbation theory whose truncated n-point functions are smooth for n �= 2 and
whose two-point function is of Hadamard form. It has long been known from the
theory of renormalizing the stress energy operator that there exist many states for
the free field whose action cannot be extended in a reasonable (that is, continuous)
way from free fields to the stress energy operator. Our result puts this observation
into a much more general perspective.

We note that our result does not hold in general for functionals on W which
are continuous but which are not positive: One can construct continuous function-
als on W whose truncated n-point functions are not smooth.

For simplicity and definiteness, we will here consider only the case of a Her-
mitian scalar field. However, the generalization of our results to other types of
fields should be possible.

The organization of this paper is as follows: We first review the definition
of the basic algebra of free fields, A. After that, we recall the definition of the
truncated n-point functions of a state on A and of Hadamard states, thereby

the free field gives rise to a state on W . But this state cannot be regarded in any reasonable
sense as arising from a density matrix state in the vacuum representation.
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giving a brief summary of some notions from microlocal analysis that shall be
needed later on. We then briefly review the construction of the algebra W and
recall how the topology on W is defined. After that, we present our main result,
Thm. III.1. The proof of that result makes up the rest of the paper. Some parts
of this proof are moved to an appendix.

Acknowledgements. We would like to thank R. M. Wald for helpful discussions
during the early stages of this research. We are indebted to him in particular for
suggesting to us that the positivity property of states should play a crucial role in
the proof of our main result. We are also grateful to K. Fredenhagen for suggsting
to us a substantial improvement of our original proof of Lemma IV.1. S. Hollands
was supported by NFS grant PHY00-90138 to the University of Chicago.

II Preliminaries

II.1 Definition of the minimal algebra A of observables for the free Klein-
Gordon field

A free classical Hermitian Klein-Gordon field on a curved spacetime is a real valued
solution of the equation

(✷− ξR−m2)ϕ = 0, (1)

where ✷ = |g|−1/2∂µ|g|1/2gµν∂ν is the wave-operator in curved space, R is the
curvature scalar, and where m, ξ are real parameters. It is known that this equa-
tion possesses unique advanced and retarded fundamental solutions on any (time-
oriented) globally hyperbolic spacetime. These are determined by the equations

(✷− ξR−m2)∆adv = (✷− ξR−m2)∆ret = δ, (2)

and by the requirement that the support of ∆adv respectively ∆ret consists of pairs
of points (x1, x2) such that x2 is in the causal past respectively future of x1.

The theory of a quantized free Klein-Gordon field on globally hyperbolic
spacetimes [9, 10] can be described in different ways. For our purposes, it is es-
sential to use an algebraic approach. In this approach one starts with an ab-
stract *-algebra, A, of quantum observables for the free field theory. Several
choices for A are possible.5 We here take A to be the *-algebra generated by
the identity I and the smeared field operators ϕ(f), sometimes formally written
as
∫
ϕ(x)f(x) |g|1/2d4x, with the following relations:

• Linearity: f → ϕ(f) ∈ A is complex linear.

• Klein-Gordon: The field operators satisfy the Klein-Gordon equation in the
sense that ϕ((✷− ξR−m2)f) = 0.

5We note that the choice for A used in this paper is not the same as in [9, 10], where the
authors work instead with the algebra generated by exponentiated smeared field operators. Such
a choice has some advantages, but would not be convenient for our purposes.
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• Hermiticity: The quantum field is Hermitian, ϕ(f)∗ = ϕ(f̄).

• Commutation Relations:

[ϕ(f1), ϕ(f2)] = i∆(f1, f2) · I, (3)

where ∆ = ∆adv −∆ret.

We will subsequently consider more general observables than those contained in
the algebra A. We therefore refer to this algebra as the “minimal algebra”.

II.2 States on A
Given a state ψ on A, one defines its “n-point functions”, ψn, as the n times
multilinear functionals on the space of testfunctions given by

ψn(f1, f2, . . . , fn) = ψ(ϕ(f1)ϕ(f2) . . . ϕ(fn)). (4)

Every state on A is uniquely determined by the collection of its n-point functions.
One also defines the “truncated n-point functions”, ψTn , of a state ψ. For the first
few n, these are given by

ψT1 (f) = ψ1(f),

ψT2 (f1, f2) = ψ2(f1, f2)− ψ1(f1)ψ1(f2),

ψT3 (f1, f2, f3) = ψ3(f1, f2, f3)− ψ1(f1)ψ2(f2, f3)−
ψ1(f2)ψ2(f1, f3)− ψ1(f3)ψ2(f1, f2) + 2ψ1(f1)ψ1(f2)ψ1(f3). (5)

Their definition for general n is as follows. Denote by In the set of partitions P of
the set {1, . . . , n} into pairwise disjoint, ordered subsets r1, . . . , rj . If r is a set in P ,
then we denote its elements by r(1), . . . , r(|r|), where |r| is the number of elements
in the set r. Note that by definition r(i) < r(j) if i < j. With this notation, the
truncated n-point functions are implicitly defined by

ψn(f1, f2, . . . , fn) =
∑
P∈In

∏
r∈P

ψTn (fr(1), fr(2), . . . , fr(|r|)). (6)

Note that the sum always contains the term ψTn (f1, . . . , fn) corresponding to the
trivial partition consisting only of the set {1, . . . , n}. Therefore, once the truncated
n-point functions have been defined for 1, . . . , n−1, one can solve the above relation
for ψTn in terms of ψn and the lower order truncated n-point functions.

A state on A is called “quasi-free” if its truncated n-point functions are all
zero except for n = 2. A standard example for a quasi-free state is the vacuum
state in Minkowski-space, and, more generally, all states constructed from some set
of “positive frequency solutions” to the Klein-Gordon equation. It is a consequence
of the definition (6) that the odd n-point functions of a quasi-free state vanish, and
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that the even n-point functions can be expressed solely in terms of the two-point
function. These expressions can be summarized in the formula6

ψ(eiϕ(f)) = e−
1
2ψ2(f,f), (7)

valid for any quasi-free state ψ.

A state ψ on A is said to be of “Hadamard form” if its two-point function
has no spacelike singularities, and if it locally can be written in the form

ψ2(x1, x2) = U(x1, x2)σ−1 + V (x1, x2) lnσ +W (x1, x2). (8)

Here, σ is the signed, squared geodesic distance between the points x1 and x2, U
and V are certain smooth functions defined in terms of the metric and the coupling
parameters that can be uniquely determined by imposing the wave Klein-Gordon
equation on (8). W is a smooth function that is not uniquely determined, but
depends on the state in question. The ε-prescription for the singular terms σ−1

and lnσ is the same as for the usual vacuum two-point function in Minkowski space.
Strictly speaking, the quantities U, V and W are well defined only for real analytic
spacetimes, so the above definition of Hadamard states needs to be modified in
spacetimes which are only smooth. For a discussion of this issue and a precise
formulation of the statement that “there are no spacelike singularities”, we refer
the reader to [10]. It is an immediate consequence of the definition that if ψ and ω
are two Hadamard states, then the difference between the corresponding two-point
functions, ψ2 − ω2, is smooth.

There exists an alternative, equivalent characterization of Hadamard states
in terms of the so-called “wave front set” of its associated two-point function [11],
which plays an important role in this work. In order to state what this character-
ization is, we first recall the concept of the wave front set of a distribution. Let
u be a smooth function on Rn with compact support. Then it is known that the
Fourier transform 7 of u is rapidly decaying, that is, for any N , there is a constant
CN such that

|û(k)| ≤ CN (1 + |k|)−N for all k ∈ Rn. (9)

Let now u be a compactly supported distribution. Then it is known that the Fourier
transform û is polynomially bounded in k. However, it is no longer true in general
that û is rapidly decaying in all directions. The directions in k-space, for which
there exists no conic neighborhood (that is, a neighborhood which is invariant
under multiplication by positive scalars) such that (9) holds, are called “singular
directions of u” and are denoted by Σ(u). Note that Σ(u) is by definition a conic
set, that is, a set which is invariant under multiplication by positive scalars.

6Actually, expressions like eiϕ(f) are not elements in our algebra A, since this algebra contains
by definition only finite sums of products of smeared free fields. What is meant by (7) (and other
similar formulas in the sequel) is the set of equalities obtained by expanding both sides of the
equation in a formal power series and by equating the corresponding terms in these series.

7Our convention for the Fourier transform is bu(k) = 1
(2π)n/2

R
u(x)e+ikx dnx.
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Let now u be an arbitrary distribution on an open setX ⊂ Rn, not necessarily
of compact support. Then one can define the singular directions of u near some
point x by localizing u with a smooth function of compact support for which
χ(x) �= 0, by defining Σχ(u) = Σ(χu). If one now shrinks the support of χ to the
point x, then one obtains the singular directions of u at the point x, defined as

Σx(u) =
⋂

χ(x) �=0

Σχ(u) . (10)

The wave front set, WF(u), of u is just the union of all nonzero singular directions
of u,

WF(u) = {(x, k) ∈ X × (Rn\{0}) | k ∈ Σx(u)}. (11)

Note that it follows directly from the definition of the wave front set of a distri-
bution u is given by a smooth density if and only if WF(u) is empty. It can be
demonstrated that the wave front set transforms covariantly under a change of co-
ordinates, that is, if φ is a smooth one–to–one map onX , then (φ(x), k) ∈WF(u) is
equivalent to (x, [Dφ(x)]tk) ∈WF(φ∗u), whereDφ = ∂φ

∂x , where
t means the trans-

pose of a matrix and where φ∗u denotes the pull-back of a distribution, defined by
analogy with the pull-back of a smooth density. This makes it possible to define in
an invariant way the wave front set of a distribution on a smooth manifold X . The
above transformation law then shows that WF(u) is intrinsically a conic subset of
the cotangent bundle T ∗X minus its zero section. It is common to define, for every
closed conic set Γ ⊂ T ∗X \ {0}, the subspace D′

Γ(X) = {u ∈ D′(X) |WF(u) ⊂ Γ}
of the space D′(X) of all distributions on X .

Having introduced the wave front set of a distribution, we can now state the
promised alternative characterization of Hadamard states: Namely, a state ψ is
Hadamard if the wave front set of its two-point function has the following form:

WF(ψ2)
= {(x1, k1;x2,−k2) ∈ T ∗(M ×M)\{0} | (x1, k1) ∼ (x2, k2), k1 ∈ (V+)x1}. (12)

The notation (x1, k1) ∼ (x2, k2) means that x1 and x2 can be joined by a null-
geodesic and that the covectors k1 and k2 are cotangent and coparallel to that
null-geodesic. (V+)x denotes the closed forward lightcone in the cotangent space
at the point x, defined as the set of all future directed timelike or null covectors
in the cotangent space at x. The closed backward lightcone, (V−)x, is defined
similarly. For later purposes, we also set V± = ∪x∈M (V±)x.

For the algebras considered in this paper, there holds the so-called GNS-
theorem, which says that, given an algebraic state ψ on the algebra, there is a
*-representation πψ of the algebra on a Hilbert space Hψ containing vector |Ωψ〉,
which is determined, up to equivalence, by the relation ψ(A) = 〈Ωψ |πψ(A)|Ωψ〉,
required to hold for all algebraic elements A. This representation is commonly
called the “GNS-representation” of the state ψ. For the case of the algebras con-
sidered in this paper, the GNS-representations corresponding to different states
are in general inequivalent.



642 S. Hollands and W. Ruan Ann. Henri Poincaré

II.3 Definition of the extended algebra W
In the previous subsections, we have introduced a minimal algebra, A, of ob-
servables for a free Klein-Gordon field, and we have introduced the notions of
quasi-free states and of Hadamard states on this algebra. The algebra A contains
the observables corresponding to the smeared n-point functions of the free field,
A = ϕ(f1)ϕ(f2) . . . ϕ(fn) (and finite linear combinations thereof). If one wants to
define a nonlinear quantum field theory perturbatively off the free field theory, one
must consider additional observables such as (smeared) Wick-polynomials of the
free field and (smeared) time-ordered products of these fields. However, none of
these observables are contained in A.

In order to include these additional observables, we consider, besides the mini-
mal algebraA, an enlarged algebra of observables,W , that containsA and that also
contains, among others, elements corresponding to (smeared) Wick-polynomials of
free fields and time-ordered products of these fields. The construction of the al-
gebra W was first given by [5] and was later formalized in [12] for the case of
Minkowski spacetime. The straightforward generalization of [12] to curved space-
times can be found in [6]. The construction ofW initially depends on the choice of
some quasi-free Hadamard state ω. One can show however [6] that different choices
for ω give rise to isomorphic algebras W , so in this sense W does not depend on
the specific choice for ω.

The observables in the interacting field theory (defined perturbatively off the
free field theory) are given in terms of the well-known formal power series expan-
sions in the coupling constant, whose coefficients are elements of the algebra W .
The infinite sums occurring in these expressions are, of course, not by themselves
elements ofW . These series are believed not to converge, and are at best expected
to approximate the “true, nonperturbative quantities” well only up to some finite
order, after which they diverge. For this reason, one is only interested, even in
principle, in the calculation of the interacting observables up to some finite order
in perturbation theory anyway. The latter observables are elements of our algebra
W , and we therefore take the view that W should be regarded as the algebra of
observables which are of interest in perturbative quantum field theory.

For the convenience of the reader, we now recall the basic steps in the defini-
tion ofW . Let ω be a quasi-free Hadamard state on the minimal A, which we shall
keep fixed for the rest of this work. The minimal algebra A contains the normal
ordered smeared n-point functions of the free field, defined as8

: ϕ⊗n(⊗ifi) :ω ≡ : ϕ(f1)ϕ(f2) . . . ϕ(fn) :ω

=
∂n

in∂t1∂t2 . . . ∂tn
G(
∑
i

tifi)

∣∣∣∣∣
t1=t2=···=0

, (13)

8Actually, the fields ϕ(f) appearing in the expression below should be understood as the
representers of these algebraic elements in the GNS-representation of the state ω.



Vol. 3, 2002 The State Space of Perturbative QFT in Curved Spacetimes 643

where
G(f) = e

1
2ω2(f,f)eiϕ(f). (14)

Explicitly,

: ϕ(f) :ω = ϕ(f),
: ϕ(f1)ϕ(f2) :ω = ϕ(f1)ϕ(f2)− ω2(f1, f2) · I,

: ϕ(f1)ϕ(f2)ϕ(f3) :ω = ϕ(f1)ϕ(f2)ϕ(f3)− ω2(f1, f2)ϕ(f3)−
ω2(f1, f3)ϕ(f2)− ω2(f2, f3)ϕ(f1) (15)

for the first few values of n. If t is a smooth testfunction on Mn, we also define
the elements

A = : ϕ⊗n(t) :ω

=
∫
Mn

: ϕ(x1)ϕ(x2) . . . ϕ(xn) :ω t(x1, x2, . . . , xn)
∏
i

|g(xi)|1/2d4xi (16)

in the minimal algebra A.
In order to obtain an algebra which is large enough to contain the observ-

ables of interest in perturbative quantum field theory, one would like to smear the
fields : ϕ⊗n :ω not only with smooth testfunctions t, but also in addition with
certain compactly supported testdistributions. Now, smearing the operator-valued
distributions : ϕ⊗n :ω with a distribution involves taking the pointwise product of
two distributions. As it is well-known, the pointwise product of two distributions
is in general meaningless. While it is therefore impossible to smear the : ϕ⊗n :ω
with an arbitrary compactly supported distribution t, it turns out to be possible to
smear it with distributions t contained in a subclass E ′n of the class of all compactly
supported distributions (here the Hadamard property of ω enters). This subclass
is most conveniently described in terms of the wave front set,

E ′n = {symmetric, compactly supported distributions t on Mn

with WF(t) ⊂ T ∗Mn\(V n+ ∪ V n− )}. (17)

Definition II.1 W is the *-algebra generated by the elements A of the form (16)
with t ∈ E ′n.

By construction, the extended algebra W contains the minimal algebra A,
but it also contains additional elements such as for example normal ordered Wick-
powers of the field at the same spacetime point. These are defined as follows:
Let

t(x1, x2, . . . , xn) = f(x1)δ(x1, x2, . . . , xn), (18)

where f is a compactly supported testfunction and where δ is the covariant delta-
function on the product manifold Mn. Then one can show that t ∈ E ′n. The
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algebraic element : ϕ⊗n(t) :ω is just the smeared n-th normal ordered Wick power
of the free field at the same spacetime point,

: ϕn(f) :ω = : ϕ⊗n(t) :ω, (19)

as previously defined in [4]. More generally, it can be shown [5], that W also
contains time-ordered products of normal ordered Wick-products.

Using Wick’s theorem, one can show that the product of two elements in W
of the form (16) can again be written as a finite sum of elements of this form. This
shows in particular that any element in W arises as a finite sum of elements of the
form (16) with tn ∈ E ′n plus a multiple of the identity operator.

For later purposes, we would like to have a suitable notion of the continuity
of states on the algebrasW and A. In order to define such a notion, we must first
equip W (and therefore also A) with a topology. In other words, we must explain
what we mean by the statement that a sequence {Aκ} of elements in W converges
to an element A. Such a topology has been defined in [6], we here briefly indicate
the main idea. One first defines a notion of convergence of a sequence {tκ} in the
spaces of distributions E ′n defined above in (17). Namely, such a sequence is said
to converge to a distribution t if

(a) the support of tκ is contained in some compact set K for all κ,

(b) tκ → t weakly in the sense of distributions,

(c) there is a closed conic set Γ ⊂ T ∗Mn\(V n+ ∪ V n− ) such that WF(tκ) ⊂ Γ for
all κ,

(d) for any properly supported pseudo differential operator P with µsupp(P ) ∩
Γ = ∅, we have that Ptκ → Pt in the sense of compactly supported smooth
functions.

Remark. It is common to say that a sequence of distribtuions {tκ} satisfying (b)
through (d) “converges to t in the sense of D′

Γ”. For an explanation of the notion
of a pseudo differential operator and the related technical terms appearing in item
(d), we refer the reader to [7]. It can be shown that t is again an element in E ′n, so
these spaces are complete with respect to the above topology.

Having defined a notion of sequential convergence within the spaces E ′n, we
now define a notion of sequential convergence in the algebra W as follows. Let
{Aκ} be a sequence of generators in W , defined by distributions tκ ∈ E ′n as in
(16). Then we say that the sequence {Aκ} converges to an element A of the form
(16), if tκ → t in E ′n. The so defined notion of covergence for the generators of W
generalizes to arbitrary sequences inW , because every element of this algebra can
be written as a finite linear combination of the generators.
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A state ψ on W is said to be continuous, if ψ(Aκ) → ψ(A) whenever the
sequence {Aκ} converges to A. We note that, since the space of smooth testfunc-
tions on Mn is dense in the space E ′n, the algebra A is dense in W in the above
topology. Therefore we have the important result that continuous states on W
are completely determined by their restrictions to A. If we consider sequences
{tκ} satifying (a) through (d) with Γ = ∅, then we get that the n-point functions
of a continuous state must be continuous in the Laurent-Schwartz topology on
the space of smooth testfunctions. Thus, we find in particular that the n-point
functions of a continuous state are distributions.

III The state space of W
The aim of this section is to characterize the space of continuous states on the
algebraW . We first note that, since W ⊃ A, every continuous state ψ on W gives
rise, by restriction, to a state on the minimal algebra A whose n-point functions
are distributions. However, the opposite is not true, namely it is not true that every
such state on A can be extended to a continuous state on W . This may be seen
for example by considering the smeared normal ordered Wick-power : ϕ2(f) :ω,
which is an element of W , but which is not an element of A. Now if ψ is a state
on A with distributional n-point functions, then its action—provided it can be
defined—on this Wick-power must be given by the limit

ψ(: ϕ2(f) :ω)

= lim
κ→∞

∫
M2

(ψ2 − ω2)(x1, x2)f(x1)δκ(x1, x2)|g(x1)|1/2|g(x2)|1/2d4x1d
4x2, (20)

where {δκ} is a suitable sequence of smooth functions tending to the delta-
distribution in the product manifold M ×M . (Note that this prescription is just a
reformulation of the usual “point-splitting” method, as explained for example in
[9].) However, this limit will only exist and be independent of the particular choice
of sequence {δκ} if the distribution ψ2 − ω2 is at least continuous at the diagonal
{(x, x) | x ∈ M} in the product manifold M ×M . There are many states on A
which do not have this property and which therefore do not extend to W .

The precise characterization of the space of continuous states on W is as
follows:

Theorem III.1 (i) Let ψ be a continuous state on W . Then the two-point func-
tion of the free field must be of Hadamard form and the truncated n-point
functions of the free field must be smooth for n �= 2.

(ii) Conversely, if ψ is a state on A whose two-point function is of Hadamard
form and whose truncated n-point functions are smooth for all n �= 2, then
ψ extends to a (necessarily unique) continuous state on W .



646 S. Hollands and W. Ruan Ann. Henri Poincaré

Remarks.

1. The results of [5, 6] imply that any quasi-free Hadamard state on A can be
extended to a continuous state on W . Clearly, this is a special case of item
(ii) of the above theorem, since quasi-free states by definition have vanishing
truncated n-point functions for n �= 2.

2. B. S. Kay has shown (unpublished manuscript) that the N -particle states
with smooth mode functions in the GNS-representation of any quasi-free
Hadamard state are Hadamard and have smooth truncated n-point functions
for n �= 2. By (ii) of our theorem, these states therefore extend to continuous
states on W .

3. On Robertson-Walker spacetimes, there exists the notion of “adiabatic vac-
uum states” on A, introduced by Parker and defined in a mathematically
rigorous way by [13]. The two-point function of such a state differs from
that of a Hadamard state typically by a term which is a number of times
differentiable, but which is not smooth [14]. By our theorem, adiabatic states
therefore do not possess an extension to continuous states on W . The same
remark applies to the class of states recently introduced by Junker and Schroe
[15].

4. In [4], the authors introduce a “microlocal spectrum condition”, which gen-
eralizes to curved spacetimes the usual spectrum condition imposed on the
n-point function of a field theory in the context of the Wightman-axioms.
The content of this condition is to require that wave front set of the n-point
functions of an admissible state should have a specific form. The microlocal
spectrum condition is known to hold for the n-point functions of the free field
in any quasi-free Hadamard state. It is an easy consequence of our result that
the microlocal spectrum condition holds in fact for the n-point functions of
any continuous state on W .

5. We shall from now on only deal with continuous states. Therefore, for sim-
plicity, whenever we speak of “states”, we shall mean “continuous states”.

Proof. We begin with the proof of (i). Let thus ψ be a continuous state on W .
We need to show that the two-point function, ψ2, is of Hadamard form, and that
the truncated n-point functions, ψTn , are all smooth, except for n = 2. Let

Ψn(f1, f2, . . . , fn) ≡ ψ (: ϕ(f1)ϕ(f2) . . . ϕ(fn) :ω) . (21)

Then we have

Lemma III.1 Let ψ be a state on A. Then the following statements are equivalent:

(i) ψ2 is Hadamard and ψTn are smooth for n �= 2.

(ii) The distributions Ψn are smooth for all n.
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Proof. The proof of the lemma is based on the following combinatorical formula,
which we shall prove in the appendix:

(ψTn − ωTn )(f1, f2, . . . , fn) =
∂n

in∂t1∂t2 . . . ∂tn
lnψ

(
G(
∑
i

tifi)

) ∣∣∣∣∣
t1=t2=···=0

, (22)

where G(f) is defined in (14). If one carries out the differentiations in formula
(22) and uses that the functional f → ψ(G(f)) is the generating functional for the
hierarchy of distributions {Ψ1,Ψ2, . . . ,Ψn, . . . }, as well as the standard relation
ln(1 + x) =

∑
k≥1(−1)k+1xk/k, then one obtains the formula

(ψTn−ωTn )(f1, f2, . . . , fn) =
∑
P∈In

(−1)|P |−1(|P |−1)!
∏
r∈P

Ψ|r|(fr(1), fr(2), . . . , fr(|r|)).

(23)
Thus, if Ψn is smooth for all n, then so is ψTn − ωTn . For n = 1 this means that
ψ1 is smooth. For n = 2 this means that ψ2 − ω2 − ψ1 ⊗ ψ1 is smooth, and hence
that ψ2 is Hadamard. For n ≥ 3 this shows that ψTn is smooth, since ωTn = 0 for
all n ≥ 3. We have thus shown the implication (i) =⇒ (ii) of the Lemma. The
implication (ii) =⇒ (i) can be shown similarly by solving (23) for Ψn in terms of
ψTk − ωTk with k ≤ n. �

It thus remains to be shown that Ψn is smooth for all n. We begin by showing
that the wave front set of Ψn is not arbitrary.

Lemma III.2 Let ψ be a continuous state on W . Then necessarily

WF (Ψn) ⊂ V n+ ∪ V n− for all n. (24)

Proof. Given in the Appendix. �
In order to show that the wave front set of the distributions Ψn is in fact

empty, we proceed by an induction in n. For n = 0 there is nothing to prove, since
Ψ0 = 1, which is clearly smooth. Let us therefore assume that Ψk is smooth for
all k ≤ n− 1. We need to prove that also Ψn is smooth. For this, it is necessary to
gain some information about the Fourier transform, χ̂nΨn(l1, . . . , ln), in directions
such that either all li are in the future lightcone at some points xi or all li are in
the past light cone of some points xi, where χn is a smooth bump function whose
support is localized around the point (x1, . . . , xn) in the product manifold Mn.
We prepare the ground with the following three lemmas.

Lemma III.3 Let ψ be a state on A. Then there holds

|ψn (f1, . . . , fn)|2 ≤ ψ2n

(
f1, . . . , fn, f̄n, . . . , f̄1

)
, (25)

for all n and all testfunctions.
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Proof. By the the Cauchy-Schwartz inequality

|ψ(A)|2 ≤ ψ(AA∗) (26)

for all A ∈ A. The statement of the lemma then follows by setting A = ϕ (f1) · · ·
ϕ (fn). �

For the next lemma, we introduce the following notation. We denote by P a
partition of the set {1, . . . , n} into disjoint ordered pairs {(i1, j1), . . . (i|P |, j|P |)},
meaning that i < j for all (i, j) ∈ P . The number of pairs in the partition P is
denoted by |P |. The set of all such partitions for a given n is denoted by Pn. If
1 ≤ k ≤ n, then we write k ∈ P if the partition P contains a pair (i, j) such that
either k = i or k = j.

Lemma III.4 Let ψ be a state on A. Then there holds

ψn(f1, f2, . . . , fn) =
∑
P∈Pn

(−1)|P |Ψn−2|P |(⊗k/∈P fk)
∏

(i,j)∈P
ω2(fi, fj) (27)

for all testfunctions f1, f2, . . . , fn.

Proof. Recall that G(f), defined in (14), is the generating functional for the Wick
products : ϕ(x1)ϕ(x2) . . . ϕ(xn) :ω. Therefore ψ(G(f)) is the generating functional
for the distributions Ψn. By repeatedly using the identity

eiϕ(f1)eiϕ(f2) = eiϕ(f1+f2)e−
i
2∆(f1,f2), (28)

it is straightforward to calculate that

ψ
(
eit1ϕ(f1) . . . eitnϕ(fn)

)
= exp

∑
i<j

titjω2(fi, fj) +
1
2

∑
i

t2iω2(fi, fi)

ψ

(
G

(∑
i

tifi

))
. (29)

Applying (−i)n∂n/∂t1 . . . ∂tn to both sides of this equation and setting t1, . . . , tn
to zero then yields the formula claimed in the lemma. �

Lemma III.5 Let ψ be a continuous state on W , and let n ≥ 1. Then WF(ψ2n)
does not contain any elements of the form

(x1, k1, . . . , xn, kn, xn,−kn, . . . , x1,−k1) with ki ∈ (V−)xi for all i. (30)

Proof. As a preparation, let us start by introducing some notation. Let (i1, . . . , ir)
be tuple of natural numbers with 1 ≤ i1 < i2 < . . . ir ≤ 2n. For each such a tuple,
we define a map φ(i1,i2,...,ir) : M2n →M r by

φ(i1,i2,...,ir)(x1, x2, . . . , x2n) ≡ (xi1 , xi2 , . . . , xir ). (31)
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With this notation, Eq. (27) can be rewritten as

ψ2n =
∑
P∈P2n

(−1)|P |φ∗
(k1,...,k2n−2|P |)Ψn−2|P | ·

∏
(i,j)∈P

φ∗
(i,j)ω2, (32)

where {k1, . . . , k2n−2|P |} is the set of numbers in {1, . . . , 2n} which are not con-
tained in the partition P , and where the pull-back of a distribution is defined by
analogy with the pull-back of a smooth density. Note that the distributions φ∗

(i,j)ω2

etc. are by definition distributions on M2n, so the products in formula (32) denote
the pointwise product of distributions on M2n.

Using now formulas [7, I, Thms. 8.2.10 and 8.2.4] for the wave front of prod-
ucts and pull-backs of distributions, we get the estimate

WF(ψ2n)

⊂
⋃

P∈P2n

WF

φ∗
(k1,...,k2n−2|P |)Ψn−2|P | ·

∏
(i,j)∈P

φ∗
(i,j)ω2


⊂
⋃

P∈P2n

{φ∗
(k1,...,k2n−2|P |)WF

(
Ψn−2|P |

) ∪ {0}}+
∑

(i,j)∈P

{
φ∗

(i,j)WF(ω2) ∪ {0}
}

⊂
⋃

P∈P2n

φ∗
(k1,...,k2n−2|P |)(V

2n−2|P |
+ ∪ V 2n−2|P |

− ) +
∑

(i,j)∈P
φ∗

(i,j)(V+ × V−)

 , (33)

where we have used that WF(ω2) ⊂ V+ × V− since ω is Hadamard, and that
WF(Ψk) ⊂ V k+ ∪ V k− , by Lem. III.2. Hence, in order to prove the lemma, it is
sufficient to demonstrate that if a vector (x, l) ∈ T ∗M2n of the form

(x1, l1, . . . , x2n, l2n) ≡ (x1, k1, . . . , xn, kn, xn,−kn, . . . , x1,−k1)
with ki ∈ (V−)xi for all i

(34)

is in the set

φ∗
(k1,...,k2n−2|P |)(V

2n−2|P |
+ ∪ V 2n−2|P |

− ) +
∑

(i,j)∈P
φ∗

(i,j)(V+ × V−) (35)

for some partition P , then ki = 0 for all i. So let (x, l) be in the set (35) for some
P . This implies that

(a) li ∈ V+, lj ∈ V− for all (i, j) ∈ P .

(b) Either li ∈ V+ for all i /∈ P or li ∈ V− for all i /∈ P .

Now property (a), together with the specific form of (x, l) given by (34), implies
that li = lj = 0 whenever (i, j) ∈ P . Combining this with property (b), we see
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that the li must either be all in V− or all in V+. Using again the specific form
of (x, l), we conclude that this is only possible when all li = 0, implying that all
ki = 0. �

We have now gathered enough information to show that Ψn is smooth for all
n. By the induction hypothesis, we know that Ψk is smooth for all k ≤ n− 1. We
want to use this to obtain an estimate for the Fourier transform of χnΨn, where
χn is a smooth function with compact support that will be specified momentarily.

From Lemmas III.4 and III.3 we get the inequality

ψ2n(f1, . . . , fn, f̄n, . . . , f̄1) ≥∑
P,P ′∈Pn

(−1)|P |+|P ′|Ψn−2|P |(⊗k/∈P f̄k)Ψn−2|P ′|(⊗k′ /∈P ′fk′)∏
(i,j)∈P

ω2(f̄j, f̄i)
∏

(i′,j′)∈P ′
ω2(fi′ , fj′). (36)

We now specialize the above inequality to testfunctions fj of the form

fj(x) =
1

(2π)2
ηj(x)eiljx. (37)

Here, ηj are real-valued smooth bump functions whose support is contained in
some chart, lj are vectors in R4 and the expression ljx denotes the scalar product
in R4 between lj and the coordinate components of x in the above chart. With
this choice for fj, the above inequality can be rewritten as

|χ̂nΨn(l1, . . . , ln)|2 ≤ χ̂2nψ2n(l1, . . . , ln,−ln, . . . ,−l1)−∑
P,P ′∈Pn,P,P ′ �=∅

(−1)|P |+|P ′| ̂χn−2|P |Ψn−2|P |
(−lk1 , . . . ,−lkn−2|P |

)
× ̂χn−2|P ′|Ψn−2|P ′|

(
lk′1 , . . . , lk′n−2|P ′|

)
×

∏
(i,j)∈P

χ̂2ω2(−lj,−li)
∏

(i′,j′)∈P ′
χ̂2ω2(li′ , lj′), (38)

where {k1, . . . , k2n−2|P |} is the set of numbers in {1, . . . , n} which are not con-
tained in the partition P and where {k′1, . . . , k′2n−2|P ′|} is the set of numbers in
{1, . . . , n} which are not contained in the partition P ′. The smooth functions χk
denote suitable tensor products of k factors of the functions ηi. For example, in
the expression χ̂2ω2(li′ , lj′), the function χ2 should be taken to be χ2 = ηi′⊗ηj′ ; in
the expression χ̂2nψ2n(l1, . . . , ln,−ln, . . . ,−l1), the function χ2n should be taken
to be χ2n = η1 ⊗ . . . ηn ⊗ ηn ⊗ . . . η1, etc.

We would now like to argue that the right side of inequality (38) is rapidly
decaying in directions for which all li are in some conic neighborhood of (V−)xi ,
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with at least one li �= 0, provided the support of the functions ηi is localized
sharply enough around points xi. For this, we first look at the terms in the sum on
the right side of inequality (38). Each term in this sum contains at least one factor
of either the form χ̂2ω2(li, lj) or χ̂2ω2(−lj′ ,−li′), where (i, j) ∈ P or (i′, j′) ∈ P ′.
Provided that not all the covectors li, lj, li′ , lj′ occurring in these factors are zero,
these factors give us rapid decay of the corresponding term in the sum. This is
because, by the Hadamard property of ω2,

|χ̂2ω2(k1, k2)| ≤ CN (1 + |k1|+ |k2|)−N (39)

for allN and all directions (k1, k2) in some conic neighborhood of (V+)x1×(V+)x2∪
(V−)x1 × (V−)x2 , provided χ2 is localized sufficiently sharply around (x1, x2). If
all the li, lj , li′ , lj′ occurring in the factors χ̂2ω2(li, lj) or χ̂2ω2(−lj′ ,−li′) are zero,
then at least one of the covectors lk with k /∈ P and at least one of the covectors
lk′ with k′ /∈ P ′ must be nonzero, since otherwise all the li would be zero. Let us
first assume that P is not the empty set. Then we have

∣∣∣ ̂χn−2|P |Ψn−2|P |
(−lk1 ,−lk2 , . . . ,−lkn−2|P |

) ∣∣∣ ≤ CN

(
1 +

∑
k/∈P
|lk|
)−N

(40)

for all N and suitable constants CN , since the distributions Ψn−2|P | are smooth
by the inductive assumption. If P = ∅, then P ′ is not the empty set, and we get
an estimate of the above form for the term ̂χn−2|P ′|Ψn−2|P ′|. In summary, we have
shown that each term in the sum on the right side of (38) contains at least one
factor which is rapidly decaying. Therefore the whole sum is rapidly decaying in
directions such that either all li ∈ (V+)xi or all li ∈ (V−)xi and not all li = 0,
provided the functions ηi are localized sufficiently sharply around the points xi.

By Lemma III.5, the first term on the right side of (38) is rapidly decaying
in directions for which all li are in a conic neighborhood of (V−)xi , provided the
functions ηi are localized sharply enough around xi. Hence, we have altogether
found that

|χ̂nΨn(l1, l2, . . . , ln)| ≤ CN

(
1 +

∑
i

|li|
)−N

(41)

in directions for which all li are in a neighborhood of (V−)xi , provided the functions
ηi are localized sharply enough around xi. Now, since

(: ϕ⊗n(t) :ω)∗ = : ϕ⊗n(t̄) :ω, (42)

for all testfunctions t, the distributions Ψn are real, in the sense that Ψn(t) =
Ψn(t̄) for all testfunctions t. Hence, |χ̂nΨn(l1, . . . , ln)| = |χ̂nΨn(−l1, . . . ,−ln)|,
and the inequality (41) must therefore also hold if all the li in that inequality are
replaced by −li, that is, (41) must also hold in directions for which all li are in
some neighborhood of the cones (V+)xi . Therefore, since we already know that
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WF(Ψn) ⊂ V n+ ∪ V n− , we get from this that the distribution χnΨn has in fact
no singular directions at all, provided the supports of ηi are sufficiently sharply
localized around xi. But this implies that WF(Ψn) = ∅, as we wanted to show.

We next prove (ii). Let us thus assume ψ is a state on A for which ψ2 is
Hadamard and for which ψTn are smooth for all n �= 2. By Lemma III.1, this
implies that the distributions Ψn are smooth. We are thus allowed to define an
action of ψ on elements of W by the formula

ψ(: ϕ⊗n(t) :ω) ≡ Ψn(t), (43)

for all t ∈ E ′n and all n. It is easily checked that this formula defines a linear,
normalized and continuous functional on W which extends the action of ψ on A.
Moreover, this functional is also positive, since it is continuous and positive on A,
which is a dense subspace of W . �

IV Appendix

IV.1 Proof of formula (22)

Let {h1, h2, . . . , hn, . . . } denote some hierarchy of symmetric distributions and let

H(f) = 1 +
∑
n≥1

in

n!
hn(f, f, . . . , f) (44)

be the corresponding generating functional. Then the “linked cluster theorem”
(see e.g. [16, pp 125]) states that the corresponding truncated distributions are
given by

hTn (f1, f2, . . . , fn) =
∂n

in∂t1∂t2 . . . ∂tn
lnH(

∑
i

tifi)

∣∣∣∣∣
t1=t2=···=0

. (45)

We would like to apply this result to the hierarchies {ψ1, ψ2, . . . , ψn, . . . } and
{ω1, ω2, . . . , ωn, . . . } of the n-point functions of the states ψ and ω. However,
these are not symmetric and therefore the linked cluster theorem is not directly
applicable. Instead, we first apply the linked cluster theorem to the hierarchies of
symmetrized n-point functions, {ψS1 , ψS2 , . . . , ψSn , . . . } and {ωS1 , ωS2 , . . . , ωSn , . . . },
where the superscript “S” stands for symmetrization. This gives us

[(ψSn )
T − (ωSn )

T ](f1, . . . , fn)

=
∂n

in∂t1 . . . ∂tn

[
lnψ

(
eiϕ(
P

i tifi)
)
− lnω

(
eiϕ(
P

i tifi)
)] ∣∣∣∣∣

t1=t2=···=0

=
∂n

in∂t1 . . . ∂tn
lnψ

(
G(
∑
i

tifi)

) ∣∣∣∣∣
t1=t2=···=0

, (46)
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where we have used the definition of G(f), Eq. (14), as well as the relation
ω(eiϕ(f)) = e−

1
2ω2(f,f), which holds because ω is quasi-free. The desired relation

(22) then follows if we can show that

(ψSn )
T − (ωSn )

T = ψTn − ωTn (47)

for all n. The demonstration of (47) makes up the rest of this subsection.
Relation (47) can be checked immediately for n = 1 and n = 2. For n ≥ 3 it

reduces to
(ψSn )

T = ψTn (48)

since ωTn = (ωSn )T = 0 for n ≥ 3. In order to see (48), we first note that the trun-
cated n-point functions of any state on A are symmetric for n ≥ 3, ψTn = (ψTn )

S ,
as one can show by a straightforward inductive argument using the commutation
relation (3) for the free field. Eq. (48) thus follows from the fact that for any
hierarchy {h1, h2, . . . , hn, . . . } (not necessarily symmetric) there holds

(hTn )
S = (hSn)

T (49)

for all n. To see this, we argue as follows. Let P = {r1, . . . , rk}, and let Q (rj)
denote the set of all permutations of rj ≡ (rj (1) , . . . , rj (nj)) where nj = |rj |. Let

Q (P ) = {σ1 · · ·σk| σj ∈ Q (rj) for j = 1, . . . , k} .
Let I (n1, . . . , nk) denote the subset of partitions which has k members {r1, . . . , rk}
such that for each i = 1, . . . , k, |rj | = nj for all j. For any fixed P ∈ I (n1, . . . , nk),
we then get(∏
r∈P

h|r|

)S
(x1, . . . , xn) =

1
n!

∑
P ′∈I(n1,...,nk)

∑
σ∈Q(P ′)

 ∏
rj∈P ′

hnj

(xσ(1), . . . , xσ(n)

)
=

n1! · · ·nk!
n!

∑
P ′∈I(n1,...,nk)

∏
rj∈P ′

hSnj

(
xrj(1), . . . , xrj(nj)

)
.

(Note that the left hand side is independent of P ∈ I (n1, . . . , nk).) From this we
conclude that(∑
P∈In

∏
r∈P

h|r|

)S
(x1, . . . , xn) =

∑
{n1,...,nk}

∑
P∈I(n1,...,nk)

(∏
r∈P

h|r|

)S
(x1, . . . , xn)

=
∑

{n1,...,nk}

∑
P ′∈I(n1,...,nk)

∏
rj∈P ′

hSnj

(
xrj(1), . . . , xrj(nj)

)
=
∑
P∈In

∏
r∈P

hSnj

(
xrj(1), . . . , xrj(nj)

)
(50)

where the sum
∑

{n1,...,nk} is over all possible set of positive integers such that
n1 + . . .+ nk = n.
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We now use this formula to prove Eq. (49). Suppose that this equation is
true for 1, 2, . . . , n. We now show that it must also be true for n+ 1.

By the induction hypothesis, for any P ∈ In+1 which is not P0 = {(1, 2, . . . ,
n+ 1)} and any r ∈ P , we have that

(hS|r|)
T
(
xr(1), . . . , xr(|r|)

)
= (hT|r|)

S
(
xr(1), . . . , xr(|r|)

)
. (51)

Hence,

(hSn+1)
T (x1, . . . , xn)

= hSn+1 (x1, . . . , xn+1)−
∑

P∈In+1,P �=P0

∏
r∈P

(hS|r|)
T
(
xr(1), . . . , xr(|r|)

)
= hSn+1 (x1, . . . , xn+1)−

∑
P∈In+1,P �=P0

∏
r∈P

(hT|r|)
S
(
xr(1), . . . , xr(|r|)

)

= hSn+1 (x1, . . . , xn+1)−
 ∑
P∈In+1,P �=P0

∏
r∈P

hT|r|

S (x1, . . . , xn+1)

= (hTn+1)
S (x1, . . . , xn+1) ,

where in the first line we have used the definition of the truncated n-point
functions, in the second line we have used the induction hypothesis, and
where in the third line we have applied formula (50), applied to the hierarchy
{hT1 , hT2 , . . . , hTn , . . . }. This completes the induction. �

IV.2 Proof of Lemma III.2

Let Γ be a closed conic subset of T ∗Mn\(V n+ ∪ V +
− ) and let {tκ} be a sequence

of smooth functions on Mn , whose support is contained in some compact subset
of Mn for all κ, and which converges to some t in the sense of D′

Γ. Then, the
sequences Aκ = : ϕ⊗n(tκ) :ω by definition converges in W . Therefore, since the
state ψ is assumed to be continuous on W , ψ(Aκ) = Ψn(tκ) is a convergent
sequence for κ→∞. We need to show that this implies that WF(Ψn) ⊂ V n+ ∪V n− .
This immediately follows from the following general result.

Lemma IV.1 Let u ∈ D′(Rn) and let Γ be a closed conic set in Rn × (Rn\{0}).
Assume that u has the following property. For every sequence of smooth functions
{fκ} such that fκ → f in D′

Γ(R
n) and such that supp(fκ) ⊂ K, with K a compact

subset of Rn, we have that {u(fκ)} is a convergent sequence. Then {0} /∈WF(u)+Γ.

Proof. Let A be a properly supported pseudo differential operator and with
µsupp(A) ⊂ Γ. Then, if {fκ} is any sequence of distributions on Rn converging
weakly to some f ∈ D′(Rn) in the sense of distributions, it follows that Afκ → Af
in the sense of D′

Γ(R
n) and that supp(Afκ) ⊂ K ′, whereK ′ is some compact subset
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of Rn. Therefore, the sequence u(Afκ) = Atu(fκ) is convergent, by the assumption
of the lemma, where At is the formal adjoint of the pseudo differential operator
A. We claim that it follows from this that Atu is in fact smooth. Assuming for the
moment that this has been shown to be true, we get from the characterization [7]
of the wave front set that

WF(u) =
⋂

Bu∈C∞
char(B) ⊂

⋂
µsupp(A)⊂Γ

char(At) =
⋂

µsupp(A)⊂Γ

−char(A)

= T ∗Rn\(−Γ),
because the set of properly supported pseudo differential operators A with
µ supp(A) ⊂ Γ contains elements whose characteristic, char(A), is contained in an
arbitrarily small conic neighborhood of T ∗Rn\Γ. Since the set T ∗Rn\(−Γ) con-
tains no element (x, k) such that k + k′ = 0 for some (x, k′) ∈ Γ, this then proves
the lemma.

It thus remains to be shown that the compactly supported distribution v =
Atu is smooth. This would immediately follow if the Fourier transform, v̂(k) was
rapidly decaying. Let us assume on the contrary that v̂(k) is not rapidly decaying.
Then there is an integer N > 0 and a sequence {ξκ} in Rn such that |ξκ| → ∞
and

(1 + |ξκ|)N |v̂ (ξκ)| ≥ κ for κ = 1, 2, . . . (52)

Define fκ by

fκ(x) =
1

(2π)n/2
(1 + |ξκ|)N ρ(x)eiξκx, κ = 1, 2, . . . ,

where ρ ∈ C∞
0 (Rn) is a positive function, identically 1 in supp (v). Then, for any

φ ∈ D(Rn), since ρφ is rapidly decaying,

|fκ (φ)| = (1 + |ξκ|)N
∣∣∣ρ̂φ(ξκ)∣∣∣→ 0 as κ→∞.

This implies that fκ → 0 weakly in D′(Rn), and therefore v(fκ)→ 0. Thus,

(1 + |ξκ|)N |v̂(ξκ)| = |v(fκ)| → 0,

which is in contradiction with (52). �
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