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On toroidal circle planes with groups
of automorphisms fixing exactly one point

Duy Ho

Abstract. We characterize the family of flat Minkowski planes constructed
from strongly hyperbolic functions in terms of their automorphism groups.
We also improve the current characterization in the literature for the
family of flat Minkowski planes constructed by Artzy and Groh. As a
corollary, we show that the automorphism groups of toroidal circle planes
constructed by Polster are 2-dimensional.
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1. Introduction

The classical Minkowski plane is the geometry of plane sections of the standard
nondegenerate ruled quadric in real 3-dimensional projective space P3(R).
It is an example of a flat Minkowski plane, which is an incidence structure
defined on the torus satisfying certain geometric axioms. Besides the classical
Minkowski plane, there are many known examples of flat Minkowski planes.

There are two families of flat Minkowsi planes that we will consider in this
paper. The first family is the one constructed by Artzy and Groh [1] using the
3-dimensional group

Φ1 = {(x, y) �→ (ax + b, ay + c) | a, b, c ∈ R, a > 0}.

The second family comes from a special type of convex functions called strongly
hyperbolic functions. These planes were constructed in [6] and admit the 3-
dimensional group

Φ∞ = {(x, y) �→ (x + b, ay + c) | a, b, c ∈ R, a > 0}
as their group of automorphisms.

Toroidal circle planes are a generalization of flat Minkowski planes in the sense
that they are incidence structures on the torus satisfying all but one geometric
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axiom for flat Minkowski planes. There are toroidal circle planes which are not
flat Minkowski planes, as shown by Polster with an explicit construction in [7].

In this paper, we characterize strongly hyperbolic planes and Artzy–Groh
planes among the class of toroidal circle planes in terms of their automor-
phism groups. We also obtain some information on automorphism groups of
the toroidal circle planes constructed by Polster. The content of this paper is
based on Chapter 7 of the author’s doctoral dissertation [5].

The paper is organized as follows. Section 2 contains preliminary results. In
Sect. 3, we describe the circle set of toroidal circle planes with 3-dimensional
groups of automorphisms fixing exactly one point. Characterizations for strongly
hyperbolic planes and Artzy–Groh planes are contained in Sects. 4 and 5, re-
spectively. Automorphism groups of Polster planes are considered in Sect. 6.

2. Preliminaries

2.1. Toroidal circle planes, flat Minkowski planes and derived planes

A toroidal circle plane is a geometry T = (P, C,G+,G−), whose

point set P is the torus S
1 × S

1,
circles (elements of C) are graphs of homeomorphisms of S1,
(+)-parallel classes (elements of G+) are the verticals {x0} × S

1,
(−)-parallel classes (elements of G−) are the horizontals S

1 × {y0},

where x0, y0 ∈ S
1. We shall view S

1 as the one-point compactification R∪{∞}.

We denote the (±)-parallel class containing a point p by [p]±. When two points
p, q are on the same (±)-parallel class, we say they are (±)-parallel and denote
this by p ‖± q. Two points p, q are parallel if they are (+)-parallel or (−)-
parallel, and we denote this by p ‖ q.

Furthermore, a toroidal circle plane satisfies the following

Axiom of joining : three pairwise non-parallel points p, q, r can be joined
by a unique circle α(p, q, r).

A toroidal circle plane is called a flat Minkowski plane if it also satisfies the
following

Axiom of touching : for each circle C and any two nonparallel points p, q
with p ∈ C and q �∈ C, there is exactly one circle D that contains both
points p, q and intersects C only at the point p.

A toroidal circle plane is in standard representation if the set {(x, x) | x ∈ S
1}

is one of its circles, cf. [8, Sect. 4.2.3]. Up to isomorphisms, every toroidal circle
plane can be described in standard representation. In this case, we omit the
two parallelisms and refer to (P, C) as a toroidal circle plane.
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Let T = (P, C) be a toroidal circle plane. Let C+ and C− be the sets of all
circles in C that are graphs of orientation-preserving and orientation-reversing
homeomorphisms of S1, respectively. Then C = C+ ∪ C−. We call C+ and C−

the positive half and negative half of T, respectively. These two halves are in-
dependent of each other, that is, we can exchange halves from different toroidal
circle planes and obtain another toroidal circle plane, cf. [8, Sect. 4.3.1]:

Theorem 2.1. For i = 1, 2, let Ti be two toroidal circle planes. Then T =
(P, C+

1 ∪ C−
2 ) is a toroidal circle plane.

The derived plane Tp of a toroidal circle plane T at a point p is the incidence
geometry whose point set is P\([p]+ ∪ [p]−), whose lines are all parallel classes
not going through p and all circles of T going through p. For every point p ∈ P,
the derived plane Tp is an R

2-plane and even a flat affine plane when T is a
flat Minkowski plane, cf. [8, Theorem 4.2.1]. For more on R

2-planes, we refer
the reader to Salzmann et al. [10, Chapter 31] and references therein.

2.2. Automorphisms and the automorphism group

An isomorphism between two toroidal circle planes is a bijection between the
point sets that maps circles to circles, and induces a bijection between the
circle sets. An automorphism of a toroidal circle plane T is an isomorphism
from T to itself. Every automorphism of a toroidal circle plane is continuous
and thus a homeomorphism of the torus, cf. [8, Theorem 4.4.1]. With respect
to composition, the set of all automorphisms of a toroidal circle plane is a
group called the automorphism group Aut(T) of T. The group Aut(T) is a Lie
group of dimension at most 6 with respect to the compact-open topology, cf.
[2]. We say a toroidal circle plane has group dimension n if its automorphism
group has dimension n. Toroidal circle planes with group dimension n � 4
were classified in [2].

When n = 3, a list of possible connected groups of automorphisms of toroidal
circle planes was presented in [3]. We define the following subgroups of AGL2(R):

Φ∞:={(x, y) �→ (x + b, ay + c) | a, b, c ∈ R, a > 0},

and

Φd:={(x, y) �→ (ax + b, ady + c) | a, b, c ∈ R, a > 0},

for d ∈ R. In our situation, we will need the following result from Creutz
et al. [3, Lemma 4.3] (compare also Creutz et al. [5, Lemma 5.3.2]). For the
convenience of the reader, a sketch of proof is provided.

Theorem 2.2. Let T be a toroidal circle plane that admits a 3-dimensional con-
nected group of automorphisms Σ fixing exactly one point p. Under a suitable
coordinate system, let p = (∞,∞) be the fixed point. Then the derived plane
Tp is Desarguesian and Σ is isomorphic to Φd, for some d ∈ R∪{∞}. The co-
ordinates may be chosen such that the action of Σ is described by the definition
of Φd on R

2.
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Sketch of Proof. From Brouwer’s Theorem (cf. [8, A2.3.8]) and the classifi-
cation of R2-planes with point transitive 3-dimensional collineation group by
Groh (cf. [4, Main Theorem 2.6]), one obtains that Tp is Desarguesian and that
Σ is isomorphic to Φd for some d ∈ R. Let the coordinates be chosen such that
Tp equals the real affine plane and the parallel classes are the lines parallel to
the x-axis and y-axis. The group Σ acts on Tp by automorphisms by its defini-
tion. It contains all translations, hence it is generated by the translations and
the 1-dimensional stabilizer Σo fixing the origin. It follows that Σo is isomor-
phic to R and its action is described by the maps {(x, y) �→ (x, ay) | a > 0},
or {(x, y) �→ (ax, ady) | a > 0}. �

In fact, if the coordinates of T are chosen such that the conditions in Theorem
2.2 are satisfied, then T is in standard representation. From the uniqueness
of the standard representation, the converse is also true. We then have the
following.

Theorem 2.3. Let T be a toroidal circle plane in standard representation. Then
T admits a 3-dimensional connected group of automorphisms Σ fixing exactly
one point p = (∞,∞) if and only if Σ = Φd, for some d ∈ R ∪ {∞}.

2.3. Hyperbolic functions and strongly hyperbolic functions

In this section, we will define hyperbolic functions and derive some of their
properties. Let R

+ denote the set of positive real numbers. A function f :
R

+ → R
+ is hyperbolic if it satisfies the following conditions.

(i) limx→0+ f(x) = +∞ and limx→+∞ f(x) = 0.
(ii) f is strictly convex.

Remark 2.4. We note that if f is a hyperbolic function, then f is bijective, con-
tinuous and strictly decreasing. The left-derivative f ′

− exists, is left-continuous
and strictly increasing (cf. [9, Theorem B p. 5]).

Let f be a hyperbolic function. In the remainder of this section, we study the
roots of the function f̃abc : (max{−b, 0},∞) → R defined by

f̃abc(x) = af(x + b) + c − f(x),

where a > 0, b, c ∈ R. Let f† : R+ → R be defined by

f†(x) = ln(|f ′
−(x)|).

Lemma 2.5. Let f be a hyperbolic function. Assume that there exist u, v ∈ R

such that the function f̄uv : (max{−u, 0},∞) → R defined by

f̄uv(x) = f†(x + u) + v − f†(x)

changes sign at least two times. Then there exist a > 0, and b, c ∈ R, (a, b, c) �=
(1, 0, 0), such that f̃abc has at least 3 roots.
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Proof. Let a = ev > 0 so that v = ln a. Also, let b = u. We consider the
continuous function h : (max{−u, 0},∞) → R defined by

h(x) = f̃ab0(x) = af(x + b) − f(x).

According to Remark 2.4, the left derivative h′
− exists. Furthermore, f̄uv(x) ≶

0 if and only if h′
−(x) ≷ 0. From our assumption, it follows that h′

− also
changes sign at least two times. This implies that h has two local extrema.

Assume that max{−b, 0} = 0 so that limx→∞ = 0 and limx→0+ = −∞. Since
h has at least 2 local extrema, it has a local minimum and a local maximum.
By the intermediate value theorem, there exists c ∈ R such that h(x) = c
has at least 3 roots. The case max{−b, 0} = −b is similar and the proof now
follows. �

Lemma 2.6. Let f be a hyperbolic function. If f is not differentiable, then there
exist a > 0, and b, c ∈ R, (a, b, c) �= (1, 0, 0), such that the function f̃abc has at
least 3 roots.

Proof. If f is not differentiable, then there exists x0 at which f ′
− has a jump

discontinuity. Then f† also has a jump discontinuity at x0. It follows that there
exist u, v ∈ R such that the function f̄uv changes sign at least two times. The
proof now follows from Lemma 2.5. �

Lemma 2.7. Let f be a hyperbolic function. Assume that f is differentiable.
If the function f† = ln |f ′| is not strictly convex, then there exist a > 0, and
b, c ∈ R, (a, b, c) �= (1, 0, 0), such that the function f̃abc has at least 3 roots.

Proof. We have two cases depending on the convexity of f†(x).

Case 1: If f†(x) is convex but not strictly convex, then there exists an
interval (x1, x2) on which f†(x) is affine. In particular, there exist r, s ∈ R

such that f†(x) = rx + s for all x ∈ (x1, x2). This implies that f ′(x) =
−erx+s. But then f is an exponential function, which contradicts the
assumption f is hyperbolic. So this case cannot occur.
Case 2: If f†(x) is not convex, then there exists u > 0 such that the
function f̄ : (max{−u, 0},∞) → R defined by

f̄(x) = f†(x) − f†(x + u),

is not decreasing, cf. [5, Lemma B.2.2]. Also, we have that lim infx→0+

f ′(x) = −∞ (cf. [5, Lemma B.1.1]), so that lim supx→0+ f†(x) = +∞.
It follows that lim supx→0+ f̄(x) = +∞, and so f̄ cannot be increasing
either. Hence f̄ is not monotone. This implies that there exist v ∈ R such
that the function f̄uv : (max{−u, 0},∞) → R defined by

f̄uv(x) = f†(x + u) + v − f†(x)

changes sign at least two times. The proof now follows from Lemma 2.5.

�
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3. On toroidal circle planes with 3-dimensional groups of
automorphisms fixing exactly one point

In this section, we provide a general description for the circle set of a toroidal
circle plane T with 3-dimensional group of automorphisms fixing exactly one
point. Under a suitable coordinate system, we can assume that the fixed point
is p = (∞,∞). We will further assume that T is in standard representation. By
Theorem 2.3, the connected component of Aut(T) is Φd, for some d ∈ R∪{∞}.

For s, t ∈ R, we define ls,t := {(x, sx + t) | x ∈ R} ∪ {(∞,∞)}, and

L := {ls,t | s, t ∈ R, s < 0}.

For i = 1, 2, let fi : R+ → R
+ be a continuous function. Let f : R\{0} →

R\{0} be defined by

f(x) =

{
f1(x) for x > 0
−f2(−x) for x < 0

,

and let Cf be the graph of f extended by two points (0,∞) and (∞, 0), that
is,

Cf := {(x, f(x)) | x ∈ R\{0}} ∪ {(0,∞), (∞, 0)}.

For d ∈ R ∪ {∞}, let Fd be the set of images of Cf under Φd and define

C−(f1, f2,Φd) := Fd ∪ L.

Lemma 3.1. Let T be a toroidal circle plane in standard representation. If there
exists d ∈ R∪ {∞} such that Φd is a group of automorphisms of T, then there
exist two hyperbolic functions f1, f2 such that C−(f1, f2,Φd) is the negative
half of T.

Proof. Let C− be the negative half of T. By Theorem 2.2, there exists a point p
such that Tp is Desarguesian. Under suitable coordinatization, we can assume
that p = (∞,∞). This implies that L ⊂ C−. In the remainder of the proof, we
describe circles in C− not going through p.

(1) Let C ∈ C− be a circle going through (0,∞) and (∞, 0) and let f :
R\{0} → R\{0} be a function such that C is the graph of f extended by
two points (0,∞) and (∞, 0). Then f has the form

f(x) =

{
f1(x) for x > 0
−f2(−x) for x < 0

,

where f1 and f2 are continuous bijections of R+.
(2) We now show that f1 is a hyperbolic function. Since C is the graph

of an orientation-reversing homeomorphism of S1, it follows that f1(x)
is a strictly decreasing. This also implies that limx→0+ f1(x) = ∞ and
limx→∞ f1(x) = 0.
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Suppose f1 is not strictly convex. Then there exists a line l with
negative slope such that l intersects the graph of f1 in at least three
points. On the other hand, we have that l∪p ∈ L ⊂ C−, which contradicts
the Axiom of Joining. Therefore f1 is strictly convex and consequently a
hyperbolic function.

(3) Using arguments similar to the above, one can show that f2 is also a
hyperbolic function. Since Φd is a group of automorphism of T, the re-
maining circles not going through p and different from C are images of
C under Φd. This proof now follows. �

Let ϕ be the homeomorphism of the torus defined by ϕ : (x, y) �→ (−x, y)
and let C+(f1, f2,Φd) := ϕ(C−(f1, f2,Φd)). Our main result of this section the
following.

Theorem 3.2. Let T be a toroidal circle plane in standard representation. Then
there exists d ∈ R∪{∞} such that Φd is a group of automorphisms of T if and
only if there exist four hyperbolic functions f1, f2, f3, f4 such that C−(f1, f2,Φd)
is the negative half of T and C+(f3, f4,Φd) is the positive half of T.

Proof. Assume that there exists d ∈ R ∪ {∞} such that Φd is a group of
automorphisms of T. By Lemma 3.1, the negative half of T is C−(f1, f2,Φd)
for two hyperbolic functions f1 and f2. On the other hand, the map ϕ de-
fined above induces an isomorphism between the two toroidal circle planes T

and ϕ(T). Applying Lemma 3.1 to ϕ(T), there exist two hyperbolic functions
f3, f4 such that C−(f3, f4,Φd) is the negative half of ϕ(T). This implies that
C+(f3, f4,Φd) = ϕ(C−(f3, f4,Φd)) is the positive half of T. The proof of the
converse direction is straightforward. �

A natural problem is to determine the conditions on the functions fi and the
parameter d which guarantee that the construction described in Theorem 3.2
yields a toroidal circle plane. We do not know a general answer, but some
special cases will be treated in the sequel.

4. Characterization of strongly hyperbolic planes

We recall that a strictly convex function f : R
+ → R

+ is hyperbolic if
limx→0+ f(x) = +∞ and limx→+∞ f(x) = 0. A hyperbolic function f : R+ →
R

+ is called a strongly hyperbolic function if it satisfies the following additional
conditions.

1. For each b ∈ R,

lim
x→+∞

f(x + b)
f(x)

= 1.

2. f is differentiable.
3. ln |f ′(x)| is strictly convex.
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We also recall the following construction of flat Minkowski planes from Creutz
et al. [6]. Let ϕ be the homeomorphism of the torus defined by ϕ : (x, y) �→
(−x, y). For i = 1..4, let fi be a strongly hyperbolic function. Let C :=
C−(f1, f2,Φ∞) ∪ C+(f3, f4,Φ∞), where C+(f3, f4,Φ∞) = ϕ(C−(f3, f4,Φ∞)).
Then Mf := (P, C) is a flat Minkowski plane, which we will refer to as a
strongly hyperbolic (flat Minkowski) plane.

In this section, we prove the following characterization of strongly hyperbolic
planes.

Theorem 4.1. Let T be a toroidal circle plane in standard representation. Then
T is a flat Minkowski plane isomorphic to a strongly hyperbolic plane Mf if
and only if T admits a group of automorphisms isomorphic to Φ∞.

Proof. The “only if” direction is straightforward from the construction of
strongly hyperbolic planes. For the converse direction, we let T be a toroidal
circle plane in standard representation admitting a group of automorphisms
Σ isomorphic to Φ∞. From [3, Theorem 1.2], Σ fixes exactly one point p. Un-
der suitable coordinates, we can assume that p = (∞,∞). By Theorem 2.3,
Σ = Φ∞. By Theorem 3.2, there exist two hyperbolic functions f1, f2 such that
C−(f1, f2,Φ∞) is the negative half of T. Similarly, there exist two hyperbolic
functions f3, f4 such that C+(f3, f4,Φ∞) is the positive half of T.

(1) We now show that f1 is a strongly hyperbolic function. By Lemmas 2.6
and 2.7, f1 is differentiable and ln |f ′

1(x)| is strictly convex. It remains to
show that, for each b ∈ R,

lim
x→+∞

f1(x + b)
f1(x)

= 1.

The case b = 0 is trivial. We consider the case b > 0. From the Axiom of
Joining, there exists a unique circle going through the three points (0, 1)
and (∞, 0) and (x, y), where x > 0, 0 < y < 1. In particular, for each

x > 0 and 0 < y < 1, the equation y =
f1(x + b)

f1(b)
has a unique solution

b > 0. Define g : R+ → R as

g(b) =
f1(x + b)

f1(b)
.

Then g(b) is continuous, g(b) ∈ (0, 1) for all b > 0, and limb→0+ g(b) = 0.
To satisfy the Axiom of Joining, g(b) must be strictly increasing and
limb→∞ g(b) = 1, that is,

lim
b→∞

f1(x + b)
f1(b)

= 1.

Reverse the role of b and x gives the condition as stated. For the case
b < 0, we can rewrite

f1(x + b)
f1(x)

=
(

f1(x′ − b)
f1(x′)

)−1
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and apply the argument as in the case b > 0.
(2) Let γ : P → P be the homeomorphism defined by γ : (x, y) �→ (−x,−y).

Then γ induces an isomorphism between the two toroidal circle planes
T and γ(T). In particular, γ(C−(f1, f2,Φ∞)) = C−(f2, f1,Φ∞) is the
negative half of γ(T). Applying the argument in part 1) for γ(T), it
follows that f2 is strongly hyperbolic. Similarly, one can show that f3
and f4 are also strongly hyperbolic functions. The proof now follows.

�

Remark 4.2. We note that the groups Φ0 and Φ∞ are isomorphic both as
groups and as transformation groups of the real plane. Because of this isomor-
phism, Theorem 4.1 is equally true with Φ0 in place of Φ∞.

5. Characterization of Artzy–Groh planes

Perhaps the first group-theoretic construction of flat Minkowski planes is the
one introduced in 1986 by Artzy and Groh, cf. [1]. Let f, g : R\{0} → R\{0}
be two homeomorphisms satisfying the following conditions.

(i) The functions f and g are differentiable.
(ii) The restrictions of f ′ and g′ to both R

+ and R
− are strictly monotonic.

(iii) The restrictions of f and g to both R
+ and R

− have the x-axis and the
y-axis as asymptotes.

(iv) f ′(x) < 0 and g′(x) > 0 for all x ∈ R\{0}.

For a > 0, b, c ∈ R, let fa,b,c : R\{−b} → R\{c} be defined by

fa,b,c(x) = af

(
x + b

a

)
+ c.

For a < 0, b, c ∈ R, let ga,b,c : R\{−b} → R\{c} be defined by

ga,b,c(x) = ag

(
x + b

|a|
)

+ c.

The circle set of an Artzy–Groh plane M′(f, g) consists of sets of the form

{(x, sx + t) | x ∈ R} ∪ {(∞,∞)},

where s, t ∈ R, s �= 0, sets of the form

{(x, fa,b,c(x)) | x ∈ R\{−b}} ∪ {(∞, c), (−b,∞)},

where a, b, c ∈ R, a > 0, and sets of the form

{(x, ga,b,c(x)) | x ∈ R\{−b}} ∪ {(∞, c), (−b,∞)},

where a, b, c ∈ R, a < 0.

It is known that a flat Minkowski plane M is isomorphic to an Artzy–Groh
plane if and only if M admits the group

Φ1:={(x, y) �→ (ax + b, ay + c) | a, b, c ∈ R, a > 0}
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as a group of automorphisms, cf. [8, Theorem 4.4.13]. In this section, we obtain
the same result without assuming the Axiom of Touching. We start by defining
a set of triangles T (m1,m2,m3).

A triangle abc is a triple a = (a1, a2), b = (b1, b2), c = (c1, c2) of non-collinear
points in R

2. For m1,m2,m3 < 0 such that m1 < m2 < m3, let T (m1,m2,m3)
be the set of triangles abc such that⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

a2 − b2
a1 − b1

= m1

a2 − c2
a1 − c1

= m2

b2 − c2
b1 − c1

= m3

a1 < b1 < c1

Each point a, b, c is called a vertex of the triangle abc. Given a triangle abc,
we denote by φ(abc) the triangle formed by the images of a, b, c under a map
φ ∈ Φ1. The existence of such a triangle comes from the fact that Φ1 is con-
nected and preserves the slope of lines. Furthermore, Φ1 is sharply transitive
on T (m1,m2,m3).

Lemma 5.1. Let f be a hyperbolic function. If f is not differentiable, then
there exist m1 < m2 < m3 < 0 such that T (m1,m2,m3) has no elements on
the graph of f .

Proof. Assume that f is not differentiable. Then there exists a point x0 such
that

f ′
−(x0) < f ′

+(x0) < 0.

Let m1,m2,m3 ∈ (f ′
−(x0), f ′

+(x0)) satisfying m1 < m2 < m3. Suppose for a
contradiction that there exists a triangle abc ∈ T (m1,m2,m3) that lies on the
graph C of f . Let C1 = {(x, f1(x)) | 0 < x � x0} and C2 = {(x, f1(x)) | x >
x0}, so that C = C1∪C2. By the pigeonhole principle, either C1 or C2 contains
at least two vertices of abc.Assume without loss of generality that a and b are
on C1. This implies that

m1 < f ′
1−(x0) < m1 < f ′

1+(x0),

which is a contradiction. �

Theorem 5.2. Let T be a toroidal circle plane in standard representation. Then
T is a flat Minkowski plane isomorphic to an Artzy–Groh plane if and only if
T admits a group of automorphisms isomorphic to Φ1.

Proof. The “only if” is straightforward from the construction of Artzy–Groh
planes. It remains to prove the converse direction. Similar to the proof of
Theorem 4.1, without loss of generality we can assume that T is a toroidal
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circle plane in standard representation admitting Φ1 as a group of automor-
phisms. By Theorem 3.2, there exist two hyperbolic functions f1, f2 such that
C−(f1, f2,Φ1) is the negative half of T. Let f : R\{0} → R\{0} be defined by

f(x) =

{
f1(x) for x > 0
−f2(−x) for x < 0

,

and let Cf be the graph of f extended by two points (0,∞) and (∞, 0).

If f1 is not differentiable, then by Lemma 5.1, there exists m1 < m2 <
m3 < 0 such that T (m1,m2,m3) has no elements on the graph of f1. Let
abc ∈ T (m1,m2,m3). From the Axiom of Joining, there exists a circle D ∈
C−(f1, f2,Φ1) containing abc. Since a, b, c are non-collinear, D does not con-
tain (∞,∞). This implies that there exists φ ∈ Φ1 such that φ(D) = Cf . In
particular, φ(abc) ⊂ Cf . This is a contradiction, since φ(abc) ∈ T (m1,m2,m3).
Hence, f1 is differentiable.

Similarly, f2 is also differentiable. It follows that C−(f1, f2,Φ1) is the negative
half of an Artzy–Groh plane. The case of the positive half is analogous. The
proof now follows. �

6. On automorphism groups of Polster planes

In this section, we consider a family of proper toroidal circle planes that are not
flat Minkowski planes. This family was introduced by Polster [7] originally in
the extended Cartesian coordinate system rotated by 45 degrees. We will refer
to a plane in this family as a Polster plane. An intuitive explanation of this
construction can be found in [8, Subsection 4.3.7]. In the standard coordinate
system, a Polster plane can be described as follows.

Let f, g be functions satisfying the four conditions in the construction of Artzy–
Groh planes, with f satisfying the additional property f = f−1. For a >
0, b, c ∈ R, let fa,b,c : R\{−b} → R\{c} be defined by

fa,b,c(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

af

(
x + b + 1

a

)
+ c for x � x∗,

af

(
x + b

a

)
+ c − 1 for − b < x � x∗,

af

(
x + b

a

)
+ c for x < −b,

where x∗ ∈ (−b,+∞) satisfies

af

(
x∗ + b + 1

a

)
= x∗ + b.

For a < 0, b, c ∈ R, let ga,b,c : R\{−b} → R\{c} be defined by

ga,b,c(x) = ag

(
x + b

|a|
)

+ c.
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The circle set of a Polster plane T(f, g) consists of sets of the form

{(x, sx + t) | x ∈ R} ∪ {(∞,∞)},

where s, t ∈ R, s �= 0, sets of the form

{(x, fa,b,c(x)) | x ∈ R\{−b}} ∪ {(∞, c), (−b,∞)},

where a, b, c ∈ R, a > 0, and sets of the form

{(x, ga,b,c(x)) | x ∈ R\{−b}} ∪ {(∞, c), (−b,∞)},

where a, b, c ∈ R, a < 0.

In this section, we determine the dimension of the automorphism group of
a Polster plane and describe its connected component. For convenience, we
denote the restriction of fa,0,0 to R

+ by fa, that is, for a > 0, let

fa(x) =

⎧⎪⎨
⎪⎩

af

(
x + 1

a

)
for x � x∗

a,

af
(x

a

)
− 1 for 0 < x � x∗

a,

where x∗
a satisfies the equation

af

(
x∗
a + 1
a

)
= x∗

a.

Lemma 6.1. Let T(f, g) be a Polster plane in standard representation. For d ∈
R ∪ {∞}, the group Φd is not a group of automorphims of T(f, g).

Proof. A Polster plane T(f, g) is not a flat Minkowksi plane since it does not
satisfy the Axiom of Touching. From Theorems 4.1, 5.2 and Remark 4.2, for
d ∈ {0, 1,∞}, the group Φd is not a group of automorphims of T(f, g). For
the remaining cases, fix d ∈ R\{0, 1} and suppose for a contradiction that the
group Φd is a group of automorphims of T(f, g).

For 1 �= r > 0, let φ ∈ Φd be the map defined by φ : (x, y) �→ (rx, rdy).
Let a0 > 0. Under φ, the set of points{(x, fa0(x)) | x ∈ R

+} is mapped onto{(
x, rdfa0

(x

r

))
| x ∈ R

+
}

. Since φ fixes (0,∞) and (∞, 0), it fixes the set of
circles going through these two points. This implies that there exists a1 > 0
such that, for all x > 0,

rdfa0

(x

r

)
= fa1 (x) .

It is necessary that rx∗
a0

= x∗
a1

and rdfa0

(
rx∗

a0

r

)
= fa1

(
x∗
a1

)
. In particular,

ra0f

(
x∗
a0

+ 1
a0

)
= a1f

(
x∗
a1

+ 1
a1

)
,

and

rda0f

(
x∗
a0

+ 1
a0

)
= a1f

(
x∗
a1

+ 1
a1

)
.

It follows that rd = r, a contradiction. �



Vol. 114 (2023) On toroidal circle planes with groups Page 13 of 14 33

Theorem 6.2. The full automorphism group of a Polster plane T(f, g) is 2-
dimensional. Its connected component is the translation group R

2.

Proof. Let Σ be the connected component of the full automorphism group
of T(f, g). Since Σ contains the group of translations R

2, its dimension is at
least 2. On the other hand, Σ cannot have dimension greater than 3, cf. [2,
Theorem 1.2]. Suppose that dim Σ = 3. From [3, Theorem 1.2], Σ fixes exactly
one point p. Under suitable coordinates, we can assume that p = (∞,∞). By
Theorem 2.3, Σ = Φd, for some d ∈ R ∪ {∞}. But this contradicts Lemma
6.1. Therefore, dim Σ = 2. From [10, 93.12], Σ is the translation group and the
proof now follows. �
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