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Real hypersurfaces in a nonflat complex
space form whose certain tensor is recurrent

Kazuhiro Okumura

Abstract. Real hypersurfaces in a nonflat complex space form (namely, a
complex projective space or a complex hyperbolic space) are interesting
objects among submanifolds in Riemannian manifolds. It is known that a
real hypersurface in a nonflat complex space form admits an almost con-
tact metric structure (φ, ξ, η, g) induced from the ambient space. Hence
we are interested in real hypersurfaces from the aspects of both subman-
ifolds and almost contact metric manifolds. In this paper, we study real
hypersurfaces in a nonflat complex space form from the viewpoint of a
recurrence of the tensor field h(= (1/2)Lξφ). We note that the tensor h
plays an important role in contact Riemannian geometry. We give a new
classification which includes a special class of 3-dimensional ruled real
hypersurfaces in a complex hyperbolic plane CH2(c).
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1. Introduction

In this paper, we denote by ˜Mn(c) (n � 2) a nonflat complex space form
(namely, ˜Mn(c) is congruent to either a complex projective space CPn(c) of
constant holomophic sectional curvature c > 0 or a complex hyperbolic space
CHn(c) of holomophic sectional curvature c < 0). In particular, we are inter-
ested in real hypersurfaces in ˜Mn(c). It is well-known that a real hypersurface
in ˜Mn(c) admits an almost contact metric structure (φ, ξ, η, g) induced from
the Kähler structure J of the ambient space. Hence the theory of real hyper-
surfaces in ˜Mn(c) has the aspect of not only submanifolds theory but also
almost contact metric geometry.
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In particular, we investigate the behavior of the tensor h(= (1/2)Lξφ) on real
hypersurfaces in ˜Mn(c), where L is the Lie derivative. In contact Riemannian
geometry, the tensor h plays an important role. Indeed, a contact Riemannian
manifold M2n−1 satisfies the condition h = 0 if and only if M2n−1 is a K-
contact manifold (namely, the characteristic vector field ξ is a Killing vector
field). The author studied the parallelism of the tensor h on real hypersurfaces
in ˜Mn(c) ([19,20]). Then we proved the following result:

Theorem 1. ([19]) Let M2n−1 be a real hypersurface in a nonflat complex space
form ˜Mn(c) (n � 2). Then M2n−1 satisfies

∇Xh = 0 (1)

for any tangent vector field X orthogonal to the characteristic vector field ξ if
and only if M2n−1 is locally congruent to a real hypersurface of type (A) in
˜Mn(c).

This theorem gives the characterization of real hypersurfaces of type (A) in
˜Mn(c) from the viewpoint of the parallelism of the tensor h. Real hypersurfaces
of type (A) in ˜Mn(c) are known as nice examples, because these real hyper-
surfaces appear in many classification theorems. Many geometers have found
characterizations of real hypersurface of type (A) in ˜Mn(c) by various other
conditions (see [4]). These results tell us that these real hypersurfaces tend to
admit the common properties of both a complex projective space CPn(c) and
a complex hyperbolic space CHn(c).

On the other hand, we are also interested in the differences of these spaces.
For example, there exists a homogeneous ruled real hypersurface in CHn(c)
but there exists no homogeneous one in CPn(c). In this paper, we consider the
following question:

Question 1. Does there exist a nice condition which gives the difference between
CPn(c) and CHn(c) from the aspect of the tensor h?

The purpose of this paper is to give an answer to this question. To execute this,
we define the following two conditions (2) and (3). The tensor h is D-recurrent
if there exists a 1-form ω on M2n−1 such that

(∇Xh)Y = ω(X)hY (2)

for all vectors X orthogonal to the characteristic vector field ξ and Y ∈ TM ,
where TM is the tangent bundle of M2n−1. This condition is a generalization
of the condition (1). In addition, this condition also gives a characterization of
real hypersurfaces of type (A) in ˜Mn(c). However we can not get the answer
to the above question by the condition (2). Hence we consider an improvement
of the condition (2). The tensor h is φ -recurrent if there exists a 1-form ω on
M2n−1 such that

(∇Xh)Y = ω(X)hφY (3)
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for all vectors X orthogonal to the characteristic vector field ξ and Y ∈ TM .
This condition gives a new classification of real hypersurfaces in ˜Mn(c) which
includes a special class of ruled real hypersurfaces in CH2(c). In this paper,
we shall prove the following:

Theorem 2. Let M2n−1 be a real hypersurface in a nonflat complex space form
˜Mn(c) (n � 2). Then we have the following two statements (1) and (2) :

(1) M2n−1 satisfies the condition (2) if and only if M2n−1 is locally congruent
to a real hypersurface of type (A) in ˜Mn(c).

(2) M2n−1 satisfies the condition (3) if and only if M2n−1 is locally congruent
to one of the following:

(i) A real hypersurface of type (A) in ˜Mn(c);
(ii) A 3-dimensional ruled real hypersurface in CH2(c) satisfying the

condition β =
√|c| /2, where the functions β = ‖Aξ − αξ‖, α =

g(Aξ, ξ) and A is the shape operator of M2n−1.

The case (2) of the above main theorem yields a certain answer to the above
question. A special class of ruled real hypersurfaces which appears in the case
(ii) of the above main theorem is extremely interesting because this class in-
cludes a homogeneous minimal ruled real hypersurface in CH2(c). In addition,
by the construction of [10], this class is characterized a class of ruled real hy-
persurfaces having constant scalar curvature in CH2(c). We here emphasize
that the statement (2) in the above main theorem also tells us the following
two differences:

(a) The difference between the case of n = 2 and the case of n � 3;
(b) The difference between the tensor h and the structure Jacobi operator

�(= R(·, ξ)ξ), where R is the curvature tensor of M2n−1.

In particular, the difference (b) is interesting, because there exist relationships
between the tensor h and the structure Jacobi operator � on contact Riemann-
ian manifolds (see [1,22]). Moreover, many geometers have investigated the
behavior of the structure Jacobi operator � on real hypersurfaces in ˜Mn(c)
(see [4]). On the other hand, for real hypersurfaces in ˜Mn(c), the point of view
from the tensor h has hardly been investigated. So, it is natural to investigate
real hypersurfaces in ˜Mn(c) from the viewpoint of the tensor h. We shall prove
that ruled real hypersurfaces do not have the analogue of the condition (3)
which correspond to the structure Jacobi operator � (see Proposition 1).

2. Real hypersurfaces in a nonflat complex space form

Let M2n−1 be a real hypersurface with a unit normal local vector field N
of a complex n-dimensional non-flat complex space form ˜Mn(c) of constant
holomorphic sectional curvature c. The Levi-Civita connections ˜∇ of ˜Mn(c)
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and ∇ of M2n−1 are related by

˜∇XY = ∇XY + g(AX, Y )N , (4)

˜∇XN = −AX (5)

for vector fields X and Y tangent to M2n−1, where g denotes the induced
metric from the standard Riemannian metric of ˜Mn(c) and A is the shape
operator of M2n−1 in ˜Mn(c). (4) is called Gauss’s formula, and (5) is called
Weingarten’s formula. Eigenvalues and eigenvectors of the shape operator A

are called principal curvatures and principal vectors of M2n−1 in ˜Mn(c), re-
spectively.

It is known that M2n−1 has the almost contact metric structure (φ, ξ, η, g)
induced from the Kähler structure J of ˜Mn(c). The structure tensor φ, the
characteristic vector field ξ and the contact form η of M2n−1 are defined
by φX = JX − g(JX,N )N , ξ = −JN and η(X) = g(X, ξ), respectively.
Furthermore this structure satisfies

φ2 = −I + η ⊗ ξ, η(ξ) = 1, φξ = 0, η(φX) = 0,

g(φX, Y ) = −g(X,φY ) and g(φX, φY ) = g(X,Y ) − η(X)η(Y ),
(6)

where I denotes the identity map of the tangent bundle TM of M2n−1.

Next we compute the tensor h and the covariant derivative of the tensor h on
M2n−1. It is well-known that the covariant derivative of the structure tensor
φ of M2n−1 and that of the characteristic vector field ξ of M2n−1 are given
by:

(∇Xφ)Y = η(Y )AX − g(AX,Y )ξ (7)
and

∇Xξ = φAX (8)
for any X and Y tangent to M2n−1. By using (6), (7) and (8), the tensor h of
M2n−1 is given by:

hX = (1/2)(Lξφ)X = (1/2)(η(X)Aξ − φAφX − AX), (9)

where, L is the Lie derivative. By (6), (7), (8) and (9), we have

(∇Xh)Y =(1/2)(g(φAX, Y )Aξ + η(Y )(∇XA)ξ + η(Y )AφAX

− η(AφY )AX + g(AX,AφY )ξ − φ(∇XA)φY

− η(Y )φA2X + g(AX,Y )φAξ − (∇XA)Y )

(10)

for all vectors X and Y tangent to M2n−1.

3. Hopf Hypersurfaces in a nonflat complex space form

In this section, we shall give some results with respect to Hopf hypersurfaces
in a nonflat complex space form ˜Mn(c). A real hypersurface M2n−1 in ˜Mn(c)
is said to be a Hopf hypersurface if the characteristic vector ξ is a principal
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curvature vector at each point of M2n−1. It is known that every tube of suf-
ficiently small constant radius around each Kähler submanifold of ˜Mn(c) is a
Hopf hypersurface (See [3,15]). The following lemma gives a useful properties
of Hopf hypersurfaces in ˜Mn(c):

Lemma 1. ([7,14]) Let M2n−1 be a Hopf hypersurface with the principal cur-
vature α corresponding to the characteristic vector field ξ in ˜Mn(c). Then we
have the following:

(1) α is locally constant on M2n−1;
(2) If X is a tangent vector of M2n−1 perpendicular to ξ with AX = λX,

then (2λ − α)AφX = (αλ + (c/2))φX.

In the theory of real hypersurfaces in a nonflat complex space form, the classes
of Hopf hypersurfaces with constant principal curvatures play an important
role. Indeed, these classes appear in many classifications of real hypersurfaces
in ˜Mn(c). Among them, the class of real hypersurfaces of type (A) is significant.
We collectively refer to the following real hypersurfaces as type (A) (cf.[4,17]):

• A geodesic sphere G(r) of radius r in CPn(c), where 0 < r < π/
√

c ;
• A tube of radius r around a totally geodesic CP �(c) (1 � � � n − 2) in
CPn(c), where 0 < r < π/

√
c ;

• A horosphere in CHn(c);
• A geodesic sphere G(r) of radius r in CHn(c), where 0 < r < ∞;
• A tube of radius r around a totally geodesic CHn−1(c) in CHn(c), where

0 < r < ∞;
• A tube of radius r around a totally geodesic CH�(c) (1 � � � n − 2) in

CHn(c), where 0 < r < ∞.

The following lemma gives the characterization of real hypersurfaces of type
(A) in ˜Mn(c):

Lemma 2. ([5,16,18]) Let M2n−1 be a real hypersurface in ˜Mn(c) (n � 2).
Then the following three conditions are equivalent:

(1) M2n−1 is locally congruent to a real hypersurface of type (A);
(2) φA = Aφ on M2n−1;
(3) h = 0 on M2n−1.

Remark 1. Needless to say, this lemma implies that real hypersurfaces of type
(A) in ˜Mn(c) satisfy recurrence conditions (2) and (3).

4. Ruled real hypersurfaces in a nonflat complex space form

Next, we define ruled real hypersurfaces in a nonflat complex space form ˜Mn(c).
It is known that ruled real hypersurfaces are examples of non-Hopf hypersur-
faces in ˜Mn(c). A real hypersurface M2n−1 is called a ruled real hypersurface of
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a non-flat complex space form ˜Mn(c) (n � 2) if the holomorphic distribution
D defined by D = {X ∈ TM | η(X) = 0} is integrable and each of its maxi-
mal integral manifolds is a totally geodesic complex hypersurface ˜Mn−1(c) of
˜Mn(c). A ruled real hypersurface is constructed in the following way: Given an
arbitrary regular real smooth curve γ in ˜Mn(c) which is defined on an interval
I we have at each point γ(t) (t ∈ I) a totally geodesic complex hypersurface
˜M

(t)
n−1(c) that is orthogonal to the plane spanned by {γ̇(t), Jγ̇(t)}. Then we

have a ruled real hypersurface M2n−1 =
⋃

t∈I
˜M

(t)
n−1(c) in ˜Mn(c). The follow-

ing lemma is a well-known characterization of ruled real hypersurfaces from
the viewpoint of the shape operator A.

Lemma 3. ([8,17]) Let M2n−1 be a real hypersurface in a nonflat complex
space form ˜Mn(c) (n � 2). Then the following three conditions are mutually
equivalent:

1. M2n−1 is a ruled real hypersurface;
2. The shape operator A of M2n−1 satisfies the following equalities on the

open dense subset M1 = {x ∈ M2n−1|β(x) �= 0} with a unit vector field
U orthogonal to ξ :

Aξ = αξ + βU, AU = βξ, AX = 0 (11)

for an arbitrary tangent vector X orthogonal to ξ and U , where α, β are
differentiable functions on M1 by α = g(Aξ, ξ) and β = ‖Aξ − αξ‖;

3. The shape operator A of M2n−1 satisfies g(AX,Y ) = 0 for arbitrary
tangent vectors X,Y ∈ D.

We treat a ruled real hypersurface locally, because generally this hypersurface
has singularities. When we investigate ruled real hypersurfaces, we usually omit
points where ξ is principal and suppose that β does not vanish everywhere,
namely a ruled real hypersurface M2n−1 is usually supposed M1 = M .

The following lemma is given us a useful tool:

Lemma 4. ([6]) Every ruled real hypersurface in ˜Mn(c) (n � 2) satisfies the
following properties:

β∇XU =

⎧

⎪

⎨

⎪

⎩

(β2 − (c/4))φX (X = U),
0 (X = φU),
−(c/4)φX (X ∈ DU = D ∩ span{U, φU}⊥).

Xβ =

⎧

⎪

⎨

⎪

⎩

0 (X = U),
β2 + (c/4) (X = φU),
0 (X ∈ DU = D ∩ span{U, φU}⊥).

It is well known that there do not exist real hypersurfaces ˜Mn(c) with parallel
shape operator. However, ruled real hypersurfaces have the following property:
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Lemma 5. ([9]) Every ruled real hypersurface M2n−1 in ˜Mn(c)(n � 2) admits
the η-parallelism with respect to the shape operator A. Namely, M2n−1 satisfies
the following condition:

g((∇XA)Y,Z) = 0

for all vector fields X,Y,Z ∈ D.

Remark 2. In general, a tensor field T of type (1, 1) is η-parallel is equivalent
to (∇XT )Y ∈ span {ξ} for all vector fields X and Y in D.

By virtue of Lemma 3, Lemma 4 and Lemma 5, we obtain the following three
lemmas:

Lemma 6. Every ruled real hyperusrface M2n−1 in ˜Mn(c) (n � 2) does not
satisfy the condition (2).

Proof. We suppose that there exists a ruled real hypersurface M2n−1 in ˜Mn

(c) (n � 2) satisfying the condition (2). We put X = U and Y = φU in (2).
By using (9), (10) and Lemma 4, then we have

φ(∇UA)U − (∇UA)φU = 0.

From Lemma 5, we have φ(∇UA)U = 0. Hence we can see that

(∇UA)φU = 0.

This equation implies that

∇U (AφU) − A(∇Uφ)U − Aφ∇UU = 0.

Again, by using Lemma 4, we obtain (β2 − (c/4))ξ = 0, namely,

β2 = c/4. (12)

Differentiating this equation with respect to φU , we can see that

2β(φUβ) = 0.

Again, by using Lemma 4, we obtain

β(β2 + (c/4)) = 0.

Since β �= 0, we have β2 = −(c/4). This, combine with (12), yields c = 0,
which is a contradiction. �

Lemma 7. Every ruled real hypersurface M2n−1 in ˜Mn(c) (n � 3) does not
satisfy the condition (3).

Proof. We suppose that there exists a ruled real hypersurface M2n−1 in ˜Mn

(c) (n � 3) satisfying the condition (3). We put Y = V ∈ DU = D ∩
span{U, φU}⊥ (‖V ‖ = 1) in (3). Then we have

−φ(∇XA)φV − (∇XA)V = 0
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for any X ∈ D. By using Lemma 5, we have φ(∇XA)φV = 0 for any X ∈ D.
Hence we have

(∇XA)V = 0 (13)

for any X ∈ D. We set X = φV in (13) and take the inner product with ξ.

0 = g((∇φV A)V, ξ)

= g(∇φV (AV ) − A∇φV V, ξ)

= −αg(∇φV V, ξ) − βg(∇φV V,U)

= αg(V, φAφV ) + βg(V,∇φV U) (from (8))

= g(V, (−c/4)φ2V ) (from Lemma 4)

= (c/4) �= 0.

This is a contradiction. �

However, a certain class of 3-dimensional ruled real hypersurfaces in CH2(c)
satisfies the condition (3). The following is a key lemma of our statements:

Lemma 8. Let M3 be a 3-dimensional ruled real hypersurface in ˜M2(c). Then
M3 satisfies the condition (3) if and only if M3 is a ruled real hypersurface in
CH2(c) satisfying the condition β =

√|c| /2.

Proof. We suppose that M3 satisfies the condition (3). Substituting X = φU
and Y = U into (3). Then we have

−φ(∇φUA)φU − (∇φUA)U = 0.

By using Lemma 5, this equation implies that

(φUβ)ξ + βφAφU − A∇φUU = 0.

By using Lemma 4, we can see that

β2 + (c/4) = 0.

Hence, when c < 0, we have β2 = −(c/4). Since β = ‖Aξ −αξ‖ > 0, we obtain
β =

√|c| /2.

Next we shall check that the converse holds. We suppose that M3 is a ruled
real hypersurface in CH2(c) which satisfies the condition β =

√|c| /2. Now we
define the 1-form ω as follows:

ω(X) =

{

c/(2β) (X = U),
0 (X = φU).

We put Y = ξ in the left side of (3). Then we have

(∇Xh)ξ = (1/2)(AφAX − φA2X + βg(AX, ξ)φU)

for any X ∈ D. Since ω(X)hφξ = 0, we shall check that

AφAX − φA2X + βg(AX, ξ)φU = 0 (14)
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for any X ∈ D. We set X = U in the left side of (14). Then we have

AφAφU − φA2U + β2φU = −βφAξ + β2φU = 0.

Similarly, when X = φU , the equation (14) holds trivially.

Next, we put Y = U in the left side of (3). Then we obtain

(∇Xh)U = (1/2)(φAφ∇XU − (Xβ)ξ + A∇XU)

for any X ∈ D. Since ω(X)hφU = 0, we shall show that

φAφ∇XU − (Xβ)ξ + A∇XU = 0 (15)

for any X ∈ D. When X = U , Equation (15) holds obviously. When X = φU ,
we have

φAφ∇φUU − (φUβ)ξ + A∇φUU = −(β2 + (c/4))ξ = (−(c/4) + (c/4))ξ = 0.

Finally, we put Y = φU in the left side of (3). Then we get

(∇Xh)φU = (1/2)(βAX − β2g(U,X)ξ + φ(∇XA)U − (∇XA)φU)

for any X ∈ D. On the other hand, we have ω(X)hφ2U = (1/2)βω(X)ξ. Hence
from Lemma 5, we shall prove that

βAX − β2g(U,X)ξ − (∇XA)φU = βω(X)ξ

for any X ∈ D. When X = U , we have

−(∇UA)φU = −(∇U (AφU) − A(∇Uφ)U − Aφ∇UU)

= Aφ∇UU = −(β2 − (c/4))ξ = (c/2)ξ.

On the other hand, we can see that

βω(U)ξ = β(c/(2β))ξ = (c/2)ξ.

When X = φU , we have

−(∇φUA)φU = −(∇φU (AφU) − A(∇φUφ)U − Aφ∇φUU) = Aφ∇φUU = 0.

On the other hand, we obtain βω(φU)ξ = 0.

Hence M3 satisfies the condition (3). �

5. Proof of Theorem 2

(1) First we suppose that there exists a non-Hopf hypersurface M2n−1 satisfy-
ing Condition (3). Since M2n−1 is a non-Hopf hypersurface, the shape operator
A fulfills Aξ = αξ + βU , where the function β fulfills β �= 0 and a unit vector
field U orthogonal to the characteristic vector field ξ.

Putting Y = U in (2). By using equations (9) and (10), then we get

g(φAX,U)Aξ+g(AX,AφU)ξ − φ(∇XA)φU

+βg(AX,U)φU − (∇XA)U = ω(X)(−φAφU − AU) (16)
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for any X ∈ D. Taking the inner product of this equation with U and φU ,
respectively. Then we have

βg(φAX,U) − g(φ(∇XA)φU,U) − g((∇XA)U,U)

= ω(X)(g(AφU, φU) − g(AU,U)),
(17)

βg(AX,U) − 2g((∇XA)φU,U) = −2ω(X)g(AφU,U) (18)

for any X ∈ D. Similarly, we put Y = φU in (2). Then we obtain

g(AX,U)Aξ+βAX − g(AX,AU)ξ + φ(∇XA)U

+βg(AX,φU)φU − (∇XA)φU = ω(X)(φAU − AφU)
(19)

for any vector X ∈ D. We take the inner product of this equation with U and
φU , respectively. Then we can see that

2βg(AX,U) − 2g((∇XA)U, φU) = −2ω(X)g(AφU,U), (20)

2βg(AX,φU) + g((∇XA)U,U) − g((∇XA)φU, φU)

= ω(X)(g(AU,U) − g(AφU, φU))
(21)

for any X ∈ D. By using (17) and (21), we get g(AφU,X) = 0 for any vector
X ∈ D. Since η(AφU) = 0, we have

AφU = 0. (22)

From (18) and (20), we obtain g(AU,X) = 0 for any X ∈ D. This implies that

AU = βξ. (23)

Next we put Y = ξ in (2). Again, by using (9) and (10), we can see that

AφAX − φA2X + β2g(X,U)φU = 0 (24)

for any tangent vector field X ∈ D. Now we take a unit vector field Z ∈ DU =
D∩ span{U, φU}⊥ such that AZ = γZ. We set X = Z in (24). Then we obtain

γ(AφZ − γφZ) = 0.

By this equation, our discussion divide into two cases.

Case (1):γ = 0.

This case means that AX = 0 for an arbitrary vector field X ∈ DU . This,
combined with (22), yields

AX = 0 (25)

for any tangent vector field X orthogonal to both ξ and U . This, together with
relations (23) and Aξ = αξ + βU , implies that M2n−1 is locally congruent to
a ruled real hypersurface in ˜Mn(c) (Lemma 3). However, by Lemma 6, ruled
real hypersurfaces do not fulfill the condition (2).

Case (2):AφZ = γφZ (γ �= 0).

By the same discussion in the proof of Theorem 4.1 in [19], Case (2) does not
occur.
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Finally, we consider the case of Hopf hypersurfaces in ˜Mn(c). We suppose that
M2n−1 is a Hopf hypersurface (with Aξ = αξ) in ˜Mn(c). We put Y = ξ in (2).
Then we get

AφAX − φA2X = 0

for any tangent vector field X ∈ D. We take a vector V ∈ D with AV = λV .
By Lemma 1 and the above equation, we can see that

λ(2λ2 − 2αλ − (c/2)) = 0.

This equation implies that the function λ is locally constant, and λ = 0 or
2λ2 − 2αλ − (c/2) = 0. The former does not occur. Indeed, there exist no
Hopf hypersurfaces with constant principal curvatures in ˜Mn(c) which satisfy
λ = 0 (see [17]). The latter gives that M2n−1 is locally congruent to a real
hypersurface of type (A) in ˜Mn(c) (see the proof of Theorem 4.1 in [19]).

(2) We suppose that M2n−1 is a non-Hopf hypersurface in ˜Mn(c) satisfying
the condition (3). By the same discussion as in the proof of the statement (1),
we obtain the following equations instead of Equations (17), (18), (20) and
(21), respectively.

βg(φAX,U) − g(φ(∇XA)φU,U) − g((∇XA)U,U) = −2ω(X)g(AφU,U),
(26)

βg(AX,U) − 2g((∇XA)φU,U) = ω(X)(g(AU,U) − g(AφU, φU)),
(27)

2βg(AX,U) − 2g((∇XA)U, φU) = ω(X)(g(AU,U) − g(AφU, φU)),
(28)

2βg(AX,φU) + g((∇XA)U,U) − g((∇XA)φU, φU) = 2ω(X)g(AφU,U)
(29)

for any X ∈ D. Equations (26) and (29) imply the relation AφU = 0, and
Equations (27) and (28) imply the relation AU = βξ.

Putting Y = ξ in (3). Then we have

AφAX − φA2X + β2g(X,U)φU = 0

for any X ∈ D. We here take a unit vector field Z ∈ DU = D ∩ span{U, φU}⊥

such that AZ = γZ, and set X = Z in this equation. Then we obtain

γ(AφZ − γφZ) = 0.

If γ = 0, then M2n−1 is locally congruent to a ruled real hypersurface in ˜Mn(c).
By virtue of Lemma 7 and Lemma 8, we have the case (ii) of our theorem. By
the same discussion as in the proof of (1), the case of AφZ = γφZ (γ �= 0) does
not hold. In addition, the same is true for the case of Hopf hypersurfaces.

Therefore we obtain the desired conclusion.
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6. Concluding remarks

6.1

The special class of ruled real hypersurfaces which appears in case (2) of our
theorem includes a homogeneous minimal ruled real hypersurface in CH2(c).
Indeed, the following lemma tells us this fact:

Lemma 9. ([2,12,13]) Let M2n−1 be a ruled real hypersurface in CHn(c)
(n � 2). Then M2n−1 is the homogeneous minimal real hypersurface in CHn(c)
if and only if M2n−1 fulfills the following condition:

⎧

⎪

⎨

⎪

⎩

Aξ = (
√|c| /2)U,

AU = (
√|c| /2)ξ,

AX = 0 for any tangent vector field X ⊥ ξ, U.

6.2

Recently, M. Kimura, S. Maeda and H. Tanabe found a new construction of
ruled real hypersurfaces in CHn(c) (see [10]).

Theorem 3. ([10]) Ruled real hypersurfaces in complex hyperbolic space CHn

(−4) of constant holomorphic sectional curvature −4 are in one-to-one corre-
spondence with real 1-dimensional curves in indefinite complex projective space
CPn

1 (4) of constant holomorphic sectional curvature 4.

By using this theorem, they also gave the following:

Theorem 4. ([10]) Let M2n−1 be a ruled real hypersurface in CHn(−4). Then
M2n−1 has constant scalar curvature if and only if the corresponding curve δ
in CPn

1 (4) is lightlike.

For ruled real hypersurfaces M2n−1 in ˜Mn(c), we note that the scalar cur-
vature of M2n−1 is constant if and only if the function β is constant. Hence
the existence of the special class of ruled real hypersurfaces which appears
in case (2) of our theorem is guaranteed by Theorem 3 and 4. Moreover this
class is characterized a class of ruled real hypersurfaces having constant scalar
curvature.

6.3

There exists a nice relationship between the tensor h and the structure Ja-
cobi operator �(= R(·, ξ)ξ) in contact Riemannian geometry (see [1,22]). In
addition, many geometers have investigated the behavior of the structure Ja-
cobi operator � on real hypersurfaces in ˜Mn(c) (see [4]). It is well-known the
following result which correspond to (1) of our theorem.
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Theorem 5. ([11,21,23]) There exist no real hypersurface M2n−1 in ˜Mn(c)
(n � 2) satisfying the following condition:

(∇X�)Y = ω(X)�Y

for any X ∈ D, Y ∈ TM and ω is a 1-form on M2n−1.

Hence it is natural to study the recurrent structure Jacobi operator correspond
to the condition (3).

For the structure Jacobi operator �, we consider the analogue of the condition
(3), namely,

(∇X�)Y = ω(X)�φY (30)

for any X ∈ D, Y ∈ TM and ω is a 1-form on M2n−1. Then we obtain the
following proposition:

Proposition 1. Every ruled real hypersurface M2n−1 in ˜Mn(c)(n � 2) does not
satisfy the condition (30).

Proof. First we prepare the fundamental relation of the structure Jacobi oper-
ator �. Let R be the curvature tensor of M2n−1 in ˜Mn(c). The Gauss equation
is given by:

R(X,Y )Z = (c/4){g(Y,Z)X − g(X,Z)Y + g(φY,Z)φX

− g(φX,Z)φY − 2g(φX, Y )φZ}
+ g(AY,Z)AX − g(AX,Z)AY

(31)

for all vectors X,Y and Z tangent to M2n−1. By using (31), we have

�X = (c/4)(X − η(X)ξ) + αAX − η(AX)Aξ (32)

for any vector field X ∈ TM , where α = g(Aξ, ξ). The covariant derivative of
the tensor � is given by:

(∇X�)Y = −(c/4)g(φAX, Y )ξ − (c/4)η(Y )φAX + (Xα)AY

+ α(∇XA)Y − g((∇XA)Y, ξ)Aξ − g(AφAX, Y )Aξ

− η(AY )(∇XA)ξ − η(AY )AφAX

(33)

for any X,Y ∈ TM .

We suppose that there exists a ruled real hypersurface in ˜Mn(c) satisfying the
condition (30). Putting Y = U in (30). By using (32), (33) and Lemma 4, we
have

− 2β(Xβ)U − β2∇XU = (c/4)ω(X)φU (34)

for any X ∈ D. Setting X = φU in (34), from Lemma 4, we obtain

−2β(φUβ)U = (c/4)ω(φU)φU.

Taking the inner product of this equation with U , form Lemma 4, we get

β2 = −(c/4). (35)
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Next we put X = U in (34). Then we have

−β(β2 − (c/4)) = (c/4)ω(U).

This, together with (35), yields

ω(U) = 2β. (36)

Setting X = U and Y = φU in (30). Then we have

β(β2 − (c/4)) = ω(U)((c/4) − β2).

This, combined with (35) and (36), gives βc = 0. This is a contradiction. �

At the end of this paper, we pose the following problem:

Problem 1. Does there exist a real hypersurface in ˜Mn(c) satisfying the con-
dition (30)?
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