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On α-conformal equivalence of statistical submanifolds
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Abstract. In this paper, we show a procedure to realize a statistical manifold, which is α-conformally equivalent
to a manifold with an α-transitively flat connection, as a statistical submanifold.
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1. Introduction

Statistical manifolds are studied in terms of information geometry. The theory of
α-connections of statistical manifolds plays an important role especially on statistical
inference. In addition, considering conformal transformation into α-connections, Okamoto,
Amari and Takeuchi obtain asymptotic theory of sequential estimation [3]. Kurose defined
α-conformal equivalence and α-conformal flatness of statistical manifolds [2]. In our pre-
vious paper, we gave an example for a 1-conformally flat statistical submanifold of a flat
statistical manifold, using a Hessian domain [4] [5]. In this paper, we show a procedure
to realize a statistical manifold, which is α-conformally equivalent to a manifold with an
α-transitively flat connection, as a statistical submanifold. An α-transitively flat connection
is one of α-connections.

2. α-transitively flat connections on statistical manifolds

For a torsion-free affine connection ∇ and a pseudo-Riemannian metric h on a manifold
N , the triple (N, ∇, h) is called a statistical manifold if ∇h is symmetric. If the curvature
tensor R of ∇ vanishes, (N, ∇, h) is said to be flat.

For a statistical manifold (N, ∇, h), let ∇′ be an affine connection on N such that

Xh(Y, Z) = h(∇XY, Z) + h(Y, ∇′
XZ) for X, Y, Z ∈ X (N),

where X (N) is the set of all tangent vector fields on N . The affine connection ∇′ is torsion
free, and ∇′h symmetric. Then ∇′ is called the dual connection of ∇, the triple (N, ∇′, h)

the dual statistical manifold of (N, ∇, h), and (∇, ∇′, h) the dualistic structure on N . The
curvature tensor of ∇′ vanishes if and only if that of ∇ does, and then (∇, ∇′, h) is called
the dually flat structure.
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Let N be a manifold with a dualistic structure (∇, ∇′, h). For a real number α, an affine
connection defined by

∇(α) := 1 + α

2
∇ + 1 − α

2
∇′

is called an α-connection of (N, ∇, h). The triple (N, ∇(α), h) is also a statistical manifold,
and ∇(−α) the dual connection of ∇(α). The 1-connection, the (−1)-connection and the
0-connection coincide with ∇, ∇′ and Levi-Civita connection of (N, h), respectively. An
α-connection is not always flat [1].

If (N, ∇, h) is a flat statistical manifold, we call ∇(α) an α-transitively flat connection of
(N, ∇, h). An α-transitively flat connection is not always flat.

For α ∈ R, statistical manifolds (N, ∇, h) and (N, ∇̄, h̄) are said to be α-conformally
equivalent if there exists a function φ on N such that

h̄(X, Y ) = eφh(X, Y ),

h(∇̄XY, Z) = h(∇XY, Z) − 1 + α

2
dφ(Z)h(X, Y )

+ 1 − α

2
{dφ(X)h(Y, Z) + dφ(Y )h(X, Z)}

for X, Y, Z ∈ X (N). Two statistical manifolds (N, ∇, h) and (N, ∇̄, h̄) are α-conformally
equivalent if and only if the dual statistical manifolds (N, ∇′, h) and (N, ∇̄′, h̄) are (−α)-
conformally equivalent. A statistical manifold (N, ∇, h) is called α-conformally flat if
(N, ∇, h) is locally α-conformally equivalent to a flat statistical manifold [2].

3. α-transitively flat connections and α-conformal equivalence

We relate an α-transitively flat connection of a flat statistical manifold with an α-conformal
equivalence of its statistical submanifold. Statistical submanifolds are defined in [4]
and [6].

LEMMA 3.1. Let (N, ∇, h) be a flat statistical manifold, and (M, D, g) a 1-conformally
flat statistical submanifold realized in (N, ∇, h). Let Mo be a simply connected open set
of M . If (Mo, D, g) is 1-conformally equivalent to a flat statistical manifold (Mo, D̄, ḡ),
(Mo, D

(α), g) is α-conformally equivalent to (Mo, D̄
(α), ḡ), where D(α) the induced con-

nection on Mo by an α-transitively flat connection ∇(α) of (N, ∇, h), and D̄(α) an α-
transitively flat connection of (Mo, D̄, ḡ).

Proof. Let D′ and D̄′ be the dual connection of D and D̄, respectively. Since D(α) is
induced by ∇(α),

D(α) = 1 + α

2
D + 1 − α

2
D′ on Mo (1)
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holds. For 1-(resp. (−1)-) conformal equivalence of (D, g) and (D̄, ḡ) (resp. of (D′, g)

and (D̄′, ḡ)), there exists a function φ on Mo such that

ḡ(X, Y ) = eφg(X, Y ), (2)

g(D̄XY, Z) = g(DXY, Z) − dφ(Z)g(X, Y ), and (3)

g(D̄′
XY, Z) = g(D′

XY, Z) + dφ(X)g(Y, Z) + dφ(Y )g(X, Z) (4)

for X, Y, Z ∈ X (Mo). From (3) and (4), it follows that

g

((
1 + α

2
D̄ + 1 − α

2
D̄′

)
X

Y, Z

)

= g

((
1 + α

2
D + 1 − α

2
D′

)
X

Y, Z

)
− 1 + α

2
dφ(Z)g(X, Y )

+ 1 − α

2
{dφ(X)g(Y, Z) + dφ(Y )g(X, Z)}.

By (1) and the definition of an α-transitively flat connection of (Mo, D̄, ḡ),

g(D̄
(α)
X Y, Z) = g(D

(α)
X Y, Z) − 1 + α

2
dφ(Z)g(X, Y )

+ 1 − α

2
{dφ(X)g(Y, Z) + dφ(Y )g(X, Z)}

holds. This implies Lemma 3.1. �

4. Realization as statistical submanifolds

We call (N, ∇̃, h) a statistical manifold with an α-transitively flat connection if there exists a
flat statistical manifold (N, ∇, h) such that ∇̃ coincides with an α-transitively flat connection
of (N, ∇, h). In this section, we give a procedure to realize a statistical manifold, which is
α-conformally equivalent to a statistical manifold with an α-transitively flat connection, in
another statistical manifold as a statistical submanifold of codimension one.

On realization of a 1-conformally flat statistical manifold, the next theorem is known.

THEOREM 4.1. ([4]) An arbitrary 1-conformally flat statistical manifold of dim n ≥ 2
with a Riemannian metric can be locally realized as a submanifold of a flat statistical
manifold of dim(n + 1).

For a statistical manifold which is α-conformally equivalent to a statistical manifold with
an α-transitively flat connection, we obtain the next theorem.
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THEOREM 4.2. A statistical manifold of dim n ≥ 2 with a Riemannian metric, which is
α-conformally equivalent to a statistical manifold with an α-transitively flat connection
for non-zero α ∈ R, can be locally realized as a submanifold of a statistical manifold of
dim(n + 1) with an α-transitively flat connection.

For the proof of Theorem 4.2, we show the next lemma.

LEMMA 4.3. For non-zero α ∈ R, let (M, D(α), g) be an α-conformally equivalent statis-
tical manifold to (M, D̄(α), ḡ), where D̄(α) is an α-transitively flat connection of (M, D̄, ḡ).
Set D(β) := DLC + β

α
(D(α) − DLC) for an arbitrary β ∈ R, where DLC the Levi-Civita

connection of (M, g). Then (M, D(β), g) is β-conformally equivalent to (M, D̄(β), ḡ).

Proof. First, we show that (M, DLC, g) is 0-conformally equivalent to (M, D̄(0), ḡ). Recall
that the 0-connection D̄(0) is the Levi-Civita connection. Setting by D(α)′ the dual con-
nection of D(α), we have (−α)-conformal equivalence of (M, D(α)′, g) and (M, D̄(−α), ḡ)

from a fact described in Section 1. Thus we obtain that

g(D̄
(0)
X Y, Z) = g

((
1

2
D̄(α) + 1

2
D̄(−α)

)
X

Y, Z

)

= 1

2

{
g(D

(α)
X Y, Z) − 1 + α

2
dφ(Z)g(X, Y )

+ 1 − α

2
{dφ(X)g(Y, Z) + dφ(Y )g(X, Z)}

+ g(D
(α)′
X Y, Z) − 1 − α

2
dφ(Z)g(X, Y )

+ 1 + α

2
{dφ(X)g(Y, Z) + dφ(Y )g(X, Z)}}

= g

((
1

2
D(α) + 1

2
D(α)′

)
X

Y, Z

)
− 1

2
dφ(Z)g(X, Y )

+ 1

2
{dφ(X)g(Y, Z) + dφ(Y )g(X, Z)

}

= g(DLC
X Y, Z) − 1

2
dφ(Z)g(X, Y )

+1

2
{dφ(X)g(Y, Z) + dφ(Y )g(X, Z)}

for a certain function φ on Mo ⊂ M . This implies 0-conformal equivalence of (M, DLC, g)

and (M, D̄(0), ḡ).
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By definitions of D̄(α) and D̄(β), D̄(β) = D̄(0) + β
α
(D̄(α) − D̄(0)) holds. Hence it follows

that

g(D
(β)
X Y, Z) = g

((
DLC + β

α
(D(α) − DLC)

)
X

Y, Z

)

= α − β

α
g(DLC

X Y, Z) + β

α
g(D

(α)
X Y, Z)

= α − β

α

{
g(D̄

(0)
X Y, Z) + 1

2
dφ(Z)g(X, Y )

− 1

2
{dφ(X)g(Y, Z) + dφ(Y )g(X, Z)}

}

+ β

α

{
g(D̄

(α)
X Y, Z) + 1 + α

2
dφ(Z)g(X, Y )

− 1 − α

2
{dφ(X)g(Y, Z) + dφ(Y )g(X, Z)}

}

= g

((
D̄(0) + β

α
(D̄(α) − D̄(0))

)
X

Y, Z

)
+ 1 + β

2
dφ(Z)g(X, Y )

− 1 − β

2
{dφ(X)g(Y, Z) + dφ(Y )g(X, Z)}

= g(D̄
(β)
X Y, Z) + 1 + β

2
dφ(Z)g(X, Y )

− 1 − β

2
{dφ(X)g(Y, Z) + dφ(Y )g(X, Z)}.

This implies Lemma 4.3. �

Finally, we shall prove Theorem 4.2.

Let M be a manifold of dim n ≥ 2, and g, ḡ Riemannian metrics. By Lemma 4.3,
(M, D(1), g) is 1-conformally equivalent to a flat statistical manifold (M, D̄(1), ḡ). By
Theorem 4.1, (M, D(1), g) can be locally realized as a submanifold of a flat statistical
manifold of dim(n + 1). Suppose that (Mo, D

(1), g) is realized in a flat statistical manifold
(N, ∇, h) for a simply connected open set Mo ⊂ M . Let D(α)

sub be the induced connection on

Mo by an α-connection ∇(α) of (N, ∇, h). By Lemma 3.1, (M, D
(α)
sub, g) is α-conformally

equivalent to (M, D̄(α), ḡ). Moreover,

D
(α)
sub = DLC + α(D(1) − DLC)

holds by (1). Considering the definition of D(1), we have

D(α) = DLC + α(D(1) − DLC).
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Thus D
(α)
sub coincides with D(α). Hence (M, D(α), g), which is α-conformally equivalent to

a statistical manifold with an α-transitively flat connection, can be realized in (N, ∇(α), h)

as a submanifold of codimension one.
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