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A family of flat Minkowski planes over
convex functions
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Abstract. Using suitable convex functions, we construct a new family
of flat Minkowski planes whose automorphism groups are at least 3-
dimensional. These planes admit groups of automorphisms isomorphic
to the direct product of R and the connected component of the affine
group on R. We also determine isomorphism classes, automorphisms and
possible Klein–Kroll types for our examples.
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1. Introduction

Flat Minkowski planes are generalization of the geometry of nontrivial plane
sections of the standard nondegenerate ruled quadric in the real 3-dimensional
projective space P3(R). A flat Minkowski plane M can be classified based on
the dimension n of its automorphism group. It is known that n is at most
6, and the plane M is determined when n ≥ 4, cp. [11]. The current open
case of interest is when n = 3, in which a list of possible connected groups of
automorphisms of M was presented in [2].

The purpose of this paper is to describe a new family of flat Minkowski planes
that admit the 3-dimensional connected group

Φ∞ = {(x, y) �→ (x + b, ay + c) | a, b, c ∈ R, a > 0}
as their group of automorphisms. The construction presented here is based on
Chapter 6 of the author’s doctoral dissertation [4], which was motivated from
a family of flat Laguerre planes of translation type described by Löwen and
Pfüller [7,8]. These Laguerre planes were constructed as follows: first a suitable
class of functions, called ‘strongly parabolic functions’ is defined. Then circles
are defined as the images of the graph of one such function under the group
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Φ∞. In our construction, we introduce the notion of a “strongly hyperbolic
function”, which is adapted from that of strongly parabolic functions to satisfy
the incidence axioms of flat Minkowski planes.

The paper is organized as follows. Section 2 contains the preliminary results
and examples. In Sect. 3, we define strongly hyperbolic functions and derive
useful properties. In Sect. 4, we describe a family of flat Minkowski planes
using strongly hyperbolic functions. The paper ends with a discussion on iso-
morphism classes, automorphisms and Klein–Kroll types of these planes in
Sect. 5.

2. Preliminaries

2.1. Flat Minkowski planes and two halves of the circle set

A flat Minkowski plane is a geometry M = (P, C,G+,G−), whose

point set P is the torus S
1 × S

1,
circles (elements of C) are graphs of homeomorphisms of S1,
(+)-parallel classes (elements of G+) are the verticals {x0} × S

1,
(−)-parallel classes (elements of G−) are the horizontals S

1 × {y0},

where x0, y0 ∈ S
1. We denote the (±)-parallel class containing a point p by

[p]±. When two points p and q are on the same (±)-parallel class, we say they
are (±)-parallel and denote this by p ‖± q. Two points p, q are parallel if they
are (+)-parallel or (−)-parallel, and we denote this by p ‖ q. Furthermore, a
flat Minkowski plane satisfies the following two axioms:

Axiom of Joining : three pairwise nonparallel points p, q, r can be joined
by a unique circle.
Axiom of Touching : for each circle C and any two nonparallel points p, q
with p ∈ C and q �∈ C, there is exactly one circle D that contains both
points p, q and intersects C only at the point p.

The derived plane Mp of M at the point p is the incidence geometry whose
point set is P\([p]+∪[p]−), whose lines are all parallel classes not going through
p and all circles of M going through p. For every point p ∈ P, the derived
plane Mp is a flat affine plane, cp. [9, Theorem 4.2.1].

A flat Minkowski plane is in standard representation if the set {(x, x) | x ∈ S
1}

is one of its circles (cp. [9, Subsection 4.2.3]). Up to isomorphisms, every flat
Minkowski plane can be described in standard representation. In this case, we
omit the two parallelisms and refer to (P, C) as a flat Minkowski plane.

Let M = (P, C) be a flat Minkowski plane in standard representation. Let C+

and C− be the sets of all circles in C that are graphs of orientation-preserving
and orientation-reversing homeomorphisms of S1, respectively. Clearly, C =
C+ ∪ C−. We call C+ and C− the positive half and negative half of M, respec-
tively. It turns out that these two halves are completely independent of each
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other, that is, we can exchange halves from different flat Minkowski planes and
obtain another flat Minkowski plane, see [9, Subsection 4.3.1]:

Theorem 2.1. For i = 1, 2, let Mi = (P, Ci) be two flat Minkowski planes.
Then M = (P, C+

1 ∪ C−
2 ) is a flat Minkowski plane.

2.2. Examples

We identify S
1 with R ∪ {∞} in the usual way. There are various known

examples of flat Minkowski planes, cp. [9, Chapter 4]. For our purposes, we
recall three particular examples.

Example 2.2. The circle set of the classical flat Minkowski plane MC consists
of sets of the form {(x, sx + t) | x ∈ R} ∪ {(∞,∞)}, where s, t ∈ R, s �= 0, and
{(x, y) ∈ R

2 | (x − b)(y − c) = a} ∪ {(∞, c), (b,∞)}, where a, b, c ∈ R, a �= 0.

Example 2.3. For r, s > 0, let fr,s be defined by

fr,s(x) =

⎧
⎪⎨

⎪⎩

xr for x ≥ 0,

−s|x|r for x < 0,

∞ for x = ∞.

The circle set of a generalised Hartmann plane MGH(r1, s1; r2, s2) consists of
sets of the form

{(x, sx + t) | x ∈ R} ∪ {(∞,∞)},

where s, t ∈ R, s �= 0, sets of the form
{(

x,
a

fr1,s1(x − b)
+ c

) ∣
∣
∣
∣ x ∈ R

}

∪ {(b,∞), (∞, c)},

where a, b, c ∈ R, a > 0, and sets of the form
{(

x,
a

fr2,s2(x − b)
+ c

) ∣
∣
∣
∣ x ∈ R

}

∪ {(b,∞), (∞, c)},

where a, b, c ∈ R, a < 0.

Example 2.4. Let f and g be two orientation-preserving homeomorphisms of
S
1. Denote PGL(2,R) by Ξ and PSL(2,R) by Λ. The circle set C(f, g) of a

half-classical plane MHC(f, g) consists of sets of the form {(x, γ(x)) | x ∈ S
1},

where γ ∈ Λ ∪ g−1(Ξ\Λ)f .

2.3. Automorphisms and Klein–Kroll types

An isomorphism between two flat Minkowski planes is a bijection between the
point sets that maps circles to circles, and induces a bijection between the circle
sets. An automorphism of a flat Minkowski plane M is an isomorphism from
M to itself. Every automorphism of a flat Minkowski plane is continuous and
thus a homeomorphism of the torus. With respect to composition, the set of all
automorphisms of a flat Minkowski plane is a group called the automorphism
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group Aut(M) of M. The group Aut(M) is a Lie group of dimension at most
6 with respect to the compact-open topology. We say a flat Minkowski plane
has group dimension n if its automorphism group has dimension n. For n ≥ 4,
we have the following classification, cp. [11].

Theorem 2.5. Let M be a flat Minkowski plane with group dimension n. If
n ≥ 4, then exactly one of the following occurs.

1. n = 6 and M is isomorphic to the classical flat Minkowski plane.
2. n = 4 and M is isomorphic to a proper (nonclassical) generalised Hart-

mann plane MGH(r1, s1; r2, s2), r1, s1, r2, s2 ∈ R
+, (r1, s1, r2, s2) �=

(1, 1, 1, 1).
3. n = 4 and M is isomorphic to a proper half-classical plane MHC(f, id),

where f is a homeomorphism of S1 of the form fd,s, (d, s) �= (1, 1).

A central automorphism of a Minkowski plane is an automorphism that fixes
at least one point and induces a central collineation in the derived projective
plane at each fixed point. Similar to the Lenz–Barlotti classification of projec-
tive planes with respect to central collineations, Minkowski planes have been
classified by Klein and Kroll with respect to groups of central automorphisms
that are ‘linearly transitive’, cp. [5,6]. In the case of flat Minkowski planes,
possible Klein–Kroll types were determined by Steinke [12] as follows.

Theorem 2.6. A flat Minkowski plane has Klein–Kroll type

I. A.1, A.2, A.3, B.1, B.10, B.11, D.1,
II. A.1, A.15,

III. C.1, C.18, C.19,
IV. A.1, or

VII. F.23.

For each of these 14 types, except type II.A.15, examples are given in [12].
In the same paper, Steinke also characterised some families of flat Minkowski
planes. The following result is adapted from [12, Proposition 5.9].

Theorem 2.7. A flat Minkowski plane of Klein–Kroll type

VII.F.23 is isomorphic to the classical flat Minkowski plane;
III.C.19 is isomorphic to a proper generalised Hartmann plane MGH(r, 1; r, 1),
r �= 1;
III.C.18 is isomorphic to an Artzy–Groh plane (cp. [1]) with group dimension
3.

3. Strongly hyperbolic functions

In this section, we will define strongly hyperbolic functions and derive some
properties. For convenience, we will abbreviate the mean value theorem by
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MVT, and the intermediate value theorem by IVT. Let R
+ denote the set of

positive real numbers.

Definition 3.1. A function f : R+ → R
+ is called a strongly hyperbolic function

if it satisfies the following conditions.

1. limx→0+ f(x) = +∞ and limx→+∞ f(x) = 0.
2. f is strictly convex.
3. For each b ∈ R,

lim
x→+∞

f(x + b)
f(x)

= 1.

4. f is differentiable.
5. ln |f ′(x)| is strictly convex.

3.1. Properties strongly hyperbolic functions

Let f be a strongly hyperbolic function. It is readily checked that f is strictly
decreasing and consequently an orientation-reversing homeomorphism of R+.
Since f is strictly convex and differentiable, it is continuously differentiable.
We now consider some other properties of f .

Lemma 3.2. Let b > 0, s, t �= 0. Then the following statements are true.

1.

lim
x→∞

f ′(x)
f ′(x + b)

= 1.

2.

lim
x→+∞

f ′(x)
f(x)

= 0.

3.

lim
x→+∞

f(x + s) − f(x)
f ′(x)

= s.

4.

lim
x→+∞

f(x + s) − f(x)
f(x + t) − f(x)

=
s

t
.

5.

lim inf
x→0+

f ′(x)
f(x)

= −∞.

Proof. 1. Let h(x) = ln(|f ′(x)|). Since f is strongly hyperbolic, h is strictly
convex and strictly decreasing. We define hb : (0,∞) → R by

hb(x) = h(x) − h(x + b) = ln
(∣

∣
∣
∣

f ′(x)
f ′(x + b)

∣
∣
∣
∣

)

.
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Then hb is strictly decreasing and is bounded below by 0. This implies

that limx→∞ hb(x) exists and so does limx→∞
f ′(x)

f ′(x + b)
. The claim now

follows from L’Hospital’s Rule.
2. Let δ > 0. For x > δ, by the MVT, there exists r ∈ (x − δ, x) such that

f ′(r) =
f(x) − f(x − δ)

δ
.

Since f is strictly convex, f ′ is strictly increasing, so that f ′(r) < f ′(x).
Dividing both sides by f(x), we get

f(x) − f(x − δ)
δf(x)

<
f ′(x)
f(x)

< 0.

Since f is strongly hyperbolic,

lim
x→+∞

f(x) − f(x − δ)
f(x)

= 1 − lim
x→+∞

f(x − δ)
f(x)

= 1 − 1 = 0.

The claim now follows from the squeeze theorem.
3. We will assume s > 0, as the case s < 0 is similar. For x > 0, by the

MVT, there exists r ∈ (x, x + s) such that

f ′(r) =
f(x + s) − f(x)

s
.

Since f ′ is strictly increasing and negative, f ′(x) < f ′(r) < f ′(x+s) < 0.
Hence,

sf ′(x) < f(x + s) − f(x) < sf ′(x + s) < 0,

and so
sf ′(x + s)

f ′(x)
<

f(x + s) − f(x)
f ′(x)

< s.

The claim now follows from the squeeze theorem and part 1.
4. We rewrite

f(x + s) − f(x)
f(x + t) − f(x)

=
f(x + s) − f(x)

f ′(x)
· f ′(x)
f(x + t) − f(x)

.

The claim now follows from part 3.
5. This can be derived from the fact that limx→0+ ln f(x) = +∞. �

We now study the roots of the function qf : (max{−b, 0},∞) → R defined as

qf(x) = af(x + b) + c − f(x),

where a > 0, b, c ∈ R. We first consider the derivative qf ′.

Lemma 3.3. The derivative qf ′ is continuous and has at most one root. Fur-
thermore, if qf ′ has a root x0, then qf ′ changes sign at x0.
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Proof. Since ln |f ′(x)| is strictly convex and strictly decreasing, the function
h : (max{−b, 0},∞) → R defined by

h(x) = ln |f ′(x + b)| + ln a − ln |f ′(x)|
is strictly monotonic. Hence, h has at most one root, and if h has a root x0,
then h changes sign at x0. Note that qf ′ has a root x0 if and only if h has x0 as
a root, and qf ′(x) ≶ 0 if and only if h(x) ≷ 0. This completes the proof. �

We note that if a �= 1 and b = c = 0, then qf has no roots. In the following
lemma, we consider the special case when exactly one of b, c is zero. If a = 1,
then qf has no roots. We then further assume a �= 1.

Lemma 3.4. If a �= 1 and either b �= 0, c = 0 or b = 0, c �= 0, then qf has at
most one root. Furthermore, exactly one of the following statements is true.

1. qf has exactly one root x0 at which it changes sign. The derivative qf ′ is
nonzero at x0, and either

a > 1, b > 0, c = 0 or a > 1, b = 0, c < 0 or
a < 1, b < 0, c = 0 or a < 1, b = 0, c > 0.

2. qf has no root, and either

a < 1, b > 0, c = 0 or a < 1, b = 0, c < 0 or
a > 1, b < 0, c = 0 or a > 1, b = 0, c > 0.

Proof. There are four cases depending on the sign of b, c. We only prove the
cases b > 0, c = 0 and b = 0, c > 0. The cases b < 0, c = 0 and b = 0, c < 0 are
similar.

Case 1: b > 0, c = 0. We have qf(x) = af(x + b) − f(x). If a < 1, then

qf(x) < f(x + b) − f(x) < 0,

and so qf has no roots. We now claim that if a > 1, then qf has exactly one
root x0 at which it changes sign. Let g : (0,+∞) → R be defined by

g(x) = ln f(x + b) + ln a − ln f(x).

We note that qf has a root if and only if g has a root, and the sign of qf(x) is
the same as the sign of g(x). Also, g is continuous, limx→0 g(x) = −∞, and
limx→+∞ g(x) = ln a > 0. It follows that g, and in particular qf , has at least
one root.

By Lemma 3.3, qf cannot have more than two roots. Suppose for a contradiction
that qf has exactly two roots x0 < x1. By Lemma 3.3 and Rolle’s Theorem, qf ′

is nonzero at these roots. Since qf ′ is continuous, qf is locally monotone at the
roots. Hence qf changes sign at the two roots. It follows that g has two roots
at which it changes sign.
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Since limx→0 g(x) = −∞, g(x) < 0 for x ∈ (0, x0). Since g changes sign at x0

and has no roots between x0 and x1, we have g(x) > 0 for x ∈ (x0, x1). Since
g changes sign at x1 and has no roots larger than x1, we have g(x) < 0 for
x > x1. This contradicts lima→+∞ g(x) = ln a > 0.

Therefore qf has exactly one root x0. Then g also has exactly one root at x0.
By the IVT, g changes sign at x0. Then qf also changes sign at x0. This proves
the claim.

Case 2: b = 0, c > 0. Then qf(x) = (a−1)f(x)+ c. If a > 1, then qf > 0 and has
no roots. If a < 1, then from Definition 3.1, qf has exactly one root at which it
changes sign. �

We now consider the case when both b, c �= 0.

Lemma 3.5. If b, c �= 0, then qf(x) has at most two roots. Furthermore, exactly
one of the following statements is true.

1. qf has exactly two roots x0 and x1 at which it changes sign. The derivative
qf ′ is nonzero at x0 and x1, and either

a < 1, b < 0, c > 0 or a > 1, b > 0, c < 0.

2. qf has exactly one root x0 at which it does not change sign. The derivative
qf ′ also has a root at x0, and either

a < 1, b < 0, c > 0 or a > 1, b > 0, c < 0.

3. qf has exactly one root x0 at which it changes sign. The derivative qf ′ is
nonzero at x0, and bc > 0.

4. qf has no roots, and bc < 0.

Proof. 1. From Lemma 3.3 and Rolle’s Theorem, qf cannot have more than
two roots. Also, if qf has exactly two roots, then qf ′ is nonzero at these
roots. Moreover, since qf is continuously differentiable, it must change
sign at the two roots.
Assume qf has exactly one root x0. If qf ′(x0) �= 0, then qf changes sign
at x0. In the case qf(x0) = qf ′(x0) = 0, by Lemma 3.3, the derivative qf ′

changes sign at x0. This implies qf has a local extremum at x0 and so
does not change sign.
If none of the above occurs, then it must be the case that qf has no roots.
Therefore, excluding the conditions on the parameters a, b, c, exactly one
of the statements in the lemma is true.

2. We claim that if bc > 0, then qf has exactly one root at which qf changes
sign. We assume that b > 0, c > 0; the case b < 0, c < 0 is similar. Since
limx→0

qf(x) = −∞, and limx→+∞ qf(x) = c, by the IVT, qf has at least
one root.
Suppose for a contradiction that qf has exactly two roots x0 < x1. Since
limx→0

qf(x) = −∞, qf(x) < 0 for x ∈ (0, x0). Since qf changes sign at x0
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and has no roots between x0 and x1, we have qf(x) > 0 for x ∈ (x0, x1).
Since qf changes sign at x1 and has no roots larger than x1, we have
qf(x) < 0 for x > x1. This contradicts limx→+∞ qf(x) = c > 0. This
proves the claim.

3. Assume qf has exactly two roots x0 and x1 at which it changes sign. From
part 2 of the proof and Lemma 3.4, it must be the case that bc < 0.
Assume b > 0, c < 0. We rewrite

qf(x) = a (f(x + b) − f(x)) + c + (a − 1)f(x).

Since f is strictly convex, f(x+b)−f(x) is strictly increasing. If 0 < a ≤ 1,
then qf is strictly increasing and thus has at most one root, which con-
tradicts our assumption. Therefore a > 1. Similarly, when b < 0, c > 0,
we have a < 1.

4. Assume qf has exactly one root at which it changes sign. We can say that
there exists x∗ such that qf(x∗) > 0. Suppose for a contradiction that
b > 0, c < 0. Then limx→0

qf(x) = −∞, and limx→+∞ qf(x) = c < 0. By
the IVT, there exist two roots x0 ∈ (0, x∗) and x1 ∈ (x∗,+∞), which
contradicts our assumption. Similarly, it cannot be the case that b <
0, c > 0. Thus, bc > 0.

5. When qf has exactly one root x0 at which it does not change sign, the
conditions on a, b, c follow in a similar manner as in part 3. When qf has no
roots, then by part 2 of the proof, bc < 0. This completes the proof. �

3.2. Graphs of strongly hyperbolic functions under Φ∞

Let a1, a2 > 0, b1, b2, c1, c2 ∈ R. For two strongly hyperbolic functions f1 and
f2, we define

qf : (max{−b1,−b2},+∞) → R : x �→ a1f1(x + b1) + c1 − a2f1(x + b2) − c2,

f̂ : (−∞,min{−b1,−b2}) → R : x �→ −a1f2(−x − b1) + c1

+a2f2(−x − b2) − c2.

From the previous subsection, we obtain the following two lemmas.

Lemma 3.6. Assume b1 �= b2, c1 = c2 or b1 = b2, c1 �= c2.

1. If a1 = a2, then both qf and f̂ have no roots.
2. If a1 �= a2, then either qf or f̂ , but not both, has exactly one root x0 at

which it changes sign. The corresponding derivative is nonzero at x0.

Lemma 3.7. Assume b1 �= b2, c1 �= c2. If qf has at least one root, then exactly
one of the following is true.

1. qf has exactly two roots x0 and x1 at which it changes sign, f̂ has no
roots. The derivative qf ′ is nonzero at x0 and x1.
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2. qf has exactly one root x0 at which it does not change sign, f̂ has no roots.
The derivative qf ′ also has a root at x0.

3. qf has exactly one root x0 at which it changes sign, f̂ also has exactly one
root x1 at which it changes sign. The derivatives qf ′(x0) and f̂ ′(x1) are
nonzero.

3.3. Some examples and remarks

Example 3.8. The following functions f : R+ → R
+ are strongly hyperbolic.

1. f(x) =
1
xi

, where i ∈ N.

2. f(x) =
n∑

i=1

1
xi

, where n ∈ N.

3. f(x) =
1

x + arctan(x)
.

4. f(x) = ln

(
1
x

+
√

1
x2

+ 1

)

.

Remark 3.9. The inverse of a strongly hyperbolic function is not necessarily a
strongly hyperbolic function. For instance, the inverse of the last function f
in Example 3.8 is given by

f−1(x) =
1

sinh(x)
.

As mentioned in [3], for b �= 0,

lim
x→∞

sinh(x)
sinh(x + b)

= e−b �= 1.

This implies that the inverse f−1 is not strongly hyperbolic.

Remark 3.10. The definition of strongly hyperbolic functions shares similari-
ties with the definition of strongly parabolic functions in the construction of
flat Laguerre planes of translation type by Löwen and Pfüller [7]. We note
that strongly parabolic functions are assumed to be twice differentiable. As
mentioned by the authors in [7, Remark 2.6], this condition was proved to be
unnecessary by Schellhammer [10]. For the definition of strongly hyperbolic
functions, we omit this condition.

4. Flat Minkowski planes from strongly hyperbolic functions

Let f1, f2 be strongly hyperbolic functions. For a > 0, b, c ∈ R, let

fa,b,c : R\{−b} → R\{c} : x �→
{

af1(x + b) + c for x > −b,

−af2(−x − b) + c for x < −b.
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We also define the following sets:

fa,b,c := {(x, fa,b,c(x)) | x ∈ R\{−b}} ∪ {(−b,∞), (∞, c)},

F := {fa,b,c | a > 0, b, c ∈ R},

ls,t := {(x, sx + t) | x ∈ R} ∪ {(∞,∞)},

L := {ls,t | s, t ∈ R, s < 0}.

For a set fa,b,c, the convex branch of fa,b,c is the subset {(x, fa,b,c(x)) | x >

−b}, and the concave branch of fa,b,c is the subset {(x, fa,b,c(x)) | x < −b}.

We define C−(f1, f2) := F ∪ L and C+(f1, f2) := ϕ(C−(f1, f2)), where ϕ is the
homeomorphism of the torus defined by ϕ : (x, y) �→ (−x, y). In this section,
we prove the following theorem.

Theorem 4.1. For i = 1..4, let fi be a strongly hyperbolic function. Let C :=
C−(f1, f2) ∪ C+(f3, f4). Then Mf = M(f1, f2; f3, f4) := (P, C) is a flat
Minkowski plane.

In view of Theorem 2.1, to prove Theorem 4.1 it is sufficient to prove that
C−(f1, f2) is the negative half of a flat Minkowski plane. We verify that this is
the case by showing that C−(f1, f2) satisfies Axiom of Joining and Axiom of
Touching in the next four subsections.

4.1. Axiom of Joining, existence

Three points p1, p2, p3 ∈ P are in admissible position if they can be joined
by an element of the negative half of the classical flat Minkowski plane MC .
Furthermore, we say they are of type

1 if p1 = (∞,∞), p2, p3 ∈ R
2,

2 if p1 = (x1, y1), p2 = (∞, y2), p3 = (x3,∞), xi, yi ∈ R,
3 if p1 = (x1, y1), p2 = (x2, y2), p3 = (x3,∞), xi, yi ∈ R,
4 if p1 = (x1, y1), p2 = (x2, y2), p3 = (∞, y3), xi, yi ∈ R,
5 if p1 = (x1, y1), p2 = (x2, y2), p3 = (x3, y3), xi, yi ∈ R.

We note that up to permutations, if three points are in admissible position,
then they are in exactly one of the five admissible position types. The main
theorem of this subsection is the following.

Theorem 4.2 (Axiom of Joining, existence). Let p1, p2, p3 ∈ P be three points
in admissible position. Then there is at least one element in C−(f1, f2) that
contains p1, p2, p3.

We prove Theorem 4.2 in the following five lemmas.

Lemma 4.3. Let p1, p2, p3 be three points in admissible position type 1. Then
there exist s0 < 0, t0 ∈ R such that ls0,t0 contains p1, p2, p3.
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Proof. Since C−(f1, f2) contains lines with negative slope extended by the
point (∞,∞), the choice of ls0,t0 is the line containing p2, p3. �

Lemma 4.4. Let p1, p2, p3 be three points in admissible position type 2. Then
there exist a0 > 0, b0, c0 ∈ R such that fa0,b0,c0 contains p1, p2, p3.

Proof. Without loss of generality, we can assume y2 = x3 = 0 so that p2 =
(∞, 0), p3 = (0,∞). If fa0,b0,c0 contains (∞, 0), (0,∞), then b0 = c0 = 0. Since
the points p1, p2, p3 are in admissible position, there are two cases depending
on x1, y1.

Case 1: x1, y1 > 0. The equation y1 = af1(x1) has a solution a0 =
y1

f1(x1)
, and

we have fa0,b0,c0 whose convex branch contains p1.

Case 2: x1, y1 < 0. The equation y1 = af1(x1) has a solution a0 = − y1
f2(−x1)

,

and we have fa0,b0,c0 whose concave branch contains p1. �

Lemma 4.5. Let p1, p2, p3 be three points in admissible position type 3. Then
there exist a0 > 0, b0, c0 ∈ R such that fa0,b0,c0 contains p1, p2, p3.

Proof. We can assume x3 = 0, y2 = 0, x1 > x2. Let b0 = 0. There are three
cases depending on the positions of p1 and p2. We show that there is a choice
of a0, c0 in each case.

Case 1: x1 > x2 > 0, and y1 < 0. We consider the system
{

y1 = af1(x1) + c

0 = af1(x2) + c

in variables a, c. The solution for this system is a0 =
y1

f1(x1) − f1(x2)
and

c0 = −a0f1(x2). Then fa0,b0,c0 contains p1 and p2 on its convex branch.

Case 2: x1 > 0 > x2, and y1 > 0. We claim that there exists fa0,b0,c0 whose
convex branch contains p1 and whose concave branch contains p2, that is, the
system

{
y1 = af1(x1) + c

0 = −af2(−x2) + c

has a solution a0, c0. It is sufficient to show that the function g : R
+ → R

defined by

g(a) = (f1(x1) + f2(−x2))a − y1,

has a root a0, which is immediate from the IVT.

Case 3: 0 > x1 > x2, and y1 < 0. One can show that there exists fa0,b0,c0

whose concave branch contains p1 and p2. This is similar to Case 1. �
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Lemma 4.6. Let p1, p2, p3 be three points in admissible position type 4. Then
there exist a0 > 0, b0, c0 ∈ R such that fa0,b0,c0 contains p1, p2, p3.

Proof. We can assume y3 = 0, x2 = 0, y1 > y2. Let c0 = 0. There are three
cases.

Case 1: y1 > y2 > 0, and x1 < 0. We show that there exists fa0,b0,c0 whose
convex branch contains p1 and p2, by showing that the system

{
y1 = af1(x1 + b)
y2 = af1(b)

(1)

has a solution a0, b0. Eliminating the variable a, we get

y1
y2

=
f1(x1 + b)

f1(b)
. (2)

We consider the function g : (−x1,+∞) → R defined by g(b) =
f1(x1 + b)

f1(b)
. We

have that g is continuous, limb→+∞ g(b) = 1 by Definition 3.1, and limb→−x1+ g(b) =
+∞. By the IVT, there exists b0 such that g(b0) =

y1
y2

> 1, that is, b0 is a root

of (2). This shows that (1) also has a solution.

Case 2: y1 > 0 > y2, and x1 > 0. It can be shown that there exists fa0,b0,c0

whose convex branch contains p1 and whose concave branch contains p2. This
is similar to Case 1.

Case 3: 0 > y1 > y2, and x1 < 0. It can be shown that there exists fa0,b0,c0

whose concave branch contains p1 and p2. This is similar to Case 1. �

Lemma 4.7. Let p1, p2, p3 be three points in admissible position type 5. Then
either there exist a0 > 0, b0, c0 ∈ R such that fa0,b0,c0 contains p1, p2, p3; or,
there exist s0 < 0, t0 ∈ R such that ls0,t0 contains p1, p2, p3.

Proof. We can assume x3 = y3 = 0 and 0 < x1 < x2. For nontriviality, we
further assume that the three points are not collinear. There are four cases
depending on the values of y1 and y2.

Case 1: y2 < y1 < 0 and y1 <
x1

x2
y2 < 0. We claim that there exists fa0,b0,c0

whose convex branch contains p1, p2, p3, by showing that the system
⎧
⎪⎨

⎪⎩

y1 = af1(x1 + b) + c

y2 = af1(x2 + b) + c

0 = af1(b) + c

has a solution a0, b0, c0. The third equation gives c = −af1(b). Substituting
this into the first two equations and rearranging, we get

a =
y1

f1(x1 + b) − f1(b)
=

y2
f1(x2 + b) − f1(b)

. (3)
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We consider the function g : (0,+∞) → R defined by

g(b) =
f1(x2 + b) − f1(b)
f1(x1 + b) − f1(b)

= 1 +
f1(x2 + b) − f1(x1 + b)

f1(x1 + b) − f1(b)
.

We note that g is continuous and limb→0+ g(b) = 1. Also, limb→+∞ g(b) =
x2

x1

by Lemma 3.2. The conditions of xi, yi imply that 1 <
y2
y1

<
x2

x1
. By the IVT,

there exists b0 such that g(b0) =
y2
y1

. This shows that the second equality in

(3) has a solution and the claim follows.

Case 2: y1 > y2 > 0. It can be shown that exists fa0,b0,c0 whose convex branch
contains p1, p2 and whose concave branch contains p3. This is similar to Case
1.

Case 3: y1 < 0, and y2 > 0. It can be shown that there exists fa0,b0,c0 whose
concave branch contains p1, p3 and whose convex branch contains p2. This is
similar to Case 1.

Case 4: y2 < y1 < 0 and
x1

x2
y2 < y1 < 0. It can be shown that there exists

fa0,b0,c0 whose concave branch contains p1, p2, p3. This is similar to Case 1.

�

4.2. Axiom of Joining, uniqueness

In this subsection we prove the following.

Theorem 4.8 (Axiom of Joining, uniqueness). Two distinct elements C,D ∈
C−(f1, f2) have at most two intersections.

Proof. We note that the theorem holds if at least one of C or D has the form
ls,t. In the remainder of the proof, let C = fa1,b1,c1 and D = fa2,b2,c2 , where
a1, a2 > 0, b1, b2, c1, c2 ∈ R, (a1, b1, c1) �= (a2, b2, c2). We assume that C and D
have two intersections p, q and show that they can have no other intersection.
There are three cases depending on the coordinates of p.

Case 1: p = (b,∞), b ∈ R. Then b1 = b2 = −b. If q = (xq, yq) ∈ R
2, then the

claim follows from Lemma 3.6. Otherwise, q = (∞, c) so that c1 = c2 = c. In
this case, a1 �= a2 and the claim follows also from Lemma 3.6.

Case 2: p = (∞, c), c ∈ R. This case can be treated similarly to the previous
case.

Case 3: p = (xp, yp) ∈ R
2. By symmetry, we may also assume that q =

(xq, yq) ∈ R
2. It is sufficient to show that if p, q are on convex branches of

C and D, then C and D have no other intersections. Comparing the cases in
Lemmas 3.6 and 3.7, we have b1 �= b2 and c1 �= c2, which shows that C and D
have no intersections at infinity. Also, the equation

a1f1(x + b1) + c1 = a2f1(x + b2) + c2



Vol. 113 (2022) A family of flat Minkowski planes over convex functions Page 15 of 25 26

has two solutions xp, xq. By Lemma 3.7, the equation

−a1f2(−x − b1) + c1 = −a2f2(−x − b2) + c2

has no solution. This implies that the concave branch of C does not intersect
the concave branch of D. We note that the convex branch of C cannot intersect
the concave branch of D and vice versa. This completes the proof. �

4.3. Axiom of touching, existence

We say that two distinct elements C,D of C−(f1, f2) touch at p if C∩D = {p}.
As a preparation for the proof of the main theorem of this subsection, we have
the following.

Lemma 4.9. Let a1, a2 > 0, b1, b2, c1, c2 ∈ R, (a1, b1, c1) �= (a2, b2, c2). If one of
the following conditions holds, then D1 = fa1,b1,c1 and D2 = fa2,b2,c2 touch at
a point p.

1. p = (b,∞), a1 = a2, b1 = b2 = −b and c1 �= c2.
2. p = (∞, c), a1 = a2, b1 �= b2, and c1 = c2 = c.
3. p = (xp, yp) ∈ R

2, fa1,b1,c1(xp) = fa2,b2,c2(xp) = yp and f ′
a1,b1,c1

(xp) =
f ′
a2,b2,c2

(xp).

Proof. 1. Assume that the first condition holds. Note that p ∈ D1 ∩ D2. By
Lemma 3.6, D1 and D2 have no intersection on their convex and concave
branches. They cannot have an intersection of the form (∞, c) either,
since c1 �= c2. Therefore, p is the only common point of D1 and D2. A
similar conclusion can be made for the second condition.

2. Assume that the third condition holds. Since fa1,b1,c1(xp) = fa2,b2,c2(xp) =
yp, the point p is an intersection of D1 and D2. If p is on the convex branch
of D1 and the concave branch of D2, then it is easy to check that D1

and D2 have no other intersection. Consider the case p is on the convex
branches of D1 and D2. Then the function qf : (max{−b1,−b2},+∞) → R

defined by
qf(x) = a1f1(x + b1) + c1 − a2f1(x + b2) − c2

has at least one root xp such that qf ′(xp) = 0.
If b1 = b2, c1 �= c2 or b1 �= b2, c1 = c2, then from Lemma 3.6 we obtain
a contradiction. Hence b1 �= b2, c1 �= c2. By Lemma 3.7, p is the only
finite intersection of D1 and D2. Also, D1 and D2 have no intersection at
infinity, and so p is the only common point of D1 and D2. This completes
the proof. �

Lemma 4.10. Let C = fa0,b0,c0 and p = (−b0,∞). Let q be a point such that
q �∈ C, q �‖ p. Then there exist a1 > 0, b1, c1 ∈ R such that D = fa1,b1,c1

contains p, q and touches C at p.

Proof. Let a1 = a0, b1 = b0. Depending on the position of q, we let c1 be
described as follows.
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Case 1: q = (∞, yq). Let c1 = yq.
Case 2: q = (xq, yq), xq > −b1. Let c1 = yq − a1f1(xq + b1).
Case 3: q = (xq, yq), xq < −b1. Let c1 = yq + a1f2(−xq − b1).

We note that the condition q �∈ C implies that c1 �= c0 in each of the cases
above. Let D = fa1,b1,c1 . Then D contains p, q, and by Lemma 4.9, touches C
at p. �

Lemma 4.11. Let C = fa0,b0,c0 and p = (∞, c0). Let q be a point such that
q �∈ C, q �‖ p. Then there exist a1 > 0, b1, c1 ∈ R such that D = fa1,b1,c1

contains p, q and touches C at p.

Proof. Let a1 = a0, c1 = c0. There are three cases depending on the position
of q.

Case 1: q = (xq,∞). Let b1 = xq. We note that b1 = xq �= b0, since q �∈ C.
Case 2: q = (xq, yq) ∈ R

2, yq > c1. Since f1 is surjective on R
+, there exists

b1 ∈ (−xq,∞) such that a1f1(xq + b1) + c1 = yq. Since q �∈ C, it
follows that yq �= a0f1(xq + b0) + c0, which implies f1(xq + b1) �=
f1(xq + b0). In particular, b1 �= b0 since f1 is injective on R

+.
Case 3: q = (xq, yq), yq < c1. This is similar to Case 2.

Let D = fa1,b1,c1 . Then D contains p, q, and by Lemma 4.9, touches C at p.

�

Lemma 4.12. Let p = (xp, yp) ∈ R
2 and s < 0. Let q be a point such that q �‖ p.

Then exactly one of the following is true.

1. There exists t ∈ R such that D = ls,t contains p and q.
2. There exist a1 > 0, b1, c1 ∈ R such that D = fa1,b1,c1 contains p, q and

f ′
a1,b1,c1

(xp) = s.

Proof. We can assume p = (0, 0). If q is on the line y = sx or q = (∞,∞),
then D = ls,0 contains p and q. We now consider other cases.

Case 1: q = (xq,∞), xq �= 0. Let b1 = −xq. If xq < 0, we consider the system
{

0 = af1(b1) + c

s = af ′
1(b1)

in variables a, c. The solution is a1 =
s

f ′
1(b1)

, c1 = −a1f1(b1). Then D =

fa1,b1,c1 contains p, q and satisfies f ′
a1,b1,c1

(xp) = s. The case xq > 0 is similar.

Case 2: q = (∞, yq), yq �= 0. Let c1 = yq. If yq < 0, then we consider the
system

{
0 = af1(b) + c1

s = af ′
1(b)

(4)



Vol. 113 (2022) A family of flat Minkowski planes over convex functions Page 17 of 25 26

in variables a, b. Eliminating a, we obtain −s/c1 = f ′
1(b)/f1(b). Let g : (0,+∞)

→ R be defined by

g(b) =
f ′
1(b)

f1(b)
.

Since f1 is continuously differentiable, g is continuous. By Lemma 3.2,
limb→+∞ g(b) = 0 and g is unbounded below. As −s/c1 < 0, by the IVT, (4)
has a solution. Then D = fa1,b1,c1 contains p, q with p on its convex branch,
and f ′

a1,b1,c1
(xp) = s. Similarly, when yq > 0, D = fa1,b1,c1 contains p, q with

p on its concave branch, and f ′
a1,b1,c1

(xp) = s.

Case 3: q = (xq, yq) ∈ R
2, where xq > 0, sxq < yq < 0, or xq < 0, 0 < sxq < yq.

We claim that there exists fa1,b1,c1 containing p, q on its convex branch and
f ′
a1,b1,c1

(xp) = s, that is, the system
⎧
⎪⎨

⎪⎩

0 = af1(b) + c

yq = af1(xq + b) + c

s = af ′
1(b)

has a solution a1, b1, c1. From the first equation, we get c = −af1(b). Substi-
tuting this into the remaining equations and rearranging, we have

a =
yq

f1(xq + b) − f1(b)
=

s

f ′
1(b)

. (5)

Let g : (max{−xq, 0},+∞) → R be defined by

g(b) =
f1(xq + b) − f1(b)

f ′
1(b)

.

We consider the case xq > 0,sxq < yq < 0. Note that g(b) is continuous and
limb→0+ g(b) = 0. By Lemma 3.2, limb→+∞ g(b) = xq. By the IVT, there exists
b1 such that g(b1) =

yq
s

∈ (0, xq). This shows that (5) has a solution. The case
xq < 0, 0 < sxq < yq is similar. The claim follows.

Case 4: q = (xq, yq) ∈ R
2, where xq < 0, yq < 0. It can be shown that there

exists fa1,b1,c1 containing p on its convex branch, q on its concave branch, and
f ′
a1,b1,c1

(xp) = s.

Case 5: q = (xq, yq) ∈ R
2, where 0 < xq, yq < sxq < 0, or xq < 0, 0 < yq < sxq.

It can be shown that there exists fa1,b1,c1 containing p, q on its on concave
branch and f ′

a1,b1,c1
(xp) = s.

Case 6: q = (xq, yq) ∈ R
2, where xq > 0, yq > 0. It can be shown that there

exists fa1,b1,c1 containing p on its concave branch and q on its convex branch,
and f ′

a1,b1,c1
(xp) = s. �

Theorem 4.13 (Axiom of Touching, existence). Given C ∈ C−(f1, f2) and two
points p ∈ C, q �∈ C such that q �‖ p, there exists D ∈ C−(f1, f2) that contains
p, q and touches C at p.
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Proof. There are four cases depending on p and C.

Case 1: p = (∞,∞), C = ls0,t0 . Then q ∈ R
2. Let D be the Euclidean line goes

through q and parallel to C. Then D satisfies the requirements.
Case 2: p = (−b0,∞), C = fa0,b0,c0 . The existence of D follows from Lemma 4.10.
Case 3: p = (∞, c0), C = fa0,b0,c0 . The existence of D follows from Lemma 4.11.
Case 4: p = (xp, yp) ∈ R

2. Let s be the slope of the tangent of C at p. By
Lemma 4.12, there exist a1 > 0, b1, c1 ∈ R such that D = fa1,b1,c1

contains p, q and satisfies f ′
a1,b1,c1

(xp) = s. Then by Lemma 4.9, D
touches C at p. �

4.4. Axiom of touching, uniqueness

In this subsection, we prove the following theorem.

Theorem 4.14 (Axiom of Touching, uniqueness). Let C ∈ C−(f1, f2), p ∈ C,
q �∈ C, q �‖ p. Then there is at most one element D ∈ C−(f1, f2) that contains
p, q and touches C at p.

Lemma 4.15. Let D1 = fa1,b1,c1 and D2 = fa2,b2,c2 touch at a point p.

1. If p = (b,∞), b ∈ R, then a1 = a2, b1 = b2 = −b, and c1 �= c2.
2. If p = (∞, c), c ∈ R, then a1 = a2, b1 �= b2, and c1 = c2 = c.
3. If p = (xp, yp) ∈ R

2, then f ′
a1,b1,c1

(xp) = f ′
a2,b2,c2

(xp).

Proof. 1. If p is a point at infinity, then b1 = b2, c1 �= c2 or b1 �= b2, c1 =
c2. Suppose for a contradiction that a1 �= a2. Since D1 and D2 touch
at p, their convex branches have no intersections. This implies that the
equation

a1f1(x + b1) + c1 = a2f1(x + b2) + c2

has no roots. By Lemma 3.6, the equation

−a1f2(−x − b1) + c1 = −a2f2(−x − b2) + c2

has exactly one root. This implies that D1 and D2 have one intersection
on their concave branches, which is a contradiction. Thus, a1 = a2.

2. Assume that p = (xp, yp) ∈ R
2. Since p is the only intersection of D1 and

D2, we have b1 �= b2, c1 �= c2. We note that if p is on the convex branch
of D1 and the concave branch of D2, then f ′

a1,b1,c1
(xp) = f ′

a2,b2,c2
(xp).

Consider the case p is on the convex branches of both D1 and D2. Let
qf : (max{−b1,−b2},+∞) → R defined by

qf(x) = a1f1(x + b1) + c1 − a2f1(x + b2) − c2.

By checking the cases in Lemma 3.7, we see that the derivative qf ′ also
has a root at x0. This implies that f ′

a1,b1,c1
(xp) = f ′

a2,b2,c2
(xp). The case

p on the concave branches of D1 and D2 is similar. �
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Proof of Theorem 4.14. Assume that there are D1,D2 ∈ C−(f1, f2) that con-
tain p, q and touch C at p. We will show that D1 = D2. There are four cases
depending on the coordinates of p.

Case 1: p = (∞,∞). Then C,D1,D2 are Euclidean lines extended by p. The
lines D1 and D2 are parallel to C and go through q so they must be the same
line.

Case 2: p = (b,∞), b ∈ R. Since C,D1,D2 contain p, they cannot be Euclidean
lines extended by (∞,∞). Let C = fa0,b0,c0 , D1 = fa1,b1,c1 and D2 = fa2,b2,c2 .
It follows that b1 = b2 = b0. Since the two pairs of circles C,D1 and C,D2

touch at p, by Lemma 4.15, a1 = a2 = a0.

Suppose for a contradiction that c1 �= c2. Then q must be either on the convex
branches or the concave branches of both D1,D2. But this is impossible by the
condition a1 = a2 and Lemma 3.6. Hence c1 = c2 and (a1, b1, c1) = (a2, b2, c2),
so that D1 = D2.

Case 3: p = (∞, c). This can be treated similarly to Case 2.

Case 4: p = (xp, yp) ∈ R
2. We only consider the nontrivial case when C =

fa0,b0,c0 , D1 = fa1,b1,c1 and D2 = fa2,b2,c2 . Since C and D1 touch at a finite
point p ∈ R

2, by Lemma 4.15, f ′
a0,b0,c0

(xp) = f ′
a1,b1,c1

(xp). Similarly, we have
f ′
a0,b0,c0

(xp) = f ′
a2,b2,c2

(xp). It follows that f ′
a1,b1,c1

(xp) = f ′
a2,b2,c2

(xp).

Suppose for a contradiction that (a1, b1, c1) �= (a2, b2, c2). By Lemma 3.6, it
cannot be the case that b1 �= b2, c1 = c2 or b1 = b2, c1 �= c2. If b1 �= b2, c1 �= c2,
then we obtain a contradiction from Lemma 3.7. Hence b1 = b2, c1 = c2. Then
D1 and D2 have at least three points in common (which are p and two points
at infinity), and so D1 = D2. �

5. Isomorphism classes, automorphisms and Klein–Kroll types

We say a flat Minkowski plane Mf = M(f1, f2; f3, f4) is normalised if f1(1) =
f3(1) = 1. Every flat Minkowski plane Mf can be described in a normalised
form and we will assume that all planes Mf under consideration are nor-
malised.

Let Aut(Mf ) be the full automorphism group of Mf . Let Σf be the connected
component of Aut(Mf ). From the definition of Mf , the group Φ∞ is contained
in Σf .

Lemma 5.1. Let φ be an isomorphism between two flat Minkowski planes Mf =
M(f1, f2; f3, f4) and Mg = M(g1, g2; g3, g4). If φ(∞,∞) �= (∞,∞), then both
Mf and Mg are isomorphic to the classical Minkowski plane.

Proof. Assume that φ(∞,∞) = (x0, y0), x0, y0 ∈ R ∪ {∞}, (x0, y0) �= (∞,∞).
We first note that φΣfφ−1 = Σg. If dim Σf = dim Σg = 3, then since both
groups Σf and Σg are connected and contain Φ∞, it follows that Σf = Σg =
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Φ∞, and so φΦ∞φ−1 = Φ∞. This is a contradiction, since φΦ∞φ−1 fixes
(x0, y0), but Φ∞ can only fix (∞,∞).

If dim Σf = dim Σg = 4, then by Theorem 2.5, Mf is isomorphic to either
a proper half-classical plane MHC(f, id) or a proper generalized Hartmann
plane MGH(r1, s1; r2, s2). The former case cannot occur because the plane
MHC(f, id) does not admit Φ∞ as a group of automorphisms. In the latter
case, we have

Σf = {(x, y) �→ (rx + a, sy + b) | r, s > 0, a, b ∈ R},

which fixes only the point (∞,∞). This is also a contradiction similar to the
previous case. Therefore dim Σf = dim Σg = 6, and both Mf and Mg are
isomorphic to the classical Minkowski plane MC . �

We now consider the case that φ maps (∞,∞) to (∞,∞). Since translations
in R

2 are automorphisms of both planes Mf and Mg, we can also assume
that φ maps (0, 0) to (0, 0). Since φ induces an isomorphism between the two
Desarguesian derived planes, we can represent φ by matrices in GL(2,R). Since

φ maps parallel classes to parallel classes, φ is of the form
[
u 0
0 v

]

or
[
0 u
v 0

]

,

for u, v ∈ R\{0}. We rewrite

[
u 0
0 v

]

=
[
r 0
0 s

]

· A,

and

[
0 u
v 0

]

=
[
r 0
0 s

]

·
[
0 1
1 0

]

· A,

where r = |u|, s = |v|, and

A ∈ A =
{[

1 0
0 1

]

,

[
1 0
0 −1

]

,

[−1 0
0 1

]

,

[−1 0
0 −1

]}

.

Let the matrices in A be A1, A2, A3, A4, respectively. Then φ is a composition

of maps of the form
[
r 0
0 s

]

,
[
0 1
1 0

]

or Ai, where i = 1..4. To describe φ, it is

sufficient to describe each of these maps. This is done in Lemmas 5.2, 5.3, 5.4.

Lemma 5.2. For r, s > 0, let φ : P → P : (x, y) �→ (rx, sy). If φ is an
isomorphism between Mf and Mg, then
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1(r)f1

(
1
r

)

= 1, g2(r)f2

(
1
r

)

= 1

g1(x) =
f1(x/r)
f1(1/r)

g2(x) =
f2(x/r)
f1(1/r)

g3(x) =
f3(x/r)
f2(1/r)

g4(x) =
f4(x/r)
f2(1/r)

(6)

holds. Conversely, if there exists r > 0 such that (6) holds, then for every
s > 0, the map φ : P → P : (x, y) �→ (rx, sy) is an isomorphism between Mf

and Mg.

Proof. We only prove the equations for gi, where i = 1, 2, as the cases i = 3, 4
are similar. Under φ, the convex branch {(x, f1(x)) | x > 0} of the circle
{(x, f1(x))} is mapped onto {(x, sf1(x/r)) | x > 0}. On the other hand,
since r, s > 0 (so that points in the first quadrant are mapped onto the first
quadrant) and φ maps circles to circles, the convex branch is mapped onto
{(x, ag1(x)) | x > 0}, for some a > 0. This implies

sf1(x/r) = ag1(x)

for all x > 0. For x = 1 and x = r, the normalisation condition gives

f1

(
1
r

)

=
1

g1(r)
=

a

s
,

so that g1(r)f1

(
1
r

)

= 1 and g1(x) =
f1(x/r)
f1(1/r)

. Similarly, for the concave

branch, we obtain

sf2

(x

r

)
= ag2(x),

for x > 0. This gives g2(r)f2

(
1
r

)

= 1 and g2(x) =
f2(x/r)
f1(1/r)

.

The converse direction is easily verified. �

Lemma 5.3. Let φ : P → P : (x, y) �→ (y, x). If φ is an isomorphism between
Mf and Mg, then

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

g1 = f−1
1

g2 = f−1
2

g3 =
1

f−1
4 (1)

f−1
4

g4 =
1

f−1
4 (1)

f−1
3

(7)

holds.
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Lemma 5.4. For A ∈ A, let φ : P → P : (x, y) �→ (x, y) · A. If φ is an
isomorphism between Mf and Mg, then one of the following occurs.

1. If A = A1, then
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g1 = f1

g2 = f2

g3 = f3

g4 = f4

(8)

holds.
2. If A = A2, then

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1 =
1

f4(1)
f4

g2 =
1

f4(1)
f3

g3 =
1

f2(1)
f2

g4 =
1

f2(1)
f1

(9)

holds.
3. If A = A3, then

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g1 = f3

g2 = f4

g3 = f1

g4 = f2

(10)

holds.
4. If A = A4, then

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1 =
1

f2(1)
f2

g2 =
1

f2(1)
f1

g3 =
1

f4(1)
f4

g4 =
1

f4(1)
f3

(11)

holds.

Lemmas 5.3 and 5.4 can be verified by direct calculations.

Theorem 5.5. A flat Minkowski plane Mf is isomorphic to the classical
Minkowski plane MC if and only if fi(x) = 1/x, for i = 1..4.

Proof. The “if” direction is straightforward. For the converse direction, let
gi(x) = 1/x, where i = 1..4. Then Mg = M(g1, g2; g3, g4) is isomorphic to the
classical flat Minkowski plane and
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Σg
∼= 〈PGL(2,R) × PGL(2,R), {(x, y) �→ (y, x)}〉.

Assume Mf and Mg are isomorphic. Let φ be an isomorphism between Mf

and Mg. Since Σg is transitive on the torus, for (x0, y0) ∈ S1 ×S1, there exists
an automorphism ψ ∈ Σg such that ψ((x0, y0)) = (∞,∞). If φ((∞,∞)) =
(x0, y0) �= (∞,∞), then ψφ is an isomorphism between Mf and Mg that
maps (∞,∞) to (∞,∞). From Lemmas 5.2, 5.3, and 5.4, fi(x) = 1/x. �

Let A′ =
[
0 1
1 0

]

A. We now determine isomorphism classes of the planes Mf .

We shall say that two flat Minkowski planes Mf and Mg are simply isomorphic
if there is an isomorphism from Mf to Mg of the form (x, y) �→ (rx, sy),
for some r, s > 0. In general, an isomorphism is a composition of a simple
automorphism and a map from A or A′. The effect of the latter map is described
by Lemmas 5.3 and 5.4. For the simple isomorphism class, we have the following
description.

Theorem 5.6. Two flat Minkowski planes Mf and Mg are simply isomorphic
if and only if there exists r > 0 such that (6) holds. (cp. Lemma 5.2).

Proof. Let φ be an isomorphism between Mf and Mg. If both Mf and Mg

are isomorphic to the classical flat Minkowski plane, then the proof follows
from Theorem 5.5. Otherwise, from Lemma 5.1, φ maps (∞,∞) to (∞,∞).
The claim now follows from Lemma 5.2. �

From Theorem 5.6, we can determine when Mf is simply isomorphic to a
generalised Hartmann plane (cp. Example 2.3) as follows.

Theorem 5.7. A proper flat Minkowski plane Mf is simply isomorphic to a
generalised Hartmann plane MGH(r1, s1; r2, s2) if and only if f1(x) = x−r1 ,
f2(x) = s−1

1 x−r1 , f3(x) = x−r2 , f4(x) = s−1
2 x−r2 , where r1, s1, r2, s2 > 0,

(r1, s1, r2, s2) �= (1, 1, 1, 1).

From previous results, we obtain the following group dimension classification.

Theorem 5.8. A flat Minkowski plane Mf = M(f1, f2; f3, f4) has group di-
mension

6 if and only if fi(x) = 1/x, for i = 1..4;
4 if and only if there exist r1, s1, r2, s2 > 0, (r1, s1, r2, s2) �= (1, 1, 1, 1),
such that f1(x) = x−r1 , f2(x) = s1x

−r1 , f3(x) = x−r2 , f4(x) = s2x
−r2 ;

3 in all other cases.

Proof. Let n be the group dimension of Mf . Then n ≥ 3, since it admits the
group Φ∞ as a group of automorphisms. By Theorem 2.5, n ≥ 5 if and only
if n = 6 if and only if Mf is isomorphic to the classical Minkowski plane.
The form of fi follows from Theorem 5.5. Furthermore, n = 4 if and only if
Mf is isomorphic to either a proper half-classical plane M(f, id) or a proper
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generalized Hartmann plane. The former case cannot occur, however, since
the plane M(f, id) does not admit Φ∞ as a group of automorphisms. In the
latter case, the form of fi follows from Theorem 5.7 together with Lemmas 5.3
and 5.4. Observe here that the isomorphisms from A or A′, applied to Mf ,
yield a plane Mg where gi has the same form as fi. �

Regarding the Klein–Kroll types, we obtain the following.

Theorem 5.9. A flat Minkowski plane Mf has Klein–Kroll type

VII.F.23 if it is isomorphic to the classical flat Minkowski plane;
III.C.19 if it is isomorphic to a generalised Hartmann plane MGH(r, 1; r, 1),
r �= 1;
III.C.1 in all other cases.

Proof. Let p = (∞,∞). The connected component Σ of the full automorphism
group Aut(Mf ) has a subgroup {R2 → R

2 : (x, y) �→ (x+a, y+b) | a, b ∈ R} of
Euclidean translations, which is transitive on P\{[p]+ ∪ [p]−}. Hence, a plane
Mf has Klein–Kroll type at least III.C.

By Theorem 2.6, the only possible types are III.C.1, III.C.18, III.C.19, or
VII.F.23. By Theorem 2.7, if Mf is of type III.C.18, then it is isomorphic to
an Artzy–Groh plane with group dimension 3. In this case,

Σ = {(x, y) �→ (ax + b, ay + c) | a, b, c ∈ R, a > 0}.

On the other hand, Σ contains the group Φ∞ and since dim Σ = dim Φ∞, it
follows that Σ = Φ0, which is a contradiction. The claim now follows from
Theorem 2.7. �
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