J. geom. 75 (2002) 179 – 184 0047–2468/02/020179 – 06 © Birkhauser Verlag, Basel, 2002 ¨ DOI 10.1007/s00022-022-1463-3

Journal of Geometry

On α**-conformal equivalence of statistical submanifolds**

Keiko Uohashi

Abstract. In this paper, we show a procedure to realize a statistical manifold, which is α-conformally equivalent to a manifold with an α -transitively flat connection, as a statistical submanifold.

Mathematics Subject Classification (2000): 53A15. *Key words:* α -connections, α -transitively flat connections, α -conformal equivalence.

1. Introduction

Statistical manifolds are studied in terms of information geometry. The theory of α -connections of statistical manifolds plays an important role especially on statistical inference. In addition, considering conformal transformation into α-connections, Okamoto, Amari and Takeuchi obtain asymptotic theory of sequential estimation [3]. Kurose defined α-conformal equivalence and α-conformal flatness of statistical manifolds [2]. In our previous paper, we gave an example for a 1-conformally flat statistical submanifold of a flat statistical manifold, using a Hessian domain [4] [5]. In this paper, we show a procedure to realize a statistical manifold, which is α -conformally equivalent to a manifold with an α -transitively flat connection, as a statistical submanifold. An α -transitively flat connection is one of α -connections.

2. α**-transitively flat connections on statistical manifolds**

For a torsion-free affine connection ∇ and a pseudo-Riemannian metric h on a manifold N, the triple (N, ∇, h) is called a statistical manifold if ∇h is symmetric. If the curvature tensor R of ∇ vanishes, (N, ∇, h) is said to be flat.

For a statistical manifold (N, ∇, h) , let ∇' be an affine connection on N such that

$$
Xh(Y, Z) = h(\nabla_X Y, Z) + h(Y, \nabla'_X Z) \text{ for } X, Y, Z \in \mathcal{X}(N),
$$

where $\mathcal{X}(N)$ is the set of all tangent vector fields on N. The affine connection ∇' is torsion free, and $\nabla' h$ symmetric. Then ∇' is called the dual connection of ∇ , the triple (N, ∇', h) the dual statistical manifold of (N, ∇, h) , and (∇, ∇', h) the dualistic structure on N. The curvature tensor of ∇' vanishes if and only if that of ∇ does, and then (∇, ∇', h) is called the dually flat structure.

180 Keiko Uohashi J. Geom.

Let N be a manifold with a dualistic structure (∇, ∇', h) . For a real number α , an affine connection defined by

$$
\nabla^{(\alpha)}:=\frac{1+\alpha}{2}\nabla+\frac{1-\alpha}{2}\nabla'
$$

is called an α -connection of (N, ∇, h) . The triple $(N, \nabla^{(\alpha)}, h)$ is also a statistical manifold, and $\nabla^{(-\alpha)}$ the dual connection of $\nabla^{(\alpha)}$. The 1-connection, the (-1)-connection and the 0-connection coincide with ∇ , ∇' and Levi-Civita connection of (N, h) , respectively. An α -connection is not always flat [1].

If (N, ∇, h) is a flat statistical manifold, we call $\nabla^{(\alpha)}$ an α -transitively flat connection of (N, ∇, h) . An α -transitively flat connection is not always flat.

For $\alpha \in \mathbf{R}$, statistical manifolds (N, ∇, h) and $(N, \bar{\nabla}, \bar{h})$ are said to be α -conformally equivalent if there exists a function ϕ on N such that

$$
\bar{h}(X, Y) = e^{\phi} h(X, Y),
$$

\n
$$
h(\bar{\nabla}_X Y, Z) = h(\nabla_X Y, Z) - \frac{1+\alpha}{2} d\phi(Z) h(X, Y)
$$

\n
$$
+ \frac{1-\alpha}{2} \{d\phi(X)h(Y, Z) + d\phi(Y)h(X, Z)\}
$$

for X, Y, Z $\in \mathcal{X}(N)$. Two statistical manifolds (N, ∇, h) and $(N, \bar{\nabla}, \bar{h})$ are α -conformally equivalent if and only if the dual statistical manifolds (N, ∇', h) and (N, ∇', h) are $(-\alpha)$ conformally equivalent. A statistical manifold (N, ∇, h) is called α -conformally flat if (N, ∇, h) is locally α -conformally equivalent to a flat statistical manifold [2].

3. α**-transitively flat connections and** α**-conformal equivalence**

We relate an α -transitively flat connection of a flat statistical manifold with an α -conformal equivalence of its statistical submanifold. Statistical submanifolds are defined in [4] and [6].

LEMMA 3.1. Let (N, ∇, h) be a flat statistical manifold, and (M, D, g) a 1*-conformally flat statistical submanifold realized in* (N, ∇, h). Let M_o be a simply connected open set *of* M. If (M_o, D, g) is 1*-conformally equivalent to a flat statistical manifold* $(M_o, \overline{D}, \overline{g})$, $(M_o, D^{(\alpha)}, g)$ *is* α -conformally equivalent to $(M_o, \bar{D}^{(\alpha)}, \bar{g})$, where $D^{(\alpha)}$ the induced con*nection on* M_0 *by an* α -transitively flat connection $\nabla^{(\alpha)}$ *of* (N, ∇, h) *, and* $\overline{D}^{(\alpha)}$ *an* α *transitively flat connection of* (M_0, \bar{D}, \bar{g}) *.*

Proof. Let D' and \bar{D}' be the dual connection of D and \bar{D} , respectively. Since $D^{(\alpha)}$ is induced by $\nabla^{(\alpha)}$,

$$
D^{(\alpha)} = \frac{1+\alpha}{2}D + \frac{1-\alpha}{2}D' \text{ on } M_o
$$
 (1)

holds. For 1-(resp. (-1)-) conformal equivalence of (D, g) and (D, \bar{g}) (resp. of (D', g) and (D', \bar{g})), there exists a function ϕ on M_o such that

$$
\bar{g}(X,Y) = e^{\phi}g(X,Y),\tag{2}
$$

$$
g(\overline{D}_X Y, Z) = g(D_X Y, Z) - d\phi(Z)g(X, Y), \text{ and}
$$
 (3)

$$
g(\bar{D}'_X Y, Z) = g(D'_X Y, Z) + d\phi(X)g(Y, Z) + d\phi(Y)g(X, Z)
$$
 (4)

for X, Y, Z $\in \mathcal{X}(M_o)$. From (3) and (4), it follows that

$$
g\left(\left(\frac{1+\alpha}{2}\bar{D}+\frac{1-\alpha}{2}\bar{D}'\right)_X Y, Z\right)
$$

= $g\left(\left(\frac{1+\alpha}{2}D+\frac{1-\alpha}{2}D'\right)_X Y, Z\right) - \frac{1+\alpha}{2}d\phi(Z)g(X, Y)$
+ $\frac{1-\alpha}{2}\lbrace d\phi(X)g(Y, Z) + d\phi(Y)g(X, Z)\rbrace.$

By (1) and the definition of an α -transitively flat connection of (M_o, \bar{D}, \bar{g}) ,

$$
g(\bar{D}_{X}^{(\alpha)}Y, Z) = g(D_{X}^{(\alpha)}Y, Z) - \frac{1+\alpha}{2}d\phi(Z)g(X, Y) + \frac{1-\alpha}{2} \{d\phi(X)g(Y, Z) + d\phi(Y)g(X, Z)\}
$$

holds. This implies Lemma 3.1.

4. Realization as statistical submanifolds

We call $(N, \tilde{\nabla}, h)$ a statistical manifold with an α -transitively flat connection if there exists a flat statistical manifold (N, ∇ , h) such that $\overline{\nabla}$ coincides with an α -transitively flat connection of (N, ∇, h) . In this section, we give a procedure to realize a statistical manifold, which is α-conformally equivalent to a statistical manifold with an α-transitively flat connection, in another statistical manifold as a statistical submanifold of codimension one.

On realization of a 1-conformally flat statistical manifold, the next theorem is known.

THEOREM 4.1. ([4]) An arbitrary 1*-conformally flat statistical manifold of* dim $n > 2$ *with a Riemannian metric can be locally realized as a submanifold of a flat statistical manifold of* dim $(n + 1)$ *.*

For a statistical manifold which is α -conformally equivalent to a statistical manifold with an α -transitively flat connection, we obtain the next theorem.

182 Keiko Uohashi J. Geom.

THEOREM 4.2. *A statistical manifold of* dim n ≥ 2 *with a Riemannian metric, which is* α*-conformally equivalent to a statistical manifold with an* α*-transitively flat connection for non-zero* $\alpha \in \mathbf{R}$ *, can be locally realized as a submanifold of a statistical manifold of* $\dim(n + 1)$ *with an* α -transitively flat connection.

For the proof of Theorem 4.2, we show the next lemma.

LEMMA 4.3. *For non-zero* $\alpha \in \mathbf{R}$ *, let* $(M, D^{(\alpha)}, g)$ *be an* α *-conformally equivalent statistical manifold to* $(M, \bar{D}^{(\alpha)}, \bar{g})$, where $\bar{D}^{(\alpha)}$ *is an* α -transitively flat connection of (M, \bar{D}, \bar{g}) . *Set* $D^{(\beta)} := D^{LC} + \frac{\beta}{\alpha} (D^{(\alpha)} - D^{LC})$ *for an arbitrary* $\beta \in \mathbf{R}$ *, where* D^{LC} *the Levi-Civita connection of* (*M*, *g*)*. Then* $(M, D^{(\beta)}, g)$ *is* β *-conformally equivalent to* $(M, \overline{D}^{(\beta)}, \overline{g})$ *.*

Proof. First, we show that (M, D^{LC}, g) is 0-conformally equivalent to $(M, \bar{D}^{(0)}, \bar{g})$. Recall that the 0-connection $\bar{D}^{(0)}$ is the Levi-Civita connection. Setting by $D^{(\alpha)}{}'$ the dual connection of $D^{(\alpha)}$, we have (- α)-conformal equivalence of $(M, D^{(\alpha)}', g)$ and $(M, \bar{D}^{(-\alpha)}, \bar{g})$ from a fact described in Section 1. Thus we obtain that

$$
g(\bar{D}_{X}^{(0)}Y, Z) = g\left(\left(\frac{1}{2}\bar{D}^{(\alpha)} + \frac{1}{2}\bar{D}^{(-\alpha)}\right)_{X}Y, Z\right)
$$

\n
$$
= \frac{1}{2}\left\{g(D_{X}^{(\alpha)}Y, Z) - \frac{1+\alpha}{2}d\phi(Z)g(X, Y) + \frac{1-\alpha}{2}\{d\phi(X)g(Y, Z) + d\phi(Y)g(X, Z)\} + g(D_{X}^{(\alpha)'}Y, Z) - \frac{1-\alpha}{2}d\phi(Z)g(X, Y) + \frac{1+\alpha}{2}\{d\phi(X)g(Y, Z) + d\phi(Y)g(X, Z)\}\right\}
$$

\n
$$
= g\left(\left(\frac{1}{2}D^{(\alpha)} + \frac{1}{2}D^{(\alpha)'}\right)_{X}Y, Z\right) - \frac{1}{2}d\phi(Z)g(X, Y) + \frac{1}{2}\{d\phi(X)g(Y, Z) + d\phi(Y)g(X, Z)\}
$$

\n
$$
= g(D_{X}^{LC}Y, Z) - \frac{1}{2}d\phi(Z)g(X, Y) + \frac{1}{2}\{d\phi(X)g(Y, Z) + d\phi(Y)g(X, Z)\} + \frac{1}{2}\{d\phi(X)g(Y, Z) + d\phi(Y)g(X, Z)\}
$$

for a certain function ϕ on $M_0 \subset M$. This implies 0-conformal equivalence of (M, D^{LC}, g) and $(M, \bar{D}^{(0)}, \bar{g})$.

By definitions of $\bar{D}^{(\alpha)}$ and $\bar{D}^{(\beta)}$, $\bar{D}^{(\beta)} = \bar{D}^{(0)} + \frac{\beta}{\alpha} (\bar{D}^{(\alpha)} - \bar{D}^{(0)})$ holds. Hence it follows that

$$
g(D_X^{(\beta)}Y, Z) = g\left(\left(D^{LC} + \frac{\beta}{\alpha}(D^{(\alpha)} - D^{LC})\right)_X Y, Z\right)
$$

\n
$$
= \frac{\alpha - \beta}{\alpha} g(D_X^{LC}Y, Z) + \frac{\beta}{\alpha} g(D_X^{(\alpha)}Y, Z)
$$

\n
$$
= \frac{\alpha - \beta}{\alpha} \Bigg\{ g(D_X^{(0)}Y, Z) + \frac{1}{2} d\phi(Z) g(X, Y)
$$

\n
$$
- \frac{1}{2} \{ d\phi(X) g(Y, Z) + d\phi(Y) g(X, Z) \} \Bigg\}
$$

\n
$$
+ \frac{\beta}{\alpha} \Bigg\{ g(D_X^{(\alpha)}Y, Z) + \frac{1 + \alpha}{2} d\phi(Z) g(X, Y)
$$

\n
$$
- \frac{1 - \alpha}{2} \{ d\phi(X) g(Y, Z) + d\phi(Y) g(X, Z) \} \Bigg\}
$$

\n
$$
= g\left(\left(D^{(0)} + \frac{\beta}{\alpha}(D^{(\alpha)} - D^{(0)})\right)_X Y, Z\right) + \frac{1 + \beta}{2} d\phi(Z) g(X, Y)
$$

\n
$$
- \frac{1 - \beta}{2} \{ d\phi(X) g(Y, Z) + d\phi(Y) g(X, Z) \}
$$

\n
$$
= g(D_X^{(\beta)}Y, Z) + \frac{1 + \beta}{2} d\phi(Z) g(X, Y)
$$

\n
$$
- \frac{1 - \beta}{2} \{ d\phi(X) g(Y, Z) + d\phi(Y) g(X, Z) \}.
$$

This implies Lemma 4.3.

Finally, we shall prove Theorem 4.2.

Let *M* be a manifold of dim $n \geq 2$, and g, \overline{g} Riemannian metrics. By Lemma 4.3, $(M, D⁽¹⁾, g)$ is 1-conformally equivalent to a flat statistical manifold $(M, \bar{D}⁽¹⁾, \bar{g})$. By Theorem 4.1, $(M, D^{(1)}, g)$ can be locally realized as a submanifold of a flat statistical manifold of dim(n + 1). Suppose that $(M_o, D^{(1)}, g)$ is realized in a flat statistical manifold (N, ∇, h) for a simply connected open set $M_o \subset M$. Let $D_{sub}^{(\alpha)}$ be the induced connection on M_o by an α-connection $\nabla^{(\alpha)}$ of (N, ∇, h) . By Lemma 3.1, $(M, D_{sub}^{(\alpha)}, g)$ is α-conformally equivalent to $(M, \bar{D}^{(\alpha)}, \bar{g})$. Moreover,

$$
D_{sub}^{(\alpha)} = D^{LC} + \alpha (D^{(1)} - D^{LC})
$$

holds by (1). Considering the definition of $D^{(1)}$, we have

$$
D^{(\alpha)} = D^{LC} + \alpha (D^{(1)} - D^{LC}).
$$

Thus $D_{sub}^{(\alpha)}$ coincides with $D^{(\alpha)}$. Hence $(M, D^{(\alpha)}, g)$, which is α -conformally equivalent to a statistical manifold with an α -transitively flat connection, can be realized in $(N, \nabla^{(\alpha)}, h)$ as a submanifold of codimension one.

References

- [1] Amari, S. and Nagaoka, H., *Method of information geometry*, Amer. Math. Soc., Providence, Oxford University Press, Oxford, 2000.
- [2] Kurose, T., *On the divergence of* 1*-conformally flat statistical manifolds*, Tôhoku Math. J. **46** (1994), 427–433.
- [3] Okamoto, I., Amari, S. and Takeuchi, K., *Asymptotic theory of sequential estimation: differential geometrical approach*, Ann. Statist. **19** (1991), 961–981.
- [4] Uohashi, K., Ohara, A. and Fujii, T., 1*-conformally flat statistical submanifolds*, Osaka J. Math. **37** (2000), 501–507.
- [5] Uohashi, K., Ohara, A. and Fujii, T., *Foliations and Divergences of flat Statistical Manifolds*, Hiroshima Math. J. **30** (2000), 403–414.
- [6] Vos, P.W., *Fundamental equations for statistical submanifolds with applications to the Bartlett correction*, Ann. Inst. Statist. Math. **41** (1989), 429–450.

Keiko Uohashi Department of Electrical Engineering and Computer Science Osaka Prefectural College of Technology Neyagawa, Osaka 572-8572 Japan e-mail: uohashi@ecs.osaka-pct.ac.jp

Received 29 December 1999.

To access this journal online: http://www.birkhauser.ch