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Abstract. The Blaschke–Leichtweiss theorem (Leichtweiss in Abh Math
Semin Univ Hambg 75:257–284, 2005) states that the smallest area convex
domain of constant width w in the 2-dimensional spherical space S

2 is the
spherical Reuleaux triangle for all 0 < w ≤ π

2
. In this paper we extend this

result to the family of wide r-disk domains of S2, where 0 < r ≤ π
2
. Here

a wide r-disk domain is an intersection of spherical disks of radius r with
centers contained in their intersection. This gives a new and elementary
proof of the Blaschke–Leichtweiss theorem. Furthermore, we investigate
the higher dimensional analogue of wide r-disk domains called wide r-ball
bodies. In particular, we determine their minimum spherical width (resp.,
inradius) in the spherical d-space S

d for all d ≥ 2. Also, it is shown that
any minimum volume wide r-ball body is of constant width r in S

d, d ≥ 2.
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1. Introduction

1.1. On the definition of convex bodies of constant width in spherical space

Let S
d = {x ∈ E

d+1 | ‖x‖ =
√〈x,x〉 = 1} be the unit sphere centered at

the origin o in the (d + 1)-dimensional Euclidean space E
d+1, where ‖ · ‖ and

〈·, ·〉 denote the canonical Euclidean norm and the canonical inner product in
E

d+1, d ≥ 2. A (d − 1)-dimensional great sphere of Sd is an intersection of Sd
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with a hyperplane of Ed+1 passing through o (i.e., with a d-dimensional linear
subspace of E

d+1). In particular, an intersection of S
d with a 2-dimensional

linear subspace in E
d+1 is called a great circle of S

d. Two points are called
antipodes if they can be obtained as an intersection of Sd with a line through
o in E

d+1. If a,b ∈ S
d are two points that are not antipodes, then we label

the (uniquely determined) shortest geodesic arc of Sd connecting a and b by
ab. In other words, ab is the shorter circular arc with endpoints a and b of
the great circle âb that passes through a and b. The length of ab is called the
spherical distance between a and b and it is labelled by dists(a,b). Clearly,
0 < dists(a,b) < π. If a,b ∈ S

d are antipodes, then we set dists(a,b) = π.
Let x ∈ S

d and r ∈ (0, π
2 ]. Then the set

Bd
s [x, r] := {y ∈ S

d | dists(x,y) ≤ r} (resp., Bd
s(x, r) :=

{y ∈ S
d | dists(x,y) < r})

is called the d-dimensional closed (resp., open) spherical ball, or shorter the
d-dimensional closed (resp., open) ball, centered at x having (spherical) radius
r in S

d. In particular, Bd
s [x, π

2 ] (resp., Bd
s(x, π

2 )) is called the closed (resp.,
open) hemisphere of Sd with center x. Moreover, B2

s[x, r] (resp., B2
s(x, r)) is

called the closed (resp., open) disk with center x and (spherical) radius r in
S

2. Now, the boundary of Bd
s [x, r] (resp., Bd

s(x, r)) in S
d is called the (d − 1)-

dimensional sphere Sd−1
s (x, r) with center x and (spherical) radius r in S

d.
As a special case, the boundary of the disk B2

s[x, r] (resp., B2
s(x, r)) in S

2 is
called the circle with center x and of (spherical) radius r and it is labelled by
S1

s (x, r). We introduce the following additional notations. For a set X ⊆ S
d

and r ∈ (0, π
2 ] let

Bd
s [X, r] :=

⋂

x∈X

Bd
s [x, r] and Bd

s(X, r) :=
⋂

x∈X

Bd
s(x, r).

Another basic concept is spherical convexity: we say that Q ⊂ S
d is spherically

convex if it has no antipodes and for any two points x,y ∈ Q we have xy ⊆ Q.
(It follows that there exists q ∈ S

d such that Q ⊆ Bd
s(q, π

2 ) with Bd
s(x, π

2 ) being
spherically convex.) As the intersection of spherically convex sets is spherically
convex therefore if X ⊂ Bd

s(x, π
2 ), then we define the spherical convex hull

convsX of X as the intersection of spherically convex sets containing X. By a
convex body in S

d (resp., a convex domain in S
2) we mean a closed spherically

convex set with non-empty interior in S
d (resp., in S

2). Let Kd
s , d ≥ 2 denote

the family of convex bodies in S
d. If Q ⊆ S

d, d ≥ 2, then its spherical diameter
is diams(Q) := sup{dists(x,y) | x,y ∈ Q}. The following brief definition serves
the purpose of our introduction as well as motivates our strengthening of the
Blaschke–Leichtweiss theorem in an efficient way. On the other hand, we call
the attention of the interested reader to some equivalent definitions that are
discussed in the articles [5,12,18,22–25,28] and are surveyed in [26].

Definition 1.1. Let K ⊂ S
d, d ≥ 2 be a closed set with spherical diameter

0 < w := diams(K) ≤ π
2 . We say that K is a convex body of constant width
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w in S
d if K = Bd

s [K, w]. Let Kd
s(w) denote the family of convex bodies of

constant width w in S
d for d ≥ 2 and 0 < w ≤ π

2 .

Clearly, Kd
s(w) ⊂ Kd

s for all d ≥ 2 and 0 < w ≤ π
2 .

1.2. The Blaschke–Leichtweiss theorem

The classical Blaschke-Lebesgue theorem states that in the Euclidean plane
among all convex sets of constant width w′ > 0 the Reuleaux triangle min-
imizes area. Here the Reuleaux triangle is the intersection of three disks of
radius w′ with centers at the vertices of an equilateral triangle of side length
w′. For a survey on this theorem and its impact on extremal geometry we refer
the interested reader to the recent elegant papers [20] and [21]. Very differ-
ent proofs of this theorem were given by Blaschke [8], Lebesgue [27], Fujiwara
[15,16], Eggleston [14], Besicovich [2], Ghandehari [17], Campi, Colesanti, and
Gronchi [10], Harrell [19], and M. Bezdek [7]. So, it is natural to ask whether
any of these proofs can be extended to S

2. Actually, Blaschke claimed that
this can be done with his Euclidean proof (see [8], p. 505), but one had to
wait until Leichtweiss did it (using some ideas of Blaschke) in [28]. So, we call
the following statement the Blaschke–Leichtweiss theorem: if K ∈ K2

s(w) with
0 < w ≤ π

2 , then

areas(K) ≥ areas(Δ2(w)), (1)

where areas(·) refers to the spherical area of the corresponding set in S
2 and

Δ2(w) denotes the spherical Reuleaux triangle which is the intersection of
three disks of radius w with centers at the vertices of a spherical equilateral
triangle of side length w. As the only known proof of (1) is the one published
in [28] which is a combination of geometric and analytic ideas presented on
twenty pages, one might wonder whether there is a simpler approach. This
paper intends to fill this gap by proving a stronger result (Theorem 1.3) in a
new and elementary way. The Euclidean analogue of Theorem 1.3 has already
been proved for disk-polygons in [7] and our proof of Theorem 1.3 presented
below is an extension of the Euclidean technique of [7] to S

2 combined with
the properly modified spherical method of [3]. For the sake of completeness
we note that in [3] the author and Blekherman proved a spherical analogue of
Pál’s theorem stating that the minimal spherical area convex domain of given
minimal spherical width ω is a regular spherical triangle for all 0 < ω ≤ π

2 .

1.3. The Blaschke–Leichtweiss theorem extended: minimizing the area of wide
r-disk domains in S

2

The following definition introduces wide r-disk domains in S
2 the spherical

areas of which we wish to minimize for given 0 < r ≤ π
2 .

Definition 1.2. Let 0 < r ≤ π
2 be given and let ∅ �= X be a closed subset of S2

with diams(X) ≤ r. Then B2
s[X, r] is called the wide r-disk domain generated

by X in S
2. The family of wide r-disk domains of S2 is labelled by B2

s,wide(r).
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Now, (1) can be generalized as follows.

Theorem 1.3. Let 0 < r ≤ π
2 and D ∈ B2

s,wide(r). Then areas(D) ≥
areas(Δ2(r)).

As Δ2(r) ∈ K2
s(r) ⊂ B2

s,wide(r) holds for all 0 < r ≤ π
2 therefore (1) follows

from Theorem 1.3 in a straightforward way. We note that our method of prov-
ing Theorem 1.3 is completely different from the ideas and techniques used in
[28].

The rest of the paper is organized as follows. Section 3 gives a proof of Theo-
rem 1.3 via successive area decreasing cuts and symmetrization. That proof is
based on some extremal properties of wide r-disk domains, which are discussed
in Sect. 2. Furthermore, Sect. 2 investigates the higher dimensional analogue
of wide r-disk domains called wide r-ball bodies for 0 < r ≤ π

2 . In particular,
we determine their minimum spherical width (resp., inradius) in S

d, d ≥ 2.
Also, it is shown that any minimum volume wide r-ball body is of constant
width r in S

d, d ≥ 2.

2. On minimizing the inradius, width, and volume of wide
r-ball bodies in S

d for d ≥ 2 and 0 < r ≤ π
2

It is natural to extend Definition 1.2 to S
d thereby introducing the family of

wide r-ball bodies (resp., wide r-ball polyhedra) in S
d as follows.

Definition 2.1. Let 0 < r ≤ π
2 be given and let ∅ �= X be a closed subset of Sd,

d ≥ 2 with diams(X) ≤ r. Then Bd
s [X, r] is called a wide r-ball body generated

by X in S
d. The family of wide r-ball bodies of Sd is labelled by Bd

s,wide(r). If
X ⊂ S

d with 0 < card(X) < +∞ and diams(X) ≤ r, then Bd
s [X, r] is called

a wide r-ball polyhedron generated by X in S
d. The family of wide r-ball

polyhedra of Sd is labelled by Pd
s,wide(r).

We leave the straightforward proof of the following claim (using Definition 2.1)
to the reader.

Proposition 2.2. Every wide r-ball body Bd
s [X, r] ∈ Bd

s,wide(r), d ≥ 2, 0 <

r ≤ π
2 can be approximated (in the Hausdorff sense) arbitrarily close by a

suitable wide r-ball polyhedron and therefore there exists a sequence Pn ∈
Pd

s,wide(r), n = 1, 2, . . . such that limn→+∞ vols(Pn) = vols(Bd
s [X, r]), where

vols(·) stands for the d-dimensional spherical volume of the corresponding set
in S

d.

Although the question of finding an extension of Theorem 1.3 to S
d for d ≥ 3

seems to be a natural one, it is a considerably more difficult problem than it
appears at first sight. Based on Proposition 2.2 we can phrase it as follows.
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Problem 2.3. Find

cBL(r, d) := inf{vols(Bd
s [X, r]) | Bd

s [X, r] ∈ Bd
s,wide(r)}

= inf{vols(Pd
s [X, r]) | Pd

s [X, r] ∈ Pd
s,wide(r)}

for given 0 < r ≤ π
2 and d ≥ 3.

Proposition 2.5 can be used to lower bound cBL(r, d) with the spherical volume
of a properly chosen ball.

Definition 2.4. The smallest ball (resp., the largest ball) containing (resp.,
contained in) the convex body K ∈ Kd

s , d ≥ 2 is called the circumscribed
(resp., inscribed) ball of K whose radius Rcr(K) (resp., Rin(K)) is called the
circumradius (resp., inradius) of K.

Proposition 2.5. Let Bd
s [X, r] ∈ Bd

s,wide(r) with d ≥ 2 and 0 < r ≤ π
2 . Then

Rin(Bd
s [X, r]) ≥ Rin(Δd(r)),

where Δd(r) ∈ Bd
s,wide(r) denotes the intersection of d + 1 closed balls of radii

r centered at the vertices of a regular spherical d-simplex of edge length r in
S

d.

Proof. As Bd
s [X, r] ∈ Bd

s,wide(r) therefore diams(X) ≤ r. This and the spheri-
cal Jung theorem [13] imply that there exists x0 ∈ S

d such that X ⊂
Bd

s [x0, Rcr(Δd(r))]. It follows that

Bd
s [x0, Rin(Δd(r))] = Bd

s [x0, r − Rcr(Δd(r))] ⊂ Bd
s [X, r]

and therefore Rin(Bd
s [X, r]) ≥ Rin(Δd(r)), finishing the proof of Proposi-

tion 2.5. �

For more details on the concepts introduced in Definitions 2.6, 2.7, and 2.8,
we refer the interested reader to the recent paper of Lassak [22]. As usual,
we say that the (d − 1)-dimensional great sphere Cd−1

s (x, π
2 ) is a supporting

(d − 1)-dimensional great sphere of K ∈ Kd
s if Cd−1

s (x, π
2 ) ∩ K �= ∅ and K ⊂

Bd
s [x, π

2 ], in which case Bd
s [x, π

2 ] is called a closed supporting hemisphere of
K. One can show that through each boundary point of K there exists at
least one supporting (d− 1)-dimensional great sphere of K moreover, K is the
intersection of its closed supporting hemispheres. Two hemispheres of Sd are
called opposite if the their centers are antipodes.

Definition 2.6. The intersection of two distinct closed hemispheres of Sd which
are not opposite is called a lune of Sd. Let Ld

s denote the family of lunes in S
d.

Every lune of Sd is bounded by two (d− 1)-dimensional hemispheres (lying on
two distinct (d−1)-dimensional great spheres of Sd) sharing pairs of antipodes
in common, which are called the vertices of the lune.
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Definition 2.7. The angular measure of the angle formed by the two (d − 1)-
dimensional hemispheres bounding the lune L ∈ Ld

s (which is equal to spherical
distance of the centers of the two (d − 1)-dimensional hemispheres bounding
L) is called the spherical width of the given lune labelled by widths(L).

Definition 2.8. For every closed supporting hemisphere H of the convex body
K ∈ Kd

s there exists a closed supporting hemisphere H′ of K such that the lune
H∩H′ has minimal width for given H and K. We call widths(H∩H′) the width
of K determined by H and label it by widthH(K). Finally, the minimal spheri-
cal width (also called thickness) widths(K) of K is the smallest spherical width
of the lunes that contain K, i.e., widths(K) = min{widthH(K) | H is a closed
supporting hemisphere of K}.

Next, we recall the following claim from [22] (Claim 2), which is often appli-
cable.

Sublemma 2.9. Let K ∈ Kd
s . If L ∈ Ld

s contains K and widths(K)=widths(L),
then both centers of the (d− 1)-dimensional hemispheres bounding L belong to
K.

Remark 2.10. We note that Definition 2.8 supports to say that the convex
body K ∈ Kd

s is of constant width 0 < w ≤ π
2 in S

d if the width of K
with respect to any supporting hemisphere is equal to w. Theorem 2 of [25]
proves that this definition of constant width is equivalent to the one under
Definition 1.1, i.e., K ∈ Kd

s(w) for d ≥ 2 and 0 < w ≤ π
2 if and only if

widths(K) = diams(K) = w holds for K ∈ Kd
s .

Now, we are ready to prove the following close relative of Proposition 2.5.

Proposition 2.11. Let Bd
s [X, r] ∈ Bd

s,wide(r) with d ≥ 2 and 0 < r ≤ π
2 . Then

widths(Bd
s [X, r]) ≥ widths(Δd(r)) = r.

Proof. It will be convenient to use the following notion (resp., notation) from
[6].

Definition 2.12. For a set X ⊆ S
d, d ≥ 2 and 0 < r ≤ π

2 let the r-dual set Xr

of X be defined by Xr := Bd
s [X, r]. If the spherical interior ints(Xr) �= ∅, then

we call Xr the r-dual body of X.

r-dual sets satisfy some basic identities such as ((Xr)r)r = Xr and (X ∪Y )r =
Xr ∩ Y r, which hold for any X ⊆ S

d and Y ⊆ S
d. Clearly, also monotonicity

holds namely, X ⊆ Y ⊆ S
d implies Y r ⊆ Xr. Thus, there is a good deal of

similarity between r-dual sets and spherical polar sets in S
d. For more details

see [6]. The following statement is a spherical analogue of Lemma 3.1 in [4].

Sublemma 2.13. Let H be a closed supporting hemisphere of the r-dual body
Xr of X ⊂ S

d bounded by the (d − 1)-dimensional great sphere H in S
d such
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that H and H support Xr at the boundary point x ∈ H ∩bd(Xr), where d ≥ 2,
and 0 < r ≤ π

2 . Then the d-dimensional closed ball of radius r of S
d that is

tangent to H at x and lies in H contains the r-dual body Xr.

Proof. (The following proof is the spherical analogue of the Euclidean proof of
Lemma 3.1 of [4].) Let Bd

s [c, r] be the d-dimensional closed ball of radius r of
S

d that is tangent to H at x and lies in H. Assume that Xr is not contained
in Bd

s [c, r], i.e., let y ∈ Xr \ Bd
s [c, r]. Then by taking the intersection of the

configuration with the 2-dimensional spherical plane spanned by x,y, and c
we see that there is a shorter circular arc of radius r connecting x and y that
is not contained in Bd

s [c, r] and therefore it is not supported by neither H nor
H. On the other hand, as x,y ∈ Xr therefore any such arc must be contained
in Xr and must be supported by H as well as H, a contradiction. �

Now, let Xr = Bd
s [X, r] ∈ Bd

s,wide(r) with d ≥ 2 and 0 < r ≤ π
2 . Sublemma 2.9

implies that there exists L ∈ Ld
s such that Xr ⊆ L := Bd

s [x, π
2 ] ∩ Bd

s [y, π
2 ]

and x′ ∈ Sd−1
s (x, π

2 ) ∩ Xr is the center of the (d − 1)-dimensional hemi-
sphere Sd−1

s (x, π
2 ) ∩ Bd

s [y, π
2 ] and y′ ∈ Sd−1

s (y, π
2 ) ∩ Xr is the center of the

(d−1)-dimensional hemisphere Sd−1
s (y, π

2 )∩Bd
s [x, π

2 ] satisfying widths(Xr) =
widths(L) = dists(x′,y′). It follows from Sublemma 2.13 in a straightforward
way that there exists Bd

s [x
′′, r] (resp., Bd

s [y
′′, r]) such that Xr ⊆ Bd

s [x
′′, r] ⊆

Bd
s [x, π

2 ] (resp., Xr ⊆ Bd
s [y

′′, r] ⊆ Bd
s [y, π

2 ]) and Bd
s [x

′′, r] (resp., Bd
s [y

′′, r]) is
tangent to Sd−1

s (x, π
2 ) (resp., Sd−1

s (y, π
2 )) at x′ (resp., y′) with x′′ ∈ (Xr)r

(resp., y′′ ∈ (Xr)r). By construction

2r − widths(Xr) = 2r − dists(x′,y′) = dists(x′′,y′′) ≤ diams ((Xr)r)

and therefore

2r ≤ widths(Xr) + diams((Xr)r). (2)

Sublemma 2.14. Let 0 < r ≤ π
2 be given and let ∅ �= X be a closed subset of

S
d, d ≥ 2 with diams(X) ≤ r. Then

diams ((Xr)r) ≤ r. (3)

Proof. Recall ([12] or [25]) that a closed set Y ⊂ S
d is called a complete set if

diams(Y ∪ {y}) > diams(Y ) holds for all y ∈ S
d \ Y . It is easy to prove the

following claim (see Lemma 1 of [25]): if Y is a complete set with diam(Y ) ≤ π
2 ,

then Y = Y diams(Y ) ∈ Kd
s(diams(Y )) ⊂ Kd

s . Furthermore, it is well know (see
Theorem 1 of [12] or Theorem 1 of [25]) that each set of diameter δ ∈ (0, π)
in S

d is a subset of a complete set of diameter δ in S
d. Thus, there exists a

complete set Y ⊂ S
d such that X ⊆ Y with diams(X) ≤ diams(Y ) = r. By

the monotonicity of the r-dual operation it follows that (Xr)r ⊆ (Y r)r = Y
and so, diams ((Xr)r) ≤ diams(Y ) = r. �
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Thus, (2) and (3) yield r ≤ widths(Xr), finishing the proof of Proposition 2.11.
�
In fact, cBL(r, d) is equal to the minimum of the volumes of convex bodies of
constant width r in S

d as stated in Proposition 2.15. This can be proved as
follows. Let 0 < r ≤ π

2 be given and let ∅ �= X be a closed subset of Sd, d ≥ 2
with diams(X) ≤ r. Then the proof of Sublemma 2.14 shows the existence of
a complete set Y ⊂ S

d such that X ⊆ Y with diams(X) ≤ diams(Y ) = r. As
Y r = Y therefore Y is a convex body of constant width r, i.e., Y ∈ Kd

s(r).
Moreover, the monotonicity of the r-dual operation implies that Y = Y r ⊆
Xr, where Xr = Bd

s [X, r] ∈ Bd
s,wide(r). Finally, Blaschke’s selection theorem

applied to Kd
s(r) [29] yields

Proposition 2.15. Every wide r-ball-body Bd
s [X, r] ∈ Bd

s,wide(r) contains a con-
vex body of constant width r, i.e., there exists Y = Bd

s [Y, r] ∈ Kd
s(r) such that

Y ⊆ Bd
s [X, r], where 0 < r ≤ π

2 and d ≥ 2. Thus,

cBL(r, d) = min{vols(K) | K ∈ Kd
s(r)}

holds for all 0 < r ≤ π
2 and d ≥ 2.

In connection with Proposition 2.15 it is natural to look for the spherical
analogue of Schramm’s lower bound [30] for the volume of convex bodies of
constant width in E

d. This has been done by Schramm [31] for cBL

(
π
2 , d

)
=

min
{
vol(K) | K ∈ Kd

s

(
π
2

)}
as follows.

Remark 2.16. Proposition 9 of [31] implies that

cBL

(π

2
, d

)
≥

√
8d

2π(d + 1)(d + 4)d
vols

(
Δd

(π

2

))
,

where vols(Sd) = (d + 1)ωd+1 = (d+1)π
d+1
2

Γ( d+3
2 )

, vols
(
Δd

(
π
2

))
= (d+1)ωd+1

2d+1 and
d ≥ 3.

It seems reasonable to hope for the following strengthening of the estimate of
Remark 2.16 (resp., of Conjecture 1.6 from [5]).

Conjecture 2.17. cBL(π
2 , d) = vols(Δd(π

2 )), i.e., if K ∈ Kd
s(π

2 ), then vols(K) ≥
vols(Δd(π

2 )) for all d ≥ 3.

3. Proof of Theorem 1.3

Let 0 < r ≤ π
2 and D ∈ B2

s,wide(r). Our goal is to show that areas(D) ≥
areas(Δ2(r)). Let Cin be the inscribed disk of D with center c having radius
Rin. We may assume that 2Rin < r. Namely, if r ≤ 2Rin, then D contains a
disk of diameter r and so, it follows via the spherical isodiametric inequality
[9] that areas(D) ≥ areas(Δ2(r)).
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Figure 1 Cap C1 of the cap-domain C := C1∪C2∪C3∪Cin

in the hemisphere of S2 with center c

Next, one of the following two cases must occur: either the boundaries of D
and Cin have two points in common such that the shorter great circular arc
connecting them is a diameter of Cin or the boundaries of D and Cin have
three points in common such that c is in the interior of the triangle that is the
spherical convex hull of these three points. In the first case, Sublemma 2.13
implies that D contains a disk of diameter r and so, as above we get that
areas(D) ≥ areas(Δ2(r)).

In the second case, let the three selected points in common of the boundaries
of D and Cin be a1, a2, and a3 and let the supporting great circles to Cin at
these points be L1, L2, and L3 respectively (Fig. 1). Note that L1, L2, and L3

are also supporting great circles to D and thus, D lies in one of the spherical
triangles determined by L1, L2, and L3. Let us label this spherical triangle by
�n1n2n3 having the vertices n1, n2, and n3 such that n1 is not on L1 (i.e.,
n1 is “opposite” to L1 ), n2 is not on L2, and n3 is not on L3. Now, let p1

be the point on the same side of L1 as D such that p1a1 is of length r and is
perpendicular to L1 at a1. Let M1 be the great circle perpendicular to p1a1

at p1. Note that the angle between L1 and M1 is r. By Proposition 2.11, M1

must contain a point of D. Let this point be q1. Since 0 < r ≤ π
2 we have that

dists(q1, c) ≥ dists(p1, c) = r − Rin > Rin. (4)

Let t11 and t12 be the two points in common of the boundary of Cin with
the two circles of radius r passing through q1 that are tangent to Cin and
whose disks of radius r contain Cin. Here the shorter circular arc of radius r
connecting q1 and t11 (resp., t12) and sitting on the corresponding circle of
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Figure 2 The cap-domain C∗ := C∗
1 ∪ C∗

2 ∪ C∗
3 ∪ Cin com-

pared to D∗ via dissection and symmetry

radius r just introduced, is labeled by (q1t11)r (resp., (q1t12)r). The circular
arcs (q1t11)r and (q1t12)r have equal lengths moreover, the cap C1 bounded
by (q1t11)r and (q1t12)r and the shorter circular arc of radius Rin connecting
t11 and t12 on the boundary of Cin lies in D and therefore it lies also in the
spherical triangle �n1a2a3 ⊂ �n1n2n3. (Here we have used the property of
D that if we choose two points in D, then any shorter circular arc of radius
r′ with r ≤ r′ ≤ π

2 connecting the two points lies in D.) We can perform the
same procedure for the points a2 and a3, producing the caps C2 and C3. By
construction the caps C1, C2, and C3 are non-overlapping and the cap-domain
C := C1 ∪ C2 ∪ C3 ∪ Cin is a subset of D and therefore

areas(D) ≥ areas(C). (5)

Let D∗ := Δ2(r) with vertices b1, b2, and b3 such that its center is c
(Fig. 2). If R∗

in denotes the inradius of D∗, then dists(b1, c) = dists(b2, c) =
dists(b3, c) = r − R∗

in. Clearly, Proposition 2.5 yields that r − R∗
in ≥ r − Rin.

Thus, let ci be the point on the great circular arc bic such that dists(ci, c) =
r −Rin, 1 ≤ i ≤ 3. Let t∗

11 and t∗
12 be the two points in common of the bound-

ary of Cin with the two circles of radius r passing through c1 that are tangent
to Cin and whose disks of radius r contain Cin. Here the shorter circular arc
of radius r connecting c1 and t∗

11 (resp., t∗
12) and sitting on the corresponding

circle of radius r just introduced, is labeled by (c1t∗
11)r (resp., (c1t∗

12)r). The
circular arcs (c1t∗

11)r and (c1t∗
12)r have equal lengths. Moreover, let the cap

C∗
1 be the domain bounded by (c1t∗

11)r and (c1t∗
12)r and the shorter circu-

lar arc of radius Rin connecting t∗
11 and t∗

12 on the boundary of Cin. From
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(4) it follows that areas(C1) ≥ areas(C∗
1). Similarly, we can define the caps

C∗
2 and C∗

3 with vertices c2 and c3 for which areas(C2) ≥ areas(C∗
2) and

areas(C3) ≥ areas(C∗
3). By construction the caps C∗

1, C∗
2, and C∗

3 are non-
overlapping and therefore the cap-domain C∗ := C∗

1 ∪ C∗
2 ∪ C∗

3 ∪ Cin satisfies
the inequality

areas(C) ≥ areas(C∗). (6)

Based on (5) and (6) we finish the proof of Theorem 1.3 by showing the
inequality

areas(C∗) ≥ areas(D∗). (7)

Let b12 be the midpoint of (b1b2)r, which is the shorter circular arc of radius r

connecting b1 and b2 on the boundary of D∗ (Fig. 2). Moreover, let b∗
3 := ĉb3∩

(S1
s (c, Rin) \ cb3). From this it follows that dists(b1, c1) = dists(b12,b∗

3) =
Rin − R∗

in. Let f := (b1b12)r ∩ (c1b∗
3)r, where (b1b12)r (resp., (c1b∗

3)r) is the
shorter circular arc of radius r connecting b1 and b12 (resp., c1 and b∗

3) such
that (b1b12)r lies on the boundary of D∗ (resp., the disk B2

s[c
′, r] containing

(c1b∗
3)r on its boundary contains b3 (resp., b1) in its interior (resp., exterior)).

We note that by construction

(c1b∗
3)r ⊂ C∗. (8)

Sublemma 3.1. Let u := b̂3c′∩(S1
s (b3, r)\B2

s[c
′, r]) and v := b̂3c′∩(S1

s (c′, r)\
B2

s[b3, r]) (Fig. 3). Furthermore, let (fv)r be the shorter circular arc of S1
s (c′, r)

connecting f and v and let x ∈ (fv)r be a point moving from f to v. Then
the point of B2

s[b3, r]) closest to x is y := b3x ∩ S1
s (b3, r) and dists(x,y) is

a strictly increasing function of the length of (fx)r, where (fx)r denotes the
shorter circular arc of S1

s (c′, r) connecting f and x.

Proof. Clearly, the point of B2
s[b3, r] closest to x must have the property that

the great circle passing through it and tangent to B2
s[b3, r] is orthogonal to

the great circular arc connecting that point to x. It follows that the closest
point is y = b3x ∩ S1

s (b3, r). On the other hand, notice that as x ∈ (fv)r

moves from f to v the angle ∠b3c′x at the vertex c′ of the spherical trian-
gle �b3c′x (bounded by the great circular arcs b3c′, c′x and b3x) strictly
increases and so, the spherical version of Cauchy’s Arm Lemma (see [1] or
[11], p. 228) implies that dists(b3,x) strictly increases and therefore also
dists(x,y) = dists(b3,x) − r strictly increases. �

Next, we note that the spherical distance of b∗
3 (resp., b1) to B2

s[b3, r] (resp.,
B2

s[c
′, r]) is equal to dists(b∗

3,b12) = Rin−R∗
in (resp., is at most dists(b1, c1) =

Rin − R∗
in). Hence, Sublemma 3.1 implies that the length of (b1f)r (resp.,

(c1f)r) is at most as large as the length of (b∗
3f)r (resp., (b12f)r), where

(b1f)r, (c1f)r, (b∗
3f)r, and (b12f)r are circular arcs of radius r with endpoints

indicated such that (b1f)r ⊂ (b1b12)r, (c1f)r ⊂ (c1b∗
3)r, (b∗

3f)r ⊂ (c1b∗
3)r,

and (b12f)r ⊂ (b1b12)r. It follows that the triangular shape region �̂b1c1f
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Figure 3 Cauchy’s Arm Lemma applied to �b3c′x in S
2

bounded by (b1f)r,b1c1, and (c1f)r has an isometric copy contained in the
triangle shape region �̂b∗

3b12f bounded by (b∗
3f)r,b∗

3b12, and (b12f)r. This
implies that

areas(�̂b1c1f) ≤ areas(�̂b∗
3b12f). (9)

Thus, using (8), (9), and the symmetries of D∗ and C∗ we get that

1
6
areas(D∗ \ C∗) ≤ areas(�̂b1c1f) ≤ areas(�̂b∗

3b12f) ≤ 1
6
areas(C∗ \ D∗).

(10)

Hence, (7) follows, finishing the proof of Theorem 1.3.
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Math. Hung. 39(1–3), 7–15 (1999)
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